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Abstract

This paper considers the three-dimensional Multiple Bin Size Bin Packing Problem which

consists in packing a set of cuboid boxes into containers of various shapes with minimising

unused space. The problem is extended to air cargo where bins are Unit Load Devices,

especially designed for �tting in aircraft. We developed a fast constructive heuristic able to

manage the di�erent constraints met in transportation. The heuristic is split into two distinct

phases. The �rst phase deals with the packing of boxes into identical bins using an extension

of the Extreme Points. During this phase, the fragility, stability and orientations of the boxes

are taken into account as well as the special shape of the bins and their weight capacity.

The second phase takes into account the multiple types of available bins. If necessary, the

best found loading pattern is �nally enhanced with respect to weight distribution in a post

processing. After parametrisation, computational experiments have been performed on data

sets especially designed for this application. The heuristic requires really short computational

times to achieve promising results.

Keywords: Packing, Heuristics, Air transportation, Extreme points

1. Introduction

The subject of this paper is to solve the problem of packing a set of cuboid boxes into

containers of various shapes with minimising the unused space. There are few identical boxes

and all have to be loaded. Regarding the containers, this work deals with the speci�c case of

air cargo. These are then Unit Load Devices (ULD) and can be described as an assembly of

components consisting of a container or of a pallet covered with a net, whose purpose is to

provide standardised size units for individual pieces of baggage or cargo, and to allow for rapid
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loading and unloading (Limbourg et al. (2012)). ULDs may have speci�c shapes to �t inside

aircraft, such as truncated rectangular parallelepipeds. There are thus only several types of

available bins. This problem is a combinatorial optimisation problem which has been labelled

as a three-dimensional Multiple Bin Size Bin Packing Problem (MBSBPP) using the typology

de�ned by Wäscher et al. (2007). Depending on the chosen application, other objectives can

be de�ned such as minimising the costs of the selected ULDs. Obviously, this work can be

extended to many other packing applications. For instance, ULDs can be replaced by simple

Euro pallets or by the loading volume of vehicles. This speci�c problem has been formulated

as a MIP in Paquay et al. (2016). However, the Bin Packing Problem is a NP-hard problem

(Garey and Johnson (1979)) and limited results were obtained due to the problem complexity.

The goal of the present work is to develop a method able to compute a good feasible packing

in short computational times.

The contribution of this paper is threefold. The �rst contribution is the set of constraints

taken into account for the MBSBPP in a constructive heuristic. In the �nal loading pattern,

all the boxes have to be packed without overlap and lie within the ULD. The weight capacity

of each loaded ULD has to be respected. The boxes can orthogonally rotate, i.e. the edges of

the boxes have to be either parallel or perpendicular to those of the ULDs. Sometimes only

a limited number of orientations are allowed due to the contents of the boxes. For the same

reason, some boxes may be fragile and are not able to support other boxes. Moreover, each box

of the loading pattern has to be correctly supported to be stable. In air transportation, when

ULDs are packed inside the airplane, the centre of gravity is computed assuming each ULD

has a centre of gravity close to the geometrical centre of its basis, i.e. the weight distribution

is uniform. This is therefore included in our problem as a hard constraint. These constraints

make the problem very speci�c and not deeply studied in the literature. More information

about the constraints met in three-dimensional packing problems can be found in Bortfeldt

and Wäscher (2013).

The second contribution is to propose a constructive heuristic composed of two main

phases. During the �rst phase, a packing algorithm provides a loading pattern for a given

set of boxes and a given ULD type. The second phase considers the di�erent available types

of ULDs and uses the packing algorithm as a subroutine. This second phase creates a lot of

loading patterns. Among the feasible patterns, the pattern with the minimum volume or cost
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is selected and if necessary is enhanced in terms of weight distribution in a post process phase.

Along the algorithm, di�erent criteria for sorting or selecting are used and several parameters

require a tuning process. To make these choices, the software package irace has been used

(López-Ibáñez et al. (2016)).

The third contribution of this work is related to the benchmark instances which are missing

for the MBSBPP as explained in Zhao et al. (2016). Several box instances have been created

on the basis of a box data set which stems from a real world case. These instances are available

online to allow other researchers to compare their results. Information about these data sets

is provided in Section 6.

The remainder of this paper is organised as follows. In Section 2, a complete description of

the problem and of the methodology is provided. The �rst phase of the algorithm is presented

in Section 3, the second phase is addressed in Section 4 and the post processing designed to

improve the weight distribution is described in Section 5. Section 6 holds the parametrisation

technique and the computational results. Finally, conclusions are drawn in Section 7.

2. Description of the problem and methodology

The problem is the following one: the objective is to provide a loading pattern that

minimises the unused space inside the selected ULDs considering that (1) each box is assigned

to exactly one used ULD, (2) each box lies within the limits of a ULD even when this one has a

special shape, (3) there is no overlap of boxes, (4) boxes can be orthogonally rotated but some

rotations are not permitted for some boxes, (5) fragile boxes cannot support any other boxes,

(6) the total weight of the boxes inside each ULD respects its maximum weight capacity,

(7) the packing is stable and (8) the weight inside the loaded ULDs has to be uniformly

distributed.

In more detail, each box i has a length li, a width wi, a height hi, and a weight mi, all

these dimensions being integers. Without loss of generality, a coordinate system is placed with

its origin on the front left bottom vertex of the ULDs and the axes such that the length (resp.

with, height) of the ULD lies on the x-axis, (resp. y-axis, z-axis) as described in Figure 1.

The position of the box i in the loading pattern can then be described by its front left bottom

vertex (xi, yi, zi) and its top right rear vertex (x′i, y
′
i, z
′
i) in that system.

A box may have only some orientations allowed due to it contents. To describe the allowed
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Figure 1: The coordinate system associated to a bin and the coordinates of a box i

orientations, three parameters, l+, w+ and h+ describe whether a speci�c dimension can be

in a vertical orientation. If all these parameters are set to one, each box is free to rotate in

any direction, leading to six possible orientations as depicted in Figure 2. Every time one

parameter is set to zero, two of these six orientations are forbidden. This type of constraint

is called orientation constraint and can be found in Chen et al. (1995), Terno et al. (2000),

Junqueira et al. (2012), Ceschia and Schaerf (2013), Paquay et al. (2016) among others.

