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Abstract

We study how storage, operating as a price maker within a market environment, may be

optimally operated over an extended period of time. The optimality criterion may be the

maximisation of the profit of the storage itself, where this profit results from the exploitation

of the differences in market clearing prices at different times. Alternatively it may be the

minimisation of the cost of generation, or the maximisation of consumer surplus or social

welfare. In all cases there is calculated for each successive time-step the cost function

measuring the total impact of whatever action is taken by the storage. The succession of

such cost functions provides the information for the storage to determine how to behave

over time, forming the basis of the appropriate optimisation problem.

We study particularly competition between multiple stores, where the objective of each

store is to maximise its own income given the activities of the remainder. We show that,

at the Cournot Nash equilibrium, multiple stores which between them have market impact

collectively erode their own abilities to make profits: essentially each store attempts to

increase its own profit over time by overcompeting at the expense of the remainder. We

quantify this for linear price functions.

We give examples throughout based on electricity storage and Great Britain electricity spot-

price market data.

Keywords: Economics, Auctions/bidding, Multi-agent systems, OR in energy

1. Introduction

There has been much discussion in recent years on the role of storage in future energy

networks. It can be used to buffer the highly variable output of renewable generation such

as wind and solar power, and it further has the potential to smooth fluctuations in demand,

thereby reducing the need for expensive and carbon-emitting peaking plants. For a discussion5

of the use of storage in providing multiple buffering and smoothing capabilities, including

the ability to integrate renewable generation into energy networks see, for example, the

fairly recent review by Denholm et al (2010) [7], and the many references therein. Within

an economic framework much of the value of energy storage may be realised by allowing

it to operate in a market environment, provided that the latter is structured in such a10

way as to allow this to happen. Thus the smoothing of variations in demand between, for
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example, nighttime when demand is low and daytime when demand is high may be achieved

by allowing a store to buy energy at night when the low demand typically means that it is

relatively cheap, and to sell it again in the day when it is expensive. Similarly, the use of

storage for buffering against shortfalls in renewable generation may—at least in part—be15

effected by allowing storage to operate in a responsive spot-price market when prices will

rise at the times of such shortfall. We remark though that if it is intended that the use

of storage should facilitate, for example, a reduction in carbon emissions, then there is of

course no guarantee that a market environment will in itself permit this to happen—for some

recent insights into the possible unexpected side effects of storage operating in a market, see20

Virasjoki et al [29].

It is also the case that price arbitrage as above is not the only way in which storage may

compete in the marketplace. In particular much energy storage has the ability to provide

power—sometimes in large quantities, as in the case of some pumped storage facilities—at

very short notice, i.e. within time scales of the order of seconds or less (see, for example, the25

recent GB National Grid enhanced frequency response (EFR) auctions [21]). Thus energy

storage typically provides a variety of services, and even those which are concerned with

smoothing imbalances in supply and demand on time scales longer than those above may be

paid for other than through arbitrage opportunities, for example through fixed “capacity”

contracts which cover substantial periods of time and in which stores are paid fees fixed in30

advance simply to be available to provide energy as needed. Nevertheless the use of storage

for arbitrage is significant and may become more so in future systems, for example, in the

presence of either more nuclear generation or of increased renewable generation, neither of

these being easily controllable so as to smooth fluctuations in the supply-demand balance.

(Whether the benefits which storage can bring in such situations is paid for through providing35

arbitrage opportunities to the storage will depend very much on how markets are organised.)

A storage facility may well reserve some of its energy capacity and power capabilities for

the provision of services such as EFR, and then seek to use the remainder of its resource so

as to make money through arbitrage. For some work on the simultaneous use of storage for

both arbitrage and buffering against the effects of sudden events see Cruise and Zachary [6],40

while for work on a whole systems assessment of the value of energy storage see Pudjianto

et al [23].

When stores buy and sell in the market, it is important to understand the effect on the

market itself of the activities of the stores, and to understand also the effect of competition

between stores on the profitability of their activities. A small store may be expected to45

function as a price-taker, buying and selling so as, for example, to maximise its own profit

over time. However, a larger store, or a sufficient number of smaller stores, will act as price-

makers, perhaps significantly affecting the market in which they operate, and thus also

affecting quantities such as generator costs, consumer surplus and social welfare. Further

a number of stores which between them possess market impact, by competing with each50

other, may smooth prices to the point where they are unable to make sufficient profits as

to be economically viable—at least via their arbitrage activities, as we demonstrate in the

simple example below.

Example 1. Consider a model with two time periods and n perfectly efficient stores. Suppose

that each store k buys xk in time period 1 which it then sells in time period 2, and that this55

results in a unit price differential (the price at time 2 less that at time 1) of p− p′
∑n
k=1 xk

where p > 0, p′ > 0. (This will be the case when, for example, the stores face appropriate

linear residual supply functions in each time period—see Section 2.) In what is a model

of simple Cournot competition, we suppose that each store k seeks to maximise its profit(
p− p′

∑n
j=1 xj

)
xk given the quantities xj , j 6= k, traded by the remaining n− 1 stores. If60
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the stores are unrestricted in the quantities xk they may trade, it is easily checked that at the

Nash equilibrium we have xk = p/(p′(n+1)) for all k, and that the price differential between

the two time periods is p/(n+ 1). Thus in particular each store makes a profit proportional

to 1/(n+ 1)2, and the total profit made by all the stores declines as approximately 1/n as n

becomes large. Consider also, for reference, the case in which the stores instead cooperate65

and each trade a fraction 1/n of that which a single store would have traded in the case

n = 1, so that here xk = p/(2p′n) for all k. Here the total profit made by all the stores

remains constant as n increases, a result which would also hold in the competitive case if

the capacities of the individual stores were appropriately constrained.

The above example is concerned with the effects of competition between stores themselves,70

something which we explore in more detail in Section 4, where in particular we study com-

petition over extended periods of time. There are, however, also many more general issues

surrounding the effects of storage considered collectively on the market in which it operates.

Aspects of many of these issues have been explored in the literature. Recent work on the

use of storage in a specifically market environment is given by Gast et al [13, 12], Graves et75

al [14], Hu et al [17] and Secomandi [25]. Sioshansi et al [28] study the effects of storage on

producer and consumer surplus and on social welfare. Sioshansi [27] gives an example where

storage may reduce social welfare. Gast et el [12] show how in appropriate circumstances

storage may be used to minimise generation costs and thus maximise consumer welfare.

There is also a considerable literature on the economics of hydroelectric power, which may be80

regarded as storage in which in general only the output process is controllable. Within this

literature input flows are given and often modelled as stochastic; then the problem is that of

the optimal control of the outflows, something which is frequently approached via stochastic

dynamic programming—for recent work see in particular Löhndorf et al. [20] and Zéphyr et

al. [30] and the references therein. Other work is more applied, focusing on hydroelectric85

power as it exists today in particular places—see Fleten and Kristoffersen [11], Borenstein

and Bushnell [3], Bushnell [4], and the survey by Rangel [24]. The latter three papers are

concerned with the market impact of hydroelectric storage in a competitive environment and

stores are therefore treated as price makers. The present paper is concerned with competition

between more general forms of storage which is sufficiently large as to have market impact,90

in which both input and output may be controlled, and in which it is necessary to explicitly

account for both rate and capacity constraints in the optimisation of the behaviour of each

individual store. We make use of a Lagrangian approach (Proposition 1 below) to yield

prices for the rate and capacity constraints. The resulting optimality conditions for each

agent given the actions of its competitors provide a complementarity problem defining a95

Nash equilibrium.

In the present paper we therefore aim to develop a more comprehensive mathematical theory

of the way in which storage, buying and selling over a possibly extended period of time in such

a way as to maximise its overall profit from these activities, interacts with the time-varying

market in which it finds itself. Our motivation is to understand both this interaction and100

also the way in which competing stores, through this interaction, affect each others abilities

to make profits. We study the former in Section 3, looking in particular at the impact of

storage on prices and consumer surplus, and providing examples with conclusions which

are in some cases counter-intuitive; these results complement those of other authors. Our

principal concern, however, is to study the effect of competition between stores. While this105

is illustrated in Example 1 above, in that example the activity of each store is determined by

its decision at a single point in time—since what is bought at time 1 must be sold at time 2.

We show in Section 4 that conclusions similar to those of Example 1 continue to hold when

stores, unconstrained in their capacities and rates, operate over extended periods of time
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under a similar model of Cournot competition: within this model each store optimises its110

own total profit over time given the profiles of quantities traded by the remainder. Notably

we show that again a large number of stores severely reduce each other’s profitability in a

manner which (precisely) quantitatively mirrors that of the earlier example. However, the

imposition of capacity and/or rate constraints on the stores reduces their ability to affect

each other in this way, to the benefit of all the stores. We discuss also in Section 4 the extent115

to which other models of competition between stores are possible.

