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Abstract
In a typical one-period decision making model under uncer-
tainty, unknown consequences are modeled as random vari-
ables. However, accurately estimating probability distributions
of the involved random variables from historical data is rarely
possible. As a result, decisions made may be suboptimal or
even unacceptable in the future. Also, an agent may not view
data occurred at different time moments, e.g. yesterday and one
year ago, as equally probable. The agent may apply a so-called
“time” profile (weights) to historical data. To address these
issues, an axiomatic framework for decision making based di-
rectly on historical time series is presented. It is used for con-
structing data-based analogues of mean-variance and maxmin
utility approaches to optimal portfolio selection.

Key Words: time series, decision making under uncertainty,
mean-variance analysis, portfolio optimization, utility theory.

1 Introduction
A typical process of decision making under uncertainty is as
follows

data → uncertainty modeling →

→ risk preference modeling → choice/decision
(1)

Let X be a set of available (feasible) actions. Scheme (1)
can be formally stated as: (i) modeling unknown consequences
of every action X ∈ X as a random variable (r.v.) R(X), (ii)
establishing a numerical representation U′ :R→R for agent’s
preference relation, defined on a space R of all r.v.’s and (iii)
finding best action by maximizing U′ with respect to X ∈ X :

max
X∈X

U′(R(X)). (2)

What an agent has readily available is only historical/experi-
mental data and his/her preferences towards risk and reward.
The rest is statistical inference from the data about correspond-
ing uncertain outcomes based on various assumptions, which
largely depend on the nature of data. For example, measure-
ments of the length of some object can be reliably assumed to
be realizations of independent and identically distributed (i.i.d.)
r.v.’s—timing of those measurements can be safely ignored. By
the central limit theorem (CLT), the average of a large number
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of i.i.d. r.v.’s is approximately normally distributed, and conse-
quently, confidence intervals for the true length can be readily
obtained.

Merton’s well-known model [40] of a financial market as-
sumes that asset prices are stochastic processes with stationary
and independent increments without jumps—the only such a
stochastic process is a Brownian motion with drift. Cox and
Ross [16] argued that asset prices are, in fact, not continuous
processes—they may have jumps. Stochastic processes with
stationary and independent increments (and with discontinu-
ous sample paths in general), are called Lévy processes [48]
and nowadays are widely-used in modeling of financial mar-
kets [31, 37, 41]. However, it is commonly acknowledged that

(a) The distributions of rates of return of financial assets are
typically non-symmetric with left tails being much heavier
than right tails [50].

(b) Increments of actual price processes are not stationary,
and consequently, Lévy processes cannot be calibrated
with real data [36].1

(c) “Periods of lower returns are systematically followed by
compensating periods of higher returns” [51] (“mean re-
version” phenomenon)—evidence that price increments
are not independent.

In fact, the above issues with stochastic processes can be
“fixed” by time-series models. For example, autoregressive
models AR(p) assume that asset’s rate of return depends on
p previous ones, moving-average models MA(q) involve last
q values of a stochastic error, autoregressive-moving-average
models ARMA(p,q) generalize AR(p) and MA(q), whereas
ARIMA models generalize ARMA(p,q), suitable to describe
a wide range of non-stationary processes [8]. However, any
time-series model is merely another inference from the histori-
cal data and its parameters are subject to estimation errors.

The discrepancy between a real-life phenomenon and its
model is called model error—in contrast to approximation
error, which can be resolved by simply increasing the sam-
ple size, the model error implies that an increase of obser-
vations of asset rates does not directly translate into the ac-
curacy/precision in estimation of the probability distributions
of the rates. There are various existing approaches that ad-
dress model uncertainty. For example, bootstrapping [6] gener-
ates different scenarios for the variable of interest from a given
time series, robust optimization [4] assumes that probabilities
in question belong to certain intervals, whereas dual character-
ization of risk and deviation measures [2, 44] relies on risk en-
velopes, which can be viewed as sets of distortions of an under-
lying probability measure, see [32]. Notably, Pflug et al. [42]

1Sato processes [47], whose increments are independent but not necessarily
stationary, can be used instead.
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showed that the naive 1/n investment strategy could be optimal
in portfolio selection when model uncertainty is high. Savage
[49] suggested to study decisions as functions from some state
space Ω to a set of outcomes Y ⊂ R, which are now known
as Savage acts. This approach involves no probability measure
on Ω—a critical feature that gave rise to various Savage-act
versions of the expected utility theory (EUT) [11, 29]. For ex-
ample, Gilboa and Schmeidler [21] proposed to study prefer-
ence relations over acts, i.e., “functions from states of nature
into finite-support distributions over a set of deterministic out-
comes.” In this case, the agent ends up with the same optimiza-
tion problem (2), where R is a functional from X to the set A
of all acts, and U′ : A → R is a numerical representation of
Gilboa & Schmeidler’s preference relation. Of course, the list
of existing approaches goes far beyond these examples, see e.g.
[3, 10, 13, 55] for alternative approaches and [38, 20] for recent
surveys.

However, accurately modeling of outcomes of real-life ac-
tions in the context of any of these theories is difficult. For
example, modeling of financial portfolio returns in terms of
Gilboa-Schmeidler acts [21] includes forecasting of a set of
finite-support distributions, and therefore, could, in fact, be
harder than that in terms of r.v.’s. The main problem with uncer-
tainty modeling is that, contemplating a choice among several
alternatives, an agent ponders what alternative he/she would be
most benefited from in the future, while the only available in-
formation is often the data representing their historical perfor-
mances in the past.

In view of failure of common statistical assumptions in ap-
plication to a stock market [50, 36, 51] and in view of sensi-
tivity of optimal decisions (portfolios) to errors in estimation of
probability distributions of financial assets [28, 30], this work
aims to identify intertemporal principles for comparing histor-
ical time series of asset rates of return and to develop an ax-
iomatic framework for a rational decision making in portfolio
theory on the space of historical time series. For example, an
agent may postulate that if A always outperformed B in the
past, then A � B, even though better past performance does
not guarantee better future performance.

The idea of making decisions based directly on historical
data is not new,2 but it has received relatively little attention
in economic and financial literature. Gilboa and Schmeidler
[22, 23] introduced a case-based decision theory, which makes
decisions based on past experience in similar situations.3 In
a financial market setting, this theory would identify the mo-
ment in the past when the market behavior was most similar
to the current one and would prescribe to invest all money into
the financial asset which had the highest rate of return in that
“similar” situation. However, it is not clear what “similarity
measure” to use, and the resulting investment strategy may con-

2In psychology, Gorban et al. [24] proposed a neural-network-based ap-
proach for making recommendations based on the questionnaire data directly
that avoids intermediate stage of patient descriptions in terms of “measure-
ments of an individuality.”

3Gilboa and Schmeidler [22] argued that in a search for a nanny for their
child, a couple faces a lot of uncertainty about how each candidate would per-
form and can hardly define “states of the world” that would adequately model
the situation not to mention accurately forecasting of probabilities of each state.

tradict the diversification principle. There are other objections
for the use of direct data-based decision making in portfolio
selection:

(i) Information such as recent market trends and news about
particular companies may provide valuable insights for se-
lecting a financial portfolio.

(ii) The future may have little in common with the past, for
instance, due to unique events such as BREXIT.

(iii) New financial assets lack historical data, but it is unlikely
that agents would veiw, say, a new bank and a startup IT
company similarly.

However, incorporating news and other non-quantitative infor-
mation, e.g. a recent hire of a highly regarded CEO, into a
mathematical model requires human participation and is, there-
fore, expensive and slow. In contrast, calibrating stochastic
models based only on historical data can be fully automated
and performed in milliseconds, which is particularly valuable
for high-frequency trading. Thus, if the choice of optimal port-
folio is based on some uncertainty modeling, which in turn uses
historical data only, then the uncertainty modeling stage could
be omitted, and decisions could be made based on data directly.

