
Large Neighborhood-Based Metaheuristic and Branch-and-Price

for the Pickup and Delivery Problem with Split Loads

Matheus Nohra Haddad

Instituto de Computação – Universidade Federal Fluminense

Rua Passo da Pátria, 156 - São Domingos, Niterói - RJ, 24210-240, Brazil

mathaddad@gmail.com

Rafael Martinelli

Departamento de Engenharia Industrial – Pontif́ıcia Universidade Católica do Rio de Janeiro

Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

martinelli@puc-rio.br

Thibaut Vidal

Departamento de Informática – Pontif́ıcia Universidade Católica do Rio de Janeiro

Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

vidalt@inf.puc-rio.br

Simone Martins, Luiz Satoru Ochi

Instituto de Computação – Universidade Federal Fluminense

Rua Passo da Pátria, 156 - São Domingos, Niterói - RJ, 24210-240, Brazil

simone@ic.uff.br, luiz.satoru@gmail.com

Marcone Jamilson Freitas Souza

Departamento de Computação – Universidade Federal de Ouro Preto

Campus Universitário, Morro do Cruzeiro, Ouro Preto - MG, 35400-000, Brazil

marcone.freitas@gmail.com

Richard Hartl

Department of Business Administration – Universität Wien

Oskar-Morgenstern-Platz 1, A-1090, Vienna, Austria

richard.hartl@univie.ac.at

Technical Report – Universidade Federal Fluminense – Feb 2018

1

ar
X

iv
:1

80
2.

06
31

8v
1

 [
cs

.A
I]

 1
8

Fe
b

20
18

Abstract. We consider the multi-vehicle one-to-one pickup and delivery problem with split

loads, a NP-hard problem linked with a variety of applications for bulk product transportation,

bike-sharing systems and inventory re-balancing. This problem is notoriously difficult due to

the interaction of two challenging vehicle routing attributes, “pickups and deliveries” and “split

deliveries”. This possibly leads to optimal solutions of a size that grows exponentially with

the instance size, containing multiple visits per customer pair, even in the same route. To

solve this problem, we propose an iterated local search metaheuristic as well as a branch-and-

price algorithm. The core of the metaheuristic consists of a new large neighborhood search,

which reduces the problem of finding the best insertion combination of a pickup and delivery

pair into a route (with possible splits) to a resource-constrained shortest path and knapsack

problem. Similarly, the branch-and-price algorithm uses sophisticated labeling techniques, route

relaxations, pre-processing and branching rules for an efficient resolution. Our computational

experiments on classical single-vehicle instances demonstrate the excellent performance of the

metaheuristic, which produces new best known solutions for 92 out of 93 test instances, and

outperforms all previous algorithms. Experimental results on new multi-vehicle instances

with distance constraints are also reported. The branch-and-price algorithm produces optimal

solutions for instances with up to 20 pickup-and-delivery pairs, and very accurate solutions are

found by the metaheuristic.

Keywords. Transportation; Vehicle Routing, Pickup and Delivery; Split Loads; Metaheuristics;

Branch-and-Price

1 Introduction

The classical vehicle routing problem (VRP) aims to find minimum-distance itineraries to

service a set of geographically distributed customers with a fleet of vehicles, in such a way that

each customer is visited once and the capacity of each vehicle is respected. This important

combinatorial optimization problem has been the focus of extensive research since the 1960’s

(Laporte 2009, Vidal et al. 2013, Laporte et al. 2014). Over the years, the classical version of

the problem has been increasingly-well solved, but as new applications are discovered, many

additional constraints, objectives, and other decision subsets, called “attributes” in Vidal et al.

(2013), are combined with the classical problem, leading to new challenges.

2

A classical restriction of the VRP is that each delivery is done in one block by a single vehicle.

