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I[dentifying Key Players in Soccer Teams using Network Analysis
and Pass Difficulty

Tan McHale* Samuel D. Relton'

January 27, 2018

Abstract

We use a unique dataset to identify the key members of a football team. The methedology uses
a statistical model to determine the difficulty of a pass from one player to another, and”combines
this information with results from network analysis, to identify which players are“pivotal to each
team in the English Premier League during the 2012-13 season. We demonstrate the methodology
by looking closely at one game, whilst also summarising player performance for ¢ach team over the
entire season. The analysis is hoped to be of use to managers and oachespin-identifying the best
team lineup, and in the analysis of opposition teams to identify theirskey players.

Keywords: sport; big data; football; Moneyball; random effects

1 Introduction

The use of quantitative analysis in sports is, like in\mamny,industries, on the rise. A combination of
increased computing power, and better recording and availability of data, has led to an increase in the
awareness of the contribution that analytics can make to success in the sporting arena. Across sports
globally, there are success stories to be cited. Perhaps the first, and certainly the most well-known case
of analytics being used successfully in sports, is,the story of how the Oakland Athletics were able to
compete at the very highest echelons,of Major League Baseball on a budget of around a tenth that of
the bigger teams. Elsewhere, in cycling,for example, much of the success of British riders in the Tour de
France and at the Olympics Gamés in recent years has been attributed to Sir Dave Brailsford’s adoption
of analytical methods.

In soccer however, there'is as atrthe time of writing, no such “success story”. Further, there is
very little written evidence documenting the adoption of advanced quantitative methods in the pursuit
of gaining an advantage over the opposition by any professional team. The seemingly slow take up of
analytics in soccer ig very likely a consequence, at least to some extent, of the complexity of the game:
22 players moving‘and interacting continuously for over 90 minutes is certainly not a simple setting for
an analyst, and“makes,it/particularly difficult to gain insight above what an expert eye can achieve.

But recent advances in data collection has meant that rich, detailed data on the locations and
timings of“all agtions on the pitch are now available. Such attractive data sets have caught the eye of
academies, and jin the academic literature there are now some examples of utilising such data. McHale
and SzczepansKi (2013) and Szczepanski and McHale (2015) present models for identifying goal scoring
ability*and pass making ability respectively. Meanwhile Pefia and Touchette (2012) take an entirely novel
approgch to the analysis of football strategy and make use of network analysis to identify the important
players’on each team.

In addition to data detailing the location of events, the richest datasets available in soccer also give
the locations of the 22 players themselves. Recorded at a frequency of up to ten times per second,
the ‘player tracking data’ can be used to measure distance covered, top speed, and the acceleration of
players. Indeed, to date, the majority of academic work using such data has been descriptive in nature.

*Corresponding author address: Centre for Sports Business, University of Liverpool Management School, University of
Liverpool, UK. (ian.mchale@liverpool.ac.uk)
TLeeds Institute for Health Sciences, The University of Leeds, Leeds, 182 9LU, UK. (s.d.relton@leeds.ac.uk)



For example, Castellano et al. (2014) assess the accuracy of two systems for tracking players on the pitch,
whilst Rampinini et al. (2007) tabulate speeds and distances run by players and compare these between
the first and second halves of matches.

Outside of soccer, player tracking data has been used by Cervone et al. (2014) to calculate the
expected possession value in basketball. This methodology estimates the impact each player has on the
probability that a series of passes (the possession) results in points being scored. The probability is
updated continually as players move around the court and the players are ‘rewarded’ for their actions
which contribute to increases in the expected value of the possession.

In this paper we also make use of player tracking data. Collected and made available to us by
Prozone, we have information on the location (z-y coordinates) of each player at a frequency of ten
times per second. The data also include the events occurring in the match (such as passes, tackles,
dribbles and shots etc.). We have these data for all 380 matches in the 2012-13 season ofithe English
Premier League season.

Our objective is to use this unique dataset to learn about which players are key toleach team. Such
analysis and information could be used by team managers and coaches to aid decision making in team
selection, and where to concentrate effort on the pitch in order to thwart the opposition’s strengths. Our
model fills a gap in the literature since player tracking data have, until nowsnot been used in soccer
in any meaningful way to inform team strategy or recruitment. Further, by wutilising such rich data,
the resulting tools we develop should be able to identify key players more accurately than previously
available models.

To achieve our objective, we combine two tools: network analysis and.statistical modelling. The use
of network analysis is intended to identify the key passers in the téam — those players which are heavily
involved in passing moves, and who are central to how the team plays. However, to take account of the
impact a player’s passes have on the team, we weight the passes. in terms of importance. We do not
know the importance of the pass, but we proxy it using a measure of pass difficulty, which we take as
the probability of the intended pass being successful. And‘this is our second tool, a statistical model to
estimate the probability of a pass being successful.

