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Abstract

This paper considers a real-world production planning problem in which pro-
duction line failures cause uncertainty regarding the practical implementa-
tion of a given production plan. We provide a general formulation of this
problem as an extended stochastic knapsack problem, in which uncertainty
arises from non-trivial perturbations to the decision variables that cannot be
represented in closed form.

We then proceed by describing a combination of exact optimization, sim-
ulation and a meta-heuristic that can be employed in such a setting. Specif-
ically, a discrete-event simulation (DES) of the production system is devel-
oped to estimate solution quality and to model perturbations to the decision
variables. A genetic algorithm (GA) can then be used to search for opti-
mal production plans, using a simulation-based optimization approach. To
provide effective seeding to the GA, we propose initialization operators that
exploit mathematical programming in combination with the DES model.

The approach is benchmarked against integer linear programming and
chance-constrained programming. We find that our approach significantly
outperform contestant techniques under various levels of uncertainty.
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1. Introduction

Our work is motivated by a production planning problem encountered at
the tactical level in a collaborating manufacturing company. The key features
of the application are as follows: (i) The basic deterministic planning prob-
lem (without uncertainties) can be modelled using a standard mathematical
programming approach. (ii) Uncertainties within the system impact on the
implementation of a given production plan, which results in perturbations
to the original values of the decision variables (i.e. the quantity produced of
each product) and the objective function (i.e the profit realized). (iii) These
uncertainties are of sufficient complexity to prohibit their modeling through
a closed-form expression. On the other hand, the overall system (including
its uncertainties) is understood at a level that allows for the mapping from
a given production plan to profit through a discrete-event simulation (DES)
model or an alternative numerical tool.

The primary purpose of this study is to explore the relative strengths
of mathematical programming and heuristic optimization in this specific op-
timization context, and to investigate possible synergies between the two
classes of approaches. In order to underline the practical origin and value of
our work, we provide an overview of the specific features of the real-world
problem underpinning our research. A full description is beyond the scope
of this paper but has been provided elsewhere (Diaz, 2016, p.30-42). To help
position our research and highlight the wider applicability of our approach,
we derive a general formulation for this setting in the form of an extended
knapsack problem. Finally, we present a solution approach that employs
a combination of DES, mathematical programming and a meta-heuristic to
provide an effective optimizer for this setting, and we evaluate its perfor-
mance in comparison to more established approaches.

The remainder of this paper is structured as follows. This introductory
section continues with a summarized description of the failure-prone manu-
facturing system motivating our research, and a discussion of the optimiza-
tion challenges arising from this setting. Section 2 provides a review of rele-
vant literature, and highlights our contributions in that context. The general
formulation of the problem is given in Section 3, while Section 4 describes
our optimization methodology. In Section 5, we discuss results obtained on
the real-world problem, and benchmark our approach against integer linear
programming (ILP), chance-constrained programming (CCP) (Charnes and
Cooper, 1959) and a baseline meta-heuristic optimizer. Finally, the conclu-
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sions derived from this study, limitations and future research directions are
given in Section 6.

1.1. Production planning in a failure-prone manufacturing system

The real-world problem motivating our research is the production plan-
ning problem of a manufacturing company with insufficient capacity to fully
cover demand requirements. See Diaz (2016, p. 30-42) for a detailed descrip-
tion of this manufacturing system.

Under their current operating model, the company has to purchase the
materials needed for the next working month before the beginning of the
production period. A production plan for the following month must there-
fore be available in order to make adequate purchasing decisions. This is a
challenging task because, at the time when the production plan needs to be
developed, specific due dates of orders are still unknown and only demand
forecasts are provided. Since due date information is not yet available during
the specification of a production plan, scheduling decisions are not considered
here.

The production lines in this system are failure-prone which complicates
the design of adequate production plans. In particular, the occurrence of
production line failures has the net effect of reducing the total number of
products that can be manufactured and sold, as labour and production line
capacity are limited resources. Once a production plan has been decided and
a failure occurs, corrective actions (at the operational level) may combat,
but will likely not fully eliminate, negative consequences in terms of produc-
tion volume, profit and possible penalties. Here, we do not yet explicitly
consider the possibility of corrective actions, or the individual types of neg-
ative repercussions. Instead, we incorporate the generic presence of negative
repercussions by penalizing any deviation from a given production plan.

Given the above, the company in question aims to develop production
plans that are not only profitable but are also expected to perform robustly
under different realizations of breakdown events. In other words, not only
profitability and system constraints have to be considered during the specifi-
cation of a production plan, but also the uncertainty around the occurrence
of failures in production lines.

The specific manufacturing system considered here is a batch processing
system where a set-up is required before the manufacturing of every prod-
uct lot (even between consecutive lots of the same product) and where the
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technical lot1 of every product is fixed. Each technical lot has been specified
by the company so that an entire lot can be manufactured within one shift.
Specifically, a shift has a length of 8 hours, which corresponds to the daily
number of hours that an operator needs to work. Therefore, the theoret-
ical manufacturing time for every product lot is defined as 8 hours. This
theoretical manufacturing time already considers set-up time and time spent
in transportation of necessary resources to and within the production line
involved, but it does not consider unexpected events such as delays caused
by failures of production lines.

1.2. Model formulation and outline of the methodological approach

In this paper, we provide an extended knapsack formulation of the above
problem. The model describes the general situation in which each specific
item can be loaded into a set of different knapsacks, but not all knapsacks
can carry every item. Furthermore, it allows for the presence of complex
uncertainties that affect the implementation of the solution at the level of
the individual decision variables.

Given the specific impact of uncertainty at the decision variable level,
our formulation also incorporates the ability to explicitly consider deviations
from the original packing plan and to penalize those deviations. Moreover,
our model introduces several relaxations in relation to the usual linear con-
straints considered in knapsack problems. This serves to extend the range
of applications, as it enables us to consider the case of complementary prod-
ucts, maximum demand levels and marginal costs of products used as raw
materials.

In situations involving a significant amount of uncertainty, simulation-
based optimization (SBO) provides a suitable mechanism to incorporate com-
plex system features. Specifically, this eliminates the need for a closed-form
formulation of certain aspects of the problem. While linear constraints can
be incorporated directly into our knapsack formulation, additional non-linear
constraints, uncertainties or other complex features may be considered by
direct incorporation into the simulation component (see Section 4 for more
details).

The absence of a closed-form description of the production system neces-
sitates the use of a black-box optimizer such as a meta-heuristic to search for

1the number of items produced per product lot
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near-optimal solutions. In this study we describe an SBO approach that com-
bines DES with a genetic algorithm (GA). The optimization performance of
our GA is boosted by specialized initialization operators that combine DES,
deterministic ILP and CCP in a variety of ways, as described in Sections 4.2.1
and 4.2.2. We demonstrate that our approach is able to outperform the so-
lutions obtained from the separate application of meta-heuristics and math-
ematical programming approaches.