Dror and Trudeau (1989) raised this restriction, allowing the total demand of a customer to be

served during several visits, leading to the split delivery vehicle routing problem (SDVRP). At

first, one might think that allowing split deliveries results in increased costs since more visits

may be performed. Yet, this relaxation leads to a larger set of solutions, possibly opening the

way to lower costs. The SDVRP is known to be notoriously more difficult to solve than the

classical VRP from an exact method standpoint, and requires more sophisticated classes of

neighborhoods to be adequately solved via metaheuristics (Silva et al. 2015).

In the meantime, another VRP variant has drawn considerable attention over the years: the

one-to-one pickup and delivery (PDP) problem, which requires to perform each service as a pair,

in such a way that each pickup precedes its associated delivery in the same route. We refer to

Berbeglia et al. (2007) and Parragh et al. (2008) for a detailed survey on pickup and delivery

problems. Once again, an essential ingredient of state-of-the-art heuristics for this problem is

the efficient exploration of a variety of neighbor solutions during the search, a task which tends

to be more complex when pairs of deliveries are relocated or exchanged instead of single visits.

As both “pickups and deliveries” and “split deliveries” attributes require sophisticated search

techniques, combining them into one vehicle routing variant poses significant methodological

challenges, thus partly explaining the reduced number of methods proposed for the multi-vehicle

one-to-one pickup and delivery problem with split loads (MPDPSL) despite its practical relevance.

To this date, two main articles have considered this variant. Nowak et al. (2008) presented a

practical application faced by a logistic company which provides outsourced services. Then,

Şahin et al. (2013) solved this problem for the transportation of bulk products by ship. In

this later case, each load is already packaged into multiple containers, and mail services collect

and deliver multiple packets between origin and destination pairs. Finally, this problem is of

high relevance in many other application contexts involving pickups and deliveries of divisible

products, e.g., inventory between supermarkets (Hartl and Romauch 2016), or bike repositioning

for self-sharing bike sharing systems (Chemla et al. 2013).

Note that, despite the description of a multi-vehicle algorithm in Şahin et al. (2013), all

previous experimental analyses have been restricted to single-vehicle cases. Indeed, the existing

instances did not contain resource constraints on routes (e.g., distance or time), and the depot

does not intervene as a replenishment facility in a one-to-one PDP. When the triangle inequality

3

holds, it is never necessary or profitable to return to the depot, such that the search can be

limited to single-vehicle solutions without compromising solution quality.

In this paper, we pursue the research on this difficult problem, by proposing new heuristic and

exact solution approaches, along with experimental analyses on distance-constrained multi-vehicle

benchmark instances. More precisely, we introduce a hybrid metaheuristic based on iterated

local search (ILS) with random variable neighborhood descent (RVND), which incorporates

classical neighborhoods and perturbation procedures with new larger dynamic programming-

based neighborhoods for joint service reinsertions and optimization of split loads. This method

will be called ILS–PDSL (ILS for pickup-and-delivery problems with split loads). Moreover, we

propose the first efficient branch-and-price algorithm for the MPDPSL. The method exploits

problem-tailored route relaxations, pricing algorithms, pre-processing techniques and branching

rules, allowing to solve problem instances with up to 20 pickup-and-delivery pairs. As such, the

key contributions of this work are:

1. Efficient heuristic and exact solutions approaches for the MPDPSL;

2. new dynamic programming based neighborhoods for split pickup-and-delivery problems;

3. new state-of-the-art results for single-vehicle benchmark instances; and finally,

4. experimental analyses on new multi-vehicle benchmark instances.

2 Problem statement

Consider a graph G = (V,E), where V = P ∪D ∪ {0, 2n+ 1} includes the vertices associated

with n pickup and delivery (p-d) pairs of customers as well as the vertices {0, 2n+1}, representing

the initial and final depots locations. The set P = {1, 2, . . . , n} represents the pickup customers,

while the set D = {n+1, . . . , 2n} represents the corresponding delivery customers. Each service i

consists of a pickup customer i ∈ P and a delivery customer (n+ i) ∈ D. A positive demand

qi > 0 is associated with each pickup customer i ∈ P , and a negative demand, qn+i = −qi, is

associated with the corresponding delivery customer (n+ i) ∈ D. Each edge (i, j) ∈ E represents

the possibility of traveling from a vertex i ∈ V to a vertex j ∈ V with a distance cost dij .