Our fundamental assumption is therefore that each individual store operates over a given

period of time in such a way as to optimise its “profit”—or equivalently minimise its costs—

with respect to time-varying cost functions presented to it. These may represent either the

prevailing costs within a free market, as may be natural when the store is independently120

owned, or adjusted costs which take into account the wider impact of the store’s activities,

as would be appropriate when the store was owned, for example, by the generators or by

society—see Section 5. Thus if it is desirable that a store should function in a particular

way—for example so as to minimise generation costs—it may be fed the appropriate cost

signals and, given those signals, left to perform as an autonomous agent. Such an approach125

is notably desirable in facilitating distributed control and optimisation within a possibly

complex environment.

We outline in Section 2 the model for the market in which storage operates, allowing that

it may do so over an extended period of time. In particular the model allows for supply and

demand which are sensitive to price, and hence also for an impact on price of the market130

activities of the storage itself. We assume for the moment (but see also below) that a single

store wishes to optimise its own profit, or minimise its own costs, by trading in the market.

We formulate the corresponding optimisation problem faced by the store and we state how it

may be solved. Formally the environment is deterministic; however, we discuss in Section 6

one way in which we may proceed similarly in a stochastic environment.135

In Section 3 we study the effect of a single profit-maximising store in a market. We look at

its effect on both market prices and on consumer surplus and give sensitivity results for the

variation of the size of the store. We give examples based on Great Britain market data.

In Section 4 we study a number of competing stores operating in a market. We consider

possible models of competition, whereby the stores make bids and clearing prices in the140

market are determined. For models for two time periods, as in Example 1 above, we show

that it is possible to consider not just Cournot competition but also quite general supply

function bidding, as in the “single-shot-in-time” models which would hold in the absence of

storage. For models for longer time periods, it is difficult to formulate such more general

bidding strategies in a realistic manner, and we focus on Cournot models of competition145

in which stores bid time-indexed vectors of quantities. We identify Nash equilibria for such

models, give existence and uniqueness results, and show how equilibria may be determined.

We generalise Example 1 to show that, over such extended time periods, an oversupply of

storage capacity also leads to a situation in which, with linear price functions, the total profit

made by all the stores is approximately inversely proportional to their number. Essentially150

what happens here is that, as in Example 1 and relative to a cooperative solution, each

store over-trades in order to acquire a larger share of total profit, thereby impacting on the

market in such a way as to reduce price differentials over time and thus also the profits to

be made by other stores. In this section we also give examples of such competition which

are again based on GB market data.155

In Section 5 we consider variant problems in which storage (instead of consisting of in-

dependent profit-maximising entities) is managed, for example, for the optimal benefit of

consumers, or for the optimal benefit of generators. We show that, by suitable redefinition
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of cost functions, these variant problems may be reduced mathematically to those already

studied. Finally, in Section 6 and as indicated above, we also make suggestions as to how160

one might reasonably proceed in a stochastic environment.

We remark also that, although the motivation for the present paper is that of understand-

ing better the contribution storage is able to make in the management of complex energy

systems, together with the impact of such storage on the markets in which it is traded,

the results of the paper are of course equally applicable to the storage and trading of other165

commodities.

2. Model

We now formulate our model for a set of n ≥ 1 stores operating in an energy market.

Formally we treat prices and costs as deterministic—however, see also Section 6.

We assume that each store j has an energy capacity Ej and input and output rate constraints170

PIj and POj respectively (the maximum amount of energy which can enter or leave the store

per unit time). Each such store j also has an efficiency εj ∈ (0, 1], where εj is the number of

units of energy output which the store can achieve for each unit of energy input. We assume

without loss of generality that any loss of energy due to inefficiency occurs immediately

after leaving the store (so that the above capacity and rate constraints—both input and175

output—apply to volume of energy input). For simplicity we also assume that there is no

time-dependent leakage of energy from the stores; the simple adjustments required to deal

with any such leakage are straightforward.

We work in discrete time t = 1, . . . , T for some finite time horizon T . Associated with each

such time t is a price function pt such that pt(x) is the price per unit of energy when x is the

total amount (positive or negative) of energy bought from the market by all the stores, i.e.

xpt(x) is the total cost to the stores of buying this energy. According to the environment

in which the stores operate, the total cost xpt(x) which they incur may be determined by,

for example, prices in both interday and intraday markets: our model is one of competition

between stores making profits by price arbitrage over both long and short periods of time.

(Each of the functions pt is of course influenced by everything else that is happening in the

market at time t; it explicitly measures only the further effect on price of the activity of the

stores.) We assume throughout that, over the range of possible values of its argument (i.e.

the interval [−
∑n
j=1 εjPOj ,

∑n
j=1 PIj ]), each of the functions pt is positive and increasing

and is such that, for any constant k, the function of x given by xpt(x + k) is convex and

increasing. (The quantity xpt(x+k) is the total cost to a store of buying x units of energy—

again positive or negative—at time t when the total amount bought by the remaining stores

at that time is k.) A typical price function pt is thus as illustrated in Figure 1. An important

case in which these conditions are satisfied, and which we consider in detail later, is that

where the prices are linearised so that

pt(x) = p̄t + p′tx (1)

where p̄t > 0 and where p′t ≥ 0 is such that the function pt remains positive for all possible

values of its argument as above. This should, for example, be a good approximation whenever180

the total storage capacity is not too large in relation to the total size of the market in which

the stores operate. In such a case, we may take p̄t = pt(0) (i.e. the price at time t without

storage on the system) and p′t = p′t(0). More generally, the above conditions on the functions

pt seem likely to be satisfied in many cases, for example when they do not differ too much

from the above linear case, and are in all cases readily checkable.185
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x

pt(x)

−
∑n
j=1 εjPOj

∑n
j=1 PIj0

sell buy

Figure 1: Illustrative price function pt. Positive or negative values of its argument correspond respectively

to the stores collectively buying or selling. The domain of the function is effectively restricted to the interval

[−
∑n

j=1 εjPOj ,
∑n

j=1 PIj ].

In particular if st(p) is the amount externally supplied to the market at time t and price p

and dt(p) is the corresponding total demand at that time and price—and if the functions st
and dt are given independently of the activities of any stores—then we may define the

residual supply function Rt at that time by Rt(p) = st(p) − dt(p); if Rt is continuous and

strictly increasing then we have that pt is the inverse of the function Rt and is similarly

continuous and strictly increasing. If, furthermore, each of the functions Rt is differentiable

and prices take the form (1), with p̄t = pt(0) and p′t = p′t(0), then we may relate p′t to the

point elasticities of supply and demand at price p̄t, denoted es and ed respectively, in the

following way:

p′t =
p̄t

esst(p̄t)− eddt(p̄t)
. (2)

This method of determining the price functions pt is especially relevant when the other

players in the market make their decisions without taking the stores’ actions into account,

perhaps due to the relatively small level of storage capacity in relation to the rest of the

market.

Obtaining appropriate price functions may be quite challenging in practice. However, ap-190

propriate data on the relationships (in many different countries) between supply, demand

and price is available from various sources—see in particular the very extensive discussion

in the report by Newbery et al [22] and the further references therein. It is further to be

expected that were storage to be used more extensively in future energy systems (greater

use of storage being considered as one option in the management of the supply-demand195

balance in such systems—again see [22]) then the operation of that storage within markets

would itself provide data on the market impact of the stores’ activities. Indeed with suffi-

cient information, more complex price functions pt than the linear ones defined by (1) could

reasonably be derived.

We denote the successive levels of each store j by a vector Sj = (Sj0, . . . , SjT ) where each200

Sjt is the energy level of the store at time t. It is convenient to assume that the initial and

final levels of the store are constrained to fixed values S∗j0 and S∗jT respectively. For each

such vector Sj and for each t = 1, . . . , T , define also xt(Sj) = Sjt − Sj,t−1 to be the amount

(positive or negative) by which the level of the store is increased at time t.
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In order to incorporate efficiency, it is helpful to define, for each store j, the function hj on

R by hj(x) = x for x ≥ 0 and hj(x) = εjx for x < 0. For each time t such that xt(Sj) ≥ 0,

store j buys xt(Sj) units of energy from the market, while for t such that xt(Sj) < 0, it

sells −εjxt(Sj) units of energy to the market. For each store j and time t, and given the

changes xit, j 6= i, (positive or negative) in the levels of the remaining stores at that time,

define now the cost function Cjt( · ; xit, j 6= i) by

Cjt(xjt; xit, j 6= i) = hj(xjt)pt

( n∑
i=1

hi(xit)

)
; (3)

this represents the cost to store j of increasing its level by xjt (again positive or negative)205

at time t, given the corresponding activities of the remaining stores at that time. Note that

the conditions on the function pt ensure that Cjt(xjt; xit, j 6= i) is an increasing convex

function of its principal argument xjt and takes the value zero when this argument is zero.

In particular if the objective of store j is to optimise its profit, given the policy over time

Si = (Si0, . . . , SiT ) of every other store i 6= j, then it faces the following optimisation210

problem:

Pj : Choose Sj = (Sj0, . . . , SjT ) so as to minimise the function of Sj given by

T∑
t=1

Cjt(xt(Sj); xt(Si), j 6= i) (4)

subject to the capacity constraints

Sj0 = S∗j0, SjT = S∗jT , 0 ≤ Sjt ≤ Ej , 1 ≤ t ≤ T − 1. (5)

and the rate constraints

xt(Sj) ∈ Xj , 1 ≤ t ≤ T, (6)

where Xj = {x : −POj ≤ x ≤ PIj}.
Note that the observed convexity of the cost functions Cjt( · ; xit, j 6= i) ensures that a

solution to the optimisation problem Pj always exists.