1.3. General aspects of the problem

Generally, uncertainties in an optimization problem may arise from per-
turbations on decision or environmental variables, or they may be more
closely linked to aspects of the objective function (Jin and Branke, 2005).
As explained above, the primary uncertainty in our problem arises from per-
turbations to the decision variables, which can be modelled via DES.

Given the non-trivial uncertainties inherent to the system, addressing
the problem through mathematical programming approaches may require
a number of assumptions that are overly stringent, and could impact on
the validity of the resulting solutions (Nikolopoulou and Ierapetritou, 2012;
Gnoni et al., 2003; Goh and Tan, 2009). The severity of the impact will
depend on the levels of uncertainty present in the system or/and on the
appropriateness of the assumptions made.

Here, we aim to develop a methodology that is applicable in situations
when the uncertainty arises from non-trivial perturbations to the decision
variables, but can be described using some form of numerical model (such as
DES). An additional prerequisite of our approach is the existence of a suitable
exact optimization model for a simplified version of the problem (obtained
e.g. through the elimination of all uncertainties). In principle, possible ap-
plications of our approach are therefore thought to extend beyond the class
of knapsack problems formalized here, and include other combinatorial op-
timization problems that meet the above two criteria, such as assignment
problems.

Subsection 1.1 has outlined a number of features of the real-world system
considered here. It is important to note that the majority of these are not
prerequisites for the use of our formulation and methodology. In particu-
lar, alternative problem features (such as sequence dependent set-ups, non-
fixed technical lots and different manufacturing times across different product
lots), could be incorporated through the numerical (simulation) component
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of the approach (see Section 4 for more details), and through linear con-
straints in the problem formulation. It is evident that the complexity of the
features may impact on the applicability of mathematical programming ap-
proaches, and, potentially, on the effectiveness of the initialization strategies
introduced in this paper.

2. Literature Review

The majority of studies in the existing literature on planning of failure-
prone systems are focused on finding optimal solutions through mathemat-
ical programming approaches. Those approaches usually address idealized
cases where optimality conditions can be satisfied. For instance, Kouedeu
et al. (2014a) presented a hierarchical approach to determine production
rates along with corrective and preventive maintenance policies. They aimed
to minimize the discounted overall cost of a system that manufactures a single
product in a single machine, subject to random failures and that deteriorates
with the number of failures. Kouedeu et al. (2014b) formulated stochastic
dynamic programming equations to determine production rates for a sin-
gle product manufactured by two machines, one with production-dependent
failure rates and the other with constant failure rates, with the aim of mini-
mizing inventory and shortage costs over an infinite time horizon. In a very
similar study, Kouedeu et al. (2014c) applied the same approach presented in
Kouedeu et al. (2014b) to minimize the discounted overall cost by specifying
production rates for a manufacturing and for a re-manufacturing machine
that produce a single product. Shi et al. (2014) proposed a discrete Marko-
vian production model to determine, at every customer arrival, the produc-
tion rate and selling price (low or high) of a single product manufactured by
an unreliable machine, based on its inventory level.

Identifying a globally optimal solution for real-world problems may often
be unrealistic, due to the inherent complexity and uncertainty of real sys-
tems (Lacksonen, 2001), and thus practitioners are often satisfied with a good
(but not necessarily optimal) solution to a realistic formulation of the prob-
lem that can be implemented in practice (Blum and Roli, 2008). This has
motivated the use of meta-heuristics in this area. For instance, Dahane et al.
(2012) addressed a multi-period multi-product (MPMP) production planning
problem where in each period a single machine, with production-dependent
failure rate, first manufactures a product covering strategic demand and then
a second product covering secondary demand. The authors applied a GA to

6



simultaneously determine the production rate of the first product as well as
the duration of the production interval allocated in each period to the man-
ufacturing of the second product, in order to maximize the total expected
profit.

The above papers used a direct representation of the planning problem,
while more complex settings can be addressed by combining optimization
with simulation methods. Over the past few decades, there has been a dra-
matic increase in the number of studies applying SBO to address different
real-world problems (Korytkowski et al., 2013). Section 2.1 and 2.2 present
existing literature on the combination of simulation with mathematical pro-
gramming and simulation with meta-heuristics, respectively.

2.1. Mathematical Programming and Simulation

Studies applying a combination of simulation and mathematical program-
ming are very popular in the existing literature. For instance, Byrne and
Bakir (1999) proposed a hybrid approach that combined linear programming
(LP) and simulation to iteratively adjust the right-hand side (RHS) of capac-
ity constrains in order to obtain feasible solutions for a MPMP production
problem. Hung and Leachman (1996) applied a similar approach, but to
modify the left-hand side of capacity constraints of a semiconductor manu-
facturing system, based on the results for production flow times obtained via
DES. Kim and Kim (2001) combined the two former approaches to determine
both, the amount of total workload per machine as well as the actual machine
capacity utilized by the production plan in each period. Byrne and Hossain
(2005) incorporated the unit load concept into the model proposed by Kim
and Kim (2001) to make it suitable for just in time production (Monden,
2011, p. 8). Lee and Kim (2002) and Safaei et al. (2010) used a combina-
tion of mixed ILP (MILP) and simulation to address a multi-site MPMP
production and distribution planning problem. Almeder et al. (2009) tried
to obtain robust production, stocking and transportation plans to support
supply chain decisions at the operational level by applying a combination
of DES and MILP. Ehrenberg and Zimmermann (2012) presented an ap-
proach where input parameters of a MILP model are specified iteratively via
DES, to determine the scheduling of a make-to-order manufacturing system.
Arakawa et al. (2003) successfully solved a job shop scheduling problem by
implementing an optimization oriented method combined with simulation.
Monostori et al. (2010) applied a branch and cut algorithm to find solu-
tions to a medium-term production planning problem and to a short-term
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scheduling problem, and then used DES to assess the sensitivity of the de-
terministic production schedules and improve their robustness by supporting
re-scheduling decisions.