The contribution and organization of this work are as fol-
lows. Section 2 introduces the notion of time profile and dis-
cusses numerical representation of time series. Section 3 in-
troduces intertemporal principles of rational choice. Section 4
reinterprets the mean-variance and maxmin utility analyses in
the context of direct data-based decision making. Section 5
concludes the work. Appendix A contains proofs of key results
in Section 3 and Appendix B provides an axiomatic foundation
for a data-based analogue of the EUT.

2 Time Profiles and Numerical Repre-
sentation of Time Series

Let T = {s1, . . . , sT} be a finite set of discrete time moments
s1 < · · · < sT in the past, and let x1, . . . , xT be corresponding
rates of return of some financial asset. Since x1, . . . , xT encode
a time structure and are not realizations of i.i.d. r.v.’s, the agent
would unlikely view x1, . . . , xT as equally valuable data and
may assign them corresponding weights q1, . . . ,qT of historical
data “depreciation” to be collectively referred to as time profile
Q. For example, the agent may postulate that fraction qt/qt+1
is a constant q ∈ (0,1] independent of t, which implies that

qt = qTqT−t, t = 1, . . . , T. (3)

Alternatively, q1, . . . ,qT can be chosen to be proportional
to the (normalized) autocorrelation profile of the asset—if for
some time periods (usually far in the past), the autocorrelation
vanishes, then those past values play little role in predicting
asset’s behavior. Suppose, for example, the FTSE 100 index
is such an asset. Figure 1 depicts the sample autocorrelation
function (ACF) of daily prices of the index from 1-April-2015
to 1-April-2016 with the lag up to 80, taken from [1]. For a
lag longer than 80 days, the autocorrelation is negligible, so
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that T = 80, and weights q1, . . . ,q80 are then proportional to
the ACF in Figure 1 and satisfy ∑T

t=1 qt = 1.
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Figure 1: Sample autocorrelation function (ACF) for the FTSE
100 index for the period of 1-April-2015—1-April-2016.

Behavioral evidence supporting the notion of time profile in-
cludes, but is not limited to the following

(a) The effect of fading memory and emotions [18, Part 6]:
an individual is much more likely to rely on and act upon
recent experience rather than that occurred far in the past.

(b) A reversion of the behavioral time discounting principle
stating that “money available at the present time is worth
more than the same amount in the future” [18, Part 3].

(c) Only 21% of agents agree that historical data should be
equally weighted [15].

Technical arguments in favor of time profiles include

(a) In time-series analysis, (4) is known as the weighted mov-
ing average, in which more weight is often given to the
most recent data. In particular, (3) are weights in expo-
nential smoothing [9].

(b) The ACF decreases with time and almost vanishes after 80
days (see Figure 1).

(c) In mean-variance portfolio selection, the optimal portfo-
lios with time profiles based on geometric progression (3)
with various q outperform optimal portfolio in which as-
set rates of return are modeled by an ARIMA time-series
model — to be discussed in Example 9 (Figure 5).

For a time series X = (x1, . . . , xT) and time profile Q =
(q1, . . . ,qT), the weighted average and the mean-square devi-
ation of x1, . . . , xT are defined by

EQ[X] = ∑T
t=1 qtxt, (4)

σQ(X) =
√

∑T
t=1 qt(xt −EQ[X])2

=
√

EQ [X2]− (EQ[X])2,
(5)

respectively. Here, EQ[X] and σQ(X) are not assumed to be
estimates of the future expected value and standard deviation,

respectively, they are just weighted average and standard devi-
ation of the time series X. For two time series X = (x1, . . . , xT)
and Y = (y1, . . . ,yT) and time profile Q = (q1, . . . ,qT), the co-
variance is defined by

covQ(X,Y) = ∑T
t=1 qt(xt −EQ[X])(yt −EQ[Y]). (6)

In fact, the agent may contemplate a whole set Q of various
time profiles. First, the agent may postulate that qt are non-
negative, impose normalization ∑T

t=1 qt = 1 and define the set
of time profiles to be

Q =Qmax

=
{
(q1, . . . ,qT) ∈RT

∣∣∣q1 > 0, . . . ,qT > 0, ∑T
t=1 qt = 1

}
.

(7)
Next, the agent may assume that q1 6 . . . 6 qT for every
Q ∈ Q—more recent data is more valuable. A maximal “time
averse” subset Q⊂Qmax is given by

Q =
{
(q1, . . . ,qT) ∈RT

∣∣∣0 6 q1 6 . . . 6 qT , ∑T
t=1 qt = 1

}
.

(8)
Particular cases of (8) include

Qq =
{
(q1, . . . ,qT) ∈RT

∣∣∣0 6 q1 6 . . . 6 qT 6 q,

∑T
t=1 qt = 1

}
, q ∈ [1/T,1],

(9)

which represents the preferences of the “time averse” agent
who, in addition, requires that no time period should have
weight more than q, and

Q′q =
{
(q1, . . . ,qT) ∈RT

∣∣∣qt = qTqT−t, t = 1, . . . , T,

∑T
t=1 qt = 1

}
, q ∈ (0,1],

(10)

where weights q1, . . . ,qT form a geometric progression (3).
With a chosen time profile set, Q, the agent may define the

utility of the time series X = (x1, . . . , xT) by

U(X) = inf
Q∈Q

EQ[X], (11)

and then can use (11) for comparing different time series. In
fact, (11) is a data-based analogue of Gilboa & Schmeidler’s
maxmin model [21].

Example 1 (data-based version of coherent risk measure) If
Q in (11) is a subset of Qmax in (7), then R(X) = −U(X)
is a coherent risk measure [2]. The difference is that X =
(x1, . . . , xT) is interpreted as an r.v. taking values x1, . . . , xT
and Q is the set of probabilistic scenarios Q = (q1, . . . ,qT),
i.e., P[X = xt] = qt, t = 1, . . . , T. The most popular coherent
risk measure is arguably conditional value-at-risk CVaRα(X)
[43], which for α = k/T is defined as

CVaRα(X) = −1
k ∑k

t=1 x′t,
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where (x′1, . . . , x′T) is a permutation of (x1, . . . , xT) such that
x′1 6 . . . 6 x′T . In other words, CVaRk/T(X) measures av-
erage losses of X under k worst-case scenarios. Note that
CVaRα(X) = CVaRα(Y) whenever (y1, . . . ,yT) is a permuta-
tion of (x1, . . . , xT). However, in (11), q1, . . . ,qT have a differ-
ent interpretation: they are weights reflecting “depreciation”
of the data at times t = 1, . . . , T. The agent may value more
recent data more: q1 6 . . . 6 qT , which can be viewed as “time
aversion” (to be discussed in §3), and may further assume the
ratio qt/qt+1 to be constant over t, i.e. (10).

Example 2 (data-based version of drawdown measure) Let
X = (x1, . . . , xT) be a historical time series of the rate of return
of some financial asset, and let x̂t = ∑t

j=1 xj be uncompounded
cumulative rate of return over period [1, t]. The drawdown of
X can be defined by ξt = max16k6t x̂k − x̂t [14, 56]. Then the
maximum drawdown max16t6T ξt can be represented in the
form of (11) with

Q′q =
{
(q1, . . . ,qT) ∈RT

∣∣∣qj = 0, j 6 k, t + 1 6 j,

qj = 1, k + 1 6 j 6 t, 0 6 k < t 6 T
}

,

so that
U(X) = min

k,t
∑t

j=k+1 xj = −max
t

ξt.