At various points we make use of the following proposition, in which each of the vectors215

µ∗j is essentially a vector of (cumulative) Lagrange multipliers. The first part of the result

follows from Theorem 1 of Cruise et al [5], while the crucial existence assertion at the end

of the proposition is a consequence of the algorithm of that paper and is summarised in its

Theorem 2. The proof of the entire result is relatively short, and to provide insight and

make the present paper self-contained we give a version of it in the Appendix.220

Proposition 1. For any store j = 1, . . . , n, and for any fixed policies Si of every other store

i 6= j, suppose that there exists a vector µ∗j = (µ∗j1, . . . , µ
∗
jT ) and a value S∗j = (S∗j0, . . . , S

∗
jT )

of Sj such that

(i) S∗j is feasible for the stated problem Pj;

(ii) for each t with 1 ≤ t ≤ T , xt(S
∗
j ) minimises

Cjt(xjt; xt(Si), j 6= i)− µ∗jtxjt

in xjt ∈ Xj; and225

(iii) the pair (S∗j , µ
∗
j ) satisfies the complementary slackness conditions, for 1 ≤ t ≤ T − 1,

µ∗j,t+1 = µ∗jt if 0 < S∗jt < Ej,

µ∗j,t+1 ≤ µ∗jt if S∗jt = 0,

µ∗j,t+1 ≥ µ∗jt if S∗jt = Ej.

(7)
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Then S∗j solves the above optimisation problem Pj. Further, the given convexity of the cost

functions Cjt( · ; xt(Si), j 6= i) guarantees the existence of such a pair (S∗j , µ
∗
j ).

For a single store, Cruise et al [5] provides an algorithm for determining a suitable pair

(S∗j , µ
∗
j ) satisfying the conditions of Proposition 1. (For a discussion of what happens in the

absence of the convexity of the cost functions Cjt( · ; xit, j 6= i) see Flatley et al [10].)230

Remark 1. In cases where the stores are not independent profit maximising entities but are

instead owned by, for example, the generators or by society, the above cost functions Cjt
may be appropriately modified so that the problems Pj continue to define optimal behaviour

for the stores; see Section 5 for a discussion of how this may be done.

3. The single store in a market235

In the case n = 1 of a single store it is convenient to drop the subscript j and to write S for

Sj , etc. The single-store optimisation problem is then to choose S = (S0, . . . , ST ) so as to

minimise
T∑
t=1

Ct(xt(S))

(where the Ct are the cost functions defined by (3)) subject to the capacity constraints (5)

and rate constraints (6). For simplicity we assume the strict convexity of the cost functions

Ct—as, for example, will be the case when the linear approximation (1) holds with p′t > 0

for each t. This strict convexity is sufficient to guarantee the uniqueness of the solution S∗

of the optimisation problem P.240

3.1. Sensitivity of store activity to capacity and rate constraints

Let (S∗, µ∗) be the pair identified in Proposition 1, defining the solution S∗ of the above

optimisation problem P. Then the market clearing price at each time t is pt(h(xt(S
∗)). The

successive clearing prices then determine such quantities as consumer surplus—in the way

we describe later.245

As a measure of the sensitivity of the market to variation of the size of the store, we use

Proposition 1 to describe briefly how variation of either the capacity or the rate constraints

of the store impacts on the solution S∗ of P. Proposition 1 continues to hold when we allow

either the capacity or the rate constraints of the store to depend on the time t. Therefore

it is sufficient to consider the effect of variation of these constraints at any single time t0.250

Consider first the effect of an arbitrarily small increase (positive or negative) δEt0 in the

capacity of the store at time t0; since the initial and final levels S∗0 and S∗T are fixed we

assume 0 < t0 < T . It is clear from Proposition 1 that this infinitesimal change has

no effect on S∗ unless S∗t0 = E; further if δEt0 > 0 we also require the strict inequality

µ∗t0+1 > µ∗t0 . Under these conditions there exist times t1 < t0 < t2, such that the effect255

of the increment δEt0—provided it is indeed sufficiently small—is to change µ∗t , and so

also xt(S
∗) (via the condition (ii) of Proposition 1), for t such that t1 < t ≤ t0, both the

original and the new values of µ∗t being constant over this interval, and to similarly change

µ∗t and xt(S
∗) for t such that t0 < t ≤ t2, again both the original and the new values of µ∗t

being constant over this interval; all changes within the second of the above intervals have260

the opposite sign to those within the first; for all remaining values of t, the parameter µ∗t
remains unchanged. The change in µ∗t over each of the above intervals is readily determined

by the requirement that now S∗t0 = E + δEt0 . (Thus, for example, for a perfectly efficient

store and twice differentiable cost functions Ct, the effect of an increment δEt0 > 0—where

8



t0 is such that µ∗t0+1 > µ∗t0—will be to increase xt(S
∗) in proportion to 1/C ′′t (xt(S

∗)) for265

times t such that t1 < t ≤ t0 and at which the input rate constraint is nonbinding, and to

similarly decrease xt(S
∗) in proportion to 1/C ′′t (xt(S

∗)) for times t such that t0 < t ≤ t2
and at which the output rate constraint is nonbinding.)

Similarly an arbitrarily small change at time t0 in either the input or the output rate

constraint has no effect on (S∗, µ∗) unless µ∗t0 and xt0(S∗) are such that that constraint is270

binding in the solution of the minimisation problem of (ii) of Proposition 1. The effect is

then again to change µ∗t and xt(S
∗) for those t in an interval which includes t0; both this

interval and the required changes are again readily identifiable from that proposition.

3.2. Impact of a store on prices and consumer surplus

It is helpful to understand the impact of storage on various economic measures. Sioshan-275

shi [27] considers some of these issues in the context of a two-time-period model in which the

generating cost functions are quadratic and the same in each time period and in which the

demand functions are linear (see also the further references in that paper). Sioshansi studies

various market and ownership structures and shows that the introduction of storage can,

under certain circumstances, reduce social welfare—defined as a sum of consumer surplus,280

producer (i.e. generator) surplus and storage profit. In this section we discuss briefly, in the

more general setting of the present paper, two related economic problems. The first issue

is concerned with the impact of storage, and in particular of varying storage efficiency, on

market prices; here we give an example to illustrate possible behaviour. The second issue is

that of the impact of storage itself on consumer surplus, where we show that time-varying285

price sensitivities lead to possibly counter-intuitive behaviour.

Impact on prices. In general we may expect the impact of the store on the market to be

that of smoothing prices over time: the store will in general buy at times when prices are

low, thereby competing in the market and increasing prices at those times, and similarly sell

at times when prices are high, thereby decreasing them at those times. Relaxing the rate or290

capacity constraints of the store might then be expected to result in further smoothing of the

prices, as the store is able to buy and sell more at times of low and high prices respectively,

thereby augmenting the above effect. However, such price smoothing by a profit-optimising

store also reduces the profits of the store, relative to the situation which would be the case

if the store’s activities did not have market impact. In particular such smoothing may not295

occur to the same extent as would be socially optimal—as for example when the store was

owned by society. Specifically the store may sell less than is socially optimal at periods of

high prices and buy less than is socially optimal at periods of low prices in order to maintain

the price differential and hence maximise the store’s profit. The situation is exacerbated

when price sensitivities are high. A similar phenomenon is identified by Bushnell [4], who300

considers hydroelectric storage (in which only the storage output is controllable). He shows

that it may be advantageous to the store to reduce output—relative to that which would

be socially optimal, or obtain in a regulated market—at times of high prices and relatively

inelastic demand, and to correspondingly increase output at other times, so as to benefit

from a price profile which is more differentiated over time than that which would obtain305

were the store to be optimally operated for the benefit of society.

We might also expect that increasing the efficiency of the store will further smooth prices;

however, behaviour here is more complex, as we illustrate in the following example.

Example 2. Consider price functions of the linear form (1) and a store which operates over

just two time steps (T = 2), starting and finishing empty but not otherwise subject to

9



capacity or rate constraints. Suppose further that p̄2 > p̄1. Given its efficiency ε, the store

buys x(ε) units of energy at time 1 and sells εx(ε) units at time 2 so as to minimise its total

cost

x(ε)(p̄1 + p′1x(ε))− εx(ε)(p̄2 − p′2εx(ε)),

so that

x(ε) =

0 if εp̄2 < p̄1
εp̄2 − p̄1

2(p′1 + ε2p′2)
otherwise.

(8)

In the presence of the store the difference between the market clearing price at time t2 and

that at time t1 is given by

p2(−εx(ε))− p1(x(ε)) (9)

Suppose now that the efficiency ε of the store is increased. For suitable values of the

parameters p̄t, p
′
t, t = 1, 2, it follows from (8) that the quantity x(ε) bought by the store at310

time 1 then also increases (increasing the market clearing price at time 1) and so similarly

the quantity εx(ε) sold by the store at time 2 increases (decreasing the market clearing price

at time 2), with the overall consequence of reducing the price differential (9) as expected.