2.2. Meta-Heuristics and Simulation

Meta-heuristics and simulation techniques have also been combined, but
to address more complex problems where assumptions needed by mathe-
matical programming approaches cannot be satisfied. For instance, Kämpf
and Köchel (2006) combined a GA with an event-oriented simulation model
to determine sequencing and lot-sizing rules for a multi-item production
system with limited storage capacity. Li et al. (2009) used a simulation
model together with a cell evaluated GA to optimize resource allocation,
inventory and production policies for a dedicated re-manufacturing system.
Merkuryeva et al. (2010) combined stochastic simulation and multi-objective
Pareto-based GA together with response surface method-based linear search
to determine cycles and order-up-to levels of cyclic planning policies in multi-
echelon supply chains. Gansterer et al. (2014) investigated different SBO
approaches to determine appropriate settings for planned leadtime, safety
stock and lotsizing in a make-to-order environment, and concluded that a
combination of DES with optimization procedures using variable neighbour-
hood search provided better results than other SBO approaches analysed.
Taleizadeh et al. (2013) proposed a combination of fuzzy simulation and a
GA to solve a multi-period inventory control problem with stochastic replen-
ishment and stochastic period length, for multiple products with limited stor-
age and fuzzy customer demand and showed that this method outperformed
a combination of fuzzy simulation and simulated annealing. Almeder and
Hartl (2013) used a DES model as objective function and proposed a variable
neighbourhood search-based solution approach for an off-line stochastic flex-
ible flow-shop problem with limited buffers. The authors used the simulation
model to evaluate the quality of the solution given by the optimizer. Hong
et al. (2013) proposed a SBO method that combined continuous and discrete
simulation with simulated annealing and meta-models to find optimal design
configurations. In their approach the meta-models reduced the search space
by providing good initial solutions and then the meta-heuristic optimizer
tried to improve those solutions towards the optimum. Köse et al. (2015) pre-
sented a SBO approach where three meta-heuristic optimizers (binary GA,
binary-simulated annealing and binary-tabu search) were integrated with a
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simulation model to solve a buffer allocation problem in a heat exchanger
production plant.

More specifically, the integration of DES and GAs has been successfully
deployed in several areas. For instance, Azzaro-Pantel et al. (1998) achieved
efficiency improvements of a multi-purpose, multi-objective plant with lim-
ited storage. The authors applied DES and a GA to accurately model the
dynamic behaviour of the production system and to solve the scheduling
problem, respectively. It has also been applied to determine robust design
parameters as presented by Al-Aomar (2006). In order to enhance the se-
lection scheme, the author incorporated Taguchis’s robustness measures into
the GA. The integration of DES and GAs has also been deployed to address
other problems such as the one presented by Ding et al. (2005), where the
uncertainty involved in the supplier selection process was captured via DES
and a GA was used to optimize the supplier portfolio. Cheng and Yan (2009)
applied an integration of DES and a messy GA to determine the near optimal
combination of resources in order to enhance the performance of construction
operations. This approach enabled the authors to cope with the complex-
ity and large dimensionality of the problem. Wu et al. (2011) integrated
DES with a GA to determine the order point for different product types
of a cross-docking center in order to minimize total cost. Through this ap-
proach the solution space was efficiently reduced and more simulation effort
was allocated to promising regions via smart computing budget allocation.
Korytkowski et al. (2013) proposed an evolutionary simulation-based heuris-
tic, where DES and a GA were deployed to find near optimal solutions for
dispatching rules allocation. The sequence of orders determined through this
approach improved the performance of a complex multi-stage, multi-product
manufacturing system.

2.3. Contributions of this paper

The success of SBO approaches in addressing complex real-world prob-
lems motivates us to develop an SBO approach to tackle the production
planning problem analysed in this study. Different to previous work, we do
not consider combining simulation with a single optimization technique, but
use mathematical programming to enhance the performance of our meta-
heuristic optimizer, namely a GA. Thus in this paper, we highlight the syn-
ergies resulting from the integration of simulation techniques with what could
be seen as a matheuristic (Villegas et al., 2013; Boschetti et al., 2009) op-
timizer. We test this approach in the context of a real-world production
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planning problem, for which we provide a general formulation. We account
for the uncertainty in the problem via simulation and use the simulation
model for solution evaluation.

We use DES as our simulation technique due to its ability to incorpo-
rate stochastic events (Riley, 2013) and to represent functional relationships
between variables that are not explicitly known or for which no analytical
formulation exists (Steponavičė et al., 2014). As mentioned above, meta-
heuristics have been applied to stochastic problems where the solution eval-
uation is performed via simulation (across multiple replications) and are
commonly used as optimizers in DES software (Figueira and Almada-Lobo,
2014). The ability of GAs to find near-optimal solutions in large, complex
and discrete solution spaces as well as their robust performance under noisy
conditions reported in previous studies (Mitchell, 1998; Baum et al., 1995),
especially in optimization of DES models (Lacksonen, 2001), motivate us
to use a GA as our optimizer, although a different choice of meta-heuristic
would also be suitable.

In summary, the specific contributions of this paper are as follows: (i)
we introduce a generalization of a real-world production planning problem
as a form of knapsack problem, (ii) we propose two SBO approaches able to
address that problem and (iii) demonstrate their effectiveness under different
uncertainty levels through a benchmark analysis performed against ILP and
CCP. Furthermore, we do not only provide evidence of the poor performance
of both exact optimization techniques in isolation, (iv) but more importantly
we demonstrate that their integration into a meta-heuristic optimizer can
significantly improve the performance of this approach. More specifically, we
illustrate that the implementation of specialized initialization operators that
exploit the solutions offered by ILP, CCP and DES are able to significantly
improve the optimization performance of a standard GA. In general, this
paper highlights the synergies resulting from the combination of simulation,
mathematical programming and meta-heuristic methods, and illustrates how
such combinations can be used to solve complex combinatorial optimization
problems under uncertainty.

3. New Variants of the Knapsack Problem

In this section we introduce a deterministic and a stochastic variant of
the knapsack problem (KP) to define a more general class of problem that
can be tackled with our approach. Both variants generalize features of the
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manufacturing system analysed, the details of which are presented in Diaz
(2016, p. 30-42). In both variants, there are n different items and several
identical units of item j can be packed into a subset Aj ⊆ M of knapsacks.
In a production context this enables us to model situations where different

production lines are able to produce multiple units of certain types of prod-
ucts. We also set upper bounds bj for the total number of units of item j
packed across all knapsacks, as shown in Equation 3 (e.g. to model the maxi-
mum level of demand of a specific product j). Furthermore, we eliminate the
general assumption (made in KPs to avoid trivial situations (Kellerer et al.,
2004, p. 10)) that the value vj of an item j, the parameter wi,j from the set
of d constraints and the RHS ci of the ith constraint can take only positive
values, for it precludes the consideration of more complex features present in
real-world problems such as the case of complementary items. In this case,
complementary items must be packed across knapsacks in a specific propor-
tion to derive value from them. For instance, in manufacturing systems, it is
common that some products are employed (in a certain proportion) as raw
materials during the manufacturing of another product. Representing these
constraints in the form of Equation 2 requires that: (i) vj can take negative
values to represent the marginal cost of products used as raw materials, (ii)
wi,j can take negative values to represent the yield (per lot) of product j in
production line i and positive values to represent the amount of raw materials
needed to manufacture one lot of product j and (iii) ci can be equal to zero.
If each decision variable xl,j indicates the number of units of item j packed
into knapsack l, the ILP formulation of such problem is the following:

maximize f(x) =
n∑
j=1

∑
l∈Aj

vj × xl,j (1)

subject to:
n∑
j=1

∑
l∈Aj

wi,j × xl,j ≤ ci (i = 1, 2, . . . , d), (2)

∑
l∈Aj

xl,j 6 bj (xl,j ∈ Z≥0; j = 1, 2, . . . , n). (3)

We refer to this deterministic variant of the KP as the multidimensional mul-
tiple bounded knapsack problem with assignment restrictions (d-MBKAR).

