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abstract 

We propose a novel multivariate approach for dependence analysis in the energy market. The method- ology is based on tree copulas and

GARCH type processes. We use it to study the dependence structure among the main factors affecting energy price, and to perform

portfolio risk evaluation. The temporal dynamic of the examined variables is described via a set of GARCH type models where the joint

distribution of the standardised residuals is represented via suitable tree copula structures. Working in a Bayesian framework, we perform

both qualitative and quantitative learning. Posterior summaries of the quantities of interest are obtained via MCMC methods.

1. Introduction

In recent years, the behaviour of the energy market has as- 

sumed a crucial role in the global economy, impacting and influ- 

encing both economic and social activities. Energy price directly 

affects industrial costs, becoming a fundamental element in the 

decision-making process of companies and entrepreneurs. The en- 

ergy price is related to the cost and quantity of raw materials used 
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particular attention to tail behavior. We focus on two representa- 

tive European markets, the Italian and the German. For both mar- 

kets we consider daily observations of one year forward contracts 

subscribed in 2014. Differently from the German case, only in 2014 

Italian power prices were traded on a regulated market. In order 

to investigate the effect of this event we also analyse the Italian 

market in the period 2013–2016. We work in terms of monthly 

logarithmic return rates and we model their temporal dynamic via 
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to produce it. Moreover, since 2005, it is also related to the price

for carbon emission (CO 2 ). Indeed, when applying the Kyoto Pro-

tocol, the European Union Emissions Trading Scheme (EU-ETS) of

2005 set up caps for the CO 2 emissions of plants. Installation

can increase emissions above their caps by acquiring emission a

lowances. Furthermore, installations with emissions below caps ar

allowed to sell unused allowances. Permits can be traded in spo

future and option markets and the power sector is a key playe

in the EU-ETS, see e.g. Reinaud (2007).  Finally, the element

determining the energy price have become increasingl

interconnected in the last years. 

In this paper, we use Bayesian AR-GARCH copula models t

study the behaviour and the connections among the main factors

affecting ener gy price (coal, gas, oil and CO 2 prices). Our aim is to

identify the dependence structure characterising the market, with
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AR-GARCH processes. We account for the dependence between the

variables by fitting alternative copula models to the distribution of

the standardised residuals. 

We perform both qualitative and quantitative Bayesian analysis

and we show how suitable pictorial representations of the depen-

dence structure of the processes can be obtained. Finally, we illus-

trate how market risk of energy portfolios can be easily estimated

via Bayesian predictive measures. 

The estimated dependence structures are in line with some spe-

cific characteristics of the current energy market. In particular, we

observe that the price of Brent (one of the major classifications

of oil) has a marginal influence on the power price and the com-

modities that mostly impact the energy price are natural gas and

coal. Furthermore, for the Italian case we find that the pairwise de-

pendence between variables increases for almost all the examined

quantities from 2013 to 2016. 

Among possible alternative models for dependence analysis

we focus on copula functions, which are nowadays very popular

in finance, insurance, econometrics and recently in the analysi

of commodity markets; see e.g. Aas, Czado, Frigessi, and Bakken
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(2009), Czado, Gärtner, and Min (2011), Arreola Hernandez (2014) ,

Dalla Valle, De Giuli, Tarantola, and Manelli (2016) , Jaschke (2014) ,

Laih (2014) , Marimoutou and Soury (2015) , Wen, Wei, and Huang

(2012) , Wu, Chung, and Chang (2012) and Oh and Patton (2017) .

Although there are different types of bivariate copulas available,

the choice of multivariate copulas is rather limited, due to com-

putational and theoretical limitations. To overcome this issue, Joe

(1996) introduced the Pair Copula Construction (PCC), as an instru-

ment for building flexible multivariate copulas starting from a set

of bivariate ones, referred to as linking copulas. The core of this ap-

proach is its graphical representation, called R-vines, that consists

of a nested set of trees, each edge of which is associated with a

linking copula, see Bedford and Cooke (20 01, 20 02) . Unfortunately,

R-vines present a combinatorial complexity that may create dif-

ficulties in structural learning and parameter estimation both in

frequentist and in Bayesian settings. In the frequentist approach,

a two steps estimation procedure, known as Inference Function

for Margins (IFM) proposed by Joe (1997) , is usually applied. Also

in the Bayesian framework it is common the use of a suitable

 

day t of commodity k , and X t,k = log 

{
S t+20 ,k / S t,k 

}

two steps procedure where the underlying copula structure is se-

lected a priori, see e.g. Hofmann and Czado (2010),  Min and Czado

(2010) and Czado, Gärtner, and Min (2011) . Recently, Gruber and

Czado (2014, 2015) developed a Bayesian approach for vine with

structural learning. Nevertheless, due to the nested structure of the

R-vine, the algorithms used to simulate from the posterior distri-

butions are computationally demanding.

In order to reduce the complexity of the learning procedure and

develop an efficient Bayesian approach to jointly estimate the copula

structure and its parameters, in this paper we rely on tree copula

models introduced by Kirshner (2007).  Tree copulas are truncated R

vines, see Kurowicka (2011),  whose underlying graphical structure

simpler than the R-vine structure, allows the inference procedure to

be simplified. Furthermore, they provide a pictorial representation o

the dependence structure that is easy to explain to non-experts

Nevertheless, considering only tree structures may be too restrictive to

represent a realistic dependence among variables. Hence, following

Silva and Gramcy (2009) and Elidan (2013),  we also examine finite

and infinite mixture of tree copulas. In the latter case we assume a

non-parametric Dirichlet Process prior. 

The use of Bayesian techniques in contrast to frequentis

methods is motivated by the fact that the latter are no

asymptotically efficient when applied to copula models, see Joe

(2005).  Moreover, in the Bayesian setting parameters uncertainty

can be considered in the prediction. Another advantage of ou

approach based on Markov Chain Monte Carlo (MCMC) method

is that it allows mixture models to be estimated easily. Finally

portfolio predictive cumulative distributions, risk measures and

credible intervals for all the estimated parameters can be

straight forwardly approximated by using the output of the MCMC

The outline of the paper is as follows. In Section 2 our tree

copula models are presented. In Section 3 the Bayesian estima-

tion methodology is outlined. Section 4 describes the application

of the proposed methodology to the analysis of real data. Reader

primarily interested in the application may wish to browse lightly

through Sections 2 –3 and focus on Section 4.  Concluding remarks

are given in Section 5.  The details of the MCMC algorithms and 

fur- ther results on simulated data are provided in the 

Supplementary Material. 

2. AR-GARCH copula models specification

    In order to describe the dynamic of the prices of the commodi

ties we rely on AR-GARCH copula models.
 

 Let St ,  k
 

be the price

at 

be the corre-

sponding monthly logarithmic return rate. Varying t over the set of
orking days, we obtain for each commodity k = 1 , . . . , N a time

eries ( X k , t ) that we model via an AR (p) − GARCH(q, r) structure.

ore precisely, 

X k,t = 

p ∑ 

i =1

a k,i X k,t−i + ε k,t , 

ε k,t = σk,t Z k,t , 

2 
k,t = σ 2 

k + 

q ∑ 

i =1

b k,i σ
2 
k,t−i + 

r ∑ 

j=1

c k, j ε 
2 
k,t− j . (1)

etting q and r equal to 0, one obtains an AR ( p ) model with σ 2 
k,t

=
2 
k 

for every t ≥ 1. 

The vectors Z t = (Z 1 ,t , . . . , Z N,t ) for t = 1 , . . . , T are usually as-

umed to be independent and identically distributed. A common

ssumption is that Z k,t = ε k,t /σk,t are standardised residuals nor-

ally distributed with zero mean and unit variance, and are jointly

ormally distributed with unknown correlation matrix. As an alter-

ative, in this work we propose copula based models for the vector

 t of the standardised residuals, see Section 2.4 . 

In Sections 2.1 –2.3 we briefly introduce copula functions, the

elated notation and terminology needed to define our models. 

