1512.06649v4 [cs.DS] 23 Jul 2019

arxXiv

FIXED-PARAMETER ALGORITHMS FOR RECTILINEAR
STEINER TREE AND RECTILINEAR TRAVELING
SALESMAN PROBLEM IN THE PLANE

Hadrien Cambazard and Nicolas Catusse*

Univ. Grenoble Alpes, G-SCOP, F-38000 Grenoble, France
CNRS, G-SCOP, F-38000 Grenoble, France
{hadrien.cambazard|nicolas.catusse}@grenoble-inp.fr

Abstract. Given a set P of n points with their pairwise distances, the traveling
salesman problem (TSP) asks for a shortest tour that visits each point exactly
once. A TSP instance is rectilinear when the points lie in the plane and the dis-
tance considered between two points is the [; distance. In this paper, a fixed-
parameter algorithm for the Rectilinear TSP is presented and relies on techniques
for solving TSP on bounded-treewidth graphs. It proves that the problem can be
solved in O (nh?h) where h < n denotes the number of horizontal lines contain-
ing the points of P. The same technique can be directly applied to the problem
of finding a shortest rectilinear Steiner tree that interconnects the points of P
providing a O (nh5h) time complexity. Both bounds improve over the best time
bounds known for these problems.

1 Introduction

Given a set P of n points with their pairwise distances, the Traveling Salesman Prob-
lem (TSP) asks for a shortest tour that visits each point exactly once. We consider the
Rectilinear instances of the TSP (RTSP), i.e. TSP instances where the points lie in the
plane and the distance between two points is the sum of the differences of their x- and
y-coordinates. This metric is commonly known as the /; distance, the Manhattan dis-
tance or the city-block metric. We are also interested in the rectilinear variant of the
minimum Steiner tree problem (RST). The RST problem is to find a shortest Steiner
tree that interconnects the points of P using vertical and horizontal lines. A number of
studies have considered the rectilinear Steiner tree in the past, motivated by the applica-
tions to wire printed circuits. Let h (resp. v) be the number of horizontal (resp. vertical)
straight lines that contain the points of P. Note that without loss of generality, we can
assume that i < v. We present fixed-parameter algorithms using h as a parameter for
RTSP and RST. The RTSP is expressed as a Steiner (also called Subset) TSP in a planar
grid-graph of pathwidth equal to h. Our approach is then based on standard techniques
for solving TSP and Steiner tree on bounded-treewidth graphs [1,2]. A number of ex-
isting results exploiting planarity or bounded treewidth/pathwidth can thus be applied

* Nicolas Catusse is partially supported by LabEx PERSY VAL-Lab (ANR-11-LABX-0025) and
a grant PEPS JCJC from CNRS, entitled OTARL

and will be reviewed in this introduction.

The contribution of this paper is a refined complexity analysis showing that RTSP
and RST can be solved respectively in time O (nh7") and O (nh5"). A specific struc-
ture called non-crossing partitions lies at the core of the complexity of problems that
involve a global connectivity constraint in planar graphs [3-5]. Moreover, the number
of such non-crossing partitions relates to Catalan numbers which have been used in the
past to establish complexity results.

The O (nh?h) and O (nh5h) runtimes improve over the bounds known from dedi-
cated approaches [6, 7], dynamic programming algorithms dedicated to weighted prob-
lems in planar graphs [4, 8] or the recent and more generic framework of [9]. The al-
gorithm proposed for RTSP generalizes the approaches designed for specific placement
of the points in the context of warehouses [10, 11]. The parameter is meaningful in a
number of routing applications and the resulting time complexity is low enough for the
algorithm to be used in practice as demonstrated by the experimental evaluation.

Firstly, the existing results about RTSP will be reviewed. The NP-completeness
proof by Itai, Papadimitriou, and Szwarcfiter [12] for the Euclidean TSP immediately
implies the NP-completeness of the following type of TSP: points are in R? and dis-
tances are measured according to a polyhedral norm. In particular, the TSP with Man-
hattan distances is NP-complete. A similar parameter to h has been used by Rote [13].
When the points of P lie on a small number h of parallel lines in the plane, Rote shows
that the Euclidean TSP problem can be solved with a dynamic programming approach
in time O(n"). Moreover, this algorithm can be applied with the /; metric. Note also
that a variant of the RTSP where the objective is to minimize the number of bends has
been widely studied and in particular using fixed-parameter tractability [14]. A related
case of the RTSP is considered by Ratliff and Rosenthal [10] to compute the short-
est order picking tour in a warehouse with rectangular layout. Warehouses are usually
designed with multiple parallel vertical aisles and multiple horizontal cross aisles. The
algorithm of [10] solves the problem when the warehouse does not have any cross aisles
(i.e. a case similar to h = 2) and Roodbergen and De Koster [11] extend this algorithm
to handle the case of one single cross aisle (i.e. a case similar to h = 3). Beyond the
RTSP, many results related to Euclidean or Subset/Steiner TSP are relevant to this paper.
The Polynomial-Time Approximation Scheme (PTAS) for the Euclidean TSP, proposed
by Arora [15], can be applied with any geometric norm, such as [, for p > 1 or other
Minkowski norms. It provides, for any ¢ > 1, a (1 + %)—approximation running in
time O(n(logn)®(©)). A number of subexponential exact algorithms of running time
20(Vnlog(n)) have been designed independently for the Euclidean TSP by taking ad-
vantage of planar separators [16]. A recent result inheriting from this line of research is
a 0(2°8594v™) for the TSP on planar graphs proposed by Dorn et al. [4] and exploiting
non-crossing partitions. Such partitions are at the heart of the present paper and have
been used already by Arora et al. [3] to achieve better approximation schemes. The link
between non-crossing partitions and the Catalan number has been investigated further
by Dorn et al. [5] when applying dynamic programming to H-minor-free graphs. A re-
cent parameterized algorithm was also proposed in [8] for the Subset TSP (also referred

to as Steiner TSP) on planar graphs with integer weights no greater than a constant W.
The problem is to find the shortest closed walk visiting all vertices of a subset of k
vertices. It is solved by [8] in (2\/@"9(’“) + W)n®M), Since we recast the RTSP as a
Steiner TSP in a graph of hv vertices where a subset of n of them must be visited, the
result of [8] yields a (2V™°9(") 1 W)(hv)®™) algorithm which is more general but
incomparable to the complexity proposed in the present paper.

The Steiner tree problem has been extensively studied and exact algorithms for the
rectilinear variant have been proposed. An exact approach for A = 2 is proposed by [17]
in 1977 and can be generalized for higher values of h. It can be shown that the resulting
algorithm have a time complexity of O(n16") (see [6]). The algorithm is implemented
by Ganley and Cohoon [18] but the high time complexity limits its applicability. A
second exact approach based on dynamic programming is later proposed by [6] with a
O(nh310") time complexity. Arora also proposed a PTAS for the Steiner tree problem
in his paper dedicated to TSP [15]. Similarly to TSP, a subexponential algorithm with a
20(Vnlog(n)) runtime has been recently designed [7].