However, a deterministic formulation is simplistic in our context, and
thus a stochastic version of the d-MBKAR problem (d-MBKARS) is needed.
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In the d-MBKARS we consider that knapsacks are subject to random fail-
ures during the packing process. Here, uncertainty is incorporated into the
problem by considering the reduction in capacity caused by knapsack fail-
ures. Therefore, given a packing plan x, the actual number of units of item
j packed into knapsack l at the end of the packing process, denoted here by
sl,j, depends on the number of failures that have occurred during the packing
process and on the capacity reduction caused by the corresponding repairs.
Moreover, we assume that any deviation from the packing plan x is subject
to a penalty (kj) proportional to that deviation, i.e. kj × (xl,j − sl,j), and
thus uncertainty needs to be carefully considered during the specification of
a packing plan.

The realization of a packing plan, denoted as s (vector that contains
all sl,j), is obtained here via simulation due to the difficulty of finding a
closed-form expression able to map a packing plan x onto its realization s.
In this sense, the simulation model can be seen here as the function g(x)
that enables us to perform such a mapping without the requirement of a
closed-form expression. Other parameters such as price volatility, demand
fluctuations and variability in production yields could also be incorporated
into the problem by modelling them via simulation.

The occurrence of a knapsack failure during the packing process of an item
is modelled by a random variable Hl, whose numerical values hl are sampled
(every time an item needs to be packed into a knapsack) from a probability
mass function (PMF) with sample space ΩH = {0, 1}. hl = 1 represents the
occurrence of a failure, whereas hl = 0 indicates that no failure occurred.
The probability that hl = 1 is pHl

(1) = pl; consequently, pHl
(0) = 1 − pl.

Here, pl is the probability that a knapsack fails during the packing process
of an item, and thus the number of knapsack failures depends on the number
of items to be loaded. After every knapsack failure, a repair service needs to
be undertaken. The reduction in capacity λl caused by a repair service is the
numerical realization of a random variable Λl, modelled by an exponential
probability density function (PDF) with known mean µl.

The formulation of the d-MBKARS is as follows:

maximize f(x) =
n∑
j=1

∑
l∈Aj

vj × sl,j − kj × (xl,j − sl,j), (4)

subject to the set of constraints in the form of Equations 2 and 3. Features of
the d-MBKARS problem translated to a batch manufacturing system could
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be represented by unreliable production lines that require a repair service
after one of its components stopped functioning properly. In this context,
pl is the probability that a failure occurs in production line l during the
manufacturing of a product lot. Here, a production line, a product lot and
the delay λl caused by a repair service are equivalent to a knapsack, to an
item and to the capacity loss in the d-MBKARS problem, respectively. The
reduction in capacity caused by production line failures has the effect that
a production plan cannot be fully realized, which means that some products
will not be produced on time. Deviations from the original plan may have
serious consequences not only on the company’s profitability, but also on
its image and reputation. Here, we only consider consequences that can be
quantified by a penalty proportional to that deviation.

Note that the RHS of Equation 2 is a constant, even with ci related to de-
sign (theoretical) knapsack capacities (Heizer et al., 2004, p. 252). Therefore,
a packing plan x that is feasible according to the set of constraints in the
form of Equations 2 and 3 might not always be realized in the d-MBKARS
problem. In other words, xl,j is not always equal to sl,j in the d-MBKARS
because the former is a number, whereas the latter is the numerical value of
the random variable Sl,j. Including additional constraints for sl,j would be
redundant for the real-world problem analysed, as sl,j ≤ xl,j always holds.
However, this might not always be the case for other problems that can be
tackled with this formulation, and in such situations explicit restrictions for
sl,j may need to be included into the set of constraints.

Although, the bounded KP (Pisinger, 2000), the d-dimensional or mul-
tidimensional KP (Chen and Hao, 2014; Balev et al., 2008; Wilbaut et al.,
2009), the multiple KP (MKP) (Garcia-Martinez et al., 2014; Yamada and
Takeoka, 2009; Kataoka and Yamada, 2014), the MKP with assignment re-
strictions (Dawande et al., 2000) and different stochastic versions of the
KP (Chen and Ross, 2014; Perboli et al., 2014; Dean et al., 2008) have been
analysed in the area of combinatorial optimization, to the best of our knowl-
edge, our previous studies (Diaz and Handl, 2014, 2015) are the only papers
that have tried to tackle a problem similar to d-MBKARS.

4. Simulation-Based Optimization Model

In this section we introduce our SBO approach, in the context of a real-
world production planning problem faced by a manufacturing system that

13

mcysslx
Comment on Text
It maynot be neccessary to have Sl,j. Otherwise you may need Xl,j for xl,j.



has all the features of the d-MBKARS problem. Details of this system can
be found in Diaz (2016, p. 30-42).

This manufacturing company aims to develop production plans which
specify the number of lots of the different products and sub-products that
every production line needs to manufacture in order to maximize the expected
sum of contributions to profit generated during a finite planning horizon of
one working month.

Here, remnants of sub-products can be used in future production periods
and such situations can be considered through the linear constraints included
in our formulation. It is assumed that only standard costs are derived from
the manufacturing of sub-products, as the monetary contribution of a given
sub-product is only realized once the corresponding final product is sold (i.e.
sub-products do not directly generate any revenue). Therefore, the standard
costs of products that use sub-products exclude the corresponding standard
costs of sub-products. Another alternative approach is to reward the manu-
facturing of sub-products and discount that reward from the marginal profit
of the final products. However, we do not do this here because assigning
those rewards is not an easy task given that some sub-products are required
by different final products.

Apart from complex features such as the multi-product, multi-production
line, and multi-level nature of the manufacturing system analysed, we also
need to accurately consider the uncertainty derived from failures in produc-
tion lines. Considering this uncertainty is important because any deviation
from a production plan is penalized. Since finding concrete values for those
penalties is very complicated and subjective, we assume that any deviation
from a plan results in a penalty proportional to the profit loss caused by the
deviation.