A homogeneous fleet of m vehicles with capacity limit Q is available to perform the services.

Any vehicle arriving at a pickup vertex can collect all available load, or only a part of it. When

a vehicle arrives at a delivery vertex, all load from this vehicle intended for this customer is

4

delivered. As in previous works, we assume that qi ≤ Q for all services i. Moreover, we impose

in this paper a maximum travel distance L for each vehicle.

The objective of the MPDPSL is to design a set of up to m routes, starting and ending

at the depot, with minimum travel distance, in such a way that the complete demand of each

pickup and delivery is satisfied, the route distance limit is respected as well as vehicle capacities,

and each pickup precedes its delivery in the same route.

We adopt the same definition of a split load as in the SDVRP literature: a split load occurs

when the demand of a customer is serviced by a larger number of trips than the minimum

necessary. Figure 1 illustrates a feasible MPDPSL solution for an instance with seven p-d pairs

served by two vehicles. In this example, the service of the pair (5,12) is split among two routes,

and each vehicle carries a fraction of the demand associated to this service.

Figure 1: A feasible MPDPSL solution. The service to (2,9) is split among two routes.

Note that the previous example is not the only situation in which a split load can occur.

The MPDPSL is notably different from the SDVRP as more than one split load can occur in the

same route in an optimal solution. The solution size can also increase significantly and become,

in some cases, exponential as a function of the input size. An illustrative example of such a

situation is presented in Figure 2. This example includes two p-d pairs, (1,3) and (2,4), with

one vehicle of capacity Q = 100 and distance limit L =∞. Customer 1 wishes to transfer 99

load units to customer 3, while customer 2 wishes to transfer 100 load units to customer 4. The

distance between customers 2 and 4 is small (d24 = d42 = ε).

The optimal solution for this problem instance contains a single tour, which

– visits customer 1 and collects its full load (99 units), then

5

– visits customer 2 to collect one unit of load and delivers it to customer 4;

– repeats the previous operation 99 additional times,

– delivers the load of customer 3 (99 units), and returns to the depot.

This optimal solution performs 202 customer visits instead of 4 for the same problem

without split loads. Of course, this is an extreme case of the classical MPDPSL, as in practical

applications a base service time may be counted (e.g., as part of the travel distance), hence

increasing d24. Nevertheless, a good heuristic should be able to find multiple split loads, since

these situations can naturally occur.

Figure 2: Optimal MPDPSL solution for an instance with two p-d pairs, involving an arbitrary
high number of visits to the same customer in a single route.

3 Related literature

The PDP and SDVRP have been the focus of extensive work, counting hundreds of scientific

articles. We refer to Archetti and Speranza (2012), Battarra et al. (2014), Doerner and Salazar-

González (2014) and Irnich et al. (2014) for detailed surveys. Among the current state-of-the-art

methods for PDP, we can highlight, in particular, the adaptive large neighborhood search

(ALNS) of Ropke and Pisinger (2006), which iteratively improves an incumbent solution by

means of repeated destruction and reconstruction steps, and the hybrid genetic algorithm of

Nagata and Kobayashi (2011) based on a selective route exchange crossover with efficient local

searches, producing to this date the best results for PDP instances with time constraints. ALNS

has been subsequently extended to a wide range of VRP variants with great success.

For the SDVRP, the current state-of-the-art results are obtained by the multi-start ILS-

RVND metaheuristic of Silva et al. (2015). This method exploits a wide collection of construction

6

techniques and neighborhoods for solution improvement, as well as a perturbation strategy

which operates multiple random k-Split moves. Finally, Chen et al. (2017) proposed an a-priori

Split strategy, in which customer’s demands are split in advance, and a capacitated VRP (CVRP)

solver is subsequently used. This simple approach leads to solutions of fair quality and leverage

decades of CVRP research.