Also, the average of the k largest drawdowns can be defined as

DDα(X) =
1
k ∑k

t=1 ξ ′t, α = (T − k)/T, (12)

where (ξ ′1, . . . ,ξ ′T) is a permutation of (ξ1, . . . ,ξT) such that
ξ ′1 > . . . > ξ ′T [14, 56]. The functional U(X) =−DDα(X) is a
particular case of (11). Remarkably, the time-series definition
(12) of drawdown, which is a dynamic measure, is as simple as
time-series analogue of a one-period risk measure, e.g. CVaR.

Thus, while representation (11) is known, the time profile
Q here has the meaning of historical data “depreciation.” See
Appendix B for a nonlinear generalization of (11).

Let Q∗ = (q∗1 , . . . ,q∗T) ∈ Qmax with at least three of
q∗1 , . . . ,q∗T being non-zero. The utility of the time series X =
(x1, . . . , xT) can also be measured by the mean-standard devi-
ation functional

U(X) = V(EQ∗ [X],σQ∗(X)) (13)

with a continuous function V strictly increasing in the first ar-
gument and strictly decreasing in the second one.

Example 3 (data-based version of the mean-standard devia-
tion utility) The mean-standard deviation utility is defined by
V(m,σ) = m − λσ with a specified “level of risk aversion”
λ > 0 [25, Example 6]. With this V, (13) takes the form

U(X) = EQ∗ [X]− λσQ∗(X). (14)

Note that (14) is a particular case of (11) with [46, Example 1]

Q =
{
(q1, . . . ,qT) ∈RT

∣∣∣EQ∗ [Q] = 1, σQ∗(Q)6 λ
}

.

Example 4 (data-based version of the mean-variance analy-
sis) With a specified threshold µ on EQ∗ [X], a data-based ana-
logue of the mean-variance analysis corresponds to the utility
functional

U(X) =

{
−σQ∗(X) when EQ∗ [X]> µ,
−∞ when EQ∗ [X] < µ.

(15)

In contrast to the existing decision theories, the proposed
direct-data based approach does not try to make any statisti-
cal inference from the historical data, but rather incorporates
agent’s perception of the historical data into a decision pro-
cess through the time profiles, e.g. as in (11) and (13)–(15),
and the goal of this work is to identify intertemporal princi-
ples of rational choice for constructing time profile sets. An
axiomatic framework for intertemporal principles is laid out in
§3, and then the direct data-based decision making approach is
demonstrated in portfolio optimization with (11) (§4.1) and in
mean-variance portfolio selection (§4.2).

3 Intertemporal Principles of Rational
Choice

This section discusses intertemporal principles of rational
choice for constructing time profile sets introduced in §2. For
any asset A, let

xA(t) =
pA(t + ∆)− pA(t)

pA(t)
− r0(t), t ∈ T , (16)

be its historical excess rate of return over the risk-free rate.
Here, T = {s1, . . . , sT} is a set of time moments, ∆ > 0 is a
fixed time period, pA(t) is the historical price of asset A at
time t (specifically, the price of the last transaction before time
t [7, p. 132]), whereas r0(t) is the historical risk-free rate at t.
If A is the risk-free asset, then xA(t) = 0 for all t ∈ T . If A
is a risky asset, and either pA(t) or pA(t + ∆) or r0(t) is un-
available for some t,4 we define xA(t) = k, where k is a symbol
indicating missing data (it plays the role similar to i=

√
−1 in

complex numbers).
Let X be a portfolio consisting of risky assets A1, . . . , An

with portfolio weights (α1, . . . ,αn) ∈ Rn (short selling is al-
lowed) and of a risk-free asset A0 with the weight α0 = 1−
∑n

i=1 αi ∈R. Let

x(t) = ∑n
i=1 αixi(t) = ∑i∈I αixi(t)︸ ︷︷ ︸

=a(t)

+∑i∈J |αi|︸ ︷︷ ︸
=b(t)

k

= a(t) + b(t)k, t ∈ T ,

where xi(t) is defined by (16) for asset Ai and where I and J are
sets of indices i such that xi(t) 6= k and xi(t) = k, respectively.

4This may happen when (a) asset A might first appear on the market after
time t; (b) values of pA(t) or pA(t + ∆) are missing; (c) t + ∆ > τ∗, i.e.,
future price is needed to calculate xA(t).
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Thus, the portfolio X corresponds to a function x : T → F,
where F = {a + bk, | a ∈R, b > 0} is a real vector space5 with
addition and multiplication by a constant defined by

(a1 + b1k) + (a2 + b2k) = (a1 + a2) + (b1 + b2)k,
α(a + bk) = αa + (|α|b)k.

The set X of all possible portfolios is identified with set
FT of all vectors (x1, . . . , xT), where xt = x(st), t =
1, . . . , T, or, equivalently, X ⊂ R2T is the set of vectors
(a1,b1, a2,b2, . . . , aT ,bT) with bt > 0, t = 1, . . . , T, where xt =
at + btk, t = 1, . . . , T.

Let � be a preference relation on X : X � Y if X is strictly
preferred to Y, X ∼ Y if an agent is indifferent between X and
Y, and X � Y if either X � Y or X ∼ Y. One of the funda-
mental principles of rational choice is that � forms a complete
weak order on X .

Axiom 1 (complete weak order) � is complete and transi-
tive:

(i) X � Y or Y � X for all X,Y ∈ X (completeness).
(ii) X � Y and Y � Z imply that X � Z for all X,Y, Z ∈ X

(transitivity).

Axiom 1(i) asserts that decision making is based solely on
historical data and no other information is available to the
agent (important and non-trivial assumption). Under a mild
technical assumption,6 axiom 1 implies that� admits a numer-
ical representation U : X →R such that X � Y ⇐⇒ U(X)>
U(Y), see Theorem 2.6 in [19].

Set X = FT is a metric space with distance ρ(X,Y):

ρ(X,Y) =
√

∑T
t=1 ρ2

F(xt,yt),

where X = (x1, . . . , xT), Y = (y1, . . . ,yT), and ρF(x,y) =
ρ(a + bu, c + du) =

√
(a− c)2 + (b− d)2. We can then de-

fine open and closed subsets of X with respect to topology in-
duced by this metric.

Axiom 2 (continuity) For every X ∈ X , sets B(X) = {Y ∈
X |Y � X} and B(X) = {Y ∈ X |X � Y} are closed in X .

Axiom 2 states that � does not change when X and Y are
slightly perturbed. With axiom 2, Theorem 2.15 in [19] im-
plies that a numerical representation U for � can be chosen as
a continuous function on X .

It is well known that rational agents diversify their portfolios
rather than “keep all eggs in one basket.”

Axiom 3 (diversification principle) For any X,Y ∈ X and
α ∈ [0,1], mixture Zα = αX + (1 − α)Y cannot be strictly
worse than both X and Y: either Zα � X or Zα � Y.

5F is similar to the set of complex numbers z = a + ib, which are also
considered as vectors (a,b) with certain arithmetic operations.

6Namely, the existence of a countable order dense subset of X . A subset Z
of X is called order dense, if for any X,Y ∈ X with X � Y there exists Z ∈ Z
such that X � Z � Y.

A numerical representation U of � that follows this prin-
ciple is a quasi-concave function: U(αX + (1 − α)Y) >
min{U(X),U(Y)}. See [12] for a recent study of quasi-
concave utility functions. A trivial sufficient condition for ax-
iom 3 to hold is the existence of concave numerical represen-
tation U of �: i.e., U(αX + (1 − α)Y) > αU(X) + (1 −
α)U(Y) for any X,Y ∈ X and α ∈ [0,1].

Often investment decisions are made in two steps: (i) decide
on portion α of the capital to be invested into risky assets (and
keep the remaining money in a savings account), and (ii) select
a risky portfolio for the portion α. Next axiom states that the
choice of the risky portfolio in step (ii) does not depend on α.

Axiom 4 (positive homogeneity) For any X,Y ∈ X and α >
0, X � Y implies that αX � αY.