As illustrated in Figure 1, the SBO model developed in this study is
an integration of DES and a GA, which is supported by specialized initial-
ization operators that combine DES with mathematical programming tech-
niques (see Section 4.2). According to the taxonomy provided in Figueira
and Almada-Lobo (2014), our model would be classified as an “evaluation
function - simulation-based iterations/discrete heuristic-different - realiza-
tions for each solution” (EF-OSI/DH-DR1S) model, since here optimization
is performed by a meta-heuristic optimizer based exclusively on fitness values
computed with responses generated via simulation, across different realiza-
tions of integer solutions.

The DES model employed in this study corresponds to the one used
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Figure 1: SBO model.

in Diaz and Handl (2015), which is developed in SimEventsr (The Math-
Works, Inc., 2014). It is responsible for capturing the delays (λl) caused by
failures in production lines and provides to the GA information about the
number of lots of a specific product j manufactured by production line l,
which is necessary to compute fitness values.

Since we need to search for a production plan that performs robustly
under different realizations of orders due dates, in the DES model the pro-
duction sequence of a production plan is randomly initialized for every pro-
duction line, except for products that are used as raw materials during the
manufacturing of other products. In order to assure the static logic of the
model, products used as raw materials are manufactured before any other
product to be manufactured in the same production line.

We developed in MATLABr R2014a’s (The MathWorks, Inc., 2014) a
real-coded GA, that employs uniform crossover (crossover probability: 1),
Gaussian mutation (mutation probability: 0.3, mutation fraction: 0.1, scale:
0.4 and shrink: 0.1), tournament selection (tournament size: 2), a population
size of 40 individuals, 50 generations and the final solution selection employs a
computational budget (E) of 3000 fitness evaluations (see Section 4.1 for more
details about E). Here, we used the irace package (López-Ibánez et al., 2011)
to tune the parameters mentioned above, except for population size, which
was determined after extensive experimentation. The final configuration of
parameters was identified by irace based on 300 experiments.

We implemented in this GA a truncation procedure that rounds each
decision variable after crossover and mutation, in order to ensure compli-
ance with integer constraints. We also implemented the constraint-handling
method proposed by Deb (2000). Elitism is incorporated into this GA by
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combining the entire parent and offspring populations, and then extracting
from this combined population the best individuals, which will constitute
the new population for the next generation. During this extraction proce-
dure and during tournament selection, feasible solutions are preferred over
unfeasible ones and are ranked according to their fitness values, whereas
unfeasible solutions are ranked first according to the number of constraint
violations and then according to the magnitude of each violation (by how
much a constraint was violated). For this reason fitness is not computed
for unfeasible solutions. All computations are executed in parallel on a 16
core Intel(R) Xeon(R) CPU L5640 @ 2.27GHz with 24 GB of RAM running
Scientific Linux, release 6.2.

4.1. Optimization Model

In this optimization problem, decision variables xl,j indicate the number
of lots of product j to be manufactured in production line l; therefore, a vec-
tor x of decision variables constitutes a production plan. Those production
plans are only feasible if the sets of constraints represented in the form of
Equations 2 and 3 are satisfied. Production plans are here specified by the
GA and then simulated by the DES model, which returns the actual number
of lots of product j manufactured in production line l during the rth simula-
tion replication, denoted as sl,j,r. Therefore, this optimization model is based
on a black-box optimization approach that intends to maximize Equation 5
subject to the set of constraints in the form of Equations 2 and 3.

maximize f(x) =
1

γ

γ∑
r=1

n∑
j=1

∑
l∈Aj

vj × sl,j,r − kj × (xl,j,r − sl,j,r). (5)

Here, we apply a combination of two explicit averaging strategies to com-
pute the fitness f of an individual x, based on those simulated responses
(sl,j,r), as shown in Equation 5. More specifically, the evolutionary process is
based on average fitness computed across 10 independent fitness evaluations
(γ = 10), whereas the selection of the final solution is based on average fit-
ness computed for every feasible individual of the final population across a
number γ of independent fitness evaluations, where γ is computed as follows:

γ =

⌊
E

δ

⌋
. (6)

As shown in Equation 6, during the final solution selection, γ depends
on the number of feasible individuals (δ) present in the final population and
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on the computational budget E available for this last step, which is equal to
3000 fitness evaluations (E = 3000). We used the irace package to determine
the computational budget allocated to the final solution selection.

Unlike in Diaz and Handl (2015), where the optimization started with
poor quality solutions and a very limited computational budget was available,
here high quality solutions are created at the beginning of the optimization
by specialized initialization operators (presented in Section 4.2). Therefore,
we apply a modified version of the hybrid strategy proposed in Diaz and
Handl (2015) in order to select individuals based on more reliable fitness
estimates during the optimization. After extensive experimentation, we con-
cluded that using 10 fitness evaluations to compute average fitness during the
evolutionary process returned similar solutions in terms of quality compared
to using a sample size of 30, but at a much lower computational cost.

4.2. Initialization Operators

Exact and heuristic optimization techniques have been previously com-
bined to take advantage of the synergies between those approaches. For
instance, Gomes and Oliveira (2006) solved irregular strip packing prob-
lems by applying LP to generate neighbourhoods, while simulated annealing
guided the search over the solution space. Another example is Reisi-Nafchi
and Moslehi (2015), where the authors employed the rounded solution re-
turned by LP as one of the individuals of the GA’s initial population when
solving the two-agent order acceptance and scheduling problem. Here, we
present two different initialization operators to create part of the GA’s ini-
tial population. Solutions created by the specialized initialization operators
through DES or/and mathematical programming techniques (as described
in Sections 4.2.1 and 4.2.2) are referred to as ILP-derived solutions. Both
initializations intend to boost the optimization performance of the GA by in-
cluding into the GA’s initial population feasible ILP-derived solutions with
high quality alleles, which are likely to be part of a good quality solution.
After extensive experimentation we could determine that given a popula-
tion size of 40, the incorporation of up to 4 ILP-derived solutions into the
GA’s initial population promoted the creation of new high quality solutions
during the optimization process. Our preliminary experiments revealed that
the incorporation of more ILP-derived solutions into the GA’s initial pop-
ulation had a detrimental effect on the diversity of the initial population,
which mainly led to premature convergence. Therefore, both initialization
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procedures incorporate into the GA’s initial population up to 4 ILP-derived
solutions and the rest of individuals are randomly initialized.

4.2.1. Initialization 1

Initialization 1 incorporates as part of the GA’s initial population the
ILP solution (x∗) for the d-MBKAR problem (optimize Equation 1 subject
to constraints in the form of Equations 2 and 3). This deterministic ILP
solution is a feasible and optimal solution for a fully reliable system. However,
s deviates from x∗ when uncertainty is present in the system (s 6= x∗). To
capture those deviations we employ the DES model to run one independent
simulation of x∗ and obtain its simulated response s, which is also included
as part of the GA’s initial population.