In contrast, very few articles have considered the combination of both attributes in a single

problem. To our knowledge, Mitra (2005) first considered a problem related to the PDPSL,

but with simultaneous pickups and deliveries instead of one-to-one requests. The objective

seeks to minimize the fleet size and then the distance. The authors propose a mixed integer

programming (MIP) formulation for this problem and a route construction heuristic, which

firstly determines the minimum number of vehicles required, and then builds routes based on a

cheapest insertion criterion. An additional MIP formulation and an extension of this heuristic,

using parallel clustering, are proposed in Mitra (2008).

Nowak et al. (2008) evaluate the benefits of allowing split loads in the one-to-one PDP, hence

defining the PDPSL. The objective of the PDPSL is to find a single route with minimum cost,

fulfilling the required demand. A heuristic based on simulated annealing and tabu search is

developed and random large-scale instances are created. The authors observe that the benefits

of split loads are closely linked to three characteristics of the instances: the load size, the cost

associated with the pickup or delivery, and the percentage of loads which have pickup and

delivery locations in common. They also show that, for a given set of origins and destinations,

the greatest benefits are observed when the load size is greater than half the capacity of the

vehicle. A variant of the problem addressed in Nowak et al. (2008) can be found in Thangiah et al.

(2007), with additional time-window constraints. This work describes an algorithm that inserts

shipments into vehicles using multiple-insertion heuristics for static and real- time test cases.

Nowak et al. (2009) perform an additional empirical analysis of the heuristic presented in

Nowak et al. (2008). The authors note that when demands are between 51% and 60% of the

capacity of the vehicle, up to 30% transportation costs can be saved. The potential savings

due to split loads depends on the percentage of loads to be collected or delivered in a common

location, and the average distance from an origin to a destination relative to the distance from

origin to origin and destination to destination.

7

Şahin et al. (2013) consider the PDPSL with multiple vehicles and distance constraints

and formally define the MPDPSL. The authors develop a heuristic based on tabu search and

simulated annealing. The initial solution is built using a variant of the savings algorithm by

Clarke and Wright (1964), and then improved by local searches based on swap and insert/split

neighborhoods. The simulated annealing is then used in combination with a tabu list to control

move acceptance. Experiments are conducted on the instances from Nowak et al. (2008), as

well as adapted instances from Ropke and Pisinger (2006). However, since no distance limits

are imposed to the vehicles, it is always better to use a single route, such that these instances

cannot be viewed as multi-vehicle test cases.

Finally, Şahin et al. (2013) and Öncan et al. (2011) also introduce an integer programming

model and branch-and-cut algorithm for the MPDPSL, allowing to solve some problem instances

with seven p-d pairs. This method, however, does not necessarily produce an optimal solution

for the problem (e.g., in cases similar to Figure 2), as the model allows at most one visit per

route for each p-d pair. More generally, no compact edge-flow formulation with a strongly

polynomial number of variables can be built for the MPDPSL, since the number of customer

visits of an optimal solution may grow exponentially with the size of the instance. To overcome

this issue, we propose a branch-and-price algorithm, such that the inherent complexity related

to multiple split deliveries within the same route is relegated into the labeling algorithm used for

column generation. This allows to generate the first known optimal solutions for the MPDPSL

without any restriction on the number of visits.

4 Exact Solution Approach

This section first introduces a set partitioning formulation of the MPDPSL (Section 4.1), and then

describes the column generation procedure (Section 4.2), and the branch-and-price algorithm

(Section 4.3) designed to solve this problem to optimality.

4.1 Mathematical Formulation

The mathematical formulation used is an adaptation of the well-known set partitioning formula-

tion, which is extensively used in successful exact approaches for vehicle routing problems. It

considers the set of all feasible routes Ω and binary variables λr, representing whether route

8

r ∈ Ω is used in the solution. In contrast with most other vehicle routing problems, set Ω

naturally contains non-elementary routes, i.e., routes visiting vertices more than once due to

split deliveries. In any route r ∈ Ω, the precedence and capacity constraints should be respected,

and the total amount serviced for any p-d pair must not exceed its demand.