It also worth mentioning the work of Bodlaender et al. [9] which addresses a wide
range of graph problems with bounded treewidth tw and a global connectivity property
such as the Hamiltonian Cycle, Steiner tree or Traveling Salesman problems. It was not
known for a long time how to improve the tw!®n®™) time complexity of the known
dynamic programming approaches taking advantage of a bounded treewidth tw of the
underlying graph. The rank based approach proposed in [9] however provides algo-
rithms with a ¢/“n() time complexity, where ¢ is a small constant, for both weighted
and counting versions of these problems. In particular, the Steiner Tree can be solved
in n(1 4 2%)*h°M) where w is the matrix multiplication exponent (the best known
upper bound for w is currently 2.3727 [19]). We believe that the use of the rank based
approach for the Steiner TSP would lead to a n(1 + 2*+1)"h9(1) runtime (the details
are in Section 4) and that the improvement obtained by [20] for TSP is not directly
applicable. Both runtimes thus remain improved by our dedicated analysis.

In section 2, we present a dynamic programming approach for the RTSP by de-
scribing the possible states, transitions, and the main algorithm (Section 2.3) whereas
Section 2.4 deals with the complexity analysis of the algorithm. Section 3 follows the
same outline for the RST. Section 4 is focused on the comparison with the rank based
technique. Some experimental results for both problems are presented in Section 5 fol-
lowed by concluding remarks in section 6.

2 A Fixed-parameter algorithm for the Rectilinear TSP

As above, let P denote the given set of points in the plane. The Hanan grid I'(P)
is the set of segments obtained by constructing vertical and horizontal lines through
each point of P. Recall that h and v denote the number of horizontal and vertical lines
of I'(P). Fig. 1 shows an instance where |P| = 5 and the corresponding Hanan grid
I'(P). Note that, for all the figures, the points of P are indicated by circled black dots.

Let I1 (p1, p2) be the I, distance between two points p; and ps. Let define the undi-
rected graph G = (V, E) by associating a vertex to each intersection of I'(P) and two
parallel edges for each segment of I'(P), with length equal to the [; distance between

the intersections (see Fig. 2). We denote by v; ; with ¢ € [1, h] and j € [1, v] the vertex
at the intersection between horizontal line 7 and vertical line 5. The points of P are thus
related to some of the vertices of G and we have P C V. Moreover, L = (V, Ey,) is
said to be a subgraph of GG (denoted L C G) when Vi, C V and E; C E. Finally, the
degree of a vertex v € V is the number of edges in E incident to v.

The problem is to find a shortest tour in G, visiting all points of P. The TSP problem
is thus solved as a Steiner TSP problem on G. The Steiner TSP is a variant of TSP
where the graph is not complete, only a subset of the vertices must be visited by the
salesman, vertices may be visited more than once and edges may be traversed more
than once [21]. Any optimal tour in G visiting all points of P i.e. an optimal solution
of the Steiner TSP problem where P is the set of mandatory vertices, is also an optimal
solution of the rectilinear TSP problem. The points (vertices) of V' — P can be used
to change direction and can lie on a rectilinear path connecting two vertices of P. We
will show that G always contains an optimal solution of the original rectilinear TSP
problem.

Notice that we do not need to consider a directed graph, i.e. G is undirected, because
the algorithm builds a shortest tour subgraph that can be directed as a post-processing
step. A subgraph T" of G that contains all points P will be called a tour subgraph
if there is an orientation of the edges that is a tour in which every edge of T is used
exactly once (an order-picking tour in [10]). Figs. 3 and 4 show a tour subgraph and a
possible orientation. The following characterization of a tour subgraph, given in [10],
is a specialization of a well known theorem on Eulerian graphs (e.g., see Christofides
[22]):

Theorem 1. (adapted from [10]) A subtour T' C G is a tour subgraph if and only if:

(a) All vertices of P belong to the vertices of Ty
(b) T is connected;
(c) every vertex in T has an even degree.

The tour subgraph of Fig. 3 is connected and has 3 vertices of degree 4. Note that
parallel edges can be used in a tour subgraph. From any subgraph that is known to be
a tour subgraph, we can easily determine an oriented TSP-tour by using any algorithm
finding an Eulerian cycle. Therefore, we will focus on finding a minimum length tour

®

®

Fig. 1. The Hanan grid I"(P) Fig. 2. The graph G

subgraph. Let’s now show that an optimal solution of the Steiner TSP problem in G
provides an optimal solution of the original RTSP problem.

Lemma 1. Let [* be the length of an optimal solution for the RTSP problem. There
exists an optimal tour subgraph in G of length l*.

Proof. Consider an optimal ordering of P (giving a solution of distance [*) and a di-
rected tour S in G obtained by following a shortest path in G' between consecutive
points of the ordering. We can build a tour subgraph T" by adding an edge (i, j) for
each arc of S. Requirements (a), (b), (c) of Theorem 1 are satisfied because S is a tour.
An edge (i,7) is added at most twice because S is optimal, so 7' C G. Finally, it has
a length equals to [* since GG contains a shortest rectilinear path between each pair of
points. O

The algorithm builds a tour subgraph by completing a partial tour subgraph.

Definition 1. For any subgraph L C G; a subgraph T C L is an L partial tour
subgraph if there exists a subgraph F' C G — L such that T U F is a tour subgraph of
G.

We consider L partial tour subgraphs defined by a given horizontal line ¢ and a given
vertical line j and refer to them as L;; partial tour subgraphs. Let L;; be the induced
subgraph of G consisting of vertices located in the rectangle [1, j] x [1, 7] and the rectan-
gle [1,j — 1] x [i + 1, h]. More precisely, L;; = (V;;, E;j) withi € [1,h] and j € [1,]
is the induced subgraph of GG defined by:

Vij={vukr €VI[I<ik<jlU{upeV|[l>i+1,k<j—1}

Fig. 5 shows L, 5 in a light gray area. L4 5 contains the vertices in the rectangles
[1,5] x [1,4] and [1,4] x [5,7] since h = 7. Fig. 5 shows also an L, 5 partial tour
subgraph (black lines) since we can complete it (dashed lines) to obtain a complete tour
subgraph of G.

The right border of L;; is denoted R;; and defined as the subset of the h rightmost
vertices of L;; for each horizontal line. Fig. 5 represents the vertices of 124 5 by squares
inside the dark gray area as opposed to the light gray area representing L 5.

C—
® @
®O——=—_ —=
® 4

Fig. 3. A tour subgraph Fig. 4. A directed tour subgraph

7 = O —— ‘
6 O | ®
Ry | Cus |
|
5 ——————® - ® !
|
|
4 D,Uéé,,f‘ |
| |
Lys : :
| |
2 :::::‘%—777@,,,,,‘
‘\
|
1 ®
1 2 3 4 5 6 7 8 9

Fig. 5. Hanan grid I'(P) with L4 5 inside the light gray area and R4 5 inside the dark gray area.
The vertices of R4 5 are represented by squares. The black edges represent an Ly 5 partial tour
subgraph and the dashed edges represent one possible completion.