Figure 2: Six possible orientations

A fragile box cannot support other boxes on its top face, making the volume above unus-

able. This constraint is quite important in practice because it prevents damage to products

contained in a fragile box. Di�erent strategies have been developed to manage this feature

of the cargo as in Terno et al. (2000), Junqueira et al. (2012), Ceschia and Schaerf (2013),

Paquay et al. (2016).

Each ULD type j has a length Lj , a width Wj and a height Hj . It also has a maximum

weight capacity Cj which implies that boxes can be loaded as long as this weight limit is not

exceeded as in Terno et al. (2000), Chan et al. (2006), Ceschia and Schaerf (2013), Paquay et al.

(2016). The volume of ULD j is denoted Vj . This number can also be the cost of ULD j if the

objective is a cost minimisation. Some ULDs may have a special shape to �t into the fuselage

4



of the aircraft, as full parallelepipeds whose one or several corners have been cut. There exist

four possible cuts which can be described by the linear equation z = ax + b, where a, b ∈ R.

To describe these cuts, eight new parameters (two for each cut σ, σ ∈ {1, ..., 4}) are added for

each bin j, j ∈ {1, ..., n}: aσj , bσj ∈ R+ as shown in Figure 3. This uncommon container

shape makes the problem a variant of the MBSBPP. However, if this feature is dropped, the

work can be extended to more general applications in �elds other than air transportation.

x

z

1 2

34

zi + a1jxi = b1j zi − a2jx
′
i = −b2j

z′i + a3jx
′
i = b3jz′i − a4jxi = b4j

Figure 3: Possible cuts (projection on the XZ plane)

Load stability is one of the most important types of constraint since unstable loads may

result in damaged cargo and even in injuries of personnel during handling operations. For the

sake of vertical stability, the bottom side of each box needs to be supported by the top face of

other boxes or by the container �oor (Terno et al. (2000), Jin et al. (2003), Chan et al. (2006),

Junqueira et al. (2012), Ceschia and Schaerf (2013)). Deeper analysis of vertical stability can

be found in Ramos et al. (2016). In the present work, the stability of a pattern is ensured by

forcing the four base vertices of each box to be supported. Boxes can thus lie on the ground,

be supported by top face of non fragile boxes or by the possible inclined wall of the ULDs.

This choice is rather restrictive but ensure the vertical stability in any case.

According to the control and loading manual of some airline companies such as Boeing

(Boeing (2008)), the centre of gravity (CG) of each ULD must lie in a determined area (de-

pending on the ULD type) around the geometrical centre of the ULD and below a maximum

height. Based on this, the CG of each ULD is considered as a point in the centre of the po-

sition occupied to calculate the CG of the plane and to ensure some weight constraints. This

constraint is therefore crucial and can be met in other applications as in Davies and Bischo�
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(1999), Jin et al. (2003), Chan et al. (2006), Trivella and Pisinger (2016), Paquay et al. (2016).

This type of constraints can also be adapted to the case of truck loading in which a precise

distribution of the cargo over the axles of the vehicles has to be respected (Pollaris et al. (2015,

2016), Alonso et al. (2016)).

To the best of our knowledge, no fast constructive heuristic has been developed to tackle all

these speci�c constraints for the three-dimensional MBSBPP. The aim of this work is therefore

to develop an algorithm able to �nd feasible packing for a large number of boxes for these types

of bins. To this purpose, a tailored two-phase constructive heuristic is now presented. The

�rst phase provides a loading pattern for a given set of boxes and a ULD type. Using sorting

and selection criteria, a sequence of boxes is built and each box is packed one after another.

The position selection improves the Extreme Point (EP) (Crainic et al. (2008)) designed for

a packing problem with identical bins. The EPs represent the interesting possible positions

to accommodate items and are an extension of the Corner Points introduced in Martello

et al. (2000). They provide the means to exploit the available volume inside a packing by the

shapes of the boxes already in the bins. The basic idea of the EPs is that when a box i with

sizes li, wi and hi is added to a given packing with its front left bottom vertex on (xi, yi, zi),

new potential points, the EPs, are generated, where other boxes can be accommodated. This

generation is explained in Section 3.2. However, several further developments are provided

to consider all the constraints of the speci�c problem studied in this work. In practice, we

have several types of ULDs that we can select, each type available in a determined quantity.

Their selection represents the second phase of the algorithm, using the packing algorithm as a

subroutine. This second phase is an extension of Kang and Park (2003). For a given packing,

the boxes from one or several ULDs are removed and then packed in a smaller ULD type if

it is possible. The feasible loading pattern with the minimum volume or cost is selected. The

best loading pattern may have unbalanced ULDs. A post processing has thus to be developed

to improve the CG position if needed. In this process, two operators have been created: a

jump operator that attempts to unpack boxes from one side of the ULD to repack them on

the opposite side and a shift operator that pushes the boxes along a de�ned direction.

6



3. Packing algorithm: Phase 1

In this section, a packing algorithm is developed to provide a loading pattern for a given

set of boxes and a given ULD type. The ULD is assumed available in an unlimited quantity

and the aim is to use its volume in the most e�cient manner.

Among the possible constructive heuristics, the First Fit Decreasing and the Best Fit

Decreasing algorithms represent a promising perspective as they showed interesting results in

terms of worst-case performance ratio for the one-dimensional Bin Packing Problem (Martello

and Toth (1990)). However, the adaptation of these algorithms for the three-dimensional case

is far from simple: several rules for sorting the items and the bins exist and placing a box in

a bin can also be achieved in di�erent ways. This challenge was taken up in Crainic et al.

(2008): the authors considered the three-dimensional Single Bin Size Bin Packing Problem in

which items cannot be rotated or overlap. For this purpose, Crainic et al. (2008) developed

an Extreme Point (EP)-based rule for packing items inside a three-dimensional container.