.1. Copula functions 

A popular and efficient tool in multivariate dependence anal-

sis is the copula function. The advantage of copulas is the ability

o obtain the joint multivariate distribution embedding the de-

endence structure of the variables. A copula is a multivariate

istribution with uniform margins on the unit interval. It is used to

ouple one-dimensional marginal distributions in order to obtain

he corresponding joint multivariate distribution. Sklar’s theorem

 Sklar, 1959 ) states that any N -dimensional cumulative distribution

unction (cdf) F , with univariate cumulative marginal distributions

 1 , . . . , F N , can be written as F (z 1 , . . . , z N ) = C 
(
F 1 (z 1 ) , . . . , F N (z N ) 

)
,

here C is a suitable copula function. Consequently, if F is ab-

olutely continuous, the corresponding joint probability density

unction (pdf) is given by 

f (z 1 , . . . , z N ) = c 
(
F 1 (z 1 ) , . . . , F N (z N ) 

)
f 1 (z 1 ) . . . f N (z N ) , 

here c is the copula density function. 

.2. Tree copula 

As mentioned in Section 1 graphical models can be used to sim-

lify the construction of multivariate copulas. In a graphical model,

he structure of the graph provides a pictorial representation of the

onditional independence relationships between the variables; for

 detailed presentation and the relevant terminology see Lauritzen

1996) . 

In this paper, we consider a Markov tree model, a particular

ype of graphical model having as underling graph an undirected

ree with set of nodes V = { 1 , . . . , N} and set of edges E (unordered

air of nodes). A random variable is associated with each node of

he tree and the global Markov property is used to read conditional

ndependencies among them. According to this property, discon-

ected sets of variables are conditionally independent given a sep-

rating set. Since a tree is uniquely defined by its edge set, in the

ollowing we use E to denote the tree structure. We indicate with

 N the set, of cardinality N 

N−2 , of all tree structures with N nodes.

If Z is a random vector with multivariate (positive) pdf f on Z ⊂
 

N represented by a Markov tree E, then its joint density can be

actorised as 

f (z 1 , . . . , z N ) = 

[ ∏
(l,m ) ∈E

f l,m 

(z l , z m 

) 

f l (z l ) f m 

(z m 

) 

]
N ∏

i =1

f i (z i ) , (2)



Fig. 1. Graphical representation of a tree copula on 4 variables.
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here f l is the marginal density of Z l and f l , m 

is the joint density

f ( Z l , Z m 

). 

Following the tree copula construction of Kirshner (2007) , we

epresent each density f l , m 

in (2) via the corresponding bivariate

inking copula density c l , m 

associated with the edge ( l , m ). Hence,

q. (2) can be re-written as 

f (z 1 , . . . , z N ) = 

∏ 

(l,m ) ∈E
c l,m 

(
F l (z l ) , F m 

(z m 

) 
) N ∏

i =1

f i (z i ) , 

here F l and F m 

are the marginal cdfs of Z l and Z m 

. 

Conversely, given a tree structure E and a family of a bi-

ariate copula c l , m 

( u l , u m 

| θ l , m 

) (parameterised through a pa-

ameter θ l , m 

), c θ (u 1 , . . . , u N ) = 

∏ 

(l,m ) ∈E c l,m 

(u l , u m 

| θl,m 

) is an

dmissible copula density. To simplify the notation, if m is the

arent node of l in the directed version of E with root node

, we set c θl,m 
(u l , u m 

) = c l,m 

(u l , u m 

| θl,m 

) ; otherwise if l is the

arent node of m , c θm,l 
(u m 

, u l ) = c l,m 

(u l , u m 

| θl,m 

) . Consequently,

f θ (z 1 , . . . , z N ) = 

∏ 

(l,m ) ∈E c θl,m 

(
F l (z l ) , F m 

(z m 

) 
)∏ N 

i =1 f i (z i ) , is a density

ith margins f i , i = 1 , . . . , N. 

For example, for the tree copula reported in Fig. 1 , the joint

ensity factorises as 

f (z 1 , z 2 , z 3 , z 4 ) =c θ1 , 2 
( F 1 (z 1 ) , F 2 (z 2 ) ) c θ1 , 3 

( F 1 (z 1 ) , F 3 (z 3 ) ) c θ3 , 4

× ( F 3 (z 3 ) , F 4 (z 4 ) ) 

4 ∏ 

k =1

f k (z k ) . 

.3. Mixture of tree copula 

In order to overcome the restrictions imposed by the tree struc-

ure, we consider copula functions obtained as the mixture of tree

opulas. This strategy allows us to preserve the relative low com-

lexity of the Markov tree structures, taking into account richer

ependencies between the variables. A mixture of Markov tree

opulas is given by 

(u 1 , . . . , u N ) = 

D ∑ 

d=1

w d 

∏ 

(l,m ) ∈E d 
c 
θ (d) 

l,m

(u l , u m 

) ,

here D ≤ + ∞ is the number of mixture components, (w d ) d=1 , ... ,D 

re positive weights with 

∑ D 
d=1 w d = 1 , E d ( d = 1 , . . . , D ) is the tree

tructure of the d th component of the mixture, and { θ (d) 
l,m 

} are the

opula parameters corresponding to the tree structure E d . 
A possible drawback of the mixture of tree copula is that its

raphical model cannot be straightforwardly identified. See Meil ̆a

nd Jordan (20 0 0) for more details. 

.4. Distribution of the standardised residuals 

In our AR-GARCH models we consider two alternative copula-

ased distributions for the vectors of standardised residuals.
ccording to the first one, we assume that for any fixed t the

ependence structure among the standardised residuals is given

y a tree copula distribution with unknown underlying structure

. Therefore, the pdf of the vector Z t is given by

f Z t (z 1 ,t , . . . , z N,t | θ, E ) =
∏ 

(l,m ) ∈E
c θl,m 

(
F νl 

(z l,t ) , F νm 
(z m,t ) 

) N ∏
k =1

f νk 
(z k,t ) ,

(3) 

here θ is the collection of all the copula parameters θ l , m 

with

(l, m ) ∈ E, F νk 
is the marginal cumulative distribution function

ith parameter νk and f νk 
the corresponding density. In the

econd model, we represent the joint density of the standardised

esiduals via a mixture of tree copulas, i.e. 

f Z t (z 1 ,t , . . . , z N,t | w , E , �)

= 

D ∑ 

d=1

w d 

∏ 

(l,m ) ∈E d 
c 
θ (d) 

l,m

(
F νl 

(z l,t ) , F νm 
(z m,t ) 

) N ∏
k =1

f νk 
(z k,t ) , 

here w = (w 1 , . . . , w D ) , E = {E 1 , . . . , E D } , � = { θ1 , . . . , θD } , θd

enoting the collection of the copula parameters θ (d) 
l,m 

for the d th

omponent. 

The assumption of normality for the marginal distribution func-

ion F νk 
of the standardised residuals may be not adequate due to

ossible heavy tails and asymmetry in the data. Hence, in addition

o the case of Normal residuals, we also consider the case in which

he standardised residuals follow a Skew Student- t distribution of

arameters νk = (λk , ηk ) . 

Following Hansen (1994) , the Skew- t density with parameters λ
skewness) and η (degree of freedom) is defined as 

f λ,η(z) = 

⎧⎪⎨ 

⎪ ⎩ 

b c 

(
1 + 

1 
η−2 

(
bz+ a
1 −λ

)2 )−(η+1) / 2

z < −a/b 

b c 

(
1 + 

1 
η−2

(
bz+ a
1+ λ

)2 )−(η+1) / 2

z ≥ −a/b 

ith η > 2 and −1 < λ < 1 . The constants a , b and c

re given by a = 4 λc 

(
η−2
η−1

)
, b 2 = 1 + 3 λ2 − a 2 , and c =(

η+1
2

)
/
√ 

π(η − 2)	(η/ 2) . 

Hansen (1994) shows that this is a proper density function with

ean 0 and unit variance. Furthermore, if λ = 0 the Skew- t is re-

uced to the standard Student- t distribution. If λ> 0 ( λ< 0), then

his function is positively (negatively) skewed. 

.5. Linking copulas 

We assume that every bivariate copula density c θl,m 
belongs to

 specific family depending on a parameter θ l , m 

. We focus on two

ell-known family of copulas for tail dependence, Gumbel and

layton, and their rotations (Double Gumbel and Double Clayton).

hese copulas have been widely used in applied analyses to study

ail dependence between variables of interest. More sophisticated

amilies of copulas for tail dependence can be effectively approx-

mated for practical purposes by Gumbel and Clayton ones, see

emarta and McNeil (2005) . 