We use this weighting scheme because it should, in principle, reflect players frequently involved in
passing moves from which the ball enters key areas that are heavily defended by the opposition team.
Thus the measure of pass difficulty, should in.theory be related to pass importance. A player making 5
yard passes to the side, or even backwards, in his own half is likely to be much less effective in generating
goal scoring opportunities than a player.passingrinto the opposition penalty area. Such a weighting
scheme should help identify players at the heart of a team’s “shot generation engine”, and knowing
which players these are has clear advantages when selecting which players to field, and how to nullify
the attacking threat posed by opposition teams.

The paper is structured asfollows./ First we present the data and give some descriptive statistics
in section 2, before discussing,our model for estimating the probability of a pass being successful in
section 3. Section 4 presents the network analysis tools we employed to generate our results in section 5.
We conclude with some elosing remarks in Section 6.

2 Player Tracking Data

The depth of thesanalysis that can be performed to analyze player and team performance is enormously
dependent upon the data that one has available. In soccer, the most widely available data are simple
summary statistics for each game. For example, we might know that a player had a 95% pass completion
rate\in“one game. However, without knowing the context of each pass, it is hard to judge whether or
not this is' an impressive feat, and as such, the insight that can be gleaned is massively diminished. For
example, a midfielder making lots of passes back towards the defence will have a high completion rate
but few of these passes would contribute towards winning the game. The rich nature of player tracking
data makes much deeper analysis possible.

The data used in this research, provided by Prozone, gives the z-y coordinates of each player ten
times per second to 10cm accuracy, and was made available to us for all 380 games in the English Premier
League during the 2012-13 season, leading to a dataset containing over 451 million player positions and
over 960,000 events. In the era of ‘big data’, this data must qualify. In the remainder of this section we
present some descriptive statistics on this unique and rich dataset.



Table 1: Average distance run by each playing position during the English Premier League 2012-13.
Running is defined as moving at more than 3 m/s, whilst a sprint is more than 6m/s.

Position Total Distance (km) Running Distance (km) Sprints per 90 mins
Goal Keeper 5.4 0.5 0

Centreback 9.6 3.6 62

Fullback 9.9 4.1 84

Wide midfield 8.5 3.8 72

Centre Midfield 9.2 4.2 80

Attacker 7.6 3.1 64

Table 2: Average distance covered and other statistics by teams in the English Premier League 2012-13.

League  Team Distance Shots Goals Passes Number of
Position Covered into final  sprintg per
(km) third 90 mins
1 Man. Utd. 8.6 560 86 3348 65
2 Man. City 8.6 659 66 2558 72
3 Chelsea 8.9 627 75 2957 67
4 Arsenal 8.5 598 72 2876 68
5 Tottenham Hotspur 8.5 681 66 2775 65
6 Everton 8.8 633 55 2035 69
7 Liverpool 8.9 740 71 4072 72
8 West Brom. Alb. 8.7 506 93 2229 76
9 Swansea City 8.6 506 47 3885 67
10 West Ham Utd. 8.5 493 45 1932 71
11 Norwich City 8.6 413 41 1896 71
12 Fulham 8.7 460 50 3298 70
13 Stoke City 8.7 390 34 1531 68
14 Southampton 9.2 516 49 2427 80
15 Aston Villa 8.6 438 47 2258 66
16 Newecastle Utd. 8.6 532 45 2765 69
17 Sunderland 8.8 417 41 1767 71
18 Wigan Athl. 8.7 500 47 3009 69
19 Reading 9.0 393 43 1662 72
20 Queens Park Rangers” 8.3 500 30 1997 64

Table 1 shows the.@average distance covered by players, for each playing position. As one would
expect, goalkeepers cover the least distance, though it is perhaps surprising to see that even they cover
over 5km per gamé as they protect their 6 yard wide goal. The most ground covered is by fullbacks (left
backs and right“backs). An the modern game, this is again unsurprising as fullbacks are charged with
both attacking and defending duties. Of the outfield positions, attackers cover the least distance.

Also shown in Table 1 are the running distances and number of sprints per 90 minutes. The story
is similar to the total distance covered - goalkeepers run much less and do no sprints per 90 minutes,
whilst fullbacks and centre midfielders do the most.