These EPs have been created to be e�cient with regard to computational e�ort and volume

utilisation. The packing algorithm proposed in this work is based on an extension of the EPs

to consider all the constraints of this speci�c MBSBPP.

The possible fragility of the boxes needs special care in this algorithm. As a reminder, no

other box can be packed on top of a fragile box. Therefore, if the top face of a fragile box

is low in the ULD, then a consequent volume above this becomes unusable for packing other

boxes. For this reason, two lists of boxes are used and the packing algorithm is divided into

two major parts as represented in Figure 4. L1 is the main list containing all the boxes with

their best orientation. The best orientation of a non fragile box is selected with the Clustered

Area Height rule from Crainic et al. (2008). If the box is fragile, the best orientation is the

orientation with the minimum top face area in order to minimise the unusable space. First,

the boxes from L1 are handled one after another. During this �rst part, a fragile box cannot

be packed too low in a ULD because it would lead to a waste of volume above its top face.

If a fragile box cannot be packed, then it is added to L2 (Part I). Second, once all the boxes

from L1 have been packed or assigned to L2, all the fragile boxes from L2 are loaded at any

possible height (Part II).

To select the location of a box, a global list contains all the EPs existing in all the ULDs.

The �rst EP created when a ULD is open is (0,0,0) or ( b1a1 ,0,0) if the ULD has type 1 cut. At
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Figure 4: Packing algorithm
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each iteration, a box (from L1 or L2) is examined and tried to be packed. Each EP of the

global list is tested to check whether the box with this orientation can be placed with its left

front bottom vertex on that EP while satisfying several constraints. If it is possible, the EP

is suitable for that box as explained in Section 3.2. From the list of suitable EPs, the best

EP according to a merit function also de�ned in Section 3.2 is selected to accommodate the

considered box. However, if the list of suitable EPs is empty, which means that the current

box cannot be packed anywhere, then a new bin is created unless the box is fragile, this box

would then be added to L2 to avoid a waste of volume. Every time a box is packed, new EPs

are generated since new positions become conceivable. These new EPs can be suitable for

the fragile boxes previously assigned to L2. For this reason, these EPs are analysed for the

current boxes of L2 and used to accommodate any of these if possible. This process is called

L2 testing as mentioned in Figure 4 and is explained further in more detail.

3.1. Creating L1

Building the list. The �rst step of the packing algorithm consists in building L1 to take into

account the possibility of orthogonal rotations and the possible fragile boxes. A box initially

has six di�erent orientations, but it may happen that it is not allowed to be packed in some

orientations due to its contents. Some orientations may not be feasible because the box would

not �t in the proposed ULD type. Each authorised orientation is analysed and checked for

whether the box with this orientation can be packed on that EP. If no orientation is acceptable,

it is impossible to pack the box even in an empty ULD, and the box is kept for a di�erent

ULD type. Otherwise, a feasible orientation has to be selected. If the box is fragile, the best

orientation is the orientation with the minimum top face area. If the box is not fragile, the best

orientation is obtained with the Clustered Area-Height sorting rule from Crainic et al. (2008).

The Clustered Area-Height rule works as follows: the set of boxes to pack or orientations is

partitioned into clusters, each box being assigned to a cluster according to the size of its base

area. Each cluster Aj,δ corresponds to a proportion of the bin base area L×W :

Aj,δ = {boxes i | li × wi ∈ ](j − 1)× L×W × δ, j × L×W × δ]}, δ ∈ [0.01, 1].

Inside each cluster, boxes are sorted by non-increasing value of their height hi. Finally,

the clusters are sorted by decreasing value of j, which implies that the cluster with the boxes
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with the biggest bases is considered �rst. The best feasible orientation is thus selected and

added to the list L1.

In Crainic et al. (2008), the value of δ has been tuned. However, since a lot of other

constraints are added, the calibration of δ has to be addressed for our speci�c algorithm in the

experiments in Section 6.2. If δ is large, then there are few clusters among which some can

hold a lot of boxes. Boxes are sorted by decreasing height value. If δ is small, then there is a

larger number of clusters, possibly containing few boxes. This second sorting is thus closer to

a decreasing base area sorting while the �rst is closer to a general decreasing height sorting.

Sorting the list. Once L1 is created, the sequence according to which the boxes are considered

has still to be decided. In Crainic et al. (2008), the authors state that the Clustered Area-

Height is the most e�cient sorting rule. In Section 6.2, irace selects the sorting rule among

the Clustered Area-Height and the decreasing base area rule.

3.2. Part I

Each box of list L1 is considered and packed if possible, one after another.

Extreme Point Suitability. For a given box, a list with all the suitable EPs is created by testing

all the available EPs. An EP is suitable for a box i with a given orientation if, once the box i

is packed with its front left bottom vertex on the EP:

1. the box i does not overlap other boxes previously packed,

2. the box i lies within the limits of the ULD (in particular, box i respects the possible

special shape of the ULD),

3. the ULD weight capacity is still respected,

4. the box i does not lay on fragile boxes previously packed,

5. the CG of the set of loaded boxes does not exceed the given upper limit and

6. the box i and the previously packed boxes are stable.

These conditions can be checked with the boxes coordinates as done in Paquay et al. (2016).

If the box is fragile, an additional constraint is considered during the �rst part of the

packing algorithm. An EP (xEP , yEP , zEP ) is suitable if, once the fragile box i is packed with

its front left bottom vertex on this EP, the top face of the box has a height at least equal to a

given percentage β of the ULD j height: zEP +hi ≥ βHj . This is the Not Too Low constraint
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in Figure 4. The value of β is tuned using parametrisation technique in Section 6.2. A really

high value means that the Not Too Low constraint is really restrictive and thus fragile boxes

are more likely assigned to list L2. Conversely, a small value of β means that the constraint

is easily satis�ed.

Selection of the best Extreme Point. Choosing the best EP is a di�cult task and many criteria

can be imagined in order to optimise di�erent objectives. This selection is achieved with a

merit function as de�ned in Crainic et al. (2008).