Proposition 1 Let X+ = {X |X � X0}, where X0 denotes in-
vestment into the risk-free asset only. � satisfies axioms 1–4 on
X+ if and only if it has a continuous numerical representation
U on X+ satisfying

(i) Concavity7: U(αX + (1 − α)Y) > αU(X) + (1 −
α)U(Y) for all X,Y ∈ X+ and α ∈ [0,1].

(ii) Positive homogeneity: U(αX) = αU(X), for every X ∈
X+ and α > 0.

Proof See Appendix A. 2

For the agent who considers only portfolios strictly prefer-
able to the risk-free investment X0, restriction to the set X+ in
Proposition 1 is inessential. Suppose U satisfies (i) and (ii) on
the whole set X . Then, it can be represented by

U(X) = inf
Q∈Q
〈Q, X〉, (17)

where X = (x1, . . . , xn) = (a1 + b1k, . . . , aT + bTk) and Q ⊂
R2T is a set of vectors Q = (q1, q̂1,q2, q̂2, . . . ,qT , q̂T), which
can be chosen convex, closed, and bounded, and where

〈Q, X〉 = ∑T
t=1 qtat + ∑T

t=1 q̂tbt.

Elements QX ∈ Q for which infimum in (17) is attained will
be called identifiers of X.

If Q = {Q} is a singleton, (17) simplifies to U(X) =
〈Q, X〉. In general, qt (or q̂t) is interpreted as the weight/ im-
portance that the agent assigns to the historical data (or absence
of data) at time t ∈ T . The agent may consider a set Q of pos-
sible weights and may select Q ∈ Q such that 〈Q, X〉 is the
worst possible: this is an interpretation of (17). Portfolio opti-
mization with (17) takes the form

max
X∈X ′

inf
Q∈Q
〈Q, X〉,

where X ′ ⊂ X is the set of all feasible portfolios, which moti-
vates calling (17) maxmin utility theory (MMUT).

Some agents prefer investing into portfolios which per-
formed well in the past, while avoiding assets with poor or un-
known performance, e.g. those which just appear on the mar-
ket. This intuition is formalized in the following axiom.

7Under (ii), this is equivalent to super-additivity: U(X + Y) > U(X) +
U(Y) for all X,Y ∈ X+.
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Axiom 5 (monotonicity) Let X = (a1 + b1k, . . . , aT + bTk)
and Y = (c1 + d1k, . . . , cT + dTk) ∈ X . If

at > ct and bt 6 dt, t = 1, . . . , T,

then X � Y. In other words, if the proportion of money in-
vested into assets with no historical data in X is less than that
in Y and if collectively the assets with known data in X always
outperformed those in Y, then X � Y.

In the MMUT (17), axiom 5 holds if an only if Q in (17) is
such that

qt > 0 and q̂t 6 0, t = 1, . . . , T, ∀Q ∈ Q.

If no data is missing and the agent uses direct historical sim-
ulation for forecasting, axiom 5 is equivalent to monotonicity
axiom for r.v.’s.

Corollary 1 Direct historical simulation views x1, . . . , xT as
equally probable outcomes of an r.v. R: P[R = xt] = 1/T,
t = 1, . . . , T. Let X = (x1, . . . , xT) and Y = (y1, . . . ,yT), then
with this assumption, the condition x1 > y1, . . . , xT > yT in ax-
iom 5 is equivalent to P[R(X)> R(Y)] = 1, and axiom 5 sim-
plifies to

P[R(X)> R(Y)] = 1 ⇒ X � Y, (18)

which is the well-known monotonicity axiom on the space of
r.v.’s.

However, financial interpretations of axiom 5 and (18) are
completely different. With simple historical simulation, the
agent interprets inequalities x1 > y1, . . . , xT > yT as evidence
that a portfolio associated with X = (x1, . . . , xT) will outper-
form the one associated with Y = (y1, . . . ,yT) in the future
with probability 1 and, thus, strongly prefers X to Y. This
again shows that historical data can be easily misinterpreted
(mis-modeled), which could result in poor decisions. In con-
trast, axiom 5 does not imply that the portfolio associated with
X will outperform the one associated with Y in the future—it
merely states historical facts.

In fact, when forecasting uses methods other than direct his-
torical simulation, axiom 5 differs from (18) as the following
example demonstrates.

Example 5 In a “Gaussian world,” the future excess rate of
return of a portfolio with past excess rates of return X =
(x1, . . . , xT) can be modeled by a normally distributed r.v.
R(X) with mean µX and variance σ2

X estimated from X by

µX =
1
T ∑T

t=1 xt, σ2
X =

1
T − 1 ∑T

t=1(xt − µX)
2.

Then (18) simplifies to

X � Y if µX > µY and σ2
X 6 σ2

Y,

which neither implies axiom 5 nor follows from it.

Axiom 5 assumes that X outperformed Y at every single time
moment in the past. Some agents, however, may consider cu-
mulative past performance.

Axiom 6 (time aversion) Let X = (a1 + b1k, . . . , aT + bTk)
and Y = (c1 + d1k, . . . , cT + dTk) ∈ X . If

∑T
t=τ

at > ∑T
t=τ

ct, ∑T
t=τ

bt 6 ∑T
t=τ

dt, τ = 1, . . . , T,
(19)

then X � Y.

Let T1,T2⊂T be subsets of T of equal cardinality, such that
maxt T1 6mint T2. Let IT1,T2(t) be a function taking values 1,
−1, and 0, for t ∈ T1, t ∈ T2, t ∈ T \ (T1 ∪ T2), respectively.
Since the first condition in (19) holds whenever c(t) = a(t) +
δIT1,T2(t), δ > 0, axiom 6 implies that

x(t) � x(t) + δIT1,T2(t) ∀δ > 0. (20)

Similarly, let JT1,T2(t) be a function taking values −k, k, and 0,
for t ∈ T1, t ∈ T2, t ∈ T \ (T1 ∪ T2), respectively. Axiom 6
implies that

x(t) � x(t) + δJT1,T2(t) ∀δ > 0. (21)

For the MMUT (17), axiom 6 yields the following character-
ization of the set Q.

Proposition 2 Let (17) be a numerical representation of � on
X . The following statements are equivalent.

(i) � satisfies axiom 6.
(ii) � satisfies (20) and (21).

(iii) The set Q in (17) is such that

0 6 q1 6 . . . 6 qT , 0 > q̂1 > . . . > q̂T ∀Q ∈ Q.

Proof See Appendix A. 2

Many models of financial market assume that observations
of asset’s rates of return at different times are independent.
Black & Scholes [5] priced options based on the assumption
that stock prices follow a Brownian motion, whereas Sato [48]
replaced the Brownian motion by a Levy process, which also
assumes price increments (and consequently returns) to be in-
dependent. In such models, discrete historical data x1, . . . , xT
can be considered as realizations of independent and identically
distributed r.v.’s. In this case, the order of data is not important,
which corresponds to the following no-time-structure principle

X ∼ Y whenever (y1, . . . ,yT) is a permutation of (x1, . . . , xT),
(22)

which implies that X = (a1 + b1k, . . . , aT + bTk) with a1 6
. . . 6 aT (positive trend) and Y = (aT + bTk, . . . , a1 + b1k)
with the reverse order of data (negative trend), are equally
preferable—this does not seem to be a rational behavior.

An axiomatic framework for data-based expected utility the-
ory (36) is presented in Appendix B.

When there is no missing data or when the agent deliberately
excludes assets with missing/incomplete data, every portfolio
X can be identified with its historical time series (x1, . . . , xT) ∈
RT . In this case, axioms on a preference relation � are intro-
duced and studied on X = RT .
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• Axiom 1 states that � defines a complete and transitive
weak order on RT .
• Axiom 2, formulated in usual topology of RT , states that

the sets {Y ∈ X |Y � X} and {Y ∈ X |X � Y} are closed
in RT and implies the existence of continuous function
U : RT →R such that X � Y⇔U(X)> U(Y).
• Axiom 3 states that U is a quasi-concave function on RT .