However, it is straightforward to check—by for example differentiation of (8)—that, for

other values of the parameters (specifically when p̄2/p̄1 > 2p′2/(p
′
2 − p′1)), the quantity x(ε)315

is eventually decreasing in ε as the latter increases towards 1, so that increasing the efficiency

of the store now decreases the market clearing price at time 1. It is also straightforward (if

slightly tedious) to check that under these circumstances the quantity εx(ε) continues to be

an increasing function of ε and that further, for all values of the parameters p̄t, p
′
t, t = 1, 2,

the price differential (9) is always a decreasing function of ε. The minimum price differential,320

at ε = 1, is (p̄2 − p̄1)/2, i.e. exactly half of the price differential in the absence of storage.

Impact on consumer surplus. The consumer surplus associated with a demand function d

and clearing price p0 is usually defined as
∫∞
p0
d(p) dp, and so the consumer surplus of the

store’s optimal strategy S∗ is given by

T∑
t=1

∫ ∞
pt(h(xt(S∗)))

dt(p) dp, (10)

where dt(p) is the consumer demand associated with price p at time t. If the size or activity

level of the store is such that the price changes caused by its introduction are relatively

small, and we additionally make the linear approximation (1), then the change in consumer

surplus due to the introduction of the store is well approximated by

−
T∑
t=1

h(xt(S
∗))p′tdt(p̄t). (11)

It might reasonably be expected that, if the store is reasonably efficient (ε is close to one)

and if prices are well-correlated with demand, then the store will buy (xt > 0) at times of

low consumer demand and sell (xt < 0) at times of high consumer demand, and that this

will have a beneficial effect on consumer surplus—as suggested by (11) whenever the price325

sensitivities p′t are sufficiently similar to each other. However, these price sensitivities p′t do

need to be taken into account. Again we give an example.

Example 3. Consider again a store with linear prices of the form (1), which starts and

finishes empty and which operates over just two time steps, i.e. T = 2. Assume that the

power ratings of the store exceed its capacity and that demand is completely inelastic, so

10



that, for t = 1, 2, there exists d∗t ≥ 0 such that dt(p) = d∗t for all prices p. Then, from (8)

and (10), as long as p1 < εp2, the change in consumer surplus on introducing the store to

the electricity network is

min

(
εp̄2 − p̄1

2(p′1 + ε2p′2)
, E

)
(εp′2d

∗
2 − p′1d∗1) ,

which is clearly negative whenever εp′2d
∗
2 < p′1d

∗
1. In the latter case the price sensitivity p′1

at time 1 is sufficiently high that the decrease in consumer surplus at this time as a result

the store buying outweighs the increase in consumer surplus at time 2 as a result of the store330

selling.

3.3. Example

We consider an example based on half-hourly market electricity prices in Great Britain

throughout the year 2014. These are the so-called Market Index Prices as supplied by

Elexon [8], who are responsible for operating the Balancing and Settlement Code for the335

Great Britain wholesale electricity market. These are considered to form a good approxi-

mation to real-time spot prices.

These prices, given in units of pounds per megawatt-hour, exhibit an approximately cyclical

behaviour, being high by day and low by night and, apart from this, are reasonably consistent

throughout the year except for some mild seasonal variation, notably that prices are slightly340

lower during the summer months.

We take the price functions pt to be given by

pt(x) = p̄t (1 + λx) , (12)

where the p̄t, t = 1, . . . T , are proportional to the spot market prices referred to above. These

price functions are a special case of the linear functions (1), in which the price sensitivity

p′t is proportional to p̄t, an assumption which is in many circumstances very plausible; the

constant of proportionality λ ≥ 0 may then be considered a market impact factor. The345

relation (12) also implies that λ should be chosen in proportion to the physical size of

the unit of energy: for any k > 0, the substitution of x/k for x and kλ for λ leaves (12)

unchanged. We therefore find it convenient to consider a store whose nominal dimensions

are generally held constant, and to allow λ to vary: the market impact as λ is increased is

equivalent to that which occurs when λ is held constant and the dimensions of the store are350

allowed to increase instead. The case λ = 0 corresponds to no market impact (appropriate

to a relatively small store). Clearly also there exists λmax such that, for λ ≥ λmax both the

rate and capacity constraints of the store cease to be binding, so that for all λ ≥ λmax the

market impact of the store is the same, and—again by the above scaling argument—may be

regarded as that of an unconstrained store.355

We take a storage facility with common input and output rate constraints and, without loss

of generality, we choose units of energy such that, on the half-hourly timescale of the spot-

price data, this common rate constraint is equal to 1 unit per half-hour. For the numerical

example, we in general take the capacity of the store to be given by E = 10 units; this

corresponds to the assumption that the store empties or fills in a total time of 5 hours. This360

capacity to rate ratio is fairly typical, being in particular close to that for the Dinorwig

pumped storage facility in Snowdonia [9] (though the charge time and discharge times for

Dinorwig are approximately 7 hours and 5 hours respectively). We in general take the

round-trip efficiency as ε = 0.75, which is again comparable to that of Dinorwig. Thus the

effect on market prices given by varying λ, which we discuss below, corresponds to the effect365
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on the market given by considering rescaled versions of a facility not too dissimilar from

Dinorwig. We also investigate briefly the effect of varying the capacity constraint E relative

to the unit rate constraint, and the effect of varying the round-trip efficiency ε.

Figure 2 shows, for E = 10 and ε = 0.75, the effect of varying the market impact λ. The

control of the store is optimised, as previously discussed, over the entire one-year period for370

which price data are available (with the store starting and finishing empty). For relatively

small values of λ the store fills and empties (or nearly so) on a daily cycle, as it takes

advantage of low nighttime and high daytime prices. For significantly larger values of the

market impact factor λ, the store no longer fills and empties on a daily basis (as this factor

now erodes the day-night price differential as the volume traded increases); however, the375

level of the store may gradually vary on a much longer time scale as the store remains able

to take advantage of even modest seasonal price variations. The first six panels of panels of

Figure 2 show plots of the time-varying levels of the store against selected values of λ. For

λ = 0, λ = 0.1 and λ = 0.5 the level of the store is plotted against time for the first two

weeks of the year, while for λ = 1, λ = 5 and λ = 10 the level of the store is plotted against380

time for the entire year. The final panel of Figure 2 shows a plot against time—for the first

two weeks of the year—of the market clearing price corresponding to λ = 0, λ = 0.5, and

λ = 10. The erosion of the day/night price differential as λ increases is clearly seen.

For values of λ greater than λmax ≈ 23 the volumes traded are such that neither the rate

nor the capacity constraints of the store are binding, so that for λ > λmax volumes traded385

are simply proportional to 1/λ.

The left panels of Figure 3 show the effect on store level—over the entire year—of decreasing

the efficiency of the store from ε = 0.75 (for which the store level is shown in red) to ε = 0.65

(for which the store level is shown in blue), for each of the larger values of λ considered above,

i.e. for λ = 1, λ = 5 and λ = 10. The capacity of the store is here kept at our base level of390

E = 10. Decreasing the efficiency of the store reduces its ability to exploit the daily cycle of

price variation in a manner not dissimilar from that of increasing the market impact λ, so

that again the volumes of daily trading are reduced, while the store may continue to exploit

its full capacity on a seasonal basis—again for a very modest further gain. We remark also

that reducing the efficiency of the store reduces the extent to which it is able to smooth395

prices.

The right panels of Figure 3 similarly show the effect—again over the entire year and for the

same three values of λ—of increasing the capacity of the store from E = 10 (for which the

store level is shown in red) to E = 20 (for which the store level is shown in blue). The round

trip efficiency of the store is kept at ε = 0.75. In each case it is seen that the daily variation400

in the level of the store remains much the same as E is increased (since for these levels of λ

there is too much market impact to make profitable greater volumes of daily trading, except

on occasions in the case λ = 1). However, for λ = 1 and for λ = 5, as E is increased the

store is able to make some (very modest) additional profit by varying slowly throughout

the year the general level at which it operates. For λ = 10 the market impact is so great405

that the capacity constraint E = 10—and so also the capacity constraint E = 20—is never

binding, so that in this case the increase in the capacity has no effect.

4. Competing stores in a market

In this section we discuss n competing stores in a market, where it is assumed that the

objective of each store is to maximise its own profit. The optimal strategy of each store in410

general depends on the activities of the remainder, and what happens depends on the extent
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Figure 2: Single store: behaviour of store level and market clearing price (see text for a discussion of units)

as the market impact factor λ is varied—equivalently the size of the store is varied.
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Figure 3: Single store: behaviour of the store level as the round-trip efficiency ε is varied from 0.75 to 0.65
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λ = 10.
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to which there is cooperation between the stores. Such cooperation may occur, for example,

if a number of stores are owned by the same company. Note, however, that, in the case of

energy storage at least, any form of collusion between storage facilities (or indeed any other

form of excessive profit maximisation) would inevitably be the subject of regulatory action,415

so that perfect cooperation between large storage facilities seems unlikely. In the absence of

cooperation between stores we might reasonably expect some form of convergence over time

to a Nash equilibrium, in which each store’s strategy is optimal given those of the others.