Minimize
∑
r∈Ω

drλr (1)

subject to
∑
r∈Ω

q̄riλr = qi i ∈ P (2)

λr ∈ {0, 1} r ∈ Ω. (3)

The Objective Function (1) minimizes the total cost of the solution. Given q̄ri as the total

amount of the p-d pair (i, n+ i) demand serviced by route r, Constraints (2) guarantee that

all demands of all p-d pairs are satisfied. Constraints (3) are the variable bounds constraints.

Clearly, set Ω contains an exponential number of routes, and the above formulation cannot

be solved by considering all variables. Therefore, a column generation approach is required to

efficiently solve it, as presented in the next section.

4.2 Column Generation

Since the MPDPSL combines features of both pickup-and-delivery and split delivery problems,

our Column Generation (CG) algorithm is first built upon an algorithm for the PDP with time

windows (PDPTW), as the one presented in Ropke and Cordeau (2009), and then extended

to consider split loads. The algorithm may generate routes considering all possible loads for

all p-d pairs visited, under the condition that they respect the precedence constraints and the

maximum travel distance L.

The CG starts with no routes and iteratively generates feasible ones by solving a pricing

subproblem algorithm. Given that with no routes, the formulation of Section 4.1 would become

infeasible, we introduce one artificial variable for each constraint and solve a two-phase CG,

following the same idea as the two-phase Simplex algorithm. At each iteration, the pricing

subproblem must find one or more variables with negative reduced cost. Given βi, the dual

variables of Constraints (2), the reduced cost of a route can be calculated as d̄r = dr−
∑

i∈P βiq̄ri.

The dual variable βi is only counted when the route visits a pickup vertex, and it is multiplied

9

by the total amount of demand loaded in this pickup vertex. Therefore, we can write the

reduced cost of an edge (i, j) ∈ E, i ∈ V, j ∈ P that loads an amount q of vertex j’s demand as

d̄qij = dij − βjq. On the other hand, the amount of demand unloaded on a delivery vertex does

not imply any change on the route’s reduced cost. For this reason, we define the reduced cost of

an edge (i, j) ∈ E, i ∈ V, j ∈ D simply as d̄ij = dij .

A partial path (i, d,Q, q) is a non-elementary path that starts at the depot, visits a subset of

vertices and ends in vertex i servicing q units of its demand with total travel distance d. Vector

Q contains the load of all opened p-d pairs. It also allows to know which delivery vertices must

be visited in the future, and the current total load in the vehicle.

Note that the definition of partial paths allows infeasible routes with excess demand for

some p-d pairs. This relaxation is used to facilitate the resolution of the pricing subproblem.

Moreover, infeasible routes will anyway be excluded in any integer solution of the formulation

thanks to Constraints (2).

The pricing subproblem is a Resource-Constrained Shortest Path Problem solved by a

dynamic programming algorithm that works on a state-space graph G = (V, E), with V = VP ∪

VD ∪ {(0, 0, 0n, 0)}, where VP = {(i, d,Q, q) : ∀Q ∈ Φ,Q[i] = q, 1 ≤ q ≤ qi,∀i ∈ P, 0 ≤ d ≤ L},

VD = {(i, d,Q, 0) : ∀Q ∈ Φ,Q[i − n] = 0, ∀i ∈ D, 0 ≤ d ≤ L}, (0, 0, 0n, 0) represents the

original depot vertex and Φ = {Q ∈ Nn : 0 ≤ Q[i] ≤ qi, ∀i ∈ P,
∑

i∈P Q[i] ≤ Q}. Further-

more E = {((j, d′,Q′, q′), (i, d,Q, q)) : ∀(j, d′,Q′, q′) ∈ E−1(i, j, d,Q), ∀(j, i) ∈ E,∀(i, d,Q, q) ∈