Double Gumbel and Double Clayton copulas are based

n the rotations of standard Gumbel and Clayton cop-

la family. The Gumbel copula is given by C G (u, v ) =
xp 

{
−
[ 
( − log u ) 

φ + ( − log v ) φ
] 1 /φ}

, where φ is a parameter 

ssuming value in [1, ∞ ). The Clayton copula is defined as

 

C (u, v ) = 

[
max 

(
u −φ + v −φ − 1 , 0

)]−1 /φ
, where φ ∈ (0, ∞ ). In

rder to define Double Clayton and Double Gumbel copulas,

e first reparameterise the copulas defined above in term of

endall’s tau measure; τ = (φ − 1) /φ for the Gumbel copula,

hile τ = φ/ ( 2 + φ) in the case of Clayton copula. 
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1 X has translated Beta distribution on (−1 , 1) with parameters ( α, β), if X = 

2 Y − 1 where Y has Beta distribution with parameters ( α, β). 
Subsequently, rotations are used to obtain the Double Clayton

and Double Gumbel copulas. If c G (u, v ; τ ) is the Gumbel copula

density reparameterised by the Kendall’s tau, the Double Gumbel

copula of first kind of parameter τ is defined by 

c DG 1 (u, v ; τ ) = 

{
c G (u, v ; τ ) for τ > 0 

c G (1 − u, v ;−τ ) for τ < 0 , 

while the Double Gumbel copula of second kind is 

c DG 2 (u, v ; τ ) = 

{
c G (1 − u, 1 − v ; τ ) for τ > 0 

c G ( u, 1 − v ;−τ ) for τ < 0 . 

In an analogous way we define the Double Clayton of first and

second kind, DC 1 and DC 2 , in term of rotations and Kendall’s tau.

Therefore, any linking copula c θl,m 
is completely described by the

parameter θl,m 

= (τl,m 

, ζl,m 

) taking values in (−1 , 1) × H, where

H = { DG 1 , DG 2 , DC 1 , DC 2 } .

3. Methodology

In this section, we illustrate how to perform Bayesian in-

ference for AR-GARCH copula models. We denote with � the

collection of all the parameters describing the copula structures

(for instance in the case of the simple tree copula distribution

one has � = { θ, E} ), with ν = (ν1 , . . . , νN ) the collection of the

parameters of the marginal distributions and with A the collection

of the parameters of the marginal time series models. In a fully

Bayesian approach, if π ( · ) is the prior density on the parameters

( �, ν, A ) and L (O T | �, ν, A ) is the likelihood of the observa-

tions O T = 

{(
x 1 ,t , . . . , x N,t 

)
, t = 1 , . . . , T 

}
, we obtain the posterior

density using Bayes’ theorem as 

π(�, ν, A |O T ) ∝ L (O T | �, ν, A ) π(�, ν, A ) .

In principle, from the posterior distribution one can extract all the

information needed for inference. In particular, one can compute

posterior quantities, such as the mean or mode, as estimators for

the parameters and evaluate predictive distributions for forecast-

ing. Often the posterior distribution does not have a closed-form

analytical expression. One possibility is to use MCMC methods

to produce samples from a Markov chain having as stationary

distribution the posterior of the model parameters, see e.g. Robert

and Casella (2004) . In the fully Bayesian approach, even MCMC

algorithms can be inefficient and computationally demanding due

to the structure of the likelihood. 

In order to reduce the computational complexity of the fully

Bayesian approach, in this paper we apply a combination of IFM

and Bayesian procedures (shortly B-IFM), see e.g. Min and Czado

(2010) and Dalla Valle, De Giuli, Tarantola, and Manelli (2016) .

Following Min and Czado (2010) and Czado and Min (2011) , in a

first step we use a frequentist approach to estimate the parame-

ters A of the univariate marginal AR-GARCH models. This is done

via the forward-backward approach implemented in the package

rugarch of R . Subsequently, estimates of copula parameters � and

of marginals parameters ν (given the estimated parameters A ) are

obtained in a Bayesian way. The posterior distributions for the

copula parameters � and for the marginals parameters ν (given

the estimated parameters A ) can be obtained by 

π(�, ν| A , O T ) ∝ L (O T | �, ν, A ) π(�, ν) .

Although such a two steps procedure may lead to an underes-

timate of the uncertainty in the other parameters, in practice one

usually does not see any significative difference between parame-

ters estimated with a fully Bayesian approach and those estimated

with this two steps approach. In Section 4 we compare the results

obtained via our B-IFM procedures to the ones deriving from a
ully Bayesian approach. Further comparisons are presented in the

upplementary Material. 

In the following subsections, we describe the choice of the prior

n the B-IFM setting for AR-GARCH copula models with Skew- t

arginals. The case of AR copula models and/or Normal marginals,

s well as the fully Bayesian setting, can be obtained via straight-

orward modifications. More details are provided in Section 4 and

n the Supplementary Material. It is important to observe that the

ayesian models that will be described in Sections 3.1 –3.3 , can be

asily adapted to employ other types of copulas and/or marginal

istributions. 

.1. Bayesian tree copula model 

In this model, we assume that the standardised residuals have

 tree copula distribution (3) , where each c θl,m 
is a Double Cop-

la with parameter θ l , m 

, as described in Section 2.5 . We suppose

hat the standardised residuals follow the univariate Hansen Skew-

 pdfs with parameters νk = (λk , ηk ) described in Section 2.4 . 

We assign the following independent prior distributions 

λk ∼ Beta (−1 , 1) (αk , βk ) 

ηk ∼ Exp (�k ) 

l,m 

= (τl,m 

, ζl,m 

) ∼ Beta (−1 , 1) (δl,m 

, γl,m 

) × Unif H 

(·) 
E ∼ U(·) , (4)

or k = 1 , . . . , N and (l, m ) ∈ E . We denote with π( ν, θ, E ) the cor-

esponding joint prior density. In (4) , Beta (−1 , 1) (α, β) indicates a

ranslated Beta distribution on (−1 , 1) of parameters ( α, β) 1 and

nif H 

(·) is a uniform distribution on H = { DG 1 , DG 2 , DC 1 , DC 2 } . For

he prior on the degrees of freedom, following Geweke (1993) , we

onsider an exponential distribution Exp( �) with parameter �. In

he absence of specific prior information on the dependence struc-

ure, we use uniform prior on E N . Note that this prior is a spe-

ial case of the default decomposable prior proposed by Meil ̆a and

aakkola (2006) . The joint posterior density is 

( θ, ν, E|O T , A ) ∝
T ∏ 

t=1 

∏ 

(l,m ) ∈E
c θl,m 

(
F νl 

(x l,t − ∑ p
i =1 

a l,i x l,t−i 

σl,t 

)
,

F νm 

(x m,t − ∑ p
i =1 

a m,i x m,t−i 

σm,t 

))

×
N ∏ 

k =1

1 

σk,t 

f νk

(x k,t − ∑ p
i =1 

a k,i x k,t−i 

σk,t 

)
π( θ, ν, E ) , 

here θ is the collection of all the copula parameters θ l , m 

. 

Since the previous posterior density cannot be obtained in

losed form, we rely on a Metropolis within Gibbs algorithm, based

n the works of Gruber and Czado (2014, 2015) , Silva and Gramcy

2009) . For more details, see the Supplementary Material. 

.2. Bayesian tree copula mixture model 

We now consider the case in which the joint distribution of the

tandardised residuals is represented via a finite mixture of D tree

opulas with double linking copulas and Hansen Skew- t margins.

he pdf of the standardised residuals is equal to 

 t 
(z 1 ,t , . . . , z N,t ) 

= 

D ∑ 

d=1

w d 

∏ 

(l,m ) ∈E d 
c 
θ (d) 

l,m

(
F νl 

(z l,t ) , F νm 
(z m,t ) 

) N ∏
k =1

f νk 
(z k,t ) . 
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n the previous equation, w = (w 1 , . . . , w D ) is the vector of weights

nd E d and θd = { θ (d) 
l,m 

} are the tree copula structure and the vector

f copula parameters for the d th component, respectively. Finally,

e set E = {E 1 , . . . , E D } and � = { θ1 , . . . , θD } .
We assign the following independent prior distributions to the

arameters 

w ∼ Dir(ψ 1 , . . . , ψ D ) 

λk ∼ Beta (−1 , 1) (αk , βk ) 

ηk ∼ Exp (�k ) 

(d) 
l,m 

= (τ (d) 
l,m 

, ζ (d) 
l,m 

) ∼ Beta (−1 , 1) (δl,m 

, γl,m 

) × Unif H 

(·) 
E d ∼ U(·) (5) 

or k = 1 , . . . , N, d = 1 , . . . , D and we denote with π the corre-

ponding prior density. In the above Dir(ψ 1 , . . . , ψ D ) is a Dirich-

et distribution with density proportional to 
∏ D −1 

d=1 
w 

ψ d −1 

d
(1 −

 D −1 
j=1 w j ) , with w D = 1 − ∑ D −1 

d=1 
w d . 