Table:2 shows the distances covered per 90 minutes by each team (per player) over the season, ranked
by final league position. Also shown are the number of passes into the final third of the opposition
pitch, the number of shots, and the number of goals. It is interesting to see how well the descriptive
statistics ‘explain’ league position. A simple way to do this is to calculate Spearman’s rank correlation, p,
between each of the descriptive statistics and the league position. Unsurprisingly, goals have the strongest
relationship with league position (p = 0.85), followed by shots (p = 0.69), then passes (p = 0.43), all
of which are statistically significant. The intriguing result here is that distance covered and number
of sprints have negative rank correlations with league position of -0.08 and -0.11 respectively, though
not statistically significantly different from 0. It appears then, that successful football teams are doing
something other than simply running more, or performing a higher frequency of sprints.



Table 3: Top 10 players in the English Premier League (2012-13) by number of passes per game (PPG)
along with their pass completion percentage.

Player PPG Completion %
Mikel Arteta 75.7 94
Michael Carrick | 73.7 90
Yaya Toure 73.7 89
Santi Cazorla 64 86
Steven Gerrard 62.4 86
Darren Fletcher | 61.3 91
David Silva 61.2 85
Bacary Sagna 59.6 88
Angel Rangel 58.4 83
James McCarthy | 57.7 89

These results are somewhat contradictory to the popularly held belief that.aunning more than the
opposition improves the team’s chances of success, and to examine this relationship further, we performed
the following experiment. For the moments in each match when the scores“were level (e.g. 0 —0, 1 — 1,
2 — 2 and so on), we calculated the total distance covered and the number of spyints by each team. We
then used the difference between the home and away teams’ distances‘eovered per minute and numbers
of sprints per minute as two covariates in a logistic regression model‘terpredict whether the home team
scored the next goal. We chose to use only moments in the match 'when the scores were level to guard
against any bias that might be introduced since once a team gées ahead (behind) in a match, it is likely
to change its behaviour. The reason for the bias is because‘itnis not.random which team takes the lead
- it is more likely that the better team scores first.

The results of the model concur with the above results- the coefficients on difference in distance
covered per minute and difference in sprints per minutesare both statistically significant and negative.
In other words, if the home team runs more than the’away team, the probability that it scores the
next goal is lower. As a check of the results, we refittedythe model with difference in passes per minute
and difference in passes in the final third pérsminute, and the estimated coefficients were statistically
significant and positive, such that when the home team passes more than the away team it is more likely
to score the next goal. We should note here that these results do not suggest that running less than the
opposition will result in more success! Rather, the result is a consequence of the playing style of the
better teams, and more skillfull players,iin the league.

In this research we want to“identify)the key passers on each team. For comparison, in Table 3 we
show the top 10 players in the league’over the 2012-13 season, measured by their average number of
passes per game, along with their pass completion rate.

3 A random effects model for passing difficulty

Having explored the date, we now move to the main objective of the paper - identifying the key passers on
each team. Our first task in achieving this objective is to create a model that captures the probability of
a pass being suceessful. The resulting estimated probability will be used as a proxy for pass importance,
and will subsequently be used to weight the edges in our network analysis.

We use‘asgéneralised additive mixed model (GAMM), see, for example, Hastie and Tibshirani (1990),
to estimate the probability of a pass being successful. Each pass is treated as a Bernoulli trial with
the probability of a pass being successful depending on covariates. However, the advantage of using an
additive model is that, unlike for linear models, smooth functions of the covariates can be included. Here
we use a tensor product smooth function for the z-y coordinates of the origin and destination of the
pass.

Let us denote the outcome of the ith pass by o; where 0; = 1 is a successful pass and o; = 0 is a failed
pass. We assume that the distribution of each pass follows a Bernoulli distribution with the probability
of success represented by the inverse logit function of the linear predictor 7;. That is we have

(0i|ni) ~ Bernoulli(p;), (1)
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We let the linear predictor 7; be a function of covariates, such that

)

1, = Wi8 + Zib + s(x4, Ti end, Yis Yi,end) s (3)

where W;j is a row vector of covariates, Z; is a row of a design matrix selecting the elements of the
random-effects vector b corresponding to the player executing the ith pass, and s is a tensor product
smooth function that we use to account for the origin and destination of each pass. This allows the
probability of each pass being successful to be a function of the z and y coordinates of the origin and
destination. Adopting a tensor product smooth here is much like using a spline in severalddimensions,
and the advantage is that no functional form need be specified for the shape of the relationshipybetween
the dependent variable and the 4-dimensional set of covariates (the x — y coordinates©f the pass origin
and destination).

The inclusion of the random effect term b, accounts for the fact that different players have different
levels of skill. Szczepanski and McHale (2015) fit a similar model to this and uséd the estimated random
effect term for each player as a way to rate players’ passing abilities. Here e are not interested in the
value of the random effect term itself. Rather, we use the model to estimate the probability of any given
pass being complete, and the inclusion of the random effects term is necessary t0 avoid inducing a bias
in the model results that would results from different players performing.the passes.