The rationale for the dynamic programming approach is the following: an optimal
subtour consistent with 124 5 consists of an optimal partial tour for the vertices to the
left of R4 5 combined to an optimal partial tour for the vertices to the right of Ry 5.
The two restricted problems are made independent if enough information, namely the
degree parity and connected components, is known about the vertices of Ry 5.

The algorithm will thus start with the initial state defined as the first partial subtour
Ly 1. It extends the partial subtour L;; by adding vertical/horizontal edges between
vertices iteratively. At the end, it has built the Lj,, partial tour subgraphs, which are all
the possible tour subgraphs, so that a shortest can be identified as an optimal solution.
We now describe the possible states and transitions between them.

2.1 States.

Two L;; partial tour subgraphs are considered equivalent if any completion of one of
them is also a completion for the other. The equivalent classes of L;; partial tour sub-
graphs can be characterized by some features of the vertices in R;;. Let’s go back to
Fig. 5 and notice that the L, 5 partial tour subgraph is made of two connected compo-
nents.

So, to characterize the equivalent classes of L;; partial tour subgraphs, we need the
degree parity of each vertex of R;; and distribution of vertices of R;; over distinct con-
nected components. Two vertices of I?;; can be connected with 0, an odd, or an even
number of paths and the total number of incident paths determines the parity 0, U, or
E of the vertex. We use the same notation as [10] to describe degree parities: even =
E, odd = U (uneven) and zero = 0. Connected components are described by their in-
dices or ”—" for a zero degree. An equivalent class is related to a state of the dynamic
program. In the following, such a state w is denoted w = {(z1,...,zp), (c1,...,¢n)}

no zero-degree 1 zero-degree 2 zero-degree 3 zero-degree
{(E7E7E)7(17273)} {(E7E70)7(172’_)} {(E7070)7(17_7_)} {(07070)7(_7_7_)}
{(U7 U,E),(l,l,Q)} {(07E7E)7(_7172)} {(O,E,O),(—,l,—)}
{(E7E7E)7(17172)} {(E707E)v(17752)} {(0507E)7(77771)}
{(EvUvU)7(1’272)} {(U7U70)’(17 7_)}
{(E7E7E),(17272)} {(E7E7 0)7(1717_)}
{(UvaU)7(17271)} {(07U7 U)?(fvlvl)}
{(E7E7E)7(17271)} {(OvaE)7(_7171)}
{(U,U,E),(Ll,l)} {(U,O,U),(l,—,l)}
{(E7Uv U)7(17171)} {(E707E)v(17751)}
{(U,E,U),(1,1,1)}
{(E,E,E),(1,1,1)}

Table 1. States of £2(3) (for RTSP) sorted by number of zero-degree vertices.

where z; € {U, FE,0} and ¢; are respectively the parity label and the connected com-
ponent of the i-th vertex of w. Moreover C; denotes the set of vertices belonging to
connected component number j so that C; = {i|c; = 7,Vi = 1...h}. For example the
equivalence class of the L, 5 tour subgraph of Fig. 5 is described by the the following
pair of vectors {(E, E, E,U,U,0,0),(1,1,1,2,2,—,—)} and we have C; = {1, 2,3},
Cy = {4, 5}. In this example, the vertices belong to two distinct connected components
(of the corresponding class of tour subgraphs). In the first component (index 1), the
three vertices are connected to an even number of paths and in the second component,
the two vertices are connected to an odd number of paths.

We denote by (2(h) the set of all possible states for & vertices in the same R;;, and
{2 the set of all states of the dynamic program. Table 1 lists all the possible states of
£2(3). We summarize a number of key observations about valid states that are needed
to fully understand the algorithm and to establish its complexity.

Consider a connected component j with a single vertex ¢ so that C; = {i}. Such a
vertex is referred as a vertex with a path-reversal.

Lemma 2. A vertex with a path-reversal has degree 2.

Proof. The degree of ¢ is not zero since it belongs to a connected component. The only
possible connection to vertex ¢ is from the vertex located to its left and it can have at
most 2 edges. It has exactly 2 edges since the degree must be even, see Theorem 1. [

An example of a path-reversal in a state is shown in Fig. 6.

Lemma 3. A connected component of a state in £2(h) has zero or an even number of
vertices labeled with U.

Proof. By Lemma 1, vertices of L; ; — R; ; have an even degree. So in a state, only
vertices of I?; ; can have an odd degree. Since in a graph, the number of vertices of odd
degree is even, a state has zero or an even number of vertices with an odd degree. [J

U,1

0,— o —@
71'13

U,2

E1 I ¢
path-reversal Lo
| |

i U1

U,2 rt-—b

2|
! U,2
U72 S - —a

Fig. 7. Example of an inconsistent labelling of
the connected components. 71 and 72 must
cross so that a,b,c and d must belong to the
same connected component.

Fig. 6. Example of a path-reversal: a vertex
with two incoming edges and alone in its con-
nected component.

Vi41,5 Vitl,5 Vitl,j Vij Vi,5+1
Vi j Vi, j+1
Vi j Vi, j+1
Vi j Vi, j Vi, j

Fig. 8. Vertical and horizontal transitions

Lemma 4. The partition describing the connected components {C1, ..., Cy} of a state
is a non-crossing partition, i.e. if a < b < ¢ < d (ordered from bottom to top) and
a,c € Cyandb,d € Cj, then i = j.

Proof. Since vertices a and c belong to the same component C;, there is a path 71 from
a to c. Similarly, there is another path 75 from b to d (see Fig. 7). Thus, m; and 7o must
cross, the intersection point is a vertex in both m; and 7o, thus a, b, ¢ and d belong to
the same connected component. (]

2.2 Transitions.

There are two types of transitions between states: vertical and horizontal transitions,
corresponding to the addition of vertical or horizontal edges of I'(P) (see Fig. 8).
In an optimal tour subgraph, two adjacent vertices in G can be connected by one or
two edges, or not connected. The cost of a transition is the sum of the lengths of the
edges. For instance (see Fig. 9), the addition of a single vertical edge (vs ;, v3 ;) to state
{(U,U,E),(1,1,2)} leads to the state {(U, E,U), (1,1,1)}. Similarly, the addition of
a double horizontal edge (vs j_1,vs ;) to state {(0, £, 0), (—, 1, —)}, leads to the state
{(Ov E, E)v (_7 L, 2)}

E,2 U,1 0,— E.2
U1 1 E,1 E,1
> >
—U', 1 —a 1 07 - 07 -
T j j j
adding vertical edge (va,;,vs3,;) adding double horizontal edge (vs j_1,v3 ;)

Fig. 9. Examples of two transitions: using a single vertical edge (left picture) and using a double
horizontal edge (right picture).

2.3 Algorithm.

Algorithm 1 processes the edges of I'(P) from bottom to top and then from left to
right (line 3): the vertical edges (v; 1, vit+1,1), then the horizontal edges (v; 1, v;2).
then the vertical edges (v; 2, v;+1,2) and so on. From any state (line 5), three possible
transitions are considered (line 6): no edge, a single one or a double one. All the states
obtained after adding [transitions belong to the I-th layer and the dynamic programming
algorithm can be seen as a shortest path algorithm in a layered graph (see Fig. 10). We
denote by T'(w, 1) the value of the shortest path to reach state w located on layer .