In Crainic et al. (2008), the authors aim to minimise the number of bins used to pack the

boxes, all the bins being identical. Their best merit function is the function maximising the

utilisation of the EP's Residual Space. The Residual Space (RS) of a given EP is de�ned as

the free volume available around an EP. It is composed of three components RSx, RSy and

RSz, each component describing the free space along each direction. When an EP is created

in ULD, the RS of this new EP is equal to the distance from the EP to the side of the bin

along each axis. Then, every time a box is assigned to ULD, the RS components of the EPs

located in this ULD are updated. The initial value of the RS and its update are extended in

this algorithm to take into account the possible special shape of the ULDs and the extension

of the EP generation process. For a box i to be packed, this merit function selects the EP

that minimises the di�erence between its RS and the box dimensions:

MF1 = (RSx − li) + (RSy − wi) + (RSz − hi).

This selection is close to the selection achieved in the common Best Fit algorithm.

Since the ULD weight distribution is taken into account in this work, another speci�c

merit function is also introduced. In order to measure the weight distribution uniformity, the

CG of the packed boxes (xCG, yCG, zCG) is compared to the geometrical centre of the ULD

base (xM , yM , zM ). For this reason, an additional merit function that computes the distance

between the two elements is de�ned:

MF2 =
√
(xCG − xM )2 + (yCG − yM )2,

This merit function is a �rst step towards a uniform weight distribution. Note that the

constraint relative to the height of the CG is included in the de�nition of suitable EPs.

Among these two merit functions, the best function with respect to the objective function

minimisation is determined in Section 6.2.
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Placing the box on the selected EP and L2 testing. Once the box is placed with its front left

bottom vertex on the best EP, new EPs are generated and one tries to pack some fragile boxes

from L2 on these new points.

Regarding the box placement, the considered box is assigned to the ULD containing the

selected EP with the position described by the EP. The selected EP is removed from the EP

list. It may happen that placing a box prevents other existing EPs from accommodating a

box. Therefore, each EP located in the same ULD is checked and deleted if unusable.

New EPs are generated when a box i is placed with its front left bottom vertex on the

point (xi, yi, zi) with its opposite vertex on (x′i, y
′
i, z
′
i). This generation process is inspired from

the procedure developed by Crainic et al. (2008). The three initial points (x′i, yi, zi) (in blue in

Figure 5), (xi, y
′
i, zi) (in green in Figure 5) and (xi, yi, z

′
i) (in red in Figure 5) represent the EP

sources (and also new EPs themselves) and each point is projected along two directions until

reaching a previously packed box or a container side to create new EPs as shown in Figure 5.

•

•

•

∗�

?
�

?
∗

x′i
xi

y′i

yi

z′i

zi

Figure 5: Projection of the source points of box i: the symbol ? (resp. �, ∗) represents the projection on the

Y Z plane (resp. XZ plane, XY plane)

The EP generation process is extended in this work as follows. Consider three types of

boxes: one very long, another very wide and a third very high. Each of these three boxes is

packed on a source point and is then pushed as far as possible along the projection direction,

until it reaches either a previously packed box or the side of the ULD. The position of the

front left bottom vertex of this virtual box de�nes a new EP. However, since the four vertices

of each box have to be supported, the projection of the point (xi, yi, z
′
i) does not lead to usable

EPs. For this reason, this point is not projected unless there is a type 1 cut which can also

support the box as shown in Figure 6.
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Figure 6: Projection of (xi, yi, z
′
i) along the x-axis in a ULD with a cut 1

About L2 testing, a list of new EPs has been generated and cleared to avoid duplicates and

unusable EPs. Before adding this list to the global list of EPs, these new proposed positions

are tested to accommodate fragile boxes from L2. For each box from L2, the new EPs are

tested looking for suitable EPs (with the Not Too Low constraint). If there is one (or more)

suitable EP, then

• the fragile box is packed on the (best, if several, as de�ned previously) EP,

• the selected new EP is removed from the list of available EPs and

• new EPs are generated with the same method and added to the list of new EPs.

Every time a box from L2 is packed, this box is removed from L2 and the beginning of L2

is started again since new EPs are available. If a box from L2 cannot be packed on any of the

new EPs, then the next box from L2 is considered. This process stops when boxes from L2

can no longer be packed on these new EPs. The �nal list of new EPs is then merged with the

global EP list.

3.3. Part II

At this point of the algorithm, every box from L1 has been either packed in a ULD, or,

if it was fragile and not possible to pack without opening a new ULD, assigned to the list

L2. In Part II, the Not Too Low constraint is dropped and all the fragile boxes from L2 have

to be loaded. The process is now identical to that of Part I: for every box, the global list of

EPs is considered and the best suitable EP, if several, is selected with the same criterion as

previously. If there is no suitable EP, then a new ULD is created to accommodate the current

fragile box.
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4. Multiple ULDs: Phase 2

In the packing algorithm, a given set of boxes is loaded in a given ULD type available in

an unlimited amount. In practice, several types of ULDs exist and can be selected, each type

available in a determined quantity. Therefore, the algorithm has to be extended in order to

take this possibility into account.

In Kang and Park (2003), the existence of several types of bins is considered for the one-

dimensional BPP. Multiple extensions are set up in order to consider the three dimensions

and to improve the solution quality. First, the whole set of boxes is packed (with the packing

algorithm from Section 3) into the biggest ULD type (called type 1 ULDs). A list of type 1

ULDs that contain all the boxes is thus obtained. Then, the used ULDs are sorted by non-

increasing or non-decreasing occupied volume as explained further. This was the �rst iteration.

During the second iteration, several steps may take place. The boxes that are assigned to the

last type 1 ULD of the list are repacked in the next ULD type (called type 2 ULDs). We get

a loading pattern with a list of type 1 ULDs and a list of type 2 ULDs (step 1). Another

loading pattern is obtained by removing the last two type 1 ULDs and to repack their boxes

in type 2 ULDs (step 2). We can do the same for all the type 1 ULDs. During the second

iteration, we have thus created one pattern with type 1 ULDs only during the �rst iteration

and as many patterns as there are type 1 ULDs used in the �rst pattern. Every pattern built

during the second iteration are then analysed to create new patterns using type 3 ULDs. The

process is repeated until all ULD types have been tested. During the �rst (resp. second, third,

etc.) iteration, boxes are packed in type 1 (resp. type 2, type 3, etc.) ULDs. Each iteration

is decomposed into several steps, each step leading to a distinct loading pattern. From one

iteration to another, all the patterns of the previous iteration are considered and the boxes

placed in ULDs of the last type are repacked into a new ULD type. An example is shown in

Figure 7. Finally, the solution with the minimum used volume is selected.