V, dji ≤ d ≤ L}, where E−1(j, i, d,Q) = {(j, d − dji,Q′, q′) : ∀Q′ ∈ Φ s.t. Q′[k] = Q[k] ∀k ∈

P\{i} and Q′[i] = 0 if i ∈ P,Q′[k] = Q[k] ∀k ∈ P\{i−n} and Q′[i−n] > 0 if i ∈ D, or Q′[k] =

0 ∀k ∈ P if i = 0, 0 ≤ q′ ≤ qj}. The recursion can then be written as:

f(i, d,Q, q) = min
(j,d′,Q′,q′)∈E−1(j,i,d,Q)

{f(j, d′,Q′, q′) + d̄qji},∀(i, d,Q, q) ∈ V. (4)

In order to reduce the number of states, we use the following dominance rule. State (i, d,Q, q)

dominates state (j, d′,Q′, q′) iff (i) i = j, (ii) d ≤ d′ (iii) f(i, d,Q, q) ≤ f(j, d′,Q′, q′) and (iv)

Q[k] ≤ Q′[k],∀k ∈ P . Note that (iv) assures the total load on partial path (i, d,Q, q) to be less

than the one on partial path (j, d′,Q′, q′). Moreover, this condition is only valid if the reduced

costs respect the Delivery Triangle Inequality (DTI) (Ropke and Cordeau 2009). An MPDPSL

10

cost matrix is said to respect the DTI if dij ≤ dik +dkj ,∀i, j ∈ V, k ∈ D. If the original distances

dij respect the DTI, d̄qij will also respect the DTI based on the definition previously presented.

We apply three additional techniques to improve the CG algorithm. First, we use the dual

stabilization procedure proposed in Pessoa et al. (2010). At each CG iteration, let β′ be the dual

solution of the previous iteration and let α ∈ [0, 1[be the dual stabilization parameter. The CG

uses a composition of the current and the previous dual solution calculated as β̂ = αβ′+(1−α)β.

Parameter α starts with a positive value, and each time the pricing subproblem returns a

route with positive reduced cost, α is reduced until it reaches zero, thus concluding the dual

stabilization procedure.

Moreover, we use a succession of heuristic pricing algorithms to save computational effort.

We first execute a version of the dynamic programming that limits the number of partial paths

stored for each i ∈ V, 0 ≤ d ≤ L by one. When this simple heuristic fails, we call the exact

pricing relaxing Condition (iv) of the dominance rule and sequentially limiting the number

of partial paths stored for each i ∈ V, 0 ≤ d ≤ L by {3, 10, 100,∞}. When no route is found

with no limitation on the number of partial paths, we restore Condition (iv) and repeat the

procedure.

Finally, we use pre-processing to identify forbidden extensions due to the travel distance

limit. For each 0 ≤ d ≤ L, we forbid an extension from vertex i to vertex j based on

the following rules: (i) if i ∈ P, j ∈ P, d + dij + dj(n+i) + d(n+i)(n+j) + d(n+j)0 > L and

d+dij +dj(n+j) +d(n+j)(n+i) +d(n+i)0 > L, (ii) if i ∈ P, j ∈ D and d+dij +dj(n+i) +d(n+i)0 > L,

(iii) if i ∈ D, j ∈ P and d+dij+dj(n+j)+d(n+j)0 > L, and (iv) if i ∈ D, j ∈ D and d+dij+dj0 > L.

This is an extension of the rules created by Dumas et al. (1991) for the PDPTW, adapted to

consider the travel distance limit.

4.3 Branch-and-Price

Branch-and-Price (B&P) is the name given when a CG algorithm is used on each node of a

branch-and-bound procedure to obtain an optimal integer solution. After the solution of a node,

a fractional variable (or a set of variables) is chosen and two or more branches are created by

introducing constraints to cut the fractional value. When solving a B&P, the branching rules

must be carefully chosen, otherwise the CG algorithm may price the same variable again. For

11

this reason, the branching rules used within a B&P are usually on “original variables”, i.e.,

variables from an edge-flow formulation.