In order to sample from the posterior distribution of the finite

ixture of tree copulas we adopt the data augmentation procedure

y Van Dyk and Meng (2001) . The details of the resulting Metropo-

is within Gibbs algorithm are described in the Supplementary

aterial. 

.3. DP-tree copula model 

As an extension of the tree copula mixture model described in

he previous subsection, we propose a Bayesian nonparametric ap-

roach based on a Dirichlet process (DP) mixture model. In this

ay we do not need to fix a priori the number of the mixture

omponents. 

The Dirichlet process DP ( G 0 , ψ) is a measure on measures. It

as two parameters, a scaling parameter ψ > 0 and a base prob-

bility measure G 0 . It was first formalised by Ferguson (1973) for

eneral Bayesian statistical modelling, as a prior over distributions

ith wide support yet tractable posteriors. It is currently one of

he most popular Bayesian nonparametric model. The so-called

tick breaking construction, Sethuraman (1994) , shows that if G is

 draw from a DP ( G 0 , ψ), then G (·) = 

∑ 

d≥1 w d δ�d 
(·) where the

toms �d are i.i.d. random variables with distribution G 0 , δ�d 
is

 probability measure concentrated on �d and the weights w d 

re generated using the stick-breaking construction. More precisely,

 1 = v 1 and w d = v d 
∏ 

l<d (1 − v l ) with v d i.i.d. random variables

ith Beta(1, ψ) distribution. 

The DP mixture model can be derived as the limit of a finite

ixture model where the number of the components tends to in-

nity, see e.g. Ishwaran and Zarepour (2002) , and allows for the

nclusion of the the uncertainty about the number of components. 

In the DP-Tree Copula Model we assume that the pdf of the

tandardised residuals at time t has the form 

f Z t (z 1 ,t , . . . , z N,t ) = 

∫ ∏
(l,m ) ∈E

c θl,m 

(
F νl 

(z l,t ) , F νm 
(z m,t ) 

)

×
N ∏ 

k =1

f νk 
(z k,t ) G (d θdE ) , 

here G ∼ DP ( ψ , G 0 ). By the stick breaking representation we

btain 

 t 
(z 1 ,t , . . . , z N,t ) 

= 

∑ 

d≥1

w d 

∏ 

(l,m ) ∈E d 
c 
θ (d) 

l,m

(
F νl 

(z l,t ) , F νm 
(z m,t ) 

) N ∏
k =1

f νk 
(z k,t ) . 

he base measure G 0 decomposes into the product of a prior on θd 

nd a prior on E d . We also assume that the concentration parame-

er ψ of the DP and the parameters ν are unknown. 
Summarising, in the DP-Tree Copula model the prior π is de-

cribed by 

λk ∼ Beta (−1 , 1) (αk , βk ) 

ηk ∼ Exp (�k ) 

v d ∼ Beta (1 , ψ)

( θd , E d ) ∼ G 0 (·) 
ψ ∼ Gamma (a ψ 

, b ψ 

) (6) 

or k = 1 , . . . , N and d ≥ 1. In (6) , Gamma ( a , b ) denotes a Gamma

ensity with shape parameter a and scale parameter b . Moreover,

e assume that G 0 is equal to the product between a prior on θd 

ith density p 0 and a uniform prior on the tree structure E d . Since

d = { θ (d) 
l,m 

} , we set p 0 = 

∏ 

(l,m ) Beta (−1 , 1) (δl,m 

, γl,m 

) .

In order to sample from the posterior distribution we adopt a

ariant of the slice sampling MCMC algorithm, proposed by Walker

2007) and Kalli, Griffin, and Walker (2011) . See the Supplementary

aterial. 

.4. Model comparison 

A commonly used criterion for model comparison is the De-

iance Information Criterion ( DIC ) introduced by Spiegelhalter,

est, Carlin, and van der Linde (2002) . Since DIC cannot be ap-

lied to mixture models, we rely on DIC 3 , a variant of the original

riterion, see Richardson (2002) and Celeux, Forbes, Robert, and

itterington (2006) . Given a density function f ( x 1: T | ϕ) depending

n a set of parameters ϕ, the DIC is defined as 

IC = −4 E ϕ 

[
log f ( x 1: T | ϕ ) | x 1: T 

]
+ 2 log f ( x 1: T | ̃  ϕ ) , (7)

here ˜ ϕ is a posterior estimate of ϕ (a common choice is the pos-

erior mean) and x 1: T = ( x 1 , . . . , x T ) is the set of observations up

o time T . 

In the mixture model the set of parameters ϕ is not always

dentifiable, and consequently we cannot obtain 

˜ ϕ straightfor-

ardly. To overcome this problem, one can replace the term de-

ending on 

˜ ϕ in Eq. (7) with a function invariant under per-

utation. A natural choice is to consider the posterior predictive

 ϕ 

[
f ( x 1: T | ϕ ) | x 1: T

]
, obtaining in this way the DIC 3 as 

IC 3 = −4 E ϕ 

[
log f ( x 1: T | ϕ ) | x 1: T 

]
+ 2 log 

[ 
E ϕ 

[
f ( x 1: T | ϕ ) | x 1: T

]]
.

lthough these measures present some limitations (see the discus-

ion of the paper of Spiegelhalter, Best, Carlin, and van der Linde

2002) , they are simple to calculate using MCMC and therefore, de-

pite the criticisms, widely used in the Literature. 

As an alternative measure for model comparison, following the

conometric Bayesian literature, we consider the cumulative log-

core, see e.g. Gneiting and Raftery (2007) . It is defined as 

og-score = 

τ1 ∑ 

t= τ0 

log 

{
E ϕ 

[
f ( x t+1 | x 1: t , ϕ ) | x 1: t

]}
, (8)

here x 1: t = ( x 1 , . . . , x t ) is the set of observations up to time t , ϕ
s the set of parameters, f ( x t+1 | x 1: t , ϕ ) is the conditional likelihood

nd E ϕ 

[
f ( x t+1 | x 1: t , ϕ ) | x 1: t

]
is the posterior predictive distribution.

igher values of the log-score correspond to better fits. 

.5. Dependence analysis 

For the tree copula model of Section 3.1 the dependence struc-

ure between the standardised residuals is directly encoded by the

nderling graphical structure E . A simple estimate of the unknown

ree structure E is the maximum a posteriori probability (MAP)

ree structure defined as E = argmax π(E|O ) . In addition to
MAP E T 
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the MAP tree one can evaluate the values of the Kendall’s tau be-

tween pairs of standardised residuals. As an estimate of this mea-

sure we compute its predictive posterior mean 

ˆ τi, j = E [ τ (z i,T +1 , z j,T +1 | �, ν) |O T ]

= 

∫ 
τ (z i,T +1 , z j,T +1 | �, ν, A ) π(d �d ν|O T , A ) ,

where τ (z i,T +1 , z j,T +1 | �, ν, A ) is the Kendall’s tau between the

variables z i,T +1 and z j,T +1 under the AR-GARCH copula model

given the unknown parameters �, ν and the marginally esti-

mated parameters A . For the models described in Sections 3.1 –3.3 ,

numerical approximations of the previous quantities can be easily

obtained from the output of the corresponding MCMC algorithm. 