About the sorting of the loaded ULDs to be repacked, it would seem natural to sort

the ULDs by non-increasing occupied volume to increase the chance to repack in a smaller

ULD type. Indeed, since the last ULD is the ULD whose boxes will be repacked, the less

volume there is to repack the more likely that it is possible to repack into a smaller ULD

type. However, some preliminary experiments show that the least loaded ULDs often have

boxes with special dimensions (for instance, a very long box) and these boxes may be hard
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Figure 7: Creation of loading patterns by considering di�erent ULD types

Note. In the �rst iteration, boxes are packed in type 1 ULDs. During the second iteration, the �rst step

repacks the boxes from the last ULD of type 1 in two ULDs of type 2, the second step repacks the boxes from

type 1 ULDs #2 and #3 and the third step repacks all the boxes in type 2 ULDs only. In the third iteration,

steps 1 and 2 are based on the pattern obtained in the �rst step of iteration 2, steps 3, 4 and 5 are based on

the pattern obtained in the second step of iteration 2 and steps 6, 7, 8 and 9 are based on the third pattern

obtained in the third step of iteration 2.
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or even impossible to repack in smaller ULD. For this reason, sorting by non-increasing or

non-decreasing occupied volume is a choice made using irace parametrisation technique in

Section 6.2.

Completion. This procedure can lead to a large number of potential patterns but not all

these patterns are feasible because some boxes may not �t in certain ULD types. In other

words, some patterns may have unpacked boxes. When all the patterns have been created,

the feasible pattern with the minimum volume is retained. The incomplete patterns are then

analysed. For every incomplete pattern with an occupied volume smaller than the current

minimum volume, one tries to pack the unpacked boxes in the biggest ULD type. If some

of the unpacked boxes do not �t in this ULD type, then the second biggest ULD type is

considered. This process is repeated until every initially unpacked box is loaded. A feasible

pattern is obtained with this method since each box is assumed to �t in at least one ULD.

Once the pattern has been completed, its objective function value is compared to the value of

the current best solution to determine the new best pattern.

5. Post processing: balance improvement

After the �rst two phases of the algorithm, a loading pattern with possibly distinct ULDs

has been obtained. In this packing, all the constraints of the speci�c MBSBPP are ensured

except the uniform weight distribution in the XY plane. As explained in the merit function

de�nition in Section 3.2, a �rst step can be achieved when selecting the best EP for each box,

but this does not ensure that the CG is in the allowed region around the geometric centre of

the ULD base. For this reason, post processing has to be conducted to improve the weight

distribution in the unbalanced ULDs. Three operators are developed for this purpose.

5.1. Shifts

Considering the EP generation during the packing algorithm, the CG is likely to lie too

on the left or too on the front of the geometrical centre of the ULD base area.

The �rst method proposes two shift operators to improve the balance along the x and y-

axes. For the ULDs presenting a CG located too on the left, the boxes are pushed as much as

possible to the right until the CG reaches the threshold of the allowed region. The maximum

possible global shift is �rst applied to all the boxes, i.e. the maximum possible overall shift
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is computed and applied to all the boxes at once. A global shift means that if the shift is

increased by one more unit, then the ULD limit constraint becomes violated. If the threshold

is still not achieved, then each box is considered separately and an adapted shift is set up

until a constraint is violated or the threshold is reached. An adapted shift means that the

shift does not have a general value but is speci�c to each box. Note that special attention

is required to manage the right (resp. left) shift in ULDs with cuts of type 2 or 3 (resp. 1

or 4). In order to increase the chance of possible adapted shift, the boxes i of the ULD are

considered by non-increasing x′i (resp. y
′
i) values in the case of a right (resp. back) shift and

by non-decreasing xi (resp. yi) values in the case of a left (resp. front) shift. Ties are broken

sorting by non-increasing value of their front left bottom vertex height (zi) and �nally by

non-increasing value of their density. An example of the application of shift operators on one

unbalanced ULD is represented in Figure 8.

Before right and rear shifts After right and rear shifts

Figure 8: An example of shift operators applications

The CG of the set of packed boxes is tested for each direction and the deviations are

analysed in this order: CG too on the left, front, right and rear. Every time the answer is

positive, shift operators are applied. The next deviation is then tested and the same process

is applied until the balance is reached or if there is no more possible improvement.

Many patterns can be improved with the shift operators. However, in some patterns, it

may happen that heavy boxes cannot be shifted further. Therefore, a second operator, jump,

is developed.

5.2. Jumps

The idea of the jump operator is to take one or several boxes from one side of an unbalanced

ULD and to pack these boxes (make them jump) to the other side of the ULD. For instance,
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if the CG of the ULD is too on the left, then one tries to repack boxes from the left-hand

side to the right-hand side of the ULD in order to move the CG to the right. Note that the

movements leading to a CG too on the right are not allowed. Moreover, if the weight was

balanced in the other direction, movements leading to an unbalanced loading along this other

direction are also rejected.

In more detail, if the CG is too on the left, then the boxes assigned to this ULD are

considered by non-decreasing value of their front left bottom vertex abscissa (xi) because

the more on the left the boxes are, the bigger is their in�uence on the CG. Ties are broken

sorting by non-increasing value of their front left bottom vertex height (zi) and �nally by

non-increasing value of their density. The loading pattern has still to be stable when the box

to be jumped is removed from its current position and the highest boxes are less likely to

support other boxes. Finally, the denser the boxes, the bigger the impact on the CG.