We nevertheless first discuss briefly the cooperative solution, primarily for the purpose of

reference, before considering the effect of market competition.420

4.1. The cooperative solution

Here the stores behave cooperatively so as to minimise their combined cost

n∑
i=1

T∑
t=1

hi(xt(Si))pt

( n∑
k=1

hk(xt(Sk))

)
, (13)

subject to the capacity constraints (5) and rate constraints (6). This is a generalisation

to higher dimensions of the single-store problem, and we do not discuss a detailed solution

here. Note, however, that an iterative approach to the determination of a solution may be

possible. Under our assumptions on the price functions, the function of S1, . . . , Sn given425

by (13) is convex. For any store j, given the levels Si of the remaining stores i 6= j, the

minimisation of (13) in Sj (subject to the above constraints) is an instance of the single-store

problem discussed in Section 3—with cost functions modified so as reflect the overall cost to

all the stores of the actions of the store j. This leads to the obvious iterative algorithm in

which (13) is minimised in Sj for successive stores j until convergence is achieved. However,430

the limiting value of (S1, . . . , Sn), while frequently a global minimum, is not guaranteed to

be so.

In the case where the stores have identical efficiencies one might also consider the simplified

single-store problem in which the individual capacity constraints are summed and individual

rate constraints are summed. If the solution to this, suitably divided between the stores (i.e.435

with a fraction κi of the optimal flow assigned to each store i, where
∑n
i=1 κi = 1), is feasible

for the original problem then it solves that problem. One case where this is true is where

additionally the ratios Ej/PIj and Ej/POj are the same for all stores j; the solution to the

simplified single-store problem is then just divided among the stores in proportion to their

capacities to give the cooperative solution to the n-store problem.440

The impact of the stores on market prices and consumer surplus is determined in a manner

entirely analogous to that of Section 3.2.

4.2. The competitive solution

When stores compete there needs to be a mechanism whereby a clearing price in the market

is determined. Here there are in principle various possibilities according to the rules under445

which the market is to operate. We discuss some of these in Section 4.2.1, making a formal

link with the various classical modes of competition in simple “single shot in time” markets

for balancing supply and demand in situations where storage does not operate. In the

succeeding sections we look in particular at what happens when stores bid quantities, i.e. at

Cournot models of competition.450
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4.2.1. Possible models of competition

Consider first the case T = 2, and assume for simplicity that the stores are perfectly efficient.

Suppose that each store k buys and then sells xk (positive or negative), and that this results

in a price differential of p (the clearing price at time 2 less that at time 1) so that each store

k makes a profit pxk. We might consider the situation where, in a precise analogue of the

supply function bidding of Klemperer and Meyer [19], each store k declares, for each possible

value of p, a value Sk(p) which it contracts to buy at time 1 and then sell at time 2 if the

clearing prices at those times are set such that the price differential is p. If each “supply

function” Sk is a nondecreasing function of p, the auctioneer then chooses the clearing prices

p1 and p2 such that

R1(p1) =
∑
k

Sk(p) (14)

R2(p2) = −
∑
k

Sk(p) (15)

p2 − p1 = p, (16)

where, for t = 1, 2, Rt is the residual supply function defined in Section 2.

Assume that the residual supply functions Rt are strictly increasing. The system of equa-

tions (14)–(16) is easily seen to have a unique solution (provided the supply functions Sk
are such that one exists at all): suppose that, as p varies, p1 and p2 are chosen as functions455

of p such that p2 − p1 = p and R2(p2) = −R1(p1); then, as p increases,
∑
k Sk(p) increases

while R1(p1) decreases, and at the unique value of p such that we have equality between

these two quantities the above system of equations (14)–(16) is satisfied.

Mathematically, this situation is no different from that of the classical “one-shot” supply

function bidding of Klemperer and Meyer [19]. This was further studied in applications to460

energy markets by Green and Newbery [15] and by Bolle [2], and subsequently by many

others—see in particular Anderson and Philpott [1], and the very comprehensive review by

Holmberg and Newbery [16]. In such supply function bidding suppliers (for example, elec-

tricity generators) submit nondecreasing supply functions to a market in which there is also

a nonincreasing demand function, the market clearing price being the price (usually unique)465

at which the total supply equals the total demand. In the above “one-shot” situation a

set of supply functions constitute a Nash equilibrium if the resulting clearing price (and

corresponding quantity traded) is optimal for each supplier, given the supply functions of

the remaining suppliers. Klemperer and Meyer [19] show that, in a deterministic environ-

ment, sets of supply functions constituting Nash equilibria are not in general unique unless470

additional conditions are imposed on them. In practice one might well wish to do this so as

to achieve economically acceptable solutions—see in particular Johari and Tsitsiklis [18]. In

a random environment, Klemperer and Meyer [19] further show that appropriate forms of

uncertainty in demand may force the existence of a unique supply function Nash equilibrium.

Two particular cases of such bidding are the classical situations where either suppliers may475

bid prices at which they are prepared to supply any amount of the commodity to be traded—

corresponding to “vertical” supply functions and leading to a Bertrand equilibrium, or else

suppliers may bid quantities which they are prepared to supply at whatever price clears the

market—corresponding to horizontal supply functions and leading to a Cournot equilibrium.

In the former case, at the Nash equilibrium, the one supplier who is able to offer the lowest480

price corners the market (and, in the case of symmetric suppliers, makes zero profit). In the

latter case, modest profits are to be made, but the total profit of all the suppliers decreases

rapidly as their number increases—as is seen also in our results for storage models below.

16



It is difficult to find a sensible and realistic way of extending the concept of general supply

function bidding to competition amongst stores operating over more than two time periods—485

the dimensionality of the space in which the supply functions would then live is high, and

the set of possibilities for market clearing mechanisms is complex. (In principle something

might be attempted and the conditions under which a Nash equilibrium existed and was

unique would then be a matter for significant further research.) Nor is it realistic to consider

the situation where stores bids prices, since as indicated above, profits are then typically too490

small for stores to be able to recover their set-up costs. We therefore restrict our attention to

the case where stores bid quantities—as seems to be the case where elsewhere in the literature

market competition between stores is considered (see, for example, Sioshansi [27]). Here the

Nash equilibria are Cournot equilibria and the profits made by the stores at such equilibria

may be expected to provide reasonable upper bounds on such profits as might be made in495

practice—for a review in the context of “one-shot in time” markets again see Holmberg and

Newbery [16].

Finally we remark here that it is also possible to consider the situation in which, given the

functions Sk declared by the stores, market players other than the stores, notably genera-

tors, choose their own supply functions—one for each point in time—so that the resulting500

sequence of prices and quantities at which the market clears are optimal for these players,

who thus take account of the presence of the stores in formulating their bidding strate-

gies. This generalises the classical situation of supply function bidding by introducing a

linkage of markets over time. This linkage means that, as described here, there would be

considerable challenges in implementation over anything other than the shortest periods of505

time. However, one might well consider simpler situations in which, for example, generators,

in formulating their successive supply functions, estimate as best they may the predicted

response of storage.

4.2.2. General convex cost functions

We consider stores bidding quantities as above and look for Nash (Cournot) equilibria. A510

(pure strategy) Nash equilibrium is then a set of vectors (S1, . . . , Sn) such that the strat-

egy Sj of each store j (i.e. the vector of quantities traded over time by that store) is optimal

given the strategies Si, i 6= j, of the remaining stores; thus the vector Sj solves the optimi-

sation problem Pj (defined by the remaining vectors Si, i 6= j) of Section 2. Equivalently, at

a Nash equilibrium, the vector Sj minimises the function (13) subject to the constraints (5)515

and (6) and with the values of the vectors Si, i 6= j, held constant.

Broadly what happens at such an equilibrium is that stores will buy and sell more than

at the cooperative solution, since each store gains for itself the benefits of so doing, while

the corresponding costs are shared out among all stores. In particular, in a generalisation

of Example 1, consider n identical competing stores with nonbinding capacity and rate520

constraints, but with common given starting and finishing levels; for the moment assume

further that they have round-trip efficiencies ε = 1, and that the price functions pt are

differentiable. For each store k and for each time t, write xkt = xt(Sk). At the symmetric

Nash equilibrium, and for each store j, there are equalised over time t the partial derivatives

with respect to xjt of the functions xjtpt
(∑n

k=1 xkt
)
. (For n = 1 these are just the derivatives525

of the cost functions seen by the store.) It is straightforward to show that the convexity of

these functions ensures that in general unit prices received by the store at those times when

it is selling are higher than unit prices paid by the store at those times when it is buying,

and so the store is able to make a strictly positive profit. However, as n becomes large the

above partial derivatives tend to the price functions pt
(∑n

k=1 xkt
)

so that, in the limit as530

n → ∞, prices become equalised over time and the stores no longer make any profit. As
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earlier, the intuitive explanation is that in the limit the stores become price takers and any

individual store is able to exploit any inequality over time in market clearing prices so as

to increase its profit; thus at the Nash equilibrium market clearing prices are equalised over

time and stores are unable to make any profit. It is easy to see that essentially the same535

result holds when round-trip efficiencies are less than one.