• Axioms 3 and 4 imply that U is concave and positive ho-
mogeneous, hence admit the form (11).
• Axiom 5 states that if X = (x1, . . . , xT) and Y =
(y1, . . . ,yT) are such that x1 > y1, . . . , xT > yT , then X �
Y. It implies that qt in (11) are non-negative.
• Axiom 6 states that X = (x1, . . . , xT) � Y = (y1, . . . ,yT)

provided that ∑T
t=τ xt > ∑T

t=τ yt, τ = 1, . . . , T (portfolios
with better average recent performance are preferable). It
implies that q1 6 . . . 6 qT for every Q ∈ Q in (11).

Now, with what introduced axioms is the mean-standard de-
viation functional (13) consistent?

Proposition 3 (13) is a numerical representation U of� if and
only if � satisfies axioms 1 and 2, and the following two addi-
tional axioms
(a) X + C � X for all C > 0, and
(b) if X and Y 6= 0 are such that EQ∗ [Y] = covQ∗(X,Y) = 0,

then X � X + Y.

Proof See [33, Theorem 1]. 2

Next propositions address consistency of the mean-standard
deviation utility (14) with axiom 5 (monotonicity).

Proposition 4 Let U be given by (14). The following state-
ments are equivalent
(a)

λ 6

√
z

1− z
, z = min

t∈{t:q∗t >0}
q∗t . (23)

(b) q1 > 0, . . . ,qT > 0 for every Q ∈ Q∗.
(c) U(X)> U(Y) for every X,Y ∈RT such that X > Y.

Proof See Appendix A. 2

Proposition 5 Let� be a preference relation with a numerical
representation (14). Then� satisfies axioms 1, 2, and 3. More-
over, � satisfies: (i) axiom 5 if (23) holds; (ii) axiom 6 if (23)
holds and q∗1 = · · · = q∗T; (iii) axiom 8 in Appendix B if (23)
holds and q∗1 6 . . . 6 q∗T; and (iv) (22) if q∗1 = · · · = q∗T .

Proof See Appendix A. 2

What axioms are considered to be rational?—In Christo-
forou’s questionnaire [15],8 almost all respondents out of 215
agreed with axiom 1, 88% with axiom 5, 58% with axiom 2,
and only 21% agreed with (22).

8The posed questions such as “Would you favor instrument that historically
returned profit 10% during 50% of years (and no profit during other 50% of
years) over instrument which returned profit 6% during 100% of years?” better
reflect real investment alternatives, where only past data but not probabilities
of future events are available.

4 Data-based Portfolio Optimization

4.1 Maxmin Portfolio Optimization
In the direct data-based decision approach, historical excess
rates or return of the risk-free asset and n risky assets dur-
ing last T time periods are given by X0 = (0, . . . ,0), X1 =
(x11, . . . , x1T), . . . , Xn = (xn1, . . . , xnT), respectively. With no
short sales and with U being the utility (11), a portfolio opti-
mization problem is formulated by

u∗ = max
v∈V

min
Q∈Q∑T

t=1 ∑n
i=0 qtvixit,

V =
{

v = (v0, . . . ,vn)
> ∈Rn+1

∣∣∣v > 0, ∑n
i=0 vi = 1

}
.

(24)

Example 6 (single time profile) For a singleton Q = {Q∗},
problem (24) simplifies to

u∗ = max
v∈V

∑n
i=0 viui, ui = ∑T

t=1 q∗t xit, i = 0, . . . ,n.

In this case, u∗ = maxi ui, and an optimal strategy is vi∗ = 1,
vi = 0, i 6= i∗, where i∗ = argmaxi ui, i.e. investing the whole
capital in the “best” asset—no diversification.

Example 7 (“ultimate” risk aversion) For Q = Qmax, (24)
is equivalent to the problem of finding mixed-strategy Nash
equilibrium in a two-player zero-sum game [53] with (n +
1) × T payoff matrix X having elements xit. In this case, u∗

is equal to the value of the game, and the optimal investment
strategy v∗ ∈ V is a solution to the linear program

u∗ = max
v∈V,u∈R

u

subject to ∑n
i=0 vixit > u, t = 1, . . . , T.

If Q is an arbitrary closed convex subset of Qmax,
von Neumann minimax theorem [54] implies that u∗ =
maxv∈V minQ∈Q v>X Q> = minQ∈Qmaxv∈V v>X Q>, and
u∗ can be found as

u∗ = min
Q∈Q, u∈R

u

subject to ∑T
t=1 qtxit 6 u, i = 0, . . . ,n.

(25)

Example 8 ForQ being the maximal “time averse” set (8), or
for Q belonging to the one-parameter family (9), problem (25)
is a linear program.

The set Q in (11) can also be found by the inverse port-
folio approach introduced in [26, 27] in terms of r.v.’s. The
idea is that the agent recovers Q from the time series X∗ =
(x∗1 , . . . , x∗T) of the rate of return of a portfolio that he/she is rel-
atively satisfied with—such a portfolio should solve (24) with
U given by (11). Proposition 7 in [26] implies that the maximal
possible (most robust) such Q is given by

Q =
{

Q ∈ Qmax
∣∣∣∑T

t=1 qtx∗t > 0
}

,
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provided that the following no-perfect-history assumption
holds: there is no time series (x1, . . . , xT) of the rate of return
of a feasible portfolio such that x1 > 0, . . . , xT > 0 with at least
one inequality being strict. For example, for T� n, there is un-
likely to be a portfolio that outperforms the risk-free asset for
every time period in the past. Thus, T can be chosen sufficiently
large to guarantee that the no-perfect-history assumption holds,
otherwise the historical time series can be perceived to be too
short for making a reliable decision.

4.2 Mean-Variance Portfolio Selection
Suppose there is a risk-free asset with constant rate of return
r0, and there are n risky assets. In the typical approach (1),
rates of return of the risky assets are modeled as r.v.’s r1, . . . ,rn
on some probability space. With vi being the fraction of the
capital invested into asset i, the rate of return of a portfolio is
then ∑n

i=0 viri. The mean-variance portfolio selection problem
[39]

min
v0,v1,...,vn

σ
(
∑n

i=0 viri

)
subject to ∑n

i=0 vi = 1, E
[
∑n

i=0 viri

]
> r0 + ∆,

(26)

with desired premium ∆ > 0 over r0, continues to be a corner-
stone of the modern portfolio theory: one-fund theorem, two-
fund theorem, capital asset pricing model (CAPM), Sharpe ra-
tio and asset beta all stem from (26), see [34],—this is one of
the reasons to consider its data-based analogue:

min
v0,v1,...,vn

σQ

(
∑n

i=0 viXi

)
subject to ∑n

i=0 vi = 1, EQ

[
∑n

i=0 viXi

]
> r0 + ∆,

(27)
where Xi = (xi1, . . . , xiT) ∈ RT is the time series of the rate
of return for risky asset i ∈ {1, . . . ,n}, and σQ(·), EQ[·] and
covQ(·, ·) are defined by (4), (5) and (6), respectively, with a
time profile Q = (q1, . . . ,qT) ∈Qmax. Note that (27) is equiva-
lent to maxv0,v1,...,vn U (∑n

i=0 viXi) subject to ∑n
i=0 vi = 1 with

U defined by (15).
Optimal portfolio weights v∗0 and v∗ = (v∗1 , . . . ,v∗n)> in (27)

are found in a closed-form [57, (8.2.2)]

v∗ =
∆Λ−1

Q (XQ> − r0e)

(XQ> − r0e)>Λ−1
Q (XQ> − r0e)

,

v∗0 = 1−∑n
i=1 v∗i ,

(28)

where e = (1, . . . ,1)> is the n-dimensional unit vector and
where X and ΛQ are matrices with entries xit, i = 1, . . . ,n,
t = 1, . . . , T, and covQ(Xi, Xj), i, j = 1, . . . ,n, respectively.