To repack the boxes, the available EPs of the ULD produced during the packing algorithm

are analysed. The idea is to repack the leftmost boxes on rightmost EPs to move the CG as

much as possible. The box i can jump from (xi, yi, zi) to a new EP (xEP , yEP , zEP ) if several

conditions are met:

1. the loading pattern is still feasible, in particular still stable, if box i is removed from its

current position,

2. only the EPs with xEP > xi are helpful and thus considered since a balance improvement

is expected,

3. only the suitable (as de�ned in the beginning of Section 3.2 but without the Not Too

Low constraint) EPs are considered,

4. if the CG was in the allowable area along the y-axis before box i removal, it has still to

be in the allowable area after repacking box i on the new EP and

5. after repacking, the CG is not too on the right (on the other side of the allowable region).

If several EPs satisfy these conditions, the rightmost one is selected to accommodate the box

i. Ties are broken selecting the EP with the smallest residual space. Afterwards, the selected

EP is removed from the list as well as the potentially unusable other EPs. New EPs are

generated and added to the list of available EPs. If the CG is still on the left-hand side of the

allowable region, then the next box of the sorted list is considered for a jump.
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Figure 9: An example of jump operator applications to �x a CG too on the right: the former positions are

circled in red, while the new positions (after jumping) are circled in blue

Naturally, the jump operator can be applied in the other directions: a jump from the

right-hand side to the left-hand side, from the front to the rear and inversely. An example of

jump operator applications is shown in Figure 9.

As for the shift operators, the CG of the set of packed boxes is tested for each direction

and the deviations are analysed in the same order: CG too on the left, front, right and rear.

Every time the answer is positive, the jump operator is applied. The next deviation is then

tested and the same process is applied until the balance is reached or if there is no more

improvement.

5.3. Combination of jump and shift operators

The jump and shift (J&S) operators can be combined into the same process. In practice,

the jump operator is applied �rst. The jump operator is less accurate than the shift operators

because the CG does not move one unit by one unit. Moreover, after applying shift operators,

the residual space of some EPs may be reduced and thus these EPs would not be able to

accommodate some boxes. In practice, the CG of the set of packed boxes is tested for each

direction and the deviations are analysed in this order: CG too on the left, front, right and

rear. Every time the answer is positive, jump is applied. If no box is still able to jump and

the CG is still not in the allowable region for the considered direction, then the shift operators

are applied. The next deviation is then tested and the same process is applied again if some

deviations remain. This means that jump operators may be applied after shifts in another

direction. It is therefore crucial to keep the EPs and their respective residual space up-to-

date during the whole process. It may happen that deviations are not corrected at the �rst

application of J&S operators. However, the ULD may have another deviation whose correction
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leads to other movements of the boxes. For this reason, unless boxes are no longer moving,

a loop over the di�erent deviations is put in place. In order to avoid in�nite loops, the CGs

already met are memorised and compared to the current CG. If a same CG is obtained twice,

then the algorithm stops. Indeed, it may happen that when trying to correct two deviations

(one along the x-axis and one along the y-axis), boxes are moved in one direction �rst and

then in another direction, which can lead to in�nite loop. The improvement in terms of weight

distribution gained thanks to this operator is described in Section 6.3.2.

6. Computational experiments

This section addresses the computational experiments. Data sets are �rst described. These

sets come from a real world case and are meant for di�erent purposes: a �rst group is used

to parametrise the heuristic (training data sets) and a second group is used to measure its

e�ciency (�nal data sets). Second, in Section 6.2, the parametrisation method is explained

and applied to the tailored two-phase heuristic using training instances. Finally, the results

of the trained heuristic are analysed in Section 6.3.

All the tests were performed on a workstation with 32.0 GB RAM and a Intel Xeon

processor E5-2620 v4 running 64-bit Windows 10 Pro. Codes have been implemented in Java.

6.1. Data sets

6.1.1. ULDs

Among the ULDs that can be loaded in a Boeing 777, which is the most common aircraft

for cargo transportation, six common types are selected: three for the lower deck and three

for the main deck. These ULDs are described in Table 1. More detail about these ULDs can

be found in Boeing (2008). This set of ULDs constitutes a representative sample since all the

shapes are proposed.

6.1.2. Boxes

As can be seen in Bortfeldt (2012) and Zhao et al. (2016), there are no benchmark instances

for the three-dimensional MBSBPP. The closest instances are those from Ivancic et al. (1989)

which were designed for a Multiple Stock-Size Cutting Stock Problem. For this reason, new

data sets were needed in order to represent the speci�city of the problem studied in this work.

20



Table 1: Description of the parameters of the proposed ULDs

IATA Dimensions Max. Cap. Vol. αL;αW ;αH Equation of the cuts Shapes

Code L×W ×H [kg] [m3] [mm]

[mm]

Lower deck - containers

LD1 2337×1534×1626 1518 5 157;152;864 cut 1: z + 826
775

x = 640150
775

LD6 4064×1534×1626 2945 9.1 318;152;864 cut 1: z + 422
444

x = 187368
444

cut 2: z − 422
445

x = − 1527218
445

LD11 3175×1534×1626 2991 7.4 318;152;864 None

Main deck - pallets

PA 2235×3175×2997 5890 20 224;318;1219 cut 4: z − 747
1056

x = 2376000
1056

PG 2438×6058×2438 10840 31.1 244;302;1219 cut 3: z + 1054
660

x = 3483092
660

cut 4: z − 1054
660

x = 913440
660

PM 2438×3175×2997 6680 18.9 244;318;1219 None

For the computational experiments, a box data set which stems from a real world case

is considered. It contains information about the dimensions and weight for 562 rectangular

boxes. The main features of these boxes are given in Table 2. Unfortunately, the initial data

set does not hold the authorised orientations and the fragility characteristic. Therefore, a

data manipulation is set up to add these missing parameters. In more detail, if a box is too

heavy (>50kg), it is assumed to be too much work to turn it, the parameters l+, w+ are thus

assumed to be 0. The parameter h+ equals 1 for all the boxes because the initial orientation

of the boxes is supposed feasible. With regard to the stacking constraint, a box which has a

density lower than 0.05 kg/dm3 is considered as fragile. After applying these two rules, all

the parameters are available for each box.