To calculate the probability of any one pass being completed,”we set the value of the random effect
back to 0 (and ignore the identity of the player performing thé pass)y This is effectively like assuming
the pass is being performed by a player with average passingability. We do this because we do not want
the player’s skill to be included in the calculation of the pass difficulty measure. If it was, players with
high passing ability would be penalised (their passes would\be estimated to have a higher probability of
being completed than they would otherwise be — i.eyman artificially low pass difficulty), whilst players
with low passing ability would benefit (their passes would Be estimated to have a lower probability of
being completed — i.e. an artificially high pass difficulty).

A major advantage of our work over Szczepanksi and McHale (2015) is that we have access to player
tracking data, so that we can create covariates'that better account for the subtleties affecting the success
of each pass. For example, we can “see’.if the passing player or the receiving player is under pressure
from opposition players; or we can measure how fast the passing player is moving with the ball. The full
list of covariates we derived from the player/tracking data, and their definitions, are as follows.

1. dist: the distance (in metres) from the origin of the pass to the intended destination. We expect
this to be negatively correlated with success.

2. moe (margin of efror): the/minimum angle from the line between the pass origin and destination
to any opposition player (see Figure 1). We expect this to be positively correlated with success.

3. intendedXatheintended x coordinate of the pass.
4. intendedY: the/intended y coordinate of the pass.

5. forwardPgss: a dummy variable indicating that the ball was intended to move closer to the oppo-
sitiom,goal line.

6. \aveXoppTeam: the average distance on the z-axis from the opposition goal of the opposition team
players. This variable attempts to capture a counter-attack from the attacking team, in which case
they may have more room to pass the ball.

7. aveXpassersTeam: the average distance on the z-axis from the opposition goal of the passing
players team. This is intended to capture a counter-attack in conjunction with aveXoppTeam.

8. passerPressure: the number of opposition players within a 4 metre radius of the passer.

9. receiverPressure: the number of opposition players within a 4 metre radius of the intended receiver.
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Figure 1: Margin of error. The solid circle represents the player with the ball and, the hellow circle the
teammate he is intending to pass to. The opposition players are shown as crossesmfy-is the margin of
error as it is the minimum angle between the intended direction of the pass and an,opposition player.

10. touches and firstTimePass: the number of touches the passingsplayer has had, and a dummy
variable indicating that the passer played the pass with no previous touches of the ball. We would
expect first touch passes to be more difficult.

11. timeOnBall: the time on the ball the passing player has had.

12. home: a dummy variable indicating that the passer is‘playing at their home ground. There may
be some effect on the pass success probability basedon familiarity with the surroundings.

13. passersTeam: a variable to account for the quality of the passer’s team in being able to receive the
ball.

14. oppositionTeam: a variable to acceunt for the quality of the opposition in stopping passes being
completed.

15. time: the minute of the match which/may pick up tiring of players and a subsequent change in the
probability of a given pass being completed.

16. passNumberInPossession:ha variable counting the pass number in the current possession.

17. previousPassSuccess:/ a dummy variable indicating whether the previous pass in the possession
sequence was/successful.

We fitted this GAMM with the use of the R package gamm4 by Wood and Scheipl (2016). We used
90% of the data as a)training set for the model and looked for evidence of overfitting on the remaining
10% of thé datamThe Brier Scores achieved in both sets of data were similar suggesting no evidence of
overfitting.

Table 4ushows the estimated values of the model coefficients (the vector 8 in equation (3)). These
are thefinal set of covariates included in the model. Other covariates mentioned in the list above that
are not included in the model were not statistically significant. Before discussing the covariates that
were included in the final model, it is worth commenting on some of the covariates that have been
omitted. First, unlike in Szczepanski and McHale (2015), time in the match was not significant. We
think this is because McHale and Szczepanski did not have information on the location of the opposition
players. As such, the probability of a pass being completed increased as the match progressed perhaps
because the opposition players did not surround the passer and receiver as much as they did in the early
part of the match. In our model, this is controlled for through the passerPressure and receiverPressure
variables. Second, we investigated whether the outcome of consecutive passes were independent using two
variables: passNumberInPossession and previousPassSuccess. Neither of these variables were statistically



Table 4: Parameter estimates for the fitted Binomial Additive Model. We show the estimated values of
the covariates derived from the Prozone data. Standard errors are shown in parentheses.