Furthermore, the solution x′∗ obtained via CCP and one simulated re-
sponse of x′∗ are also incorporated into the GA’s initial population. x′∗

is obtained by optimizing Equation 1 subject to constraints in the form of
Equation 3 and the following:

n∑
j=1

∑
l∈Aj

wi,j × xl,j ≤ ci (i = 1, 2, . . . , d−m), (7)

P
( n∑
j=1

wl,j × xl,j ≤ C ′l

)
≥ αl (l = 1, 2, . . . ,m), (8)

where d−m represents the number of constraints not related to capacities of
production lines. All resource constraints are in the form of Equation 7, ex-
cept for those related to capacity of production lines, which are represented
in the form of Equation 8. A constraint formulated in the form of Equa-
tion 8 is a probabilistic constraint, as C ′l is a random variable with known
PDF, which models the number of hours that production line l is operative
during a working month (24 days). This constraint restricts the probability
of infeasibility to be no greater than a specified threshold 1 − αl, where αl
can take values between 0 and 1. In order to use an appropriate value for αl,
we computed CCP solutions with αl ∈ [0.50, 0.95, 0.99] and then we calcu-
lated average profit values for each of those CCP solutions, across a sample
of 5000 profit values (see Section 5 for more details about the sample size
used) obtained by simulating each solution in the DES model. The CCP
solution obtained with αl = 0.95 returned the highest average profit under
the three problem instances analysed (see Section 5 for more details about
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problem instances analysed); therefore, in this study x′∗ was calculated with
αl = 0.95.

If Fl is the cumulative distribution function (CDF) of C ′l , then Equation 8
is equivalent to:

Fl

( n∑
j=1

wl,j × xl,j
)
≤ 1− αl ⇔

n∑
j=1

wl,j × xl,j ≤ F−1l

(
1− αl

)
(9)

This means that we first need to obtain the PDF of each C ′l before applying
an available method to solve this problem (the reader is referred to Shapiro
et al. (2014); Wallace and Ziemba (2005); Kall and Wallace (1995) for details
about CCP). We implemented timers within the DES model in order to
measure the exact number of hours that each production line was operative
during a working month, denoted here as c′l, and used the DES model to
generate 10000 numerical values of each C ′l by simulating a production plan
that fully utilizes the design capacity of all production lines. Based on those
simulated responses (c′l) we fitted a PDF to each sample. We used a sample
size of 10000 numerical values of C ′l because, under the highest uncertainty
level analysed (see Section 5 for details about problem instance 3), the same
solution x′∗ was obtained when PDFs of C ′l were estimated based on a sample
size of 10000 and 50000 c′l values. Any production plan that fully utilizes the
design capacity of all production lines can be simulated to obtain numerical
values of C ′l , since pl is the probability that a failure occurs in production line
l during the manufacturing of a lot of any product. Here we used a production
plan where all its decision variables were equal to 72 lots, which is the design
capacity of the different production lines, see Diaz (2016, p. 30-42) for more
details. It is important to note that using the PDFs of the random variable
C ′l to model the uncertainty present in the system is already a simplified
version of the DES model because by doing that, both random variables,
namely the occurrence of failures that are production-level dependent and
the repair times are reduced to one. Moreover, the PDF of each C ′l could
not be estimated as described above for other real-world applications where
different products have different manufacturing times, and thus the use of
CCP would not always be straightforward. For this reason we propose bellow
a more general initialization approach that doesn’t rely on the solution x′∗,
obtained via CCP.
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4.2.2. Initialization 2

In this initialization we use again the DES model to obtain numerical
values of C ′l by simulating a production plan that fully utilizes the design
capacity of all production lines (see Section 4.2.1 for more details about
that production plan), and then we use those values (c′l) as the RHS of
Equation 10:

n∑
j=1

wl,j × xl,j ≤ c′l (l = 1, 2, . . . ,m). (10)

Here, 4 numerical values of each C ′l are generated and for each set of c′l
values an ILP solution is found by optimizing Equation 1 subject to the sets
of constraints in the form of Equations 3, 7 and 10. In order to maintain
diversity, duplicates are eliminated among those 4 ILP solutions and then
the remaining solutions are incorporated into the GA’s initial population.

4.3. Repair Operator

Due to the nature of our GA, unfeasible solutions are generated during the
optimization procedure. For instance, the crossover and mutation operators
may turn high quality solutions into unfeasible ones, and thus may lead to
loss of valuable genetic information, since here feasible solutions are preferred
over unfeasible solutions. In order to cope with this issue, we introduce a
repair operator that tries to fix the chromosome of unfeasible solutions via
simulation. This operator is applied before fitness evaluation and it replaces
every unfeasible solution x present in the population (initial or offspring
population) by one of its simulated responses (s), obtained from the DES
model. This is a simple and effective procedure for repairing solutions where
capacity constraints are violated, but it fails to repair solutions which violate
other constraints, e.g. demand constraints.

5. Benchmark Analysis

Solutions obtained with the SBO model with initialization 1 (SBO1) and
with initialization 2 (SBO2) are benchmarked against solutions generated
via ILP and CCP, two mathematical programming techniques commonly
applied in production planning. Additionally, we benchmark SBO1 and
SBO2 against the SBO model without any of the two initialization oper-
ators (SBO3).
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It is worth noting that CCP has no mechanism to consider penalties im-
posed to deviations from a plan during the specification of a production plan,
which is something that can be explicitly considered in our SBO approach.
In this sense, our approach is able to adjust a production plan according to
the penalty level, whereas the production plan obtained with CCP remains
the same under different penalty levels.

Stochastic programming with recourse is another alternative that could
have been considered here; however, the approach requires a closed-form
expression that captures the uncertainty of the system. As mentioned earlier
in the paper, we focus on scenarios where this information is not available.

Our intention is to understand the relative performance of these ap-
proaches, as the uncertainty in the system changes, and to understand the
appropriateness of each method for different scenarios. For this reason, three
problem instances are considered which differ in their levels of uncertainty.

Table 1 presents the probabilities pl that a failure occurs during the man-
ufacturing of a product lot in the different production lines per problem
instance, as well as the parameter µl of the exponential PDFs used to model
the random variables Λl, whose numerical values represent the delay caused
per repair service of a production line. Please note that pl values in instance
1 as well as µl values are based on historical data collected over a period of
54 months. pl values in instance 1 are conservative (too optimistic) lower
bounds for such probabilities, since they were calculated based on the num-
ber of production line failures recorded and assuming that every production
line remained operative and was fully utilized during a period of 54 months,
which is an unrealistic assumption; therefore, pl values in problem instance 2
and 3 are the double and triple, respectively, of the corresponding pl values
in problem instance 1.