Description of the data sets. For the experimentations, instances with di�erent sizes are in-

teresting to analyse the behaviour of the algorithm. A data processing is used to generate

box samples of di�erent sizes ranging from 10 to 100 boxes. For each sample size, a set of 30

instances is built by random selection from the original data set. Instance sets are available

from http://hdl.handle.net/2268/206856:

• Training data sets: in order to tune the parameters in Section 6.2, a set of representative
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Table 2: Information about the initial data set

length width height weight volume density

[mm] [mm] [mm] [kg] [dm3] [kg/dm3]

Range [130;5250] [100;1720] [40;1900] [1;1983] [2.2;5832.96] [0.01;5.62]

Average 927.65 620.18 618.89 106.55 571.57 0.24

Standard dev. 625.91 309.72 407.78 177.02 682.75 0.31

Number of distinct boxes (types): 199

Average number of boxes per type: 2.82

instances has to be provided. To this purpose, 30 instances with 10, 15, 20, 25 and 30

boxes each (i.e. 150 instances) have been generated;

• Final data sets: for testing the tailored two-phase constructive heuristic in Section 6.3,

30 instances with 10, 20, 30, ..., 100 boxes each (i.e. 300 instances) have been generated.

6.2. Parametrisation with irace

A con�guration of an algorithm is a unique assignment of values to parameters. irace

is a software package that provides an automatic con�guration tool for tuning optimisation

algorithms, that is, automatically �nding the most appropriate settings of an algorithm given

a set of instances of a problem, saving the e�ort that normally requires manual tuning (López-

Ibáñez et al. (2016)). During the tuning phase, a set of training instances representative of a

particular problem has to be provided to choose the best algorithm con�guration. The selected

algorithm con�guration can then be used to solve new instances of the same problem.

A racing method for selection or race is a method that aims to �nd a good con�guration

through a sequence of steps. As explained in López-Ibáñez et al. (2016), along the racing

method, if su�cient evidence is gathered that some candidate con�gurations perform sta-

tistically worse than at least another con�guration, such candidates are discarded and the

procedure is iterated over the remaining surviving con�gurations. The elimination of inferior

candidates speeds up the procedure and allows a more reliable evaluation of the promising

con�gurations.

To evaluate the performance, a set of training instances, which will be sampled, is provided

as well as a cost function. In the present case, the cost function assigns the objective function

value to each con�guration when applied to a single problem instance. To discard a con�g-
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uration, the non-parametric Friedman's statistical test is performed on the values provided

by the cost function on several instances. In this work, the race is applied until reaching a

maximum number of experiments, where an experiment is the application of a con�guration

to an instance.

In iterated racing, each con�gurable parameter is associated to a sampling distribution

which is independent of the sample distributions of the other parameters. More detail about

these sampling distributions can be found in López-Ibáñez et al. (2016). Iterated racing is a

method for automatic con�guration which can be decomposed in three steps:

1. sampling the new con�gurations according to a particular distribution,

2. selecting the best con�gurations from the newly sampled ones by means of racing,

3. updating the sampling distribution of each con�gurable parameter in order to bias the

sampling towards the best con�guration. The update biases the distributions to increase

the probability of sampling the parameter values in the best con�gurations found so far.

The three steps are repeated until a termination criterion is met.

At di�erent stages of the tailored two-phase constructive heuristic, several options are

possible and choices have to be made in order to optimise the value of the objective function.

For this reason, the �ve following parameters need calibration:

Parameters Types Range

β Real [0.50,1.00]

merit function Integer [1,2]

uldOccupationSort Integer [1,2]

boxSort Integer [1,2]

δ Integer [1,99]

Parameter β represents the ratio of the ULD height that the top face of a fragile box has to

reach during the �rst part of the packing algorithm. Values tested for β are limited to two

digits. Two merit functions have been proposed to select the best EP: the �rst function, MF1,

uses the RS around the EP and the second, MF2, uses the distance between the CG and the

geometrical centre of the ULD in the XY plane. Parameter uldOccupationSort describes

the ordering of the loaded ULDs to be repacked in the second phase of the heuristic. If

uldOccupationSort=1, then the ULDs are sorted by non-increasing occupied volume, while
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if uldOccupationSort=2, they are sorted by non-decreasing occupied volume. Parameter

boxSort is equal to 1 if boxes are sorted according to the Clustered-Area Height before being

packed and is equal to 2 if boxes are sorted by decreasing base area. The parameter δ is the

percentage used to de�ne the Clustered-Area Height sorting rule. Therefore, if boxSort=2,

then δ has not to be addressed.

After 5000 experimentations, irace states that the best con�guration is as follows:

β merit function uldOccupationSort boxSort δ

0.68 MF1 2 2 �

irace shows some di�culties to �nd a value for parameter β, it did not �nd signi�cant

di�erences between several values. This may be explained by the small impact of parameter

β on the solution quality. About the merit function, according to irace, MF1, based on

RS, gets better solution quality than MF2, based on the distance between the CG and the

geometrical centre of the ULD. This can be expected since the aim of the RS utilisation is to

exploit the space in the best way, choosing the minimum volume able to accommodate the

given box. However, the goal of the function MF2 is to minimise the distance between the

CG and the geometric centre of the ULD. The in�uence on the weight distribution is analysed

in Section 6.3.2. Results from irace state that the solution quality is better if the ULDs are

sorted by non-decreasing loaded volume for unpacking and repacking. This behaviour may be

explained by the fact that some ULDs have few packed boxes but with a special shape. These

boxes can thus be hard to repack in smaller type of ULDs. Results from irace suggest that

it is more e�cient in terms of solution quality to sort the boxes to be packed by decreasing

base area.

6.3. Results analysis

In this section, several aspects of the heuristic are analysed on experiments performed on

the �nal data sets with parameters set to the values found by irace. First, a good indicator of

the solution quality is the �lling rate of the used ULDs. The �lling rate shows how e�ciently

the loading space is used inside the ULDs. However, the constraint related to the height of the

CG may prevent a really high �lling rate from happening. Second, another important point is

the weight distribution inside the loaded ULDs as explained in Section 5. The computational

times are �nally observed.
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6.3.1. Filling rate analysis

To represent the global tendency of these �lling rates, boxplots are drawn with all the

ULDs used for the 30 instances of each sample size in Figure 10. In addition to the size of the

samples, the number of used ULDs is provided along the y-axis.