Parameter Estimate (s.e.) z-value
Intercept 1.516 (0.05) 27.87
dist -0.872 (0.01) -115.78
moe 4780 (0.07)  70.17
moe? -1.654 (0.05)  -36.52
aveXoppTeam-aveXpassersTeam -0.010 (0.00) -3.12
passerPressure -0.201 (0.05) -3.90
receiverPressure -0.189 (0.05) -3.52
timeOnBall 0.019 (0.02) 1.24
timeOnBall? -0.006 (0.00)  -3.32
forwardPass -0.289 (0.03)  -11.29
first TimePass -0.595 (0.03) -21.60

significant, again suggesting that the passerPressure and receiverPressure variables are, taking account
of any possible impact of consecutive passes.

Examining the values and signs of the estimated coefficients on the covariates ineluded in our model in
Table 4 reveals factors that affect the difficultly (or ease) of a pass. The smooth tensor term for the origin
and destination of the passes is strongly statistically significant, andyas weymight expect, the intended
distance of the pass, the pressure on the passer and receiver, and the distance of the passer’s team
from the opposition goal are all negatively related with pass success. First time passes are particularly
difficult. In fact, the relative effect of a first time pass is similar to) having three players within 4m
(passerPressure) of the passer. Meanwhile the margin of efror, thestime on the ball, and the distance
of the opposition team from their goal line are all positivelysrelated with success. From this it is clear
that a player with more room and more time to assess theirposition has a better chance of completing
a pass.

3.1 Model Diagnostics

In this section we examine how accurately the model predicts pass success. Standard diagnostic plots
revealed that the model assumptions were satisfied. A simple gauge of how the model is performing is
to compare its Brier Score with that of,a baseline model. We choose the baseline model to be the grand
mean pass success rate of 85.7%./Taking this as the predicted pass success probability results in a Brier
Score of 0.123. The predicted probabilities from the model result in a Brier Score of 0.079 demonstrating
a considerable improvement/in goodness-of-fit.

Next we look at the calibration of the model. A perfectly calibrated model knows how often it is
wrong. For example, iféan event is predicted to happen with a probability of 70%, then the event should
occur 70% of the time. Figure 2 shows the ‘calibration curve’ for the passing model. The x-axis shows
the model’s predic¢ted probability of a pass success, and the y-axis shows the observed frequency of pass
success. A perfectly ealibrated model would have points lying on the y = z line, such that the model
probability equalled the empirical frequency. Here each point represents many passes, where passes are
binned agcording, to’ Tukey’s (Tukey, 1961) approach of dividing the prediction space by ‘halves’. For
more detail, seej Boshnakov et al. (2017). The size of each point is made proportional to the number of
passes it represents. It is encouraging to see that all of the points lie on, or very near, the y = = line
suggesting that the model is indeed ‘well-calibrated’.

In\Figure 3 we show heatmaps comparing the predicted probability of a pass being successful with
the actual outcome. In both figures the passer’s team are playing left-to-right. The left hand plot
shows, for each intended pass destination coordinate, a heatmap of the predicted probability of a pass
being successful. The right hand plot shows a heatmap of the model error (actual outcome minus model
probability). From the first heatmap we see that our model predicts that passes are generally completed
with high probability everywhere except for near the opposition goal, and that passes with destinations
inside the opposition’s penalty box are more difficult.

The second heatmap reveals that outside the opposition’s penalty box, the model has very low error,
including on the passing team’s penalty spot (which has a lower probability of pass success than other
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Figure 2: Calibration curves for predicting the outcome of a pass. “Fhe size of the circles are proportional
to the number of observations in each bin.

areas). Within the opponent’s penalty area we see both under=.and over-estimation, suggesting that
the model is not biased in this region of the pitch and thesinaccuracy is due to high volatility. The
particularly dark spot on the bottom-edge of the opponent’s,penalty area is due to there being only one
pass in our dataset being destined for this area,(which{the model misclassified (which is also why this
region has 0 variance in Figure 4).

Note that from this representation it is not pessible to see the effect that the other variables such as
dist and moe have on the pass success rate.

To further examine the cause of thé model error in the opposition penalty box we plot the variance
of pass success in Figure 4. From thissheatmap it is clear that the opposition penalty box is a highly
volatile area, in comparison to thie rest ofithe pitch, and it may therefore be difficult for any model to
accurately predict pass successdn this region. To corroborate this, we also fitted a random forest classifier
to the data and obtained similar modél errors within this area. But of course, the advantage of using a
regression approach is the.dnterpretability of the estimated coefficients.

4 Network, analysis

In this section we explain how our passing model can be combined with techniques from network analysis
to analyze the importance of each player within the team. We begin by recalling the basic principles of
network lanalysis required, before explaining how to incorporate the pass success model from the previous
section.