According to the company analysed, capacity is a limiting factor only in
production line 2, 3 and 4, where 26 out of the 31 products offered by this
company are manufactured. The excess of capacity in production line 1, 5, 6
and 7 can be used to compensate the capacity loss caused by the occurrence
of failures. This is something that cannot be done in production line 2, 3 and
4, and thus an accurate consideration of the uncertainty around failures and
repairs in production line 2, 3 and 4 is much more relevant than in production
line 1, 5, 6 and 7. For this reason and because failures in production line 1, 5,
6 and 7 rarely or never occurred (see Diaz (2016, p. 39)), we assign a positive
pl to production line 2, 3 and 4 and make the simplifying assumption that
production line 1, 5, 6 and 7 are fully reliable.
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It is clear that a lack of failures in the historical records of a given pro-
duction line does not imply that it has to be fully reliable. In situations when
no or very limited information is available about the occurrence of failures
of specific production lines, statistical shrinkage estimators (Copas, 1983)
may present better approaches to estimate failure rates of individual lines,
as they use the information available from other production lines to deter-
mine suitable estimates. Some recent examples are presented in Xiao and
Xie (2014) and Vaurio and Jänkälä (2006). The estimation of pl values via
shrinkage estimators would capture a more realistic situation of this system,
but is currently not implemented in our work.

Instance 1 Instance 2 Instance 3 Instance 1, 2 and 3
Production

pl pl pl
Λl

line (l) PDF µl (d)
2 0.0355 0.0710 0.1065 Exponential 2.03
3 0.0468 0.0936 0.1404 Exponential 2.24
4 0.0471 0.0942 0.1413 Exponential 3.21

Table 1: pl per problem instance and PDFs specifications to model Λl

SBO1, SBO2 and SBO3 are executed 30 different times. Average profit
values, measured in United States Dollar (USD), are computed across a sam-
ple of 5000 profit values obtained via stochastic simulation for every final
solution of each run performed with SBO1, SBO2 and SBO3. A sample size
of 5000 profit values was chosen because it returned estimates that were re-
liable enough for the purpose of our analysis, given that the relative change
of average profit computed across samples of 10000 and 5000 profit values
in the problem instance with the highest uncertainty level (problem instance
3) was lower than 1e−2. Additionally, 30 average profit values of the solu-
tions obtained with ILP (x∗) and with CCP (x′∗) are also computed across a
sample size of 5000 profit values obtained with those solutions via stochastic
simulation. Those average profit values are used to evaluate the optimization
performance of the different models.

5.1. Performance Evaluation

Under all uncertainty levels analysed, SBO1 and SBO2 were able to gener-
ate production plans that outperformed the solutions given by ILP, CCP and
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SBO3, in terms of average profitability. This is confirmed using the Mann-
Whitney U tests (Mann and Whitney, 1947) presented in Tables A.3a, A.3b
and A.3c, which indicate that the average profit values obtained with x∗, x′∗

and with production plans given by SBO3 are significantly smaller (p < .01)
than the ones obtained with solutions given by SBO1 and SBO2, for all
problem instances.

The advantage of SBO1 and SBO2 over ILP, CCP and SBO3 (for the
uncertainty levels analysed) is further illustrated in Figures 2, 3 and 4, where
the CDFs of average profits generated with x∗, x′∗ and with production plans
given by SBO3 are dominated (first-order stochastic dominance (Hadar and
Russell, 1969)) by the CDFs of average profit values obtained with solutions
given by SBO1 and SBO2.

The observation that the near-optimal solutions, determined using a meta-
heuristic, outperforms the exact optimization solutions illustrates the impor-
tance of an accurate incorporation of uncertainty into the problem formula-
tion. In this sense, it is worth recapping that our SBO approaches explicitly
model (via simulation) the key features that bring uncertainty to the prob-
lem, namely the occurrence of failures that are production-level dependent
and the delays caused by the corresponding repair services. CCP, on the
other hand, loses information on those key features that we are interested
in capturing, since it tries to model that uncertainty by using PDFs (which
need to be estimated via simulation) of the RHSs of the capacity constraints
(C ′l). In general, our results confirm that accounting for the uncertainty in
problem becomes more important with increasing uncertainty levels.

Furthermore, this shows how the combination of simulation, mathemat-
ical programming and meta-heuristic methods can generate solutions that
outperform the ones obtained via individual application of the approaches
mentioned. Here we demonstrate that for the real-world problem analysed,
ILP and CCP are limited in their ability to return good quality solutions
compared to our approach; however, the advantage of our approach over
mathematical programming techniques (ILP and CCP) will disappear when
the impact of uncertainty becomes negligible.

5.2. Differences between initialization strategies

Under low uncertainty levels (problem instance 1), the optimization per-
formance of SBO1 and SBO2 did not reveal a significant difference (p > .05).
However, for medium and high uncertainty levels (problem instance 2 and 3)
SBO1 was clearly outperformed by SBO2. This is confirmed by results from
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Mann-Whitney U tests presented in Tables A.3a, A.3b and A.3c, and is also
illustrated in Figures 2, 3 and 4. These results demonstrate that SBO2 is a
more effective strategy than SBO1 for larger uncertainty levels. This indi-
cates differences in the effectiveness of the underlying initialization methods
at generating useful seeds. Specifically, our results show that, for increasing
uncertainty levels, initialization 1 becomes less successful at mapping out the
most promising regions of the search space.

Next, we aimed to establish whether the SBO models with specialized ini-
tialization operators will maintain their performance advantage over a stan-
dard initialization, when a bigger computational budget becomes available.
For this purpose, we executed 30 additional runs of SBO3 in every problem
instance, but this time we allocated 100 rather than 50 generations to the
optimization procedure of SBO3 (SBO3x2). Our results suggest that SBO1
and SBO2 outperform SBO3 even when the latter is allowed twice the num-
ber of generations. These results are consistent across all problem instances
analysed, as illustrated by Figures B.5, B.6 and B.7 in Appendix B.

5.3. Contribution of the Genetic Algorithm

The final solutions returned by the GA were analyzed further, in order
to investigate whether the boost in performance of the SBO model is due
solely to the initialization operators, or whether further improvements are
achieved through the adjustment of these solutions by the GA. Specifically,
we verified whether the final solutions returned by SBO1 and SBO2 were
different to the corresponding ILP-derived solutions and also compared the
average profit (computed across 5000 independent simulation replications) of
every ILP-derived solutions to the average profit of the final solution given by
the GA, in every run of SBO1 and SBO2. Our results indicate that the GA
was able to find better solutions (in terms of average profitability) than any of
the ILP-derived solutions created with initialization 1, in every run of SBO1
and under all uncertainty levels analysed. The same results were obtained for
SBO2 in problem instance 3, but under low and medium uncertainty levels,
our GA returned the best ILP-derived solution created by initialization 2 as
the final solution, in 22 and 7 occasions (out of 30), respectively.