Algorithm 1 Dynamic Programming algorithm for the Rectilinear TSP
I: wo < {(0,...,0),(—,...,—)}; T'(wo,0) = 0; Layero + {wo}
2: 140
3: for each edges of e € I'(P) from bottom to top and from left to right do

4 Layer;;1 + 0

5 for each state w € Layer; do

6: for each possible transitions (zero, one or two edges) tr for e do
7: W= wttr

8 if check(w’, [4 1) then

9: if w' € Layer; ;1 then

10: if T(W', 1+ 1) > T(w,l) + length(tr) then
11: T(W,l+1) « T(w,l) + length(tr)

12: else

13: T(W', 1+ 1) < T(w,l) + length(tr)
14: Layer; 41 + Layer;41 U {w'}

150 1+ 1+1

16: wopt < argminger,, T'(w, ™) where [is the last layer.
17: return wep¢

Lines 7-14 updates the possible states of the next layer (I+1) by extending the con-
sidered state w of layer [with the considered transition ¢r. The new state w’ might not
be a valid tour subgraph and it is checked line 8. Lines 9-14 are the traditional update
of the shortest path values. Typically line 9 checks whether an existing partial tour sub-
graph is already known to reach w’ on layer [+ 1. If yes, it is checked line 10 whether
a shorter one has been found and T'(w’,1 + 1) is updated accordingly. An illustrative
execution of the algorithm is shown Fig. 10, where a particular path is outlined demon-
strating the relation between states and partial tours. The algorithm is a shortest path
algorithm in the graph of Fig. 10 where there are O(hv) layers (the maximum number
of possible transitions), at most [£2(h)| nodes in each layer and at most three outgoing
arcs from any node.

=1 1=2 =3
< A A
4.0 = g
« A « A)
0 0 0
@® «
® ® I | . .
® NAtA
« ga N ®
) ®
» »
A} 4 ®

Fig. 10. Example of the graph underlying the dynamic programming algorithm. Each layer is
identified with a value of l. Three transitions are possible from each state. The partial toursub-
graph obtained by following the black path is shown on the bottom right corner.

Let’s give more details about line 8 and infeasible or suboptimal states. The fol-
lowing conditions come directly from Theorem 1 and must be satisfied by the states to
ensure the algorithm computes a valid tour subgraph:

1. A non-zero degree vertex has an even number of incident edges in any state.

2. A vertex belonging to P has a positive degree in any state.

3. A state located on the last layer must have a single connected component since the
tour subgraph must be connected.

Conditions 1 and 2 can be checked after the last step involving an incident edge of
the vertex and condition 3 after all edges of I'(P) have been processed. These condi-

tions are evaluated when considering a state w for layer [(see the call to check(w, 1) line
8 of Algorithm 1) to filter invalid states. Additionally we know that some states cannot
belong to an optimal tour sub-graph. The following simple filtering rule is applied to
speed up the algorithm and rule out some sub-optimal states:

— A vertex v; ; that is not in P can not be solely connected to two parallel edges (this
would create a useless turn back and forth in v; ;).

2.4 Complexity analysis.

All states of the graph underlying the dynamic program have an out degree of at most
three. The time-complexity of the algorithm solely depends on the number of states.
Since we have O(hv) layers (exactly (h — 1)v + (v — 1)h = 2hv — h — v), we focus
on counting the maximum number of states of a layer. Notice that Figure 10 implies a
total of 39("*) states but some of them are identical and we refine the counting in the
present section. The number of possible states made of h possible vertices is denoted by
[£2(h)|. As an example, Table 1 which enumerates the states belonging to {2(3) shows
that | 2(3)| = 24. To compute |{2(h)|, we proceed as follows:

1. Firstly, we compute |§2,,05(h)|, the number of states with only positive degree ver-
tices (i.e. without vertices of zero-degree). We thus have 2,,5(h) C £2(h). We will
show that |£2,,s(h)]| is equal to the super Catalan number by using a particular in-
terpretation of the super Catalan number referred to as f* in [23]:

fX: Number of ways of connecting n points in the plane lying on a horizontal line
by noncrossing edges above the line such that if two edges share an endpoint p,
then p is a left endpoint of both edges. Then color each edge by black or white.

We denote by {24 (h) the set of configurations described above and establish a bi-
jection between (2,,,5(h) and £24(h) (Lemma 5). Since f;! is known to be equal to
the super Catalan number .S,, (see [23]), we have |{2,05(h)| = Si (Lemma 6).

2. Secondly, we consider the zero-degree vertices to relate |£2(h)] to the super Catalan
(4+\/§)h+1
V(h+1)3)7

We now start by establishing a bijection between the number of states with vertices
of positive degree and the configurations of f4. An example of such a bijection for
h = 3 is given in Fig. 11. The 11 states of {2,,5(3) are taken from the first column
of table 1 and are matched to the 11 configurations of {24(3). The key ideas of the
bijection between two states w € 2,0 and w’ € 24 are the following: a left endpoint
and all points connected to it in w’ encode a connected component of w; the color
black/white of an edge (i, j) of w’ relates to the parity of the number paths incident to
jinw.

numbers (Lemma 7). We can then prove (Theorem 2) that |2(h)| = O <

Lemma 5. There is a bijection between (2p,5(h) and 241 (h).

e ————

e © o o ¢ » é o o
{(E,E,E),(1,2,3)} {(E,E,E),(1,2,2)} {(E,U,U),(1,1,1)}

e ————

¢ o 6 o o & 9 o
1 .,

{(U,U,E),(1,1,2)} {(U,E,U),(1,2
{(E,E,E),(1,1,2)} {(E,E,E),(1,2,1)} {(E,E,E),(1,1,1)}

{(E,U,0),(1,2,2)} {(U,U,E),(1,1,1)}

Fig. 11. Example of bijection between {2,,5(3) and £2;4(3).

Proof. Recall that a state w € (2,05 is denoted w = {(z1,...,z1),(c1,...,cn)}. A
state w’ € {274 is described by h consecutive points p1, ..., ps on a line and a set of
white/black edges. In the following, p; is the point associated to the ¢-th vertex of w.

Let’s define an application F' from a state w € {205 to a state w’ € (24 as follows.
Firstly, we consider each connected component C' of w consisting of more than one
vertex i.e. of vertices vy, va, ...,V (Cy, = Cy, = ... = ¢y,). For each vertex v; € C
with¢ # 1, if x,, isa U (resp. E) vertex, we add a white (resp. black) edge between the
points p,, and p,,. Secondly, a path-reversal vertex v; is matched to a zero-degree point
Do, Edges of w’ can only share their left endpoint and since the connected components
of w are non-crossing partitions (Lemma 4), the edges of w’ are non-crossing. Thus
OJ, S Qf4 .

Let’s now show that F' is injective. Consider two states w; and wo of (2,,5 and
suppose that F'(wy) = F(wa).

— wy and wo have the same connected components since w and F'(w) have the same
connected components by construction.

— The labels U/E of a vertex v; # v; inside a connected component vy, va, . . . , v are
in bijection with the color white/black of the edge (p,, , p»,). Thus all such vertices
in wy and wy have the same parity labels.