If e>v∗ = 1, which implies that v∗0 = 0 (no investment into
the risk-free asset), then the optimal portfolio is called a master
fund of positive type (market portfolio) [45] with the weights
[57, (8.2.4)]

vM =
Λ−1

Q (XQ> − r0e)

e>Λ−1
Q (XQ> − r0e)

, (29)

and the time series of the rate of return XM = v>MX. The op-
timality conditions for the master fund can be restated as the
capital asset pricing model (CAPM) [46]:

EQ[Xi]− r0 = βi(EQ[XM]− r0), βi =
covQ(Xi, XM)

σ2
Q(XM)

,

i = 1, . . . ,n.
(30)

Problem (26) requires knowing the expected values and
variance-covariance matrix of asset rates of return. If histor-
ical rates of return of each asset are assumed to be realiza-
tions of i.i.d. r.v.’s, then (26) is a particular case of (27) with
q1 = · · ·= qT = 1/T, which is what is solved in practice. How-
ever, (26) does not distinguish portfolios with different trends
but having the same histogram of historical rates over the same
period of time. Also, it is well-known that (26) is inconsistent
with ordinary monotonicity axiom9 (18). However, in the light
of the historical data “depreciation,” this could be a result of
mis-interpretation of historical data as a “forecast” for future
rates of return. In fact, what is violated is axiom 5 (monotonic-
ity). Indeed, the agent may well believe that assets with good
historical performance are now overpriced and may prefer a
portfolio with acceptable past performance and least historical
volatility.

Example 9 Let q1, . . . ,qT be given by the geometric progres-
sion (3) for some q ∈ (0,1]. We select n = 10 assets from the S
& P 500 index10 and use T = 60 assets’ monthly rates of return
from 1-May-2011 to 1-May-2016. Also, r0 = 0.1%. Tables 1
and 2 present master fund’s weights11 (29) and asset betas in
(30) for q = 1, 0.99, 0.97 and 0.95, whereas Figure 2 shows
proportions of the capital invested into Apple Inc. (AAPL),
Amazon.com Inc (AMZN), Bank of America Corp (BAC). Fig-
ure 3 depicts three mean-variance efficient frontiers for q = 1,
0.99, and 0.95. Figure 4 shows Sharpe ratio S = E[X∗ ]−r0

σ(X∗) for
the optimal portfolio (28) as a function of q. The optimal port-
folios (29) are then tested on the out-of-sample from 1-May-
2016 to 1-May-2017. Figure 5 shows in-sample and out-of-
sample performance for the master funds (29) with q = 0.9,
0.95, 0.99 and 1 and for the one in (26), in which r1, . . . ,rn
follow the ARIMA time-series model [8, Chapter 6] with pa-
rameters determined automatically in Mathematica.

Example 10 Figure 6 depicts the mean-variance efficient fron-
tier for the Markowitz’s portfolio problem (27) with the time

9The mean-variance approach may violate “ordinary” monotonicity axiom:
if RX is the rate of return of a solution of (26), then there may exist another
feasible portfolio with the rate of return RY , such that P[RY > RX ] = 1 and
P[RY > RX ] > 0, see [25, Example 5]. The best monotone approximation of
a mean-variance functional is obtained in [35]. Alternatively, one may obtain a
monotone preference relation if the standard deviation in (26) is replaced by a
general deviation measure [44, 45, 46].

10Namely, Apple Inc. (AAPL), Amazon.com Inc (AMZN), Bank of Amer-
ica Corp (BAC), Twenty-First Century Fox Inc Class B (FOX), IBM Common
Stock (IBM), The Coca-Cola Co (KO), McDonald’s Corporation (MCD), Mi-
crosoft Corporation (MSFT), Nike Inc (NKE), and Visa Inc (V).

11Negative portfolio weights correspond to short selling.
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Table 1: Master fund’s weights (29)

q = 1 q = 0.99 q = 0.95 ARIMA
AAPL 0.1683 0.1203 −0.3572 0.0326
AMZN 0.3107 0.3857 1.0597 0.0290
BAC −0.1536 −0.1742 −0.7656 −0.0756
FOX −0.1410 −0.2690 −0.9489 0.3970
IBM −0.3572 −0.3863 −0.1950 0.0414
KO −0.2479 −0.1952 0.0492 0.4038

MCD −0.0865 −0.0622 0.2467 −0.3802
MSFT 0.2222 0.2528 0.3238 −0.2077
NKE 0.1107 0.1057 0.0746 0.4670

V 1.1742 1.2224 1.5128 0.2926

Table 2: Asset betas in CAPM (30)

q 1 0.99 0.97 0.95
AAPL 0.9958 1.0870 1.2533 1.3757
AMZN 1.0596 1.1765 1.3839 1.5338
BAC 1.7657 1.6715 1.5341 1.4750
FOX 1.2788 1.3252 1.3946 1.4172
IBM 0.7261 0.7649 0.8457 0.9249
KO 0.5313 0.5847 0.6675 0.7102

MCD 0.5120 0.5470 0.6073 0.6485
MSFT 1.0042 1.0596 1.1766 1.2758
NKE −0.1475 −0.3406 −0.7033 −0.9638

V 0.8441 0.8997 0.9983 1.0626

AAPL

AMZN

BAC

0.96 0.97 0.98 0.99 1.00
q

-0.5

0.5

1.0

v
i

*

Figure 2: Proportions of the initial capital invested into the
three assets: AAPL, AMZN and BAC; see Example 9.

weights chosen according to the ACF of the FTSE 100 index in
Figure 1. We select n = 70 most actively traded12 assets from
the FTSE 100 index and use assets’ daily rates of return from
1-April-2015 to 1-April-2016. It is assumed that r0 = 0.01%.

Remark 1 The weights Q = (q1, . . . ,qT) can be viewed as
parameters, and sensitivity of the optimal value V(Q) =
σQ(X∗(Q)) in (27) with respect to changes in q1, . . . ,qT can

12The comparison is made based on average trading volume.

q = 1

q = 0.99

q = 0.95
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Figure 3: Mean-variance efficient frontiers for three “time”
profiles.
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S

Figure 4: Dependence of the Sharpe ratio on the “time” profile.

be assessed by the envelope theorem [52, Theorem 3.10.4] :

∂V
∂qt

=
∂σQ(X)

∂qt

∣∣∣∣
X=X∗

−λ∗(Q)
∂

∂qt
(EQ[X]− r0 − ∆)

∣∣∣∣
X=X∗

,

where λ∗(Q) = σQ(X∗(Q))/(r0 +∆) is an optimal Lagrange
multiplier and

∂EQ[X]

∂qt
=

∂

∂qt
∑T

t=1 qtxt = xt,

∂σQ(X)

∂qt
=

1
2σQ(X)

∂

∂qt
(EQ

[
X2
]
− (EQ[X])2)

=
x2

t − 2EQ[X]xt

2σQ(X)
,

so that
∂V
∂qt

=

(
x∗t
2V
− r0 + ∆

V
− V

r0 + ∆

)
x∗t .