More generally the impact on prices of competition between stores, in comparison to the

cooperative solution, is to further reduce the price variation between the different times

over which the stores operate. Arguing as in Section 3.2, one would typically expect such

increased competition to lead to a further increase in consumer surplus. However, again this540

need not always be the case.

Existence and uniqueness of Nash equilibria. The following result shows the existence of a

(pure strategy) Nash equilibrium.

Theorem 1. Under the assumptions of Section 2 on the price functions pt, there exists at

least one Nash equilibrium.545

Proof. The assumptions on the price functions pt guarantee convexity of the cost functions

defined by (4). We assume first that the price functions are such that these cost functions

are strictly convex. Write S = (S1, ..., Sn) where each Sj is the strategy over time of

store j. Let S be the set of all possible S; note that S is convex and compact. Define a

function f : S → S by f(S) = (f1(S), . . . , fn(S)) where each fj(S) minimises the function550

Gj( · ; S1, . . . , Sj−1, Sj+1, . . . , Sn) given by (4) subject to the constraints (5) and (6), i.e.

fj(S) is the best response of store j to (S1, . . . , Sj−1, Sj+1, . . . , Sn). It follows from the

strict convexity assumption that each fj(S) is uniquely defined.

Now suppose that a sequence (S(n)) in S is such that S(n) → S as n → ∞. Then, for

each j, the functions Gj( · ; S(n)
1 , . . . , S

(n)
j−1, S

(n)
j+1, . . . , S

(n)
n ) (of Sj) converge uniformly to555

the continuous and strictly convex function Gj( · ; S1, . . . , Sj−1, Sj+1, . . . , Sn), so that also

fj(S
(n)) → fj(S). Hence the function f is itself continuous. Thus by the Brouwer fixed

point theorem there exists S = f(S), which by definition is a (Cournot) Nash equilibrium.

In the case where the price functions pt are such that the cost functions given by (4) are con-

vex but not strictly so, we may consider a sequence of modifications to the former, tending560

to zero and such that we do have strict convexity of the corresponding cost functions. Com-

pactness ensures that the corresponding Nash equilibria converge, at least in a subsequence,

to a limit which straightforward continuity arguments show to be a Nash equilibrium for

the problem defined by the unmodified price functions.

In general the uniqueness of any Nash equilibrium is unclear. However, we show in Sec-565

tion 4.2.3 that, under a linear approximation to the price functions, the Nash equilibrium is

unique.

The proof of Theorem 1 also suggests an iterative algorithm to identify possible Nash

equilibria—analogous to the algorithm suggested in Section 4.1. Given any S the deter-

mination of each fj(S) introduced in the above proof requires only the solution of a single-570

store optimisation problem, which may be achieved as described in, for example, Cruise et

al [5]). Hence, starting with any S(0), we may construct a sequence {S(n)}n≥0 such that

S(n) = f(S(n−1)). Then, as in the above proof, any limit S of the sequence {S(n)} satisfies

S = f(S) and hence constitutes a Nash equilibrium. Different starting points S(0) may

be tried, but, in the case of nonuniqueness, there is of course no guarantee that all Nash575

equilibria will be found.
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Even under our given assumptions on the price functions pt the general characterisation of

Nash equilibria seems difficult. The following theorem gives a monotonicity result.

Theorem 2. Consider n competing stores with identical rate constraints and efficiencies

and whose starting levels and finishing levels are ordered by their capacity constraints. Then,580

at any Nash equilibrium S∗ = (S∗1 , . . . , S
∗
n), the levels of the stores are at all times ordered

by their capacity constraints.

Proof. Let (µ∗1, . . . , µ
∗
n) be the set of vectors (Lagrange multipliers) associated with the

Nash equilibrium S∗ = (S∗1 , . . . , S
∗
n) as defined by Proposition 1. It follows from (ii) of that

proposition that, for any t, and any i, j,

µ∗it ≥ µ∗jt ⇐⇒ xt(S
∗
i ) ≥ xt(S∗j ). (17)

Suppose now that the assertion of the theorem is false. Then there exist i, j with Ei < Ej
and some t0 such that

xt0(S∗i ) > xt0(S∗j ), S∗it0 > S∗jt0 . (18)

It now follows by induction that, for all t′ ≥ t0,

xt′(S
∗
i ) ≥ xt′(S∗j ), S∗it′ > S∗jt′ , µ∗it′ ≥ µ∗jt′ . (19)

That (19) is true for t′ = t0 follows from (17) and (18). Suppose now that (19) is true for some

particular t′ ≥ t0. It then follows from Proposition 1 that the condition S∗it′ > S∗jt′ implies

µ∗i,t′+1 ≥ µ∗j,t′+1; hence, by (17), xt′+1(S∗i ) ≥ xt′+1(S∗j ) and so finally S∗i,t′+1 > S∗j,t′+1.585

However, this contradicts the assumption S∗iT ≤ S∗jT .

4.2.3. Quadratic cost functions (i.e. linearised price functions)

We can make considerably more progress in the case of the linear approximation to the

price functions given by equation (1), where we again assume that, for each t, we have

p̄t = pt(0) > 0, p′t = p′t(0) ≥ 0, and that the function pt remains positive over the range of590

possible values of its argument (so that our standing assumptions on the functions pt are

satisfied). This linearisation (1) is a reasonable approximation when storage facilities are

collectively sufficiently large as to have an impact on market prices, but are not so very large

as to require a more sophisticated price function. The main reason for greater analytical

tractability in this case is that for a set of vectors (S1, . . . , Sn) to a be Nash equilibrium is595

then equivalent to the requirement that they minimise a given convex function. In particular

we have the following result.

Theorem 3. Given the price functions (1), there always exists a unique Nash equilibrium.

Proof. It follows from (1) and (4) that the requirement that a set of vectors (S1, . . . , Sn) be

a Nash equilibrium is equivalent to the requirement that, for each store j, given the policies

Si, i 6= j, being operated by the remaining stores, the vector Sj minimises the total cost

T∑
t=1

h(xt(Sj))

(
p̄t + p′t

n∑
i=1

h(xt(Si))

)
, (20)

subject to the capacity and rate constraints on store j given by (5) and (6). Now note that

this is further equivalent to the requirement that the set of vectors (S1, . . . , Sn) minimises

the strictly convex function

T∑
t=1

[
p̄t

n∑
i=1

hi(xt(Si)) +
1

2
p′t

(
n∑
i=1

hi(xt(Si))
2 +

( n∑
i=1

hi(xt(Si))

)2
)]

(21)
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subject to the constraints (5) and (6) being satisfied for all j. Further since this minimum

is also to be taken over a compact set, its existence and uniqueness—and hence that of the600

Nash equilibrium—follows.

Theorem 4 below, which is a scaling result, reduces the optimisation problem (the determi-

nation of the Nash equilibrium) for n identical competing stores to that of the corresponding

problem for an appropriately redimensioned single store.

Theorem 4. Given the price functions (1) and a common efficiency ε, for each n ≥ 1,

consider n identical competing stores with common capacity E(n), common rate input and

output constraints P
(n)
I and P

(n)
O , and common starting and finishing levels S

(n)
0 and S

(n)
T

respectively, where we have

E(n) = 2E(1)/(n+ 1),

P
(n)
I = 2P

(1)
I /(n+ 1), P

(n)
O = 2P

(1)
O /(n+ 1),

S
(n)
0 = 2S

(1)
0 /(n+ 1), S

(n)
T = 2S

(1)
T /(n+ 1).

For each n, let S(n) = (S
(n)
1 , . . . , S

(n)
T ) be the common policy over time of each of the stores at605

the unique and necessarily symmetric competitive Nash equilibrium. Then, at this equilibrium

and at each time t, the quantity traded by each store in the n-store problem is 2/(n+1) times

the quantity traded in the single store problem, i.e. h(xt(S
(n))) = 2h(xt(S

(1)))/(n+ 1).

Proof. It follows from Theorem 3 that, for each n, S(n) minimises the strictly convex function

n

T∑
t=1

(
p̄th(xt(S

(n))) +
1

2
(n+ 1)p′th(xt(S

(n)))2
)

(22)

subject to the capacity constraints

S
(n)
0 = S∗0/(n+ 1), S

(n)
T = S∗T /(n+ 1), 0 ≤ S(n)

t ≤ E/(n+ 1), 1 ≤ t ≤ T − 1,

and the rate constraints

−PI/(n+ 1) ≤ xt(S(n)) ≤ PO/(n+ 1), 1 ≤ t ≤ T.

The substitution zt = 2(n + 1)xt(S
(n)), for t = 1, . . . , T , yields a single store minimisation

problem which is independent of n (apart from a factor 2n/(n+ 1) in the objective (22)) so610

that, for each t, xt(S
(n)) (and so also h(xt(S

(n)))) is proportional to 1/(n+ 1), so that the

required result is now immediate.