Sample means and sample standard deviations of the average profit values
returned by the best ILP-derived solutions and by the final solutions obtained
with SBO1 and SBO2 across 30 runs are presented in Table C.4. These
results further confirm that, in general, both the initialization operators and
the GA contribute to the performance advantage of our SBO strategy. The
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only exception to this is SBO2 in problem instance 1, where most of the
performance boost can be attributed to the initialization stage alone.

Our experiments suggest that the application of simple randomization
procedures, such as the one implemented in initialization 2, might be suffi-
cient to address simple instances of the problem analysed, i.e. instances with
low uncertainty levels. The deployment of a meta-heuristic becomes justi-
fied with increasing uncertainty levels, and allows for further improvement to
such initial seeds. This confirms that, with higher uncertainty, the (linear)
objective function (Equation 1) used by initialization 2 becomes an increas-
ingly worse approximation of the real function that needs to be optimized
(Equation 4). The initialization stage is restricted to a search in the subset
of production plans accessible via ILP. In contrast to this, the GA (while
biased through the seeds) has access to the full search space, and is able to
identify better solutions within that space.

Figure 2: CDFs of average profit values generated with solutions given by SBO1, SBO2,
SBO3, CCP and ILP in problem instance 1 (low uncertainty).

Finally, the average computational times obtained with SBO1 and SBO2,
presented in Table 2, show that our approach can be realistically applied in
practice.
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Figure 3: CDFs of average profit values generated with solutions given by SBO1, SBO2,
SBO3, CCP and ILP in problem instance 2 (medium uncertainty).

Figure 4: CDFs of average profit values generated with solutions given by SBO1, SBO2,
SBO3, CCP and ILP in problem instance 3 (high uncertainty).
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SBO1 SBO2 SBO3 CCP ILP
Instance 1 1482a 836 773 641a < 1
Instance 2 1638a 984 951 649a < 1
Instance 3 1637a 979 928 655a < 1
a including simulation time needed to estimate
the PDFs of C ′l

Table 2: Computational time in seconds for each model per problem instance.

6. Conclusion

In this paper, we describe the combined use of simulation (DES) and
mathematical programming techniques (ILP and CCP) as seeding mecha-
nisms within an SBO model. Our results demonstrate a distinct enhance-
ment in final optimization performance, as well as a significant reduction in
the computational effort needed to find adequate solutions. These findings
are consistent with the idea that the incorporation of high quality alleles
into the GA’s initial population can focus the search in the feasible region
and will help guide the GA towards promising solutions. We find differences
in the robustness of two different initialization strategies to changes in the
level of uncertainty, which reflects on differences in the assumptions of the
underlying perturbation techniques.

Our work contributes to a growing body of work aimed at identifying op-
portunities for the combined use of meta-heuristics and exact optimization
techniques, and the benefits of effective seeding. The combination of ex-
act and heuristic optimization techniques is of particular interest because of
the potential to speed up convergence, which is of utmost importance when
function evaluations are expensive in terms of computational effort (as in the
SBO scenario considered here).

Our experiments suggest that, even where a problem include uncertainties
that cannot be addressed using exact optimization techniques, mathematical
programming may still be valuable as a mechanism to create initial solutions
by solving a simplified formulation of the real problem, which can then be
further improved by applying meta-heuristic approaches that operate upon
a more accurate problem formulation.

6.1. Future work
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In future work, our existing model could be extended by considering ad-
ditional, realistic features of manufacturing systems such as the deterioration
of production lines due to previous failures, different types of failures as well
as different repair types. This could be integrated into the simulation model
by allowing for dynamic, rather than static probabilities of failures. It is
evident that the effectiveness of seeding will depend on the suitability of the
initialization scheme, in relation to the properties of the system studied. Our
current analysis has focused on sensitivity to different levels of uncertainty,
but future work may consider the impact of increasing complexities / non-
linearities in other parts of the DES model. A further valuable adjustment
may be an extension of our model to scenarios that allow for a re-optimization
once deviations have occurred in a specific production plan. Stochastic pro-
gramming with recourse is a contestant technique that would become highly
relevant in such a setting.

Finally, we believe that the core of the approach introduced in our work
can be adapted to a wider range of real-world applications. Specifically, we
set out the formulation of an extended knapsack problem that accounts for
the presence of complex uncertainties at the level of the decision variables.
We believe that the accompanying methodology can be tailored to other areas
where mathematical programming methods are currently employed and the
risk of complex perturbations to the design variables are an inherent problem
feature.
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Appendix A. Mann-Whitney U tests

SBO1 SBO2 SBO3 CCP ILP
SBO1 — 414a 0** 0** 0**
SBO2 — — 0** 0** 0**
SBO3 — — — 0** 355a

CCP — — — — 0**
ILP — — — — —

** p < .01; a heteroscedasticity according to
non-parametric Levene test (p > .05)
(Nordstokke and Zumbo, 2010)

(a) Instance 1

SBO1 SBO2 SBO3 CCP ILP
SBO1 — 127** 0** 0** 0**
SBO2 — — 0** 0** 0**
SBO3 — — — 0** 0**
CCP — — — — 0**
ILP — — — — —

** p < .01

(b) Instance 2

SBO1 SBO2 SBO3 CCP ILP
SBO1 — 161** 0** 0** 0**
SBO2 — — 0** 0** 0**
SBO3 — — — 0** 0**
CCP — — — — 0**
ILP — — — — —

** p < .01; no heteroscedasticity according to
non-parametric Levene test (p > .05)

(c) Instance 3

Table A.3: Values for Mann-Whitney U statistic obtained for average profit values.
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Appendix B. SBO3x2 vs. SBO3, SBO1 and SBO2.

Figure B.5: CDFs of average profit values generated with solutions given by SBO1, SBO2,
SBO3 and SBO3x2 in problem instance 1 (low uncertainty).

Figure B.6: CDFs of average profit values generated with solutions given by SBO1, SBO2,
SBO3 and SBO3x2 in problem instance 2 (medium uncertainty).
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Figure B.7: CDFs of average profit values generated with solutions given by SBO1, SBO2,
SBO3 and SBO3x2 in problem instance 3 (high uncertainty).

Appendix C. Best ILP-derived solutions vs. final solutions re-
turned by SBO1 and SBO2.

Instance 1 Instance 2 Instance 3
Mean (Std. dev.)

SBO1
Initial 680300 (48547) 547754 (46809) 463883 (44500)
Final 732696 (82742) 627086 (130593) 529021 (130195)

SBO2
Initial 727310 (95887) 625126 (144207) 519121 (149713)
Final 731930 (91358) 642480 (130410) 540346 (143319)

Table C.4: Sample means and sample standard deviations of the average profit values
of the best ILP-derived solutions and of the final solutions returned by SBO1 and SBO2
across 30 runs.
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