— Since the number of U labels must be even (Lemma 3), the label x,, in each con-

nected component vy, va, . . . , Uy is determined by the labels of x,,, ..., Zy,.

Therefore w; = w9 and F' is injective.

Let’s show that F' is surjective. Consider w’ € 274 and let’s show that there exists
W € 25 such that F(w) = w’. We build w by defining F~! as follow. Firstly, we
consider each connected component of w’ consisting of more than one vertex i.e of

vertices v1, . . ., v},. For each point Py, With © 7 1, if the edge connected to p, is white
(resp. black), we set Ty 1O U (resp. E). The label Ty, is set to £ if the number of white
edges connected to p,; is even, or U otherwise. Secondly, the label of a zero degree
point is to E. Finally, we index connected components in increasing order. We now
check that w € (2,,5. First, the connected components of w are non-crossing since the
edges of w’ do not cross. Then, we check that the number of U labels in a connected

component of w is even (Lemma 3). Indeed, in a connected component vy, . . ., v, the
number of white edges is in bijection with the number of U labels of z,,,, ..., z,, and
the label z,,, is chosen so that the total number of labels U is even.

F is therefore a bijective application. (]

Lemma 6. |{2,,5(h)| = Sy, where S,, is the super Catalan number (see OEIS A001003).

Proof. |$2p05(h)| = f; due to Lemma 5 and f; is known (see [23]) to be equal to the
super Catalan number S},.]

We now include the zero-degree vertices in the counting to obtain [§2(h)|.
Lemma 7. |2(h)| = Sr_, (1) Sk

Proof. When (h — k) vertices out of h have a zero-degree, there are |2,,5(k)| ways
to connect the £ remaining vertices. This is because vertices with zero-degree are com-
pletely independent from the other vertices. The number of states with exactly (h — k)
zero-degree vertices is thus (,")[2,0(k)| So [2(R)] = Sk_o (") [2pos(k)| =
S r—o (1)]92p0s (K)|. By Lemma 6 we end up with [2(h)] = 30—, (%) Sk. O

The problem boils down to computing a bound on the sequence defined in Lemma
7 and based on the super Catalan numbers.

Ve

Proof. First we show that |£2(h)| = Tp+1 where T, is a specific number defined in
OEIS A118376 ! (see [24]).

Let A(z) and B(z) be the generating functions of respectively 7T}, and S,, (the super
catalan numbers) i.e. A(z) =Y, oo Tpa™ and B(x) = >, -, Sna™. Closed forms are

known for both functions so that A(x) = 1=¥8z"—8z+l W and B(z) = He=v1-bete? W
(see [24]). As a result, we can express A(x) as a composition of B(x) and % as
follow A(x) = 1% B(1%5).

We use a result from [25] to compute compositions of generating functions and
adapt the proof of Theorem 8 of [25]:

a0 - () - 5 e () - oa(s)

k>0 k>0

Theorem 2. |2(h)| = O (W8>’“>

! The interpretation of T},, which is irrelevant to the proof, is given as the number of all trees of
weight n, where nodes have positive integer weights and the sum of the weights of the children
of a node is equal to the weight of the node.

k1
Replacing (ﬁ) by skt ("ol)™ (see [25]) we obtain:

0 1 2 1
1 2
+(1>51x2+(1>51x3+...+(
2 —1
+(2>52x3++(n2)San+

)Sn_ll‘n + ...

[
—_ =

Summing the coefficients of 2™ forn > 0, we get A(z) =}, - T,,a" where

n n—1
n—1 n—1
T = = /
n 1§21 (k_l)sk 1 1;/_0< i)Sk

By taking n = h + 1, we can state Th11 = Y o () Sk so we have, from
Lemma 7, |2(h)| = Tj41. Moreover, we can use the singularity method given in [26]

h
(Proposition IV.1 and Theorem V1.1) to show that T}, 41 is in O (CLavO i . O
v/ (h+1)3
h 112|314 |5] 6 7 8 9 10
[2p0s(h)| = Sr|1|3[11] 45 [197] 903 | 4279 [20793|103049| 518859
[£2(h)| = Th+1|2]6/24]112|568]3032|16768]95200|551616|3248704

Table 2. The exact value of the numbers |£2(h)| and |{2p0s(h)| for h between 1 and 10.

The number of states |£2(h)| of the dynamic program is thus in O M .
V(h+1)3

Table 2 shows the order of magnitude of the numbers involved. Since there are at most
(4+\/§)’“f1 hv)
(h+1)3
assuming that we can check that a state belongs to a layer in constant time (line 9 of
Algorithm 1). For sake of simplicity, we highlight n and h only (since v < n) and
simplify the complexity to O (hn?h).

O(hwv) edges to consider, the overall time complexity of algorithm 1 isin O (

3 Fixed-parameter algorithm for Rectilinear Steiner tree.

We now apply the exact same methodology to the Steiner tree problem. We briefly de-
scribe how each step is modified to handle the Steiner tree case. Notice that the previous

methodology was described in details for the more complex case of rectilinear TSP and
that it is now merely simplified. For sake of simplicity the notations are kept identical.
We now define the undirected graph G = (V, E') by associating a vertex to each inter-
section of I"(P) and a single edge for each segment of I"(P), with length equal to the [y
distance between the intersections. The L partial tour subgraph become L partial trees.

Definition 2. For any subgraph L C G; atree T C L is a L partial tree if there exists
atree F C G — L such that T U F is a Steiner tree of G.

Figure 12 demonstrates an L;; partial tree and its [7;; rightmost frontier. An Lys
partial tree is shown and a possible completion to a complete Steiner tree.

3.1 States and Transitions.

States A state w is denoted w = (c1, ..., ¢p,) where ¢; is the connected component of
the i-th vertex of w. Connected components are described by their indices or ”—" for
a zero degree. Notice that the parity of the degree does not need to be stored anymore.
Regarding the degree information, we now only need to know whether the degree is
null or not. This information amounts at checking whether ¢; #”—". Table 3 gives the
possible states for h = 3. For the exact same reason given in section 2.1, the partition
describing the connected components {C,...,Cy} of a state is a non-crossing par-
tition. Typically, the state representing the equivalent class of the L4 5 partial tree of
Fig. 12 is described by the following vector (1,1,1,2,2, —, —).

Transitions There are two types of transitions: vertical and horizontal. However, there
is now only two possible configurations for connecting two adjacent vertices of G in an
optimal Steiner tree: zero or one edge.

7 O — & ‘
6 O | ®
Ry s i Cas

|
5 — @ ---------- ®
4 g2 -
|
Lygs i
3 l
y R
|
|
1 ®
1 23 4 5 6 78 9

Fig. 12. Hanan grid I'(P) with L4 5 in the light gray area and R4 5 in the dark gray area. The
black edges represent an L4 5 partial tree and the dashed edges represent one possible completion.

0 zero-degree|1 zero-degree|2 zero-degree|3 zero-degree
(17171) (1717_) (17_7_) (_7_7_)
(1,1,2) (= 1,1) (=, 1,-)

(1,2,1) (1,-,1) (= —,1)
(1,2,2) (1,2,—)
(1,2,3) 1,—,2)

(77 172)

Table 3. States of {2(3) for the Steiner Tree.