5 Conclusions
In a typical one-period decision making under uncertainty, out-
comes of feasible actions are modeled as r.v.’s. As a result,
optimal decisions depend on the accuracy of estimation of the
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Figure 5: In-sample and out-of-sample price evolution of 1$
invested at the beginning of the corresponding periods into the
master fund in (27) with q = 1, 0.99, 0.97, and 0.95, and in (26)
with the ARIMA model, respectively.
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Figure 6: Mean-variance efficient frontier with the time
weights from Figure 1.

corresponding probability distributions. Agents who believe
that probability distributions of asset rates cannot be reliably
estimated would unlikely use any random variable-based de-
cision theory. They will also find it hard to apply Gilboa &
Schmeidler’s case-based decision theory [22, 23], which re-
quires a similarity measure for market behavior over different
time periods. As an alternative, this work has formulated “in-
tertemporal” principles/axioms for a preference relation on the

space of historical time series to facilitate making a rational
choice in portfolio selection. It does not suggest to dismiss
existing decision theories which include uncertainty modeling.
Instead, it shows how to adapt them to deal with historical time
series. This adaptation, however, is not “mechanical”: some
of the proposed axioms, e.g. “time aversion,” have no direct
analogue in the existing theories. Example 5 demonstrates that
the same axiom (in this case, monotonicity) may lead to com-
pletely different decisions when applied to r.v.’s and to time
series. Thus, instead of making statistical inference from the
historical data, an agent may incorporate his/her perception of
the data through time profiles and make a decision based on the
data directly.

Figure 5 (Example 9) shows that in mean-variance portfolio
selection, the optimal portfolios with the exponential time pro-
files with various q outperform optimal portfolio in which asset
rates of return are modeled by the ARIMA model. However, no
matter what advantage on a particular dataset, the direct data-
based decision making approach demonstrates over approaches
with uncertainty modeling, those agents who believe that asset
prices (rates of return) can be reliably predicted by merely sta-
tistical means could hardly be discouraged—they will continue
either relying on some “trusted” statistical model or searching
for an ideal one. This work aims to provide an alternative deci-
sion making approach for those who do not have such a belief.

While the focus of this work is on direct data-based ana-
logues of the Gilboa & Schmeidler’s maxmin model, the mean-
variance approach, and the EUT, other existing decision theo-
ries can be reinterpreted and analyzed in a similar fashion.
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A Appendix: Proofs

Proof of Proposition 1
The “if” part is trivial—we proceed with the “only if” one. Let
� satisfy axioms 1–4 onX+, and let U′ be a continuous numer-
ical representation of � such that U′(X0) = 0. If U′(X) = 0
for all X ∈X+, then (i) and (ii) hold. Otherwise, fix some X∗ ∈
X+ with U′(X∗) > 0, and let f (α) = U′(αX∗). By axiom 4,
X∗ � X0 yields αX∗ � αX0, hence f (α) > U′(αX0) = 0 for
all α > 0. Axiom 2 implies that f is a continuous function on
(0,∞) with

lim
α→0+

f (α) = 0. (31)

Let f (α2) = f (α1) for some α2 < α1. Then, k(α1X∗)∼ α1X∗,
where k = α2/α1 < 1, and, by axiom 4, k2(α1X)∼ k(α1X)∼
α1X. Similarly, kn(α1X∗) ∼ α1X∗ for all n, hence f (knα1) =
f (α1) for all n, which contradicts (31). Thus, f is a positive
continuous function taking distinct values, which implies that f
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is strictly monotone. With (31), f cannot be decreasing, hence
it is strictly increasing. Thus, f has a strictly increasing inverse
function f−1, and U(X) := f−1(U′(X)) is another numerical
representation of �. Then U(αX∗) = f−1(U′(αX∗)) = α for
all α > 0. Then X∼U(X)X∗ for all X ∈X+, and, by axiom 4,
αX ∼ αU(X)X∗. Hence, U(αX) = U(αU(X)X∗) = αU(X),
and (ii) follows.

For any X,Y ∈ X+ with U(X) > 0 and U(Y) > 0,
U(X/U(X)) = U(Y/U(Y)) = 1 by (ii), and axiom 3 implies
that U(αX/U(X) + (1 − α)U(Y/U(Y))) > 1 for all α ∈
[0,1]. With α = U(X)/(U(X) + U(Y)) this yields U(X +
Y)> U(X) + U(Y), which with (ii), is equivalent to (i).

Proof of Proposition 2
For (iii)⇒ (i) part, select any X,Y satisfying (19) and choose
any Q ∈ Q. Let δ1 = q1 > 0 and δt = qt − qt−1 > 0, t =
2, . . . , T. Then

∑T
t=1 qtat = ∑T

t=1

(
∑t

τ=1 δτ

)
at = ∑T

τ=1 δτ ∑T
t=τ

at

> ∑T
τ=1 δτ ∑T

t=τ
ct = ∑T

t=1 qtct,

where the inequality follows from (19). By similar argument,
∑T

t=1 q̂tbt > ∑T
t=1 q̂tdt, so that U(X) > U(Y), and, conse-

quently, X � Y.
(i) ⇒ (ii) is straightforward. For (ii) ⇒ (iii), let QY =

(qY
1 , q̂Y

1 , . . . ,qY
T , q̂Y

T) ∈ Q be an identifier of any Y = (a1 +

b1k, . . . , aT + bTk) ∈ X and let qY
i > qY

j for some i < j. Then

U(X)6 〈QY, X〉 = ∑T
t=1 qY

t at − δ(qY
i − qY

j )

+ ∑T
i=1 q̂Y

t bt < 〈QY,y(t)〉 = U(Y),

for X defined by x(t) = y(t)− δIT1,T2(t) with T1 = {i}, T2 =

{j}. This contradicts (20), and, consequently, 0 6 qY
1 6 . . . 6

qY
T for every Y ∈ X . Similarly, (21) yields 0 > q̂Y

1 > . . . > q̂Y
T .

Let Q′ ⊆ Q be the closure of the convex hull of all Q ∈ Q,
which are identifiers of some Y ∈ X , and let U′ be given by
(17) with Q′. Then U(Y) = 〈QY,Y〉 > U′(Y) for every Y ∈
X , so that Q ⊆ Q′, which yields Q′ = Q. Consequently, Q
is the closure of the convex hull of some vectors satisfying (ii),
and thus, this condition holds for every Q ∈ Q.

Proof of Proposition 4
(a)→ (b): (23) implies that

z
1− z

> λ2 > σ2
Q∗(Q)

= q∗1(q1 − 1)2 + ∑T
t=2 q∗t (qt − 1)2

for every Q ∈ Q∗. By convexity of f (x) = x2,

∑T
t=2 q∗t (qt − 1)2 > ∑T

t=2 q∗t

(
∑T

t=2 q∗t (qt − 1)

∑T
t=2 q∗t

)2

=
[q∗1(q1 − 1)]2

1− q∗1
,

hence

z
1− z

> (q1 − 1)2

(
q∗1 +

(q∗1)
2

1− q∗1

)
= (q1 − 1)2

(
q∗1

1− q∗1

)
.

Since 0 < z 6 q∗1 , this implies that 1> (q1− 1)2, hence q1 > 0.
By a similar argument, q1 > 0, . . . ,qT > 0.
(b)→ (c):

U(X) = inf
Q∈Q∗

EQ[X] = EQX [X]> EQX [Y]

> inf
Q∈Q∗

EQ[Y] = U(Y),

where QX is an identifier of X.
(c)→ (a): Fix j such that q∗j = z, and let Xx, x ∈ R, be a

one-parameter family in RT such that xj = x, and xt = − z
1−z ,

t 6= j. Then EQ∗ [Xx] = q∗j xj + ∑t 6=j q∗t xt = zx − z
1−z (1 −

q∗j ) = z(x − 1), EQ∗ [X2
x] = q∗j x2

j + ∑t 6=j q∗t x2
t = x2z + z2

1−z ,
and

U(Xx) = z(x− 1)− λ

√
x2z +

z2

1− z
− z2(x− 1)2.

Consequently,

∂

∂x
U(Xx)

∣∣∣∣
x=1

= z− λ
√

z(1− z).

Since U(Xx) is non-decreasing in x by (c), (23) follows.