Remark 2. The reduction in Theorem 4 (for linear price functions) of the problem for n

identical stores to a single store problem, allows also the application of the various sensitivity

results of Section 3.1.615

Theorem 5 below generalises Example 1 to quantify the effect of competition between n

unconstrained stores with identical efficiencies.

Theorem 5. Given the price functions (1) and a common efficiency ε, consider n stores

subject to neither capacity nor rate constraints. Suppose further that the stores have a

common starting level S∗0 and the same common finishing level S∗T = S∗0 , and that this level620

is sufficiently large that, at the (unique and necessarily symmetric) Nash equilibrium, the

stores never empty. Then, at this equilibrium, the quantity traded per store is proportional

to 1/(n+ 1) and the profit per store is proportional to 1/(n+ 1)2.
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Proof. The first assertion of the theorem may be deduced from the scaling result of Theo-

rem 4, and that theorem might be extended to enable also the second assertion of the present625

theorem to be deduced. However, we use instead the argument below, which also explicitly

identifies the behaviour of the stores.

Write S̄ = (S̄0, . . . , S̄T ) (where S̄T = S̄0 = S∗0 ) for the common policy over time of each of

the stores at the Nash equilibrium. It now follows from Theorem 3 and the minimisation of

the function (21) subject to the constraint

S̄T = S̄0, (23)

that this equilibrium is given by

xt(S̄) =



λ− p̄t
(n+ 1)p′t

, p̄t < λ

0, λ ≤ p̄t ≤
λ

ε
λ− εp̄t

(n+ 1)ε2p′t
, p̄t ≥

λ

ε
.

(24)

for some Lagrange multiplier λ such that (23) is satisfied. Note, in particular, that λ is

independent of n. Thus, as n varies, we have again that (x1(S̄), . . . , xT (S̄)) is proportional

to 1/(n+ 1) as required. It follows also from (24) (by checking separately each of the three

cases there) that, for all t,

h(xt(S̄))(p̄t + (n+ 1)p′th(xt(S̄))) = λxt(S̄). (25)

It follows from (20) and from (25) that, at the Nash equilibrium, each store j incurs a total

cost (the negative of its profit) equal to

T∑
t=1

h(xt(S̄))(p̄t + np′th(xt(S̄))) =

T∑
t=1

λxt(S̄)− p′th(xt(S̄))2

= −
T∑
t=1

p′th(xt(S̄))2,

where the first equality above follows from (25) and the second from (23). Since, as n varies,

(h(x1(S̄)), . . . h(xT (S̄))) is proportional to 1/(n + 1), the required result for the profit of

each store follows.630

Note that, under the conditions of the above theorem, the total quantity traded by the n

stores (at each instant in time) is 2n/(n+ 1) times that traded by a single store, while the

total profit made by the n stores is 4n/(n+ 1)2 times that made by a single store. Clearly

also, were the stores subject to capacity or rate constraints, their ability to negatively impact

on each other would be less—as in the example below.635

4.3. Example

We consider again the half-hourly Market Index Price data for Great Britain throughout

2014, as introduced in the example of Section 3.3. We again let the price function be as

given by (12) and (without loss of generality as explained in Section 3.3) take the market

impact factor λ = 1. We consider n = 1, 2, 3 identical stores in competition, each with a640

round-trip efficiency ε = 0.75. For the single-store case n = 1, we take E = 10 and common

input and output rate constraint P = 1; for n = 2 we take E = 5 and P = 1/2 for each of the
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two stores, and for n = 3 we take E = 10/3 and P = 1/3 for each of the three stores. Thus

the total storage available in each case is the same. The values of E and P are chosen so

that the constraints on the stores are not so severe as to force essentially identical combined645

behaviour of the stores for each of the three values of n considered; nor are they so lax that

the stores behave as if they were unconstrained as considered in Theorem 5. For each n, we

consider the unique Nash equilibrium in which each of the n stores optimises its behaviour

(minimises its cost) over the entire year subject to the constraints of starting and finishing

empty, and (for n > 1) given the behaviour of the remaining store(s).650

In the units of the example—for a discussion of which again see Section 3.3—the total profits

made throughout the year by the n stores are 4096 for n = 1, 3733 for n = 2 and 3267 for

n = 3. For each of the latter two cases, if the stores were to cooperate instead of competing,

they would make the same total profit as in the single store case. Thus the decrease in total

profit is again due to the effects of competition. However, note that as n increases through655

the above three values the total profit decreases at a rate which is slower than that in the

case of unconstrained stores, as given by Theorem 5.

Figure 4 shows the total level of the n = 1, 2, 3 stores and the corresponding market clearing

prices (again in the units of the example) over the first two weeks of the year. The upper

panel of the figure clearly shows that n = 2 and n = 3 competing stores consistently660

overtrade in relation to the case n = 1 (corresponding to the cooperative solution). The

lower panel shows the extent to which competition between multiple stores smooths market

clearing prices, which is of course associated with the reduction in overall profits. The times

of maximum store activity correspond to the peaks and troughs of the market clearing price

and it is these peaks and troughs which are smoothed by the competition. Note also that,665

because the round-trip efficiency ε = 0.75 is significantly less than 1, there are significant

periods of during which the stores neither buy nor sell.

5. Variant economic problems

Heretofore we have considered the optimal control of stores where the objective of each has in

general been to maximise its own profit, obtained through price arbitrage over time. Such670

behaviour has a variable effect on both producers (in the case of energy the generators)

and consumers. However, a store may alternatively be used to maximise the benefit to

any defined group (who we describe here as being the “owner” of the store), whether that

group be some set of consumers (e.g. society, if the generators are excluded from the latter),

or some subset of generators, or society as a whole. In each case the operation of any675

single store is described by a vector S = (S0, . . . , ST ) such that St is the chosen level

of the store at each time t. The total cost to the intended beneficiaries of the store’s

operation is then
∑T
t=1 Ct(xt(S)) where, for each t, we take xt(S) = St−St−1 and where Ct

is some appropriately defined function. The control of the store which is optimal for its

intended beneficiaries is then given by minimising
∑
t Ct(xt(S)) subject to capacity and680

rate constraints analogous to those given by (5) and (6) in Section 2. Thus in each case the

mathematical form of the optimisation problem is unchanged from that considered earlier;

however, each function Ct now reflects the total cost of the action at time t to those for

whose benefit the store is operated. Thus we have the same form of solution as previously,

and may obtain the same insights into the effects of competitive behaviour. We give some685

examples below, in each case identifying the cost functions Ct.

One or more stores owned by consumers. Suppose that a single store is notionally owned

by some set of consumers. For example, this might be a single consumer, a small number of
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Figure 4: Total store level and market clearing price for each of n = 1, 2, 3 stores in competition.

consumers, or society as a whole, if the latter excludes the generators. Here the problem is

to use the store so as to maximise the benefit to that group. If at each time t an amount xt690

(positive or negative) is placed in the store, then the corresponding total cost Ct(xt) (again

positive or negative) to the store owner is the sum of the extra payment to the generator

plus the reduction in consumer benefit to the owner due to the market impact of the activity

of the store—the latter would typically be measured by the reduction in consumer surplus

experienced by the store owner. Hence the objective function
∑T
t=1 Ct(xt(S)) to be min-695

imised is the sum of these total costs (negative profits) over time. In the case where further

benefits flow to the store owner as a result of the store’s activities, e.g. through taxation

regimes, these may similarly be incorporated in the cost functions Ct so as to define the

correct objective function for the associated optimisation problem.

One or more stores owned by a generator. Now suppose that a store is owned by a gener-700

ator, and is used by the latter with the intention of maximising its own total profit. Thus

if, at each time t, an amount xt (positive or negative) is placed in the store, then this has a

cost to the generator which is simply that of producing it; further, if (at that time) the gen-

erator’s production costs are nonlinear, the generator will re-optimise the amount supplied

to the market, thereby affecting its profit from that activity; hence we may determine the705

total cost Ct(xt) to the generator of the action xt, and the overall objective function to be

minimised is again the sum over time of these costs.
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Both generators and stores owned by society. Finally suppose that both the generator(s)

and any store are owned by the consumers, i.e. by society, and managed jointly so as to

maximise the benefit to society. In the absence of the store, the generator’s supply function710

may be replaced by its (inverse) cost function i.e. that function which gives the amount

which may be (just) economically supplied as a (generally increasing) function of unit price;

the point of intersection of this function with the demand function gives the optimal price,

and the optimised benefit to society is the consumer surplus at that price. The introduction

of the store now modifies this theory in a manner entirely analogous to that in the earlier715

case where just the store is owned by society.

6. Stochastic environments

The theory of the present paper formally assumes a deterministic cost environment, so that

stores are able to plan optimally their future activity with a full knowledge of the cost

functions involved. In a stochastic environment the cost function at any future time t is720

a random function whose distribution evolves so that the cost function typically becomes

more precisely known as the time t approaches.