3.2 Algorithm.

Algorithm 2 gives the pseudo-code where the changes compared to Algorithm 1 are
highlighted by rectangular boxes. The algorithm is only modified lines 1, 6 and 8. The
modification lines 1 and 6 simply account for the new definition of the states and the
restriction of the transitions to two cases (rather than three for the TSP). Removing

Algorithm 2 Dynamic programming algorithm for Steiner Tree

I: ’ wo (—y.ooy—)s ‘T(wo,O) = 0; Layerg + {wo}

2: 140

3: for each edges of e € I'(P) from bottom to top and left to right do
4: Layer;41 < 0

5 for each state w € Layer; do

6: for each possible transitions ’ (zero or one edge) ‘ tr for e do
7 W wttr

9: if ' € Layer;+1 then

10: ifT(w', 14+ 1) > T(w,l) + length(tr) then

11: T(W, 1+ 1)« T(w,1) + length(tr)

12: else

13: T(W, 1+ 1)« T(w,l) + length(tr)

14: Layer; 41 + Layer;41 U {w'}

150 l+1+1
16: wopt +— argminger,, T'(w, ™) where [* is the last layer
17: return wopt

infeasible states line 8 amounts at checking that:

1. A vertex of P have a positive degree
2. The partial tree is connected (all vertices on the last layer belong to the same con-
nected component)

The following rules are also applied to filter sub-optimal or symmetrical states. We
basically restrict the algorithm to identify trees that satisfy the following conditions:

1. A vertex v; ; that is not in P can not be connected to a single edge (it would create
a useless pendant vertex).

2. Two vertices already in the same connected component can not be directly con-
nected (it would create a cycle which is sub-optimal).

3. Two horizontally (resp. vertically) adjacent vertices v; ; anf v; ;11 (resp v; ; and
Vi4+1,5) that both belongs to P are connected by the direct corresponding edge
(vi,jvvi,j-i-l) (resp. (Ui,javi+1,j)) [17]

4. Any horizontal/vertical line (sequence of consecutive horizontal/vertical edges)
contains at least one point of P [6].

Conditions (4) is global and requires, for efficient checking, to store whether a ver-
tex in the state is connected to a point of P.

3.3 Complexity.

Any state in the graph underlying the dynamic program has now a degree of at most
two and there are O(hv) layers in the graph. We therefore establish the complexity of
the algorithm by counting the number of possible states |{2(h)| of a single layer. As an
example, Table 3 enumerates the states belonging to §2(3) so [£2(3)| = 15. |2(Rh)| is
computed as follows:

1. Firstly, we show that [£2,05(h)] is equal to the Catalan number referred to as h° in
[27]:

h3: Ways of connecting n points in the plane lying on a horizontal line by non-
crossing arcs above the line such that if two arcs share an endpoint p, then p is a
left endpoint of both the arcs.

Since §2,,5(h) is in bijection with £2;,5 (h) and S is known to be equal to the Cata-
lan number C,, (see [27]), we have [2,05(h)| = C},.

2. Secondly, we prove that |£2(h)| is a known sequence related to the Catalan numbers
(see OEIS A007317 [24]).

We now start by establishing a bijection between the number of states with a positive
degree and the configurations of 4°. An example of such a bijection for i = 3 is given
Fig. 13. The 5 states of (2,,5(3) are taken from the first column of Table 3 and are
matched to the 5 configurations of {25 (3).

Lemma 8. There is a bijection between (2,,,5(h) and 25 (h).

Proof. Recall that a state w € (2,5 is denoted w = (c1,...,cp) (see section 3.1). A
state w’ € (25 is described by h consecutive points p1,...,ps on a line and a set of
edges. In the following, p; is the point associated to the ¢-th vertex of w.

Let’s define an application F' from a state w € §2,,,5 t0 a state w’ € 2,5 as follows.
We consider each connected component C' of w consisting of vertices v, va, ... vk
(cy, = €y, = ... = ¢y,). For each vertex v; € C with ¢ # 1, we add an edge

(1,1,1) (1,1,2) (1,2,1)
() e O
(1,2,2) (1,2,3)

Fig. 13. Example of bijection between (2,,s(3) and 2;,5(3). Note that at most one single con-
nected component appears for h = 3 when no path-reversal vertex is allowed.

between the points p,, and p,,. We can check that w’ is a valid configuration of {25
(non crossing edges sharing only their left endpoint). Moreover, there is a one to one
direct correspondence between the connected components of w indexed in increasing
order and the connected components of w’. The application F is therefore a bijection.
|

Lemma 9. |2,,5(h)| = Cy, where C,, is the Catalan number (see OEIS A000108).

Proof. |$2p,5(h)| = hj, due to Lemma 8 and &} is known (see [27]) to be equal to the
Catalan number C},. O

Lemma 10. |2(h)| = Zzzo (Z)Ck

Proof. 1dentical to proof of Lemma 7. (|

Theorem 3. |2(h)| = O (%)
Proof. The formula ZZ:O (Z) C}, of Lemma 10 is known as the integer sequence A007317

(see [24]). Since the generating function of this sequence is % — % 11__55 , We can use

the singularity method described in [26] (Proposition IV.1 and Theorem VI.1) to show
_ 5"
that|9(h)|fo(m). O

There are O(hv) layers and the number of states in a given layer is in O(5") so the
overall time-complexity can be expressed as O(nh5") for sake of simplicity.

4 Comparison and relationship to the rank based technique

The planar grid-graph used in this paper has a pathwidth and treewidth of h and the rank
based approach recently proposed by Bodlaender et al. [9] can be directly applied. It is
indeed intended for graph problems with a bounded treewidth/pathwidth and a global
connectivity property such as the Hamiltonian Cycle, Steiner tree or TSP. We focus on

the results obtained via a path decomposition which are stronger for the present paper.
A path decomposition of our grid-graph is made of bags (or separators) of at most i+ 1
vertices and the dynamic programming approach must encode some information about
the degree as well as the connected components to which the vertices of a bag belong.
Encoding the connected components involve partitioning the vertices of a bag (one
partition refers to one component) which lead to consider a A" number of partitions. In
a breakthrough result, the authors of [9] show that there exists a representative subset
of these partitions of size 2. Moreover, given a set A of partitions, it is possible to
compute this representative subset A° C A (with | A'| < 2") in time |.A|2(*~D?p00)
where w is the matrix multiplication exponent (see Theorem 3.7 of [9]). Regarding
parameter w, it refers to the complexity O(n™) for multiplying two n by n matrices.
In brief, the best known upper bound for w is w = 2.3727 [19] and w = 2 remains
the best known lower bound so far. The number of partitions generated in the course
of the algorithm over a nice path decomposition at most doubles from one bag to the
next (when an edge is introduced). Thus the algorithm is always applied on a set of at
most 2"*1 partitions and the reduction is performed in time 2**h°(1) . We now briefly
review the runtimes obtained with this technique for the two problems considered here.
Table 4 gives a summary of the comparison to the best knowledge of the authors.