For the mixture of tree copula models, in order to obtain a rep-

resentative graphical structure, we apply the Minimum Spanning

Tree (MST) approach. This procedure allows us to obtain a rep-

resentative tree from the weighted graph based on Kendall’s tau,

see e.g. Wang and Xie (2016) . More precisely, we consider a com-

plete weighted graph in which the weight of each edge ( i , j ) is

the absolute value of the (estimated) Kendall’s tau between the

variables i and j , i.e. | ̂  τi, j | . The Minimum Spanning Tree is the

spanning tree that maximises the sum of edge weights or, equiv-

alently, it is the spanning tree E ∗ such that 
∑ 

(i, j) ∈E ∗ (1 − | ̂  τi, j | ) =
min E 

∑ 

(i, j) ∈E (1 − | ̂  τi, j | ) , where the minimum is taken over the set

of all possible spanning trees. 

It is worth noticing that there is no direct correspondence be-

tween missing edges in the MST and conditional independences

between the variables. In particular there is no connection be-

tween this tree and a possible Markov Tree structure associated

to the joint distribution of the variables. 

3.6. Risk measures 

Different risk measures are usually used to analyse and quan-

tify the tail risk exposure, see e.g. Klugman, Panjer, and Willmot

(20 08) and Szegö (20 05) . In order to evaluate the market risk of an

energy portfolio we focus on two well-known quantile risk mea-

sures: Value-at-Risk ( VaR ) and Expected Shortfall ( ES ). 

Following Artzner, Delbaen, Eber, and Heath (1999) , the VaR at

given probability level α is defined as 

 aR α(V ) = − inf { v : F V (v ) ≥ α} ,
where F V is the cdf of the net worth V of a portfolio and the inf

or infimum of a set of numbers is its greatest lower bound. Typi-

cally α is set equal to 0.01 or 0.05, corresponding to the so-called

99% and 95% VaR . Equivalently, VaR can be defined in terms of

the distribution of the losses; the 99% VaR is the 0.99 quantile

of the loss distribution, corresponding to minus the 0.01 quantile

of the net worth distributions. The VaR is one of the most com-

monly used risk measure and is easy to estimate. The 99% VaR

for a horizon of two weeks is acceptable measure of risk accord-

ing to the Basel Committee on Banking and Supervision of Banks

for International Settlement ( Basel Committee on Banking Super-

vision (1995) and following amendments). Nevertheless, many au-

thors have criticised its adequacy as a measure of risk for differ-

ent reasons, see e.g. Acerbi and Tasche (2002) . The main problems

are the following. First of all, it considers only a single quantile

of the portfolio distribution, so that it does not provide any in-

formation about the potential size of loss that exceeds its value.

Secondly, it does not satisfy the sub-additivity property and, con-

sequently, it may underestimate the portfolio risk. A measure that

overcomes the previous problems is the Expected Shortfall ( ES ), see

eg Artzner, Delbaen, Eber, and Heath (1999) . For a significance level

α, the ES is (minus) the conditional expectation of V , given that V

is below −V aR α(V ) , i.e. 

ES α = −E [ V | V < −V aR α(V )] .
S is a coherent risk measure and, in contrast to VaR , is sensi-

ive to the severity of losses beyond VaR . For a comprehensive

nd critical comparison between VaR and ES , see e.g. Embrechts,

uccetti, Rüschendorf, Wang, and Beleraj (2014) and Emmer, Kratz,

nd Tasche (2015) . 

Using a Bayesian approach, given the data observed until time

 , the k -step-ahead VaR at level α, i.e. the V aR α(V T + k ) , can be esti-

ated using the α-quantile of the k -step-ahead (posterior) predic-

ive distribution of the net worth. This posterior predictive distri-

ution at time T + k is given by 

 V T+ k (v |O T ) := P { V T + k ≤ v |O T }
= 

∫ 
P { V T + k ≤ v |O T , �, ν} π(d �d ν|O T ) .

n the previous equation, P { V T + k ≤ v |O T , �, ν} is the predictive dis-

ribution of V T + k given the observations O T and the unknown pa-

ameters �, ν, and π(d �d ν|O T ) is the posterior distribution of the

arameters given the observations O T . Hence, V aR α(V T + k ) , is esti-

ated by 

 aR α,T + k = − inf { v : F V T+ k (v |O T ) ≥ α}
nd the k step ahead ES at level α is estimated by 

S α,T + k = −E [ V T + k | V T + k < −V aR α,T + k , O T ] .

The previous quantities can be easily approximated using the

CMC output, see e.g. Osiewalski and Pajor (2010) . 

. Empirical analysis

.1. Data description 

We apply the proposed models to the analysis of the Italian

nd German energy markets. We consider the following variables:

ower (Italy/German), Brent, TTF (natural gas price deriving from

ransactions in virtual trading points in the Netherlands), CO 2 

price to pay for the emission of carbon dioxide into the atmo-

phere) and API (index representing a reference price benchmark

or coal imported into North-West Europe). For the Italian market

e also take into account PSV (natural gas price deriving from

ransactions in virtual trading points in Italy). The data are daily

bservations of one-year forward contracts. Power prices are

btained from the European Energy Exchange (EEX) 2 , the leading

nergy exchange in Central Europe, while the remaining data are

btained from Reuters 3 ; all values are expressed in Euros. Due to

he intrinsic nature of these contracts, the dependence structure

mong the considered variables can differ significantly from one

ear to another. Since our model does not take into account

hanges of regime, in our analysis we focus on a single year at

he time. In the following we present a detailed analysis of the

ehaviour of Italian and German markets from January 2014 to

ecember 2014. For completeness of the analysis in Section 4.3 we

resent a multi-year analysis of the Italian market. As described in

ection 2 , in our analysis we work with the monthly logarithmic

eturn rates X t,i = log 

{ 

S t+20 ,i / S t,i 

} 

where S t , i is the price at each

ay t of commodity i and t assumes values in the set of all working

ays. Descriptive measures for the considered commodities and

or the corresponding logarithmic returns are reported in Table 1 . 

.2. Prior settings and models comparison 

In order to describe the marginal time series, we considered a

ariety of AR-GARCH models of different orders with Normal or

https://www.eex.com
http://www.reuters.com


Table 1

Descriptive statistics for the examined commodities (daily prices) and the corre- 

sponding (monthly) logarithmic returns (from January 2014 to December 2014).

Commodities

Power Power Brent API TTF PSV CO 2
Italy Germany

Mean 53.71 35.07 72.84 58.82 25.77 27.47 6.095

Std 1.69 0.82 6.59 1.63 0.92 0.86 0.63

Min 49.80 33.77 50.67 54.68 23.05 24.81 4.48

Max 58.45 36.90 79.66 63.85 27.81 29.10 7.42

Kurt 3.67 2.31 6.94 2.43 2.89 2.70 2.32

Skew 0.86 0.64 −1.97 −0.55 −0.20 −0.38 −0.13

Logarithmic return rates

Power Power Brent API TTF PSV CO 2
Italy Germany

Mean −0.34 −0.13 −0.37 −0.25 −0.58 0.19 −0.28

Std 0.022 0.023 0.028 0.030 0.027 0.131 0.062

Min −3.18 −3.07 −2.84 −2.60 −2.59 −3.74 −3.83

Max 2.02 2.15 2.42 2.61 1.47 2.76 0.78

Kurt 3.46 2.99 3.27 3.44 2.08 4.90 6.20

Skew −0.32 −0.17 0.22 0.20 −0.080 −0.59 −1.80
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Fig. 2. Out of sample cumulative log-score (on the last 50 observations) for the

DP-tree models: Italian market (first row) and German market (second row).
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kew- t marginal distributions. Following a frequentist approach we

elected the model and the order that best fits the data through

he AIC criterion. Table 2 lists the AIC values for a set of represen-

ative cases. 

We note that none of the models has the lowest AIC value

or all marginals. On the other hand, we observe that the GARCH

odel shows the worst fit and it will not be further investigated.

e select AR(3)-GARCH(1,1) and AR(3) models that show a good

t for a high number of marginal series. 

In the following, we apply the Bayesian models described in

ections 3.1 –3.3 : the tree copula model (TCM), the finite mixture

f tree copulas model (Mix-TCM), and the DP-tree copula model

DP-TCM). In addition to the Skew- t margins case, for the sake of

omparison, we also consider standard Normal marginal distribu-

ions. If an AR model is examined, we include in the parameters

ist also the precision p k = 1 /σ 2 
k 
, see (1) . This means that we as-

ume νk = (λk , ηk , p k ) for Skew- t margins and νk = p k for Normal

argins. Finally, for both cases we assume a standard Gamma prior

or p k . 