A network is formed by a number of nodes which are linked by edges. In our case, each player will be
a nodé and the nodes are linked by passes to one another. In the simple case where all edges have the
same value, we can represent this as an adjacency matriz, A, where node ¢ and j are linked if A;; = 1
and A;; = 0 otherwise. This is called an unweighted network, and means that each team will have an
associated adjacency matrix of size 11 x 11 for each game, if there are no substitutions during the match.
Alternatively, we can consider a weighted network where each edge has an associated strength and Aj;;
is set to some real number.

There are two quantities that are particularly interesting for us: the centrality of a node and the
betweenness of a pair of nodes. The centrality measures the importance of each node in the network (to
identify the key players) whilst the betweenness measures the strength of the connection from one node
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Figure 4: Variance of pass success probability by the intended pass destination.

to another.

There are several different ways to/measure centrality although, a priori, there is no objective way to
decide which will perform best on any individual problem. This is particularly true in our case since the
existing rankings of players are.dnherently subjective, meaning there is no ground truth we can aim to
emulate. Following some experimentation, we chose to use the exponential centrality defined by Estrada
and Hatano (2008) as opposed. to, for example, Katz centrality. This choice was partly to avoid the
additional parameter needed for Katz centrality and partly because the resulting graphs and rankings
were subjectively moré in line with our intuition.

For node 7 the expenential centrality is defined as

C(i) = exp(A) i, (4)

and the exponential/centrality betweenness for a pair of nodes (i, ) is defined as

B(i,j) = exp(A)ij, ()

where £xp(A4) = Y2, A¥/k! is the matrix exponential. Note that our adjancency matrices are di-
rected\(i.e. nonsymmetric) and therefore B(i,j) # B(j,i). We will therefore define the strength of the
connection between nodes 7 and j as

Now that the basic concepts have been established we can combine the network analysis with our
pass probability model. The motivation for doing this is that not all passes are equally important: two
defenders passing back and forth to one another is less important than a midfielder making a difficult
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Figure 5: Passing networks for Manchester City (left) and Manchester United (right). Thickness of the
lines is correlated with the betweenness of each pair of nodes.

pass to a striker. As such, if player ¢ passes to player j successfully with a probability of success p we
want to update A;; by applying a weight to it which we denote by f(p), where pis the"probability of the
pass being successful, and f is some function which converts the probability into a “difficulty rating”.
For example, we could use f(p) = 1/p or f(p) = 1 — p and the function'f controls how much relative
value is assigned to easy and difficult passes. For example, using f(p) = 1/p° would severely punish
“easy” passes compared with more difficult ones.

We experimented with various specifications for f and in terms of the resulting ranking of players,
using any monotonically decreasing function f appeared todmake very little difference to the identity
of the top players. The main differences were in the interpretability of the network plots (see next
section), since the thickness of the lines connecting two players is relative to the difficulty function. After
experimenting with several such functions f, we decided on using f(p) = 1 — p. This choice provides a
clear distinction between weak and strong links in our plots, meaning that it is easier to draw insight
from the visualisations.

5 Results

In this section we show how our technigues can be used to assess player importance in a team. We begin
by presenting an in-depth analysis of a patticular game between two of the English Premier League’s
biggest teams, and biggest rivalsiyManchester United and Manchester City. Our technique picks out
some interesting features of the game:

Following this in-depth game, analysis, we create one large network per team for the entire season
and use the exponential,centrality measure to determine the key players in each team.

5.1 In-depth game analysis

Here we analyse the)game between Manchester City and Manchester United on 9th December 2012,
where Manchester. United, playing away from home, won 3-2.

In Figure 5 we show two networks, one each for each team. The thickness of the lines between each
pair_of players/increases with the connection strength (6) so, using Manchester United (on the right) for
examplepthe connection strength between 10-Wayne Rooney and 20-Robin van Persie is much stronger
than the connection between 23—Tom Cleverley and 20-Robin van Persie.

A coach or analyst can note a number of things from these networks. For instance within Manchester
City 21-David Silva has a stronger connection with 16-Sergio Aguero than any of the other players on
their team. On the other hand, 18—Gareth Barry, has the strongest connection with the other striker
45-Mario Balotelli. Looking at Manchester United we can see that 7—Antonio Valencia has a strong
connection to 20-Robin van Persie - something future opposition teams could have acted upon.

In addition to examining network graphs, we can also look at the exponential centrality of each player,
defined in equation (4), to determine which are the most important nodes (players) in the network (team).
Table 5 shows the rankings for each player on each team. Such an analysis may be interesting for planning
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Table 5: Importance ranking of Manchester City and Manchester United players by exponential central-
ity. Also shown are the approximate playing positions for this game. The abbreviations are as follows:
GK=goalkeeper, CB=centre back, LB=left back, RB=right back, CM=centre midfield, LM=left mid-
field, RM=right midfield, ST=striker. Any position preceded by “sub” means that player made an
appearance as a substitute.