Steiner Tree Let us consider a bag of the path decomposition and count the states shar-
ing a given set of k positive degree vertices (there are at most (hzl) of such sets in
the bag). In each set, the number of states relates to the number of partitions of k ele-
ments and is bounded by k¥ in general. It is here the number of non-crossing partitions
counted by the Catalan numbers as explained in section 3.3 and is thus bounded? by
4% Alternatively, applying the rank-based reduction algorithm would reduce the num-
ber of such partitions to 2* and thus reduce the space needed. But, as explained above,
the reduction algorithm runs in 2**k°()_ 1t follows that the time complexity to pro-
cess all states of a bag is bounded by Y 0! ("1)20kROM) = (1 4 2w)h+1p0M),
Overall, considering that the number of bags is linearly dependent of n, [9] reports a
n(1+2%)"h°M runtime. By assuming the best case of w = 2, the complexity matches
the O(nh5") proposed in this paper. Our approach thus improves over the rank-based
technique for the current best known matrix multiplication algorithm with w = 2.3727
but takes advantage of the grid structure in addition to bounded pathwidth.

Steiner Traveling Salesman We apply the same reasoning to the case of the Steiner
TSP. Consider all the states with a given triple of kg vertices of zero degree, k1 vertices
of odd degree and ko vertices of even degree. The number of such states relates to the
number of partitions of k; + ko elements. The rank based approach reduces the number
of such partitions to 2¥17*2 and the complexity is bounded by (using the multinomial
theorem): s (koi}kt}kz)1k01k12(k1+k2)wh0(1) = (1 + 2wHL)h+10() The
ko+ki1+ka=h+1

runtime is thus in n(1 + 2¥+1)"R9(1) and our approach improves over the rank-based
technique even when assuming the best case of w = 2.

% This bound can be proved by using Stirling’s approximation of n! applied to the explicit for-

mula for the Catalan numbers C,, = n%rl "

The Steiner TSP is not addressed in [9] but a n(2 + 2/2)"h°() runtime for TSP
is reported. When considering the TSP, the partitions boil down to perfect matchings of
the degree one vertices. It is known from [20] that an improved reduction algorithm can
be applied in this specific case and the number of representative partitions is only 2"/2.
However, the partitions considered for Steiner TSP are not strictly speaking matchings
since they encompass the even degree vertices even though the odd degree vertices are
paired. Thus the aforementionned result of [20] does not seem applicable.

Assumptions pathwidth h pathwidth £ |grid graph of pathwith A
2<w<23727) | (w=2)
Steiner Tree | n(1 4 2°)"h°M [p5Pp0M O(nh5")
Steiner TSP |n(1 + 2@ +1)PpOM | pghpO® O(nh7")
TSP |n(2 +2%/2)hpOM) | pghpo™) -

Table 4. Comparison with the rank based approach.

S Experimental results.

We performed simple experiments that serve as a proof of concept and show the scala-
bility of the proposed algorithms. In particular, we show that the rectilinear TSP can be
solved exactly up to h = 8 horizontal lines in practice demonstrating that this algorithm
could be used for real-life picking problems in warehouses. Real-life warehouses often
have a rectangular layout with few cross-aisles (horizontal lines). The experiments were
performed on an Intel Xeon E5-2440 v2 @ 1.9 GHz processor and 32 GB of RAM. The
experiments ran with a memory limit of 8§ GB of RAM.

5.1 Results on rectilinear traveling salesman problem.

Pre-processing. To improve the execution time of the algorithm, we observe that any
layout that contains a shortest path 7 of length {1 (p1, p2) between each pair of vertices
p1,p2 € P is valid to solve the problem. Finding the distance preserver (1-spanner)
with the minimum number of edges is an NP-complete problem, namely the minimum
Manhattan network problem. In practice, if n is not too big (n < 1000), this pre-
processing of the graph improves the total execution time. Table 5 presents the execution
time with and without the computation of the minimum Manhattan network problem
with CPLEX 12.5, using a flow formulation (see [28]). Notice that since any distance-
preserver graph can be used to compute the minimum subtour, we can also apply an
approximation algorithm as a pre-process, such as the 2-factor approximation algorithm
[28] or [29] running in O(nlogn).

Experiments. Table 5 provides the average and maximum computation time in sec-
onds needed to solve random instances with n € {50, 100,200} and h varying from
1 to 8. It also reports the maximum number of states obtained on one layer during the
computation. We report the results obtained with algorithm 1 (column no pre-proc) as
well as algorithm 1 extended with the pre-processing step (column pre-proc). We gen-
erated 100 random instances for each configuration i.e. for each pair (n, h). Firstly the
algorithm can efficiently handle instances with up to 8 horizontal lines. h = 9 is not
reported since the algorithm runs out of memory. Secondly, the increase of time appears
to be roughly linear in practice as n increases for a given h. Finally, the maximum num-
ber of states matches exactly the values of |£2(h)| (see table 2) showing that the worst
case is always reached at least on one layer.

n = 50 n = 100 n = 200
no pre-proc.| pre-proc. || no pre-proc. | pre-proc. || no pre-proc. pre-proc. max.
avg. | max. |avg.| max. || avg. | max. | avg. |[max.|| avg. | max. | avg. | max. ||states

0 |0.01] 0 |0.01 0 0.02 | 0 |0.01 0 0.02 0 0.02 2

0 |001] O 0 0 0.04 | 0 [0.02 0 0.05 0 0.03 6

0 |001] O 0 0.01 | 0.01 0 10.02]| 0.01 | 0.02 | 0.01 | 0.06 24

0.02 | 0.04 (0.01| 0.01 || 0.04 | 0.06 | 0.02|0.03(0.08 | 0.11 | 0.04 | 0.06 || 112
0.12 | 0.18 |0.05/ 0.08 || 0.27 | 0.33 | 0.12]0.18| 0.51 | 0.65 | 0.27 | 04 568
0.76 | 1.09 (0.26| 0.42 || 1.72 | 2.52 | 0.78 |1.23|| 3.56 | 4.84 | 1.78 | 2.73 || 3032
4.67 | 8.13 (1.32| 3.38 || 12.18 | 16.27 | 4.93 | 7.17 || 25.71 | 27.89 | 13.45 | 15.06 ||16768
42.18|72.01|7.66(19.74||114.11{136.28|50.78| 69.6 ||242.49|269.56|116.55|131.73 {95200

O QAN N | W[—|5

Table 5. Results on RTSP. Execution time in seconds and maximum number of states encountered
on one layer.

5.2 Results on rectilinear Steiner tree.

Table 6 provides the average and maximum computation time in seconds for solving
random instances with n € {50, 100,200} and h varying from 1 to 11. It also reports the
maximum number of states obtained on one layer during the computation. No particular
pre-processing is applied here. The execution was aborted (due to memory issues) for
the cases denoted by ”-” in the table.