For the prior distributions we consider the following hyper-

arameters values. We choose (δl,m 

, γl,m 

) = (1 , 1) , i.e. a uniform

rior for each θ l , m 

. In the finite mixture models we use a sym-

etric Dirichlet prior with hyperparameters equal to 10 for the

eights w . In DP-tree copula model the hyperparameters of the

amma prior on ψ are (a ψ 

, b ψ 

) = (16 , 0 . 25) . In case of marginal

kew- t distribution we consider a translated Beta prior with pa-

ameters (1, 1) on λk (skewness parameter) and an Exponential

rior on ηk (degree of freedom) with mean 10. On the parame-

ers precision p k we assign a Gamma prior with parameters (1, 1).

ensitivity analysis shows that the choice of the prior settings does

ot affect significantly the posterior estimates. The DIC 3 is slightly

ensitive to the choice of the hyperparameters for the prior on ψ .

ence we tuned them to get the best result in term of DIC 3 . 

In Table 3 we compare the alternative models in terms of DIC 3 .

he DP tree model with Skew- t margins shows the best results

or both the Italian and the German markets. Moreover, the mod-

ls with Skew- t margins are always better than the corresponding

nes with Normal margins. Log-scores, computed out of sample on

he last 50 observations and in sample on the last 200 observa-

ions, confirm these findings. In Fig. 2 , we report the comparison

mong the out of sample cumulative log-score obtained with the

P-tree models applied to the AR(3)-GARCH(1,1) and AR(3) esti-

ated standardised residuals for each domestic market. 
With regard to the marginal distribution of the standardised

esiduals, we computed the posterior mean and 95% credible in-

erval for the parameters ( λ, η) of the Skew- t . Table 4 shows the

esults for the DP-TCM. One can observe that the estimates of the

kewness parameters λk are very close to zero for all standardised

esiduals. The 0.95 credible intervals suggest that there is poste-

ior support for zero for all commodities, although the ones asso-

iated with CO 2 and Brent have zero very close to one of the end

oints. On the basis of the posterior means of λk , one can sup-

ose that the standardised residuals of the CO 2 series are slightly

ositively skewed, while Brent’s standardised residuals are slightly

egatively skewed. As far as the estimated degrees of freedom is

oncerned, the tails of the API standardised residuals are the most

lose to Normal (with the estimates of η between 44 and 49 in the

R copula models and between 17 and 18 in the AR-GARCH cop-

la models). For all the other commodities the estimated degrees

f freedom range between 4 and 14, supporting the hypothesis of

eavy tails. 

As discussed in Section 3.3 , using the DP-tree copula models

ne can also estimate the posterior distribution of the number of

lusters. With the AR(3)-GARCH(1,1) DP-tree the posterior mode of

he number of clusters is 6 for the Italian market and 8 for the

erman market. We have similar results with the AR(3) DP-tree

opula model for which the posterior mode of the number of clus-

ers is 5 for the Italian and 8 for the German one. The posterior

istograms of the number of clusters are reported in Figs. S5 and

6 in the Supplementary Material. 

.3. Dependence structure analysis 

In this subsection we study the dependence between the com-

odities in each domestic market. We start by considering the tree



Table 2

AIC values for representative alternative models for the marginal series.

PowIT PowDE TTF PSV API CO 2 Brent

AR(2)-GARCH(2,2) Norm 140 131 312 263 67 75 −147

AR(2)-GARCH(2,2) Skew- t 112 132 299 250 69 73 −147

AR(3)-GARCH(1,1) Norm 141 131 307 255 63 75 −147

AR(3)-GARCH(1,1) Skew- t 112 132 293 243 66 67 −148

AR(3) Norm 144 134 303 252 60 144 −73

AR(3) Skew- t 118 134 290 240 64 96 −107

AR(2) Norm 142 132 304 257 60 140 −75

AR(2) Skew- t 115 132 291 245 63 94 −110

GARCH(1,1) Norm 469 498 517 510 532 390 218

GARCH(1,1) Skew- t 449 491 519 504 483 369 204

Fig. 3. AR(3)-GARCH(1,1) TCM with Skew- t margins: MAP tree structure for the Italian market (left) and German market (right). The posterior mean of the Kendall’s tau

(given the MAP tree structure) is reported on each edge.

Table 3

DIC 3 values for the alternative models.

Italy Germany

Norm Skew- t Norm Skew- t

AR(3) TCM 654 412 655 365

AR(3) Mix-TCM 2 Comp. 624 367 645 367

AR(3) Mix-TCM 5 Comp. 638 373 656 376

AR(3) DP-TCM 564 341 625 354

AR(3)-GARCH(1,1) TCM 235 217 291 273

AR(3)-GARCH(1,1)Mix-TCM 2 Comp. 235 216 287 276

AR(3)-GARCH(1,1)Mix-TCM 5 Comp. 237 237 291 287

AR(3)-GARCH(1,1) DP-TCM 223 207 281 270
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copula model with Skew- t margins described in Section 3.1 applied

to the estimated standardised residuals of the AR(3)-GARCH(1,1)

and of the AR(3) models. The posterior distribution on tree
Table 4

Posterior mean and 95% credible interval (CI) for the parameters

Market AR(3)-GARCH(1,1) marginal

η 95% CI λ 95%CI

Italy PowIT 4.69 [3.31,7.29] 0.03 [ −0.12

PSV 7.81 [4.49,15.02] 0.05 [ −0.0

TTF 4.82 [3.39,7.65] 0.04 [ −0.0

API 17.7 [9.1,27.9] −0.06 [ −0.2

CO 2 4.71 [3.43,7.42] 0.12 [ −0.0

Brent 11.5 [6.33,19.32] −0.16 [ −0.3

German PowDE 13.58 [9.70,27.2] 0.10 [ −0.0

TTF 4.54 [3.20,7.31] −0.03 [ −0.1,

API 18.6 [6.7,34.7] −0.05 [ −0.2

CO 2 4.38 [3.53,6.23] 0.12 [ −0.0

Brent 12.5 [6.33,18.9] −0.16 [ −0.2
tructures is quite flat and the probabilities of the MAP trees

anges between 0.08 and 0.22 (in the alternative models/markets).

s an example, in Fig. 3 we report the MAP structures obtained for

he AR(3)-GARCH(1,1) model for each domestic market, with pos-

erior probabilities equal to 0.22 and 0.13, respectively. In Fig. 5 we

isplay the corresponding results obtained with the AR(3) esti-

ated standardised residuals. In this case, the posterior probabili-

ies are 0.09 for the Italian market and 0.08 for the German mar-

et. 

Ranking the trees with respect to their posterior probabilities,

e find that the highest ranked trees share some interesting fea-

ures. In order to obtain a cumulative posterior probability at least

qual to 0.5, in the AR(3)-GARCH(1,1) model we need to consider

 structures for the Italian market and 8 structures for the Ger-

an one. In all these structures Brent is an end node. Moreover,

n the Italian case, Power Italy is always connected to TTF or CO 2 
 ( η, λ) obtained with the DP-TCM with Skew- t margins.

AR(3) marginal

η 95% CI λ 95%CI

,0.21] 6.4 [3.33,14.0] 0.03 [ −0.11,0.17]

8,0.20] 7.9 [4.24,13.3] −0.04 [ −0.27,0.13]

7,0.18] 7.8 [4.63,12.1] 0.03 [ −0.16,0.19]

2,0.10] 44.0 [25.7,64.0] −0.04 [ −0.21,0.11]

3,0.27] 4.11 [2.80,6.41] 0.136 [ −0.01,0.30]

3,0.01] 3.54 [2.25,5.91] −0.10 [ −0.24,0.04]

9,0.26] 12.28 [4.30,20.8] 0.06 [ −0.12,0.24]

0.13] 7.8 [3.35,15.3] −0.03 [ −0.19,0.11]

1,0.13] 49.1 [26.6,73.1] −0.04 [ −0.22,0.15]

1,0.30] 4.00 [2.84,6.11] 0.14 [0.01,0.30]

8,0.05] 3.90 [2.83,6.04] −0.09 [ −0.22,0.04]



Fig. 4. AR(3)-GARCH(1,1) TCM with Skew- t margins: weighted graph for the Italian market (left) and German market (right). The weights on each edge correspond to the

posterior probability that the same edge belongs to the ranked trees with at least 0.5 cumulative probability. The edges of the MST are reported in light blue. The (global)

posterior mean of the Kendall’s tau is reported within brackets on each edge. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

Fig. 5. AR(3) TCM with Skew- t margins: MAP tree structure for the Italian market (left) and German market (right). The posterior mean of the Kendall’s tau (given the MAP

tree structure) is reported on each edge.
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nd, in addition, the path PSV-TTF-API is always included. For the

erman market, in each of these structures we find the edge TTF-

PI and Power Germany is connected to TTF or CO 2 . In case of

R(3) estimated standardised residuals, we need to consider the

rst 8 ranked structures for the Italian market and the first 10

or the German market in order to obtain a cumulative posterior

robability at least equal to 0.5. Also in this case, for the Italian

arket we find the path PSV-TTF-API and Power Italy is connected

o CO 2 . In the German market there are always the edges TTF-

PI and Power Germany-CO 2 and Brent is an end node in both

arkets. 