Proof of Proposition 5
Axioms 1, 2, and 3 follow from existence, continuity, and con-
cavity of U in (14), respectively. Under (23), axiom 5 fol-
lows from Proposition 4. Let also q∗1 6 . . . 6 q∗T , non-constant
X,Y ∈ RT be as in axiom 8, and QX = (qX

1 , . . . ,qX
T ) be an

identifier of X. Then QX = Q∗
(

1− λ
X−EQ∗ (X)

σQ∗ (X)

)
(see [46,

Example 1]), which implies that qX
t 6 qX

j whenever xt > xj

and q∗t 6 q∗j . Consequently,

U(X)−U(Y)> EQX [X−Y] = ε
(

qX
j − qX

t

)
> 0,

which proves axiom 8. Similarly, with q∗1 = · · · = q∗T , (23)
implies axiom 6. Finally, with q∗1 = · · · = q∗T , (22) follows
from (14).

B Appendix: Data-Based Expected
Utility Theory (EUT)

A data-based analogue of the independence axiom for r.v.’s is
stated as follows.

Axiom 7 (independence) Let A and B be any disjoint sets
such that A ∪ B = T . For any X,Y ∈ X denote XA ⊕ YB
a function z : T → F such that z(t) = x(t) for t ∈ A and
z(t) = y(t) for t ∈ B. Then XA ⊕ ZB � YA ⊕ ZB implies that
XA ⊕WB � YA ⊕WB for any X,Y, Z,W ∈ X .
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Axiom 7 implies that portfolios are compared only on the
set where the corresponding data differs, whereas time periods
with identical data are ignored.

A subset T ′ ⊂ T is called inessential for � if X ∼ Y when-
ever x(t) = y(t), t 6∈ T ′ (even if x(t) 6= y(t), t ∈ T ′), and es-
sential otherwise. In other words, decision making ignores data
for inessential time periods.

Proposition 6 Assume that there is no inessential T ′ such that
T \ T ′ is a set of cardinality of at most 2. Then � satisfies
axioms 1, 2, and 7 if and only if it has a continuous numerical
representation U in the form

U(X) = U(x1, . . . , xT) = ∑T
t=1 ut(xt) (32)

for some utility functions ut : F→R, t = 1, . . . , T.

Proof The “if” part is trivial, since axiom 7 follows directly
from (32). The “only if” part follows from Debreu [17], who
proved mathematically identical result with different economic
interpretation. 2

The condition in Proposition 6 excludes the scenario in
which an agent selects at most two special time moments t1
and t2 in the past, and make all decisions based on the rates of
return at these moments only. With xt = at + btk, (32) can be
equivalently written as

U(X) = ∑T
t=1 ût(at,bt), (33)

where ût : R×R+→ R, t = 1, . . . , T, are functions such that
ût(a,b) ≡ ut(a + bk).

If all functions ut in (32) are concave, axiom 3 holds. Axiom
4 is equivalent to ût in (33) being linear in both argument, while
axiom 5 is equivalent to ût being non-decreasing in the first ar-
gument, and non-increasing in a second argument, t = 1, . . . , T.

Risk aversion is yet another cornerstone of decision making
under uncertainty—given an r.v. RX and its expected payoff
E[RX ], a risk averse agent always prefers the latter: E[RX ] �′
RX , where �′ is a preference relation defined on the space of
r.v.’s. In particular, the risk averse agent rejects lotteries due to
their negative expected payoff. In the context of the suggested
approach, a more volatile time series may be considered to be
more risky.

This intuition is not supported by axiom 6. If in (20) x(t) =
a(t) + b(t)k with a(t1)< a(t2) for some ti ∈ Ti, i = 1,2, then
with δ = (a(t2) − a(t1))/2 we have a(t1) + δIT1,T2(t1) =
a(t2)+ δIT1,T2(t2), i.e., x(t)+ δIT1,T2(t) might be “less risky”
than x(t). Axiom 6 suggests to ignore this fact and still to se-
lect x(t) on the basis of better recent performance.

Principles of risk aversion and time aversion can be com-
bined into a single axiom: if X is “less risky” than Y and also
outperforms Y more recently then X � Y. Or, formally,

Axiom 8 (time consistent risk aversion) Let x(t) = a(t) +
b(t)k. If inft∈T1 a(t)> supt∈T2

a(t) as well as supt∈T1
b(t)6

inft∈T2 b(t), then (20) and (21) hold.

In the EUT (32)–(33), axiom 8 yields the following result.

Proposition 7 Let (33) with all concave ût be a continuous
numerical representation of � on X . Then � satisfies axiom 8
if and only if

∂û+
t

∂a
(a,b)6

∂û−j
∂a

(a,b),
∂û−t
∂b

(a,b)>
∂û+

j

∂b
(a,b),

∀x = a + bk ∈ F if t < j,
(34)

where superscripts “+”/“−” indicate right/left partial deriva-
tives, respectively. In particular, (34) simplifies to

∂ût

∂a
(a,b)6

∂ûj

∂a
(a,b) and

∂ût

∂b
(a,b)>

∂ûj

∂b
(a,b),

∀x = a + bk ∈ F if t < j,
(35)

if û1, . . . , ûT are differentiable.

Proof We will prove only the equivalence of (20) in axiom
8 and the first inequality in (34), the equivalence of (21) in
the axiom and of the second inequality in (34) can be shown
similarly. For any t < j, a ∈ R, b > 0, and ε > 0, let
X,Y ∈ X be such that xt = xj = a + bk, xk = bk, k 6∈ {t, j},
and yt = a + ε, yj = a− ε, yk = xk, k 6∈ {t, j}. By axiom 8,
X � Y, so that U(X) > U(Y). By (33), this is equivalent to
ût(a,b)+ ûj(a,b)> ût(a+ ε,b)+ ûj(a− ε,b), which implies
that

∂û+
t

∂a
(a,b) = lim

ε→0+

ût(a + ε,b)− ût(a,b)
ε

6 lim
ε→0+

ûj(a,b)− ûj(a− ε,b)
ε

=
∂ûj

∂a
(a,b),

where both equalities and the existence of limits follow from
concavity of ut and uj.

Conversely, let (34) hold. In fact, we can assume that |T1|=
|T2| = 1, and the first statement in axiom 8 can be formulated
as: X � Y, where yt = xt + δ, yj = xj − δ, and yk = xk, k 6∈
{t, j} for some δ > 0, at > aj, bt 6 bj, and t < j. This statement
follows from

ût(at + ε,bt)− ût(at,bt)6 ε
∂û+

t
∂a

(at,bt)6 ε
∂û+

t
∂a

(aj,bt)

6 ε
∂û−j
∂a

(aj,bt)6 ε
∂û−j
∂a

(aj,bj)

6 ût(aj,bj)− ût(aj − ε,bj).

Indeed, the first two inequalities follow from concavity of ut,
the third one from (34), and the last two from concavity of uj.
2

In the case with no missing data, (32) and (35) simplify to

U(X) = ∑T
t=1 ut(xt), ut : R→R, t = 1, . . . , T, (36)

and
u′1(x)6 . . . 6 u′T(x) ∀x ∈R, (37)

respectively. Utility (36) is similar to classical EUT [53], with
the crucial difference that utilities are applied to the data di-
rectly and that there may be different utility functions for dif-
ferent time moments. The interpretation of (36) is that ut(x)
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is a numerical equivalent of the appeal for the historical rate of
return x of a given portfolio at time t. If ut is differentiable,
u′t(x) measures sensitivity of investor’s utility to changes in
data at time t, and (37) represents the principle “recent obser-
vations are more important than past ones.” If ut(x) = qtx,
t = 1, . . . , T, (36) and (37) simplify to (11) with a singleton
Q = {Q} with q1 6 . . . 6 qT .

In the study of Christoforou [15], 62% of respondents agreed
with axiom 7 and 58% with axiom 8.
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