Rating | Manchester City Manchester Utd.
(playing position) (playing position)
1 21 David Silva (CM) 7 Antonio Valencia (RM)
2 16 Sergio Aguero (ST) 20 Robin van Persie (ST)
3 8 Samir Nasri (RM) 10 Wayne Rooney (ST)
4 42 Yaya Toure (CM) 16 Michael Carrick (CM)
5 45 Mario Balotelli (ST) 23 Tom Cleverley (CM)
6 32 Carlos Tevez (sub: ST) 12 Rafael (RB)
7 22 Gael Clichy (LB) 18 Ashley Young (LM)
8 5 Pablo Zabaleta (RB) 3 Patrice Evra (LB)
9 18 Gareth Barry (LM) 5 Rio Ferdinand (CB)
10 33 Matija Nastasic (CB) 6 Jonny Evans (CB)
11 28 Kolo Toure (CM) 1 David de Gea (GK)
12 1 Joe Hart (GK) 12 Chris Smalling (sub: CB)
13 4 Vincent Kompany (CB) 4 Phil Jones (sub:"CM)
14 10 Edin Dzeko (sub: ST) 19 Danny Welbeceky(sub: ST)

Table 6: Top 5 importance ranking of Manchester City and Manchester United players by exponential
centrality using an unweighted adjacency matrix. Also showmnware the approximate playing positions for
this game. The abbreviations are as follows: GK=goalkeeper, CB=centre back, LB=left back, RB=right
back, CM=centre midfield, LM=left midfield, RM=rightymidfield, ST=striker. Any position preceded
by “sub” means that player made an appearancedas a substitute.

Rating | Manchester City Manchester Utd.
(playing position) (playing position)

1 21 David Silva (€M) 16 Michael Carrick (CM)

2 42 Yaya-Toure (CM) 7 Antonio Valencia (RM)

3 18 Gareth Barry (LM) 10 Wayne Rooney (ST)

4 8 Samir Nasri (RM) 23 Tom Cleverley (CM)

5 22:Gael Clichy (LB) 12 Rafael (RB)

the strategy of an upceming game: we observe that 21-David Silva is a key player in the Manchester
City squad so it makes sense for their upcoming opponents to mark him closely, and try to neutralise
his contribution te‘Manchester City’s play.

As we might expect towards the bottom of the ranking are the goalkeepers and substitutes. The
goalkeepers do not interact with the ball as much as the other players and, when they do, they typically
attempt simpleypasses to defenders in close proximity. Similarly, substitutes have less time to make
passes. The exception to this is 32—Carlos Tevez who, despite replacing 45—Mario Balotelli in the 52nd
minute, ranked/in 6th place for Manchester City.

Thestop of the table is primarily occupied by midfielders and strikers. This is expected for two
reason$. First, the midfielders move the ball between the defence and strikers and typically perform
more passes in a game. Secondly, defenders often perform passes that are simple and such “easy” passes
are not highly rated in this model once we convert from pass probability to pass difficulty (see section 4).

To show the difference that incorporating our difficulty rating can have on the results of a network
analysis in football, we compare our results to the methodology of Pefia and Touchette (2012). The
top five ranked players for each team using the unweighted adjacency matrix of Penia and Touchette are
shown in Table 6. For Manchester City we see that 18—Gareth Barry and 22—-Gael Clichy have replaced
16-Sergio Aguero and 45-Mario Balotelli. Since 22-Gael Clichy is a defender and 18-Gareth Barry is
ranked 9th in Table 5 but is now 3rd, we can imagine that they completed more “easy” passes, which
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are treated equally to difficult passes in the unweighted model. Indeed 18—Gareth Barry had a mean
pass success probability of 0.78 and 22-Gael Clichy of 0.76 whilst 45—Mario Balotelli had a mean pass
success probability of 0.73 corroborating our intuition. Looking at Manchester United we see that whilst
20-Robin van Persie has been removed from the top five the others have merely shuffled. A closer look
at the data shows that 20-Robin van Persie successfully made a few quite difficult passes which were
highly rewarded in the weighted analysis shown in Table 5.

5.2 Network analysis over a season

In the previous section we used networks to analyse the performance over a single game, however in this
section we create a network for an entire season. In doing so, we can identify the key players in the
network over a longer time frame. Since not every player will play in every match, it is important to
modify the adjacency matrix of the network to take this into account. The procedure we tise to,perform
this modification is as follows: if players ¢ and j were in k£ matches together then we divide both /A;; and
Aj; by k before computing the exponential centrality. This is equivalent to having(each{player play in
one full match with each teammate.