6 Concluding remarks.

We introduced a new fixed parameter algorithm for the rectilinear TSP that can effi-
ciently solve instances where the points lie on a few number of horizontal lines. The
complexity analysis proves that RTSP can be solved in time O (nh?h). Moreover, this
algorithm is immediately adapted to solve the rectilinear Steiner tree problem with a
O (nh5") runtime and improves over the best known fixed parameter algorithm using
the exact same parameter.

n = 50 n =100 | n =200
h | avg. | max. | avg. | max. | avg. |max.|max. states
1/ 0 {001 O |0.01| O |(0.01 2
21 0 |001] O |0.01| O |0.01 5
31 0 [001] O |0.01]|0.01]|0.01 15
4| 0 |0.01]0.010.010.02]0.03 51
510.01]0.02|0.04|0.060.090.12 188
610.03]0.05|{0.15/0.21 036 | 0.5 731
710.11]0.19]0.58 |0.98 | 1.55 [2.35| 2950
8103605723 |39 |7.16(8.03| 12235
91 1.2 | 2.4 |10.74| 13.8 |33.97|55.2| 51822
10| 4,46 |14.05(49.63|87.13| - - 222616
11|16,92|52.41| - - - - 771128

Table 6. Results on RST. Execution time in seconds and maximum number of states encountered
on one layer.

As future work, we are investigating how the algorithm for rectilinear TSP can be

used to design very efficient exact methods for the picking problem as well as the joint
order batching and picker routing problem in rectangular warehouses [30].

Acknowledgements

The authors would like to thank V.V. Kruchinin and D.V. Kruchinin for their help with
Theorem 2, L. Esperet for his explanation of the singularity method and the anonymous
reviewers for their valuable comments and suggestions to improve the manuscript.

References

1.
2.

3.

H. L. Bodlaender, A tourist guide through treewidth, Acta Cybern. 11 (1-2) (1993) 1-21.
W.J. Cook, P. D. Seymour, Tour merging via branch-decomposition, INFORMS Journal on
Computing 15 (3) (2003) 233-248.

S. Arora, M. Grigni, D. R. Karger, P. N. Klein, A. Woloszyn, A polynomial-time approxima-
tion scheme for weighted planar graph TSP, in: H. J. Karloff (Ed.), Proceedings of the ninth
annual ACM-SIAM symposium on Discrete algorithms (SODA 2012), ACM/SIAM, 1998,
pp. 33-41.

. F. Dorn, E. Penninkx, H. L. Bodlaender, F. V. Fomin, Efficient exact algorithms on planar

graphs: Exploiting sphere cut decompositions, Algorithmica 58 (3) (2010) 790-810.

. F. Dorn, F. V. Fomin, D. M. Thilikos, Catalan structures and dynamic programming in h-

minor-free graphs, J. Comput. Syst. Sci. 78 (5) (2012) 1606-1622.

M. Brazil, D. A. Thomas, J. F. Weng, Rectilinear steiner minimal trees on parallel lines, in:
Advances in Steiner Trees, Springer US, 2000, pp. 27-37.

F. V. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, S. Saurabh, Subexponential algorithms
for rectilinear steiner tree and arborescence problems, in: S. P. Fekete, A. Lubiw (Eds.),
Proceeding of the 32nd International Symposium on Computational Geometry (SoCG 2016),
Vol. 51 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 39:1-
39:15.

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.
25.

26.

217.

28.

29.

. P.N. Klein, D. Marx, A subexponential parameterized algorithm for subset TSP on planar

graphs, in: C. Chekuri (Ed.), Proceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms (SODA 2014), SIAM, 2014, pp. 1812-1830.

. H. L. Bodlaender, M. Cygan, S. Kratsch, J. Nederlof, Deterministic single exponential time

algorithms for connectivity problems parameterized by treewidth, Information and Compu-
tation 243 (C) (2015) 86-111.

H. D. Ratliff, A. S. Rosenthal, Order-picking in a rectangular warehouse: A solvable case of
the traveling salesman problem, Operations Research 31 (3) (1983) 507-521.

K. J. Roodbergen, R. M. B. M. de Koster, Routing order pickers in a warehouse with a middle
aisle, European Journal of Operational Research 133 (1) (2001) 32—43.

A. Itai, C. H. Papadimitriou, J. L. Szwarcfiter, Hamilton paths in grid graphs, SIAM J. Com-
put. 11 (4) (1982) 676-686.

G. Rote, The n-line traveling salesman problem, Networks 22 (1) (1992) 91-108.

V. Estivill-Castro, A. Heednacram, F. Suraweera, The rectilinear k-bends TSP, in: M. T.
Thai, S. Sahni (Eds.), Proceedings of the 16th annual international conference on Computing
and combinatorics (COCOON 2010), Vol. 6196 of LNCS, Springer, 2010, pp. 264-277.

S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems, Journal of the ACM 45 (5) (1998) 753-782.

R. Z. Hwang, R. C. Chang, R. C. T. Lee, The searching over separators strategy to solve
some NP-hard problems in subexponential time, Algorithmica 9 (4) (1993) 398—423.

A. V. Aho, M. R. Garey, F. K. Hwang, Rectilinear steiner trees: Efficient special-case algo-
rithms, Networks 7 (1) (1977) 37-58.

J. L. Ganley, J. P. Cohoon, Rectilinear steiner trees on a checkerboard, ACM Trans. Design
Autom. Electr. Syst. 1 (4) (1996) 512-522.

. V. V. Williams, Multiplying matrices faster than coppersmith-winograd, in: Proceedings of

the Forty-fourth Annual ACM Symposium on Theory of Computing (STOC 2012), ACM,
2012, pp. 887-898.

M. Cygan, S. Kratsch, J. Nederlof, Fast Hamiltonicity checking via bases of perfect match-
ings, in: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing
(STOC 2013), ACM, 2013, pp. 301-310.

A. N. Letchford, S. D. Nasiri, D. O. Theis, Compact formulations of the steiner traveling
salesman problem and related problems, European Journal of Operational Research 228 (1)
(2013) 83-92.

N. Christofides, Graph Theory: An Algorithmic Approach (Computer Science and Applied
Mathematics), Academic Press Inc., 1975.

T. M. A. N. Fan, S. X. M. Pang, Elements of the sets enumerated by super-Catalan numbers.
URL http://math.haifa.ac.il/toufik/enumerative/supercat.pdf

N. J. A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org.

V. V. Kruchinin, D. V. Kruchinin, Composita and its properties, Journal of Analysis and
Number Theroy 2 (2014) 1-8.

P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.

R. Stanley, Catalan addendum (2005).

URL https://math.dartmouth.edu/archive/m68£f05/public_html/
catadd.pdf

K. Nouioua, Enveloppes de pareto et réseaux de Manhattan, Ph.D. thesis, Université de la
Méditerranée (2005).

Z. Guo, H. Sun, H. Zhu, A fast 2-approximation algorithm for the minimum Manhattan
network problem, in: R. Fleischer, J. Xu (Eds.), Proceedings of the 4th International Con-
ference on Algorithmic Aspects in Information Management (AAIM 2008), Vol. 5034 of
LNCS, Springer, 2008, pp. 212-223.

30. C. A. Valle, J. E. Beasley, A. S. da Cunha, Optimally solving the joint order batching and
picker routing problem, European Journal of Operational Research 262 (2017) 817-834.