The ranked trees are in line with some well-known characteris-

ics of the current energy markets. Indeed, in both markets, Brent

s always an end node and the value of the Kendall’s tau of the

orresponding edge is quite low confirming that the use of this

ommodity for energy production has drastically decreased in the

ast years. Moreover, as expected, the two gas nodes, TTF and PSV,

re always connected in the Italian market and present high val-

es of the Kendall’s tau. The commodity that impacts mostly on

he energy price is TTF, although also CO 2 plays an important role

n the market. This is consistent with the fact that TTF is one of

he main raw material used for energy production and the cost

f CO 2 permissions cannot be neglected in the analysis of energy
rice behaviour, see e.g. Marimoutou and Soury (2015) and refer-

nces therein. 

Starting from the ranked tree structures, we constructed a

raph with weights associated to each edge corresponding to the

osterior probability that the same edge belongs to the ranked

rees with at least 0.5 cumulative probability. Finally, we built the

orresponding MST by maximising the posterior probabilities. The

esults are reported in Figs. 4 and 6 . The edges defining the MST

re in light blue. The grey edges are those not included in the MST.

dges with weight < 0.02 are not depicted. We note that the MST

tructures are equal to the corresponding MAP trees, suggesting

hat the above discussed dependence paths are meaningful. 

Following Section 3.5 , we estimated pairwise Kendall’s tau be-

ween the standardised residuals by computing the correspond-

ng posterior mean for all the models, i.e. TCM, Mix-TCM and DP-

CM. The estimated values are then used to construct the weighted

raphs and the MST structures. In Figs. 7 and 8 we show the re-

ults for DP-TCM with Skew- t margins applied to the estimated

tandardised residuals of the AR(3)-GARCH(1,1) and AR(3). We can

bserve that some values of the Kendall’s tau are very small. This

s not surprising since we are dealing with the residuals of log-

eturns and not directly with prices of the commodities. In order

o check that these small values are not due to mis-specification



Fig. 6. AR(3) TCM with Skew- t margins: weighted graph for the Italian market (left) and German market (right). The weights on each edge correspond to the posterior

probability that the same edge belongs to the ranked trees with at least 0.5 cumulative probability. The edges of the MST are reported in light blue. The (global) posterior

mean of the Kendall’s tau is reported in brackets on each edge. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article)

Fig. 7. Kendall’s tau weighted graph for the AR(3)-GARCH(1,1) DP-TCM with Skew- t margins. Italian market (left) and German market (right). The absolute value of the

posterior mean of the Kendall’s tau between the adjacent nodes is reported on each edge. The edges corresponding to MST are in light blue. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Kendall’s tau weighted graph for the AR(3) DP-TCM with Skew- t margins Italian market (left) and German market (right). The absolute value of the posterior mean

of the Kendall’s tau between the adjacent nodes is reported on each edge. The edges corresponding to MST are in light blue (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.) .



Fig. 9. Kendall’s tau weighted graph for the AR(3)-GARCH(1,1) DP-TCM with Skew- t margins Italian market: 2013–2016. The absolute value of the posterior mean of the

Kendall’s tau between the adjacent nodes is reported on each edge. The edges corresponding to MST are reported in light blue. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

o  

e  

c  

o  

w  

s

 

a  

c  

t  

I  

m  

n  

i  

C  

v

 

y  

t  

f  

h  

I  

t  

G  

v  

a  

P  

o  

t  

a  

c  

T  

I  

t  

r

4

 

w  

m  

s  

w  

a  

q  

q  

−
n  

p  

o  

i  

A  

G  

C  

g  

I

f the linking copulas or to our estimation procedure, we also

stimated these quantities by frequentist approach obtaining

omparable results. Also a graphical comparison of the behaviour

f the predictive residuals (obtained with our Bayesian model)

ith respect to the residuals of a frequentist IFM model suggests

imilar conclusions. 

Comparing the MST structures for the DP-TCM models ( Figs. 7

nd 8 ) and the MAP trees for the TCM models ( Figs. 3 and 5 ) we

an note some similarities. For the German market the MST and

he MAP tree structures are the same. On the other hand, for the

talian market they differ by the edge connecting Brent to the re-

aining part of each tree. In all structures Brent is an end point

ode with different neighbour sets. More precisely, in the MAPs it

s adjacent to PSV, in the AR(3)-GARCH(1,1) MST it is connected to

O 2 and in the AR(3) MST is linked to API. All these edges present

ery low values of the estimated Kendall’s tau. 

We conclude this section with some results regarding a multi-

ear analysis of the Italian market. Italian energy contracts were

raded for the first time by EEX in 2014. Here, we examine data

rom the previous year 2013 up to December 2016. Data for 2013

ave been provided by traders of a leading Italian energy company.

n Fig. 9 we report, for each year, the weighted graph based on

he absolute values of the Kendall’s tau obtained with the AR(3)-

ARCH(1,1) DP-TCM. It is interesting to note that the estimated

alues of the pairwise Kendall’s tau increases for almost all vari-

bles from 2013 to 2016. More precisely, Kendall’s tau between

SV and TTF increases from 0.37 to 0.86, reflecting the reduction

f price differential between PSV and TTF from 2013 to 2016, see
he annual reports of Italian Regulatory Authority for Electricity

nd Gas ( http://www.autorita.energia.it ). An analogous behaviour

haracterises the dependence between API and Power Italy as well

TF/PSV and Power Italy. In contrast, Kendall’s tau between Power

taly and Brent does not present an increasing trend, ranging be-

ween 0.02 and 0.13. This can be possibly explained by the minor

ule of Brent in the energy production. 

.4. Energy market portfolio analysis 

In order to evaluate the market risk of an energy portfolio,

e compute the Bayesian predictive VaR and ES . For each do-

estic market, we consider a portfolio made of one power as-

et and the remaining examined commodities. In our analysis, we

ork in the perspective of an energy company that sells energy

nd buys the other commodities in order to produce it. Conse-

uently, in the portfolio composition, power has a positive weight,

 1 , while the remaining components should have negative weights,

q i , i = 2 , . . . , N. Hence, the portfolio value (corresponding to its

et worth) at time t is given by V t = q 1 S t, 1 −
∑ N 

i =2 q i S t,i . The com-

osition of each portfolio has been provided us by experts of one

f the major Italian energy company. More precisely, for the Ital-

an market we consider a portfolio made of Power Italy, TTF, PSV,

PI, CO 2 , Brent with weights [1, 0, 0.14, 0.28, 0.69, 0], while for the

erman one, we use a portfolio made of Power Germany, TTF, API,

O 2 , Brent with weights [1, 0.61, 0.27, 0.76, 0]. The weights are a

ood approximation to the real ones used by the energy company.

n the following we refer to this portfolio as the “realistic” one. 

http://www.autorita.energia.it


Table 5

MAEs between the out of sample forecasting portfolio (on the last 50 observations) and the historical portfolio.