The results for five of the top teams in the league are shown in Table 7. In addition to/the identities of
the three most ‘central’ players to the teams, the pass completion percentagée.andiaverage probability of
the player’s pass being completed (our proxy of pass difficulty) are also shown. In hindsight, we believe
that football experts would struggle to disagree with these findings. sFor example, knowing that Luis
Suarez and Gareth Bale were the most important players on the Liverpoel and Tottenham sides during
the 2012-13 season is not surprising. And to some extent, this validates our approach. It is interesting
to note how the key players within each team can have significantly varyied average pass difficulty. For
example, Mikel Arteta at Arsenal attempts the simplest passestof all players in our list, but is more
central to his team than Aaron Ramsey who attempts more difficult passes.

Table 7: Season rankings of the top '3 players for a variety of teams.

Rating | Player Team Pass Completion % Pass Difficulty
1 Santi Cazorla Arsenal 86 0.18
2 Mikel Arteta Arsenal 94 0.10
3 Aaron Ramsey Arsenal 83 0.14
1 Luis Suarez Liverpool 76 0.21
2 Steven Gerrard Liverpool 86 0.15
3 Glen Johnson Liverpool 81 0.19
1 Eden Hazard Chelsea 84 0.19
2 Juan Manuel/Mata Chelsea 82 0.18
3 Oscar Chelsea 82 0.20
1 Gareth Bale Tottenham Hotspur 74 0.24
2 Moussa Dembele Tottenham Hotspur 94 0.11
3 Emmanuel \Adebayor Tottenham Hotspur 85 0.13
1 Michael,Carrick Manchester United 90 0.14
2 Wayne Rooney Manchester United 83 0.16
3 Darzen Fletcher Manchester United 91 0.11

In the above analysis no account was taken account of the number of minutes played by players. This
could result in substitute players getting penalised for playing fewer minutes. As such, we experimented
with normalising the adjacency matrix by the number of minutes played by each player. Interestingly,
the rankings remained very similar which we believe suggests that substitute players (players playing
fewer minutes over the course of the season), are not as good as players playing more minutes.

6 Conclusions

We have presented a methodology for identifying the key players in a football team. The methodology
utilises a unique and vast dataset which details the locations of all 22 players on the pitch at a frequency
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of ten times per second. Examination of some descriptive statistics suggests that simply running more
than the opposition is not necessarily positively related to team success.

The two key components of our approach to identifying key players are a statistical model to determine
the probability of a pass being successful, and network centrality measures. For the former, we have
shown that a generalised additive mixed model can accurately predict the probability of pass success in
most areas of the pitch; whilst finding high levels of volatility in the opposition penalty box. This was
coupled with the use of exponential centrality measures to identify key passers within a team.

By performing an in-depth analysis of a single game and summarising passing performance over a
season, we have shown the utility of our approach. Our results also correlate well with expert opinion
of player performance. For example, two of the most highly rated players in our model, Luis Suarez and
Gareth Bale, were eventually bought for record transfer fees by Barcelona and Real Madrid in Spain.

The obvious use for our model is to help team owners and coaches identify playing talent (with a
view to recruiting players), and for coaches to identify key passers on opposition sides. Ore can imagine
a coach asking the players to be aware of, and to try to nullify the impact of, the key passers on the
opposition side. It would even be possible to apply this model in real-time so as(to identify the key
passers and relationships on an opposition team in a specific game, perhaps at half-time. /Further, one
can use this model to identify key relationships between players; the example above of David Silva and
Sergio Aguero would be valuable to opposition players.

The model adopted here could be extended in several ways. First, one ¢ould useiit to identify players
who perform well under different circumstances. For example, some players may maintain a high pass
rating when their team is losing, whilst others may experience a deterigration inperformance. Accounting
for match situation like this could help coaches identify players who can perform when the pressure is
greatest. Second, one may wish to modify the network definition toninclude unsuccessful passes. This
would potentially differentiate between players perform many key, passes with a low error rate (they do
not lose possession), and players who perform an equally high umber of key passes but at a higher error
rate (and do lose possession a lot).

In future work we would like to use the data to further investigate the relationship between running
and success which we alluded to in section 2. This could Be approached by determining the success of
different styles of play against one another, whichis certainly related to the running statistics gathered
here. For example, one might compare the effectiveness of a tactic with low running distance and speed
such as Tiki-taka against a tactic such as Gegenpressinig which involves high running distances and speed.
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