In Figure 10, one can see that the bigger the number of boxes, the bigger the �lling rates

of the ULDs can be. In particular, half of the ULDs used with the instances of 100 boxes

have a �lling rate of at least 50%, one ULD even reaches a �lling rate of 72.78%. The tailored

two-phase constructive heuristic is thus able to achieve ULDs with important �lling rates.

The observation distribution tends to become asymmetrical when the number of boxes in

the samples increases. For instance, the boxplot for the samples with 90 boxes is more left

skewed than the boxplot for instances with 10 boxes. The 25% of observations of the right

part of the interquartile ranges have more or less the same size, no matter the size of the

samples, whereas the 25% of the left part of the interquartile ranges become more spread out

when the sample size increases. In addition to the interquartile range itself, the left whisker

encompasses really di�erent values when the sample size is increasing. The observations seem

to present a distribution with a negative skewness, i.e. with a tail on the left, when the sample

holds a large number of boxes. In other words, it seems that, no matter the number of boxes

in the instances to be solved, there are always ULDs with really small �lling rates. This can

be due to boxes with special dimensions (a box with a large length for example) or simply

because some small boxes have to be packed at the end of the algorithm but not enough space

remains in the already loaded ULDs.

6.3.2. CG deviation analysis

As explained above, two distinct merit functions have been tested: the �rst is based on

the RS around the EPs while the second tries to reduce the distance between the CG and

the geometrical centre of the ULD. Figure 11 shows the percentage of unbalanced ULDs per

sample size before (in full lines) and after the application of the J&S operators (in dashed

lines) for the two merit functions. One can see that the percentage of unbalanced ULDs is

initially really high especially for the instances with a small number of boxes. This is due to

the way of packing, starting by the front left bottom vertex. If few boxes are packed, then

the weight distribution is not likely to be improved naturally by packing more boxes in this

ULD. The improvements brought by the J&S operators, shown in dashed lines in Figure 11,
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Figure 10: Filling rates in percent per sample size (each sample size holds 30 instances) for the tailored two-

phase constructive heuristic. The number in brackets denotes the number of ULDs used for all the 30 instances

of each sample size
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Figure 11: Average percentage of unbalanced ULDs per sample size (each sample size holds 30 instances)

are considerable.

About the in�uence of the merit function choice, the weight distribution is indeed improved

with MF2 and the number of observed deviations is therefore reduced compared to the use

of MF1 as shown in Figure 11. Furthermore, it can be seen that MF1 has a larger number

of unbalanced ULDs than with MF2 already before the J&S operators application designed

to improve weight distribution. This remark is still valid after the J&S operators application.

Therefore, MF2 ful�ls its role with respect to the weight distribution. Results represented in

Figure 11 suggest that the combination with MF2 and the J&S operators is the key for a low

percentage of unbalanced ULDs.

Looking closely at the deviations separately for MF1 only, the packing frame algorithm

starts the packing in the front left bottom vertex as explained in Section 5. Because of this,

the number of CGs initially too on the left or front is really high as shown in Figure 12. In

this �gure, the number of deviations before and after the J&S operators application can be

observed, highlighting the weight distribution improvement. Table 3 summarises the reduc-

tions for each CG deviation. Among the 130 ULDs still unbalanced after the application of
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Figure 12: Percentages of deviations between the CG and the allowable area among the 1010 used ULDs (in

blue before and in red after the J&S operators application)

the J&S operators, 43.85% of these ULDs still have a unbalanced weight along the x-axis,

whereas 63.08% still have a CG out of the allowable region along the y-axis. The former have

an average x-deviation of 8.41% and the latter have an average y-deviation of 8.42%. The

remaining deviations are thus really reasonable.

Table 3: Reductions in the number of CG deviations among the 1010 used ULDs before and after the application

of J&S operators

Number of Deviations

unbalanced ULDs Left Right Front Rear

Before J&S 761 459 21 548 76

(75.35%) (45.45%) (2.08%) (54.26%) (7.52%)

After J&S 130 41 16 63 19

(12.87%) (4.06%) (1.58%) (6.24%) (1.88%)

reduction 82.92% 91.07% 23.81% 88.50% 75.00%

6.3.3. Computational times analysis

The main advantage of the tailored two-phase constructive heuristic is its dramatic speed.

Indeed, even for the instances with up to 100 boxes to be packed, the maximum computational
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duration does not exceed 12 seconds for any instance.

7. Conclusion

In this paper, we have addressed the three-dimensional rectangular Multiple Bin Size Bin

Packing Problem with bins typical to air transportation. Due to its speci�city and complexity,

this problem has not been deeply studied in the literature. The presented tailored constructive

heuristic is composed of two phases. The �rst phase proposes a packing algorithm for identical

bins and takes into account several constraints inherent to transportation: the fragility, the

stability and the possible di�erent orientations of the boxes, as well as the special shape

and the weight capacity of the bins. The algorithm extends the Extreme Points generation

and selection to suit to the studied problem. The purpose of the second phase is to deal

with multiple types of bins. Furthermore, post processing has been developed to enhance

the weight distribution for the unbalanced bins. Two operators, as well as their combination,

have been created for this purpose and showed promising results. Experimentations have been

performed on new data sets especially designed for the Multiple Bin Size Bin Packing problem

and are publicly available. The di�erent parameters have been tuned using the parametrisation

technique irace and the results are very encouraging. The tailored two-phase constructive

heuristic requires short computational times and presents valuable solutions in terms of �lling

rate. As perspective, post processing for weight distribution improvement can be extended

to consider combination of boxes which cannot be shifted without loosing the stability. It

can also be combined to an exact approach derived from the formulation from Paquay et al.

(2016). Another direction can be related to the sorting operators in which randomness may

be introduced to improve the solution quality.
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