One obvious way in which one might therefore proceed in such an environment is, at any

time at which decisions (on quantities to be bought or sold by stores) are required, to replace

future cost functions by their expected values at that time and then to proceed as in the725

deterministic case. This strategy may be improved by revisiting decisions—as to future

levels of activity—at each successive point in time and re-optimising those decisions in the

light of updated knowledge. For an example of the success of this “re-optimisation” policy in

the case of the optimal control of a single store (without market impact) see Secomandi [26].

While replacing random functions by their expected values may not be optimal given full730

stochastic descriptions of future cost function evolution, in practice the vagaries of markets

are such that these descriptions are rarely available. Further, associated with the optimal

control of a store, as described by Proposition 1, is a rolling planning or decision horizon

beyond which it is not necessary to know future cost functions so as to determine successive

optimal decisions. The existence of this horizon follows from the algorithm of Cruise et735

al [5]—see also the appendix to the present paper. When, as in the examples of the present

paper based on GB market data, prices exhibit very strong diurnal fluctuations, this horizon

is often of the order of only a day or so, and over such short periods of time prices may well

be accurately predictable.

7. Conclusions740

In the present paper we have considered how storage, operating as a price maker within a

market environment, may be optimally operated over an extended or indefinite period of

time. The optimality criterion may be that of maximising the profit over time of the storage

itself, where this profit results from the ability of the storage to exploit differences in market

clearing prices at different times. Alternatively it may be that of minimising over time the745

cost of generation, or of maximising consumer surplus or social welfare. In all cases there

is calculated for each successive step in time the cost function measuring the total impact

of whatever action (amount to buy or sell) is taken by the storage. The succession of such

cost functions provides the appropriate information to the storage as to how to behave over

time, forming the basis of the appropriate mathematical optimisation problem. We have750

also studied the various economic impacts—on market clearing prices, consumer surplus
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and social welfare—of the activities of the storage. Where these impacts are considered

undesirable, the remedy is again the modification of the successive cost signals supplied to

the storage. We have given examples based on real Great Britain market data.

We have been particularly concerned to study competition between multiple stores, where755

the objective of each store is to maximise its own income given the activities of the remain-

der. We have shown that at the Nash equilibrium—with respect to Cournot competition—

multiple stores of sufficient size collectively erode their own abilities to make profits: es-

sentially each store attempts to increase its own profit over time by overcompeting at the

expense of the remainder. We have quantified this in the case of linear price functions, and760

again given examples based on market data.
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Appendix: proof of Proposition 1

Since the result is concerned with the behaviour of a single store j, given the policies Si850

of the remaining stores i 6= j, it is convenient to drop the subscript j and to write S∗ =

(S∗0 , . . . , S
∗
T ) for the policy S∗j = (S∗j0, . . . , S

∗
jT ) and µ∗ = (µ∗1, . . . , µ

∗
T ) for the vector µ∗j =

(µ∗j1, . . . , µ
∗
jT ) of the proposition. Similarly, for each time t, we write Ct(xt) for the cost

function Cjt(xjt; xt(Si), j 6= i) of the proposition. We write X, E and P respectively for

the the rate constraint region Xj , the capacity constraint Ej and the store’s optimisation855

problem Pj .

Let S be any vector which is feasible for the problem P, i.e. satisfies the constraints (5) and

(6) (with S replacing Sj , etc). Then, from the condition (ii) of Proposition 1,

T∑
t=1

[Ct(xt(S
∗))− µ∗txt(S∗)] ≤

T∑
t=1

[Ct(xt(S))− µ∗txt(S)] .

Recall that since both S and S∗ are feasible for the problem P we have S0 = S∗0 and ST = S∗T
and so, rearranging the above inequality,

T∑
t=1

Ct(xt(S
∗))−

T∑
t=1

Ct(xt(S)) ≤
T∑
t=1

µ∗t (S
∗
t − S∗t−1 − St + St−1)

=

T−1∑
t=1

(S∗t − St)(µ∗t − µ∗t+1)

≤ 0,

where the latter inequality follows by the condition (iii) of the proposition. Thus S∗ solves

the problem P as required.

To show the existence of a pair (S∗, µ∗) satisfying the conditions of the proposition we give an

explicit construction. We show how to define a sequence of times 0 < T1 < · · · < Tk = T and860

successive values of (S∗t , µ
∗
t ) such that the constructed pair (S∗, µ∗) satisfies the conditions (i)

and (ii) of the proposition; further µ∗t = µ∗t+1 for all t < T for which we do not have t = Ti
for some 1 ≤ i ≤ k − 1. At each of the times t = T1, . . . , Tk−1 it will be the case that

either S∗t = 0 or S∗t = E, and it is then only necessary to verify that the equation (7) of

condition (iii) is also satisfied at each of these times.865

We show first how to define the time T1 together with (S∗0 , . . . , S
∗
T1

) and (µ∗1, . . . , µ
∗
T1

).

Suppose initially that each of the cost functions Ct is strictly convex. For any t satisfying 1 ≤
t ≤ T and for any (scalar) µ, define x∗t (µ) to be the unique value of x which minimises Ct(x)−
µx subject to the rate constraint x ∈ X. Note that x∗t (µ) is continuous and increasing (not

necessarily strictly) in µ. For each such scalar µ, define a vector S(µ) = (S0(µ), . . . , ST (µ))870

by S0(µ) = S∗0 and St(µ) = St−1(µ) + x∗t (µ) for 1 ≤ t ≤ T . Suppose first that there is

some value µ∗ of µ such that S(µ∗) satisfies the capacity constraints (5) for the problem P

(i.e. 0 ≤ St(µ
∗) ≤ E for 1 ≤ t ≤ T − 1 and ST (µ∗) = S∗T ), so that, by construction, the

vector S(µ∗) is feasible for the problem P; we may then define T1 = T , and S∗t = St(µ
∗)

and µ∗t = µ∗ for 1 ≤ t ≤ T , and we are done. Otherwise, for every value of µ, there exists a875

first time T ′1(µ) such that ST ′1(µ)(µ) violates the capacity constraint (5) at this time. Define

M1 to be the set of all µ such that this first capacity constraint violation is below (i.e. if

T ′1(µ) < T then ST ′1(µ)(µ) < 0 and if T ′1(µ) = T then ST ′1(µ)(µ) < S∗T ); similarly define M ′1 to

be the set of all µ such that this first capacity constraint violation is above (i.e. if T ′1(µ) < T

then ST ′1(µ)(µ) > E and if T ′1(µ) = T then ST ′1(µ)(µ) > S∗T ). The assumption that there is880

at least some vector S which is feasible for the problem P means that neither of the sets
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M1, M ′1 is empty. Further, since for each t the function x∗t (µ) is increasing in µ, so also the

successive components of the vector S(µ) are increasing in µ. Hence there is necessarily some

scalar µ∗ = supM1 such that either M1 = (−∞, µ∗], M ′1 = (µ∗,∞) or else M1 = (−∞, µ∗),
M ′1 = [µ∗,∞). In the former case (i.e. µ∗ ∈M1) there is necessarily some time T1 < T ′1(µ∗)885

(not necessarily uniquely defined) such that ST1(µ∗) = E, for otherwise, by the continuity

of the functions x∗t (µ), µ could be increased above µ∗ while still remaining within the set

M1. Similarly in the latter case (i.e. µ∗ ∈ M ′1) there is necessarily some time T1 < T ′1(µ∗)

such that ST1
(µ∗) = 0. Thus in either case we define the time T1 as above (in the event of

nonuniqueness choosing, for example, the largest possible value), and define µ∗t = µ∗ and890

S∗t = St(µ
∗) for 1 ≤ t ≤ T1.

For T1 6= T , the above algorithm may be restarted at the time T1, and at successive times Ti
as necessary, to identify the entire sequence 0 < T1 < · · · < Tk = T together with the entire

vectors µ∗ = (µ∗1, . . . , µ
∗
T ) and S∗ = (S∗0 , . . . , S

∗
T ). It is a consequence of the construction

that all the conditions of the proposition are satisfied, except only that, as stated above, for895

k > 1 it is still necessary to check that (7) holds at each of the times t = T1, . . . , Tk−1. For

this it is sufficient to consider the time T1. Suppose that, in the argument above, the scalar

µ∗ belongs to the set M1, so that S∗T1
= ST1(µ∗) = E. Then the condition µ∗ ∈M1 implies

that when the vector S(µ∗) first violates the store capacity constraint (5) (at the T ′1(µ∗)) it

violates this constraint below. Recalling that T1 < T ′1(µ∗), it follows that, when the above900

algorithm is restarted at the time T1, the same scalar µ∗ (with µ∗ = µ∗T1
) continues to

belong to the updated set M2 replacing M1 in the restarted argument. Hence we obtain

that supM2 ≥ supM1 and so µ∗T1+1 ≥ µ∗T1
as required. Similarly if the scalar µ∗ belongs to

the set M ′1, so that S∗T1
= 0, we obtain that µ∗T1+1 ≤ µ∗T1

again as required.

When the cost functions Ct are convex, but not necessarily strictly so for all t, they may be905

represented as necessary as limits of sequences of strictly convex cost functions and standard

continuity arguments used to deduce again the required result.
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