“Realistic” portfolio Equally weighted portfolio

Italy Germany Italy Germany

Norm Skew- t Norm Skew- t Norm Skew- t Norm Skew- t

AR(3) TCM 0.182 0.190 0.210 0.202 0.154 0.160 0.168 0.179

AR(3) Mixt-TCM 0.179 0.189 0.209 0.200 0.153 0.159 0.167 0.179

AR(3) DP-TCM 0.178 0.188 0.210 0.201 0.153 0.160 0.168 0.178

AR(3)-GARCH(1,1) CTM 0.194 0.193 0.207 0.201 0.161 0.161 0.178 0.181

AR(3)-GARCH(1,1) Mix-TCM 0.193 0.192 0.206 0.200 0.160 0.161 0.177 0.180

AR(3)-GARCH(1,1) DP-TCM 0.193 0.190 0.205 0.198 0.159 0.160 0.176 0.180

Fig. 10. One day ahead predictive distributions of the Italian and German portfolio

values (15th December 2014).

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. One day ahead estimated Italian portfolio values (continuous black line)

compared with the true portfolio values (dotted black line), with 99% credible in- 

tervals (grey areas) and minus the 99% ES (blue line) under the AR(3)-GARCH(1,1)

DP-TCM with Skew- t margins. In sample (on the last 200 observations) first row,

out of sample (on the last 50 observations) second row. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)
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For completeness, we tested our methodology using also al-

ternative portfolio weights. Some results for an equally weighted

portfolio are discussed in the last part of this subsection. 

As described in Section 3.5 , one can simulate the portfolio pre-

dictive distribution at time T + 1 on the basis of the information

up to time T and, then, compute the related Bayesian predictive

VaR and ES . As an example, the predictive portfolio value distribu-

tion at time T + 1 ( T = 15th December 2014) for Italian/German

market for AR(3)-GARCH(1,1) and AR(3) DP-TCM with Skew- t and

Normal margins are shown in Fig. 10 . One can clearly note that the

portfolio value corresponding to the AR(3) DP-TCM has larger vari-

ance with respect to the analogous portfolio estimated with AR(3)-

GARCH(1,1) DP-TCM. In all the cases the portfolio distribution cor-
esponding to models with Skew- t margins are more peaked al-

hough they show heavier tails. 

We analysed the forecasting performance of our models us-

ng both in sample and an out of sample analysis for one day

head portfolio value estimation. For the out of sample portfo-

io we considered the last 50 observations and we estimated the

ortfolio by the output of the MCMC algorithm (10,0 0 0 iterations)

or each t = 174 , . . . , 224 . The estimated portfolios values are ob-

ained by taking the predictive mean of the portfolio value, i.e.
ˆ 
 t+1 = E [ V t+1 |O t ] . This value can be easily approximated by us-

ng the output of the MCMC. The results for the Italian and for

he German portfolio obtained with the AR(3)-GARCH(1,1) DP-TCM

odels with Skew- t margins are reported in Figs. 11 and 12 ,



Table 6

MAEs between the out of sample (on the last 50 observations) forecasting portfolio for the fully 
Bayesian AR(3) tree copula models and the historical portfolio.

“Realistic” portfolio Equally weighted portfolio

Italy Germany Italy Germany

Norm Skew- t Norm Skew- t Norm Skew- t Norm Skew- t

AR(3) TCM 0.179 0.181 0.208 0.200 0.155 0.159 0.171 0.178

AR(3) Mixt-TCM 0.178 0.178 0.208 0.198 0.155 0.159 0.170 0.177

AR(3) DP-TCM 0.174 0.176 0.205 0.195 0.153 0.158 0.169 0.176

Fig. 12. One day ahead estimated German portfolio values (continuous black line)

compared with the true portfolio values (dotted black line) with 99% credible in- 

tervals (grey areas) and minus the 99% ES (blue line) under the AR(3)-GARCH(1,1)

DP-TCM with Skew- t margins. In sample (on the last 200 observations) first row,

out of sample (on the last 50 observations) second row. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)
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espectively. The estimated portfolio values (continuous line) are

ompared with the true portfolio values (dotted line). The 99%

redible intervals of the estimated portfolio values are in grey and

inus the 99% ES is plotted with a blue line. Clearly, minus the

9% VaR coincides with the lower bound of the grey areas. Over-

ll, there is good agreement between the behaviours of predictive

ortfolios and the historical ones. In the out of sample case, the

rue values are always above minus the estimated 99% VaR. 

Finally, Table 5 reports the Mean Absolute Error (MAE) between

he out of sample forecasting portfolio and the historical portfolio,

hat is 

1 

τ1 − τ0 

τ1 ∑ 

t= τ0 

∣∣∣E[
V t+1 |O t 

]
− V t+1 

∣∣∣,
here τ0 = 174 and τ1 = 224 , corresponding to October 6, 2014

nd December 15, 2014. 

For the “realistic” portfolio the best performance in term of

AE is obtained by the AR(3)-DP-TCM with Normal margins for

he Italian portfolio and by AR(3)-GARCH(1,1)-DP-TCM with Skew- t

argins for the German portfolio. It should be noted that the MAEs

f the AR(3) models differ significantly from the corresponding

AEs for the AR(3)-GARCH(1,1) models in the Italian case, while in

he German portfolio exercise all the MAEs are very close. In sam-

le MAEs on 200 observations (see Table S13 in the Supplemen-

ary Material) show similar trends, in particular all the methods

ave similar MAEs when applied to the forecasting of the German

ortfolio. For this reason we computed the MAEs for other type

f portfolio weights. As an example, in Table 5 , we show the (out

f sample) estimates for an equally weighted portfolio (see Table

13 in Supplementary Materials for the in sample results). For this

ortfolio, the trends are similar for both the Italian and the Ger-

an market and the AR models show the best results in term of

AE (both in the in sample and in the out of sample experiments).

We conclude this subsection with a comparison of the previ-

us results with the ones obtained with a fully Bayesian approach

ith AR tree copula models. In the fully Bayesian case, in addition

o the priors (4) –(6) we also consider a Normal prior on the AR

arameters: 

k ∼ N p ( M k , �k ) 

here N p ( M , �) is a p -dimensional Normal distribution with

ean M and covariance matrix �. Table 6 reports the MAEs be-

ween the out of sample forecasting portfolio values and the his-

orical ones. It is worth noticing that the values are very similar

o the ones obtained with the B-IFM procedures (see Table 5 ), al-

hough for the “realistic” portfolio they are slightly better. Over-

ll, the improvement in the MAEs does not justify the additional

omputational work needed for a fully Bayesian estimation of the

roposed models. 

. Summary and concluding remarks

The aim of this paper was to propose a novel Bayesian method-

logy for multivariate dependence analysis in the energy market.

ur final goal was to study the connections between the main fac-

ors affecting ener gy price, and to provide efficient tools for port-

olio risk evaluations. 

We presented a Bayesian analysis of AR-GARCH copula models,

n which the joint distribution of the standardised residuals of a

anel of AR-GARCH time series is described via suitable tree copula

odels. Tree copulas are a particular type of R-vines, whose sim-

le underlying graphical structure allows for an efficient inferential

ngine. In addition, via the graphical representation of the model,

ependencies among the variables can be easily explained to non-

xperts. Nevertheless, in some cases the independence constraints

mplied by the tree structure can be too stringent. For this reason,

e also considered mixtures of tree copulas. Using this strategy

e preserved the relative low complexity of the tree copula struc-

ures, taking into account richer dependencies between the vari-

bles. We examined both the case in which the joint distribution
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of the standardised residuals is represented via a finite mixture of

tree copulas and by an infinite mixture. 

We applied our methodology to the analysis of two representa-

tive European markets, the Italian and German one. Our data are

daily observations of one-year forward contracts. Due to the na-

ture of the data, the dependence structure among variables can

differ significantly from one year to another. Hence, we focused

on a single year at the time. We presented a detailed analysis of

year 2014 for both markets, and we provided a multi-year analy-

sis of the Italian market from 2013 to 2016. We select this specific

time period to to investigate the effect of the entrance of Italy in

the EEX market in 2014. The estimated dependence structure are

in line with specific characteristics of the current energy market.

Bayesian predictive estimates of standard risk measures, i.e. VaR

and ES,  together with portfolio predictive distribution are easily

obtained from the MCMC output. 

Even if in our models we assumed that the marginal distri-

butions of the standardised residuals are Normal or Skew-t  and

the linking copulas are Double Clayton and/or Double Gumbel, the

methodology and the corresponding computational algorithms can

be easily adapted to employ other types of copulas and/or marginal

distributions. 
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