Our B&P uses four branching rules. The first one considers the number of vehicles used

in the solution. It can be calculated as
∑

r∈Ω λr. The second branching rule is done on the

degree of each vertex. Given āri, the number of times route r visits pickup i ∈ P , the degree can

be calculated as
∑

e∈Ω āriλr, ∀i ∈ P . The third one is done on the edges of the original graph.

Given b̄re, the number of times route r traverses edge e ∈ E, regardless of the load, it can be

calculated as
∑

r∈Ω b̄reλr,∀e = (i, j) ∈ E. Finally, the algorithm also considers a branching rule

on the number of times an edge e = (i, j) is traversed when loading (or unloading) q̄i units of

demand on vertex i ∈ V and loading (or unloading) q̄j units of demand on vertex j ∈ V .

Each constraint added to the master formulation generates a new dual variable, which must

be considered by the pricing subproblem to calculate the reduced cost of the routes. It is not

a difficult task to associate the new dual variables to the edges’ reduced cost. However, while

the first two branching rules do not violate the DTI, the last two may change the reduced cost

matrix in this sense. To overcome this issue, we apply the fix proposed by Ropke and Cordeau

(2009). The remaining components of the B&P are classical in the routing literature. The

branching rules are used in order, at each iteration the algorithm chooses the most fractional

value, and the nodes are explored using the best-first strategy.

5 Large Neighborhood-Based Metaheuristic

As noted in Section 3, notably few heuristics have been designed for the MPDPSL, and these

methods were evaluated on benchmark instances that only require the use of a single vehicle.

Moreover, even the sophisticated B&P algorithm described in Section 4 is limited to instances of

small and medium sizes. To solve larger test cases, we design a simple and efficient metaheuristic

for the MPDPSL, based on a new exponential-size neighborhood, and investigate its performance

on distance-constrained benchmark instances that require multiple vehicles.

The proposed ILS–PDSL is built around a very simple search scheme which consists, as in

the classical ILS metaheuristic, of iteratively improving a solution via neighborhood searches

until reaching a local minimum, and then applying a perturbation operator to escape. This

12

process is repeated until a termination criterion (a time limit in our case) is attained. The

general pseudo-code of the method is displayed in Algorithm 1.

sbest ← ∅
s← Construct Initial Solution

while Termination Criterion is not attained do
s← RVND(s) // Solution improvement via a RVND

s← RCSP-insertion(s) // Large neighborhood search

if sbest = ∅ or Cost(s) < Cost(sbest) then
sbest ← s // Saving the best solution

s← Perturbation(sbest) // Perturbation to prepare for next iteration

Return sbest

Algorithm 1: ILS–PDSL

Despite its apparent simplicity, the proposed metaheuristic differs from traditional ILS due

to the nature of the neighborhoods used for solution improvement. Instead of relying on local

search, it exploits a two-phase improvement method. The first phase is a randomized variable

neighborhood descent (RVND), which explores a variety of neighborhoods in random order, and

the second phase is a search in a new exponential-size neighborhood, called resource-constrained

shortest path insertion (RCSP-insertion), which allows to optimally split and re-insert each

pickup and delivery. Finally, our perturbation operator is always applied on the current best

solution in an effort to direct the search on more promising regions of the search space.

The remainder of this section details each component of the algorithm, starting with the

construction of the initial solution (Section 5.1), the RVND procedure (Section 5.2), the RCSP-

insertion operator (Section 5.3), and finally the perturbation mechanism (Section 5.4). With

the exception of the exponential-size neighborhood search performed in RCSP-insertion, these

procedures are relatively simple and classic, leading to a high-performance algorithm which can

be easily reproduced.

5.1 Initial solution

The initial solution s is produced by a greedy constructive heuristic. Iteratively, this heuristic

computes for each pickup customer i its best feasible insertion position, with minimum increase

of distance. The pickup customer i with the shortest distance increase is inserted at each

iteration, and the corresponding delivery (n+ i) is added in its best feasible position after i. At

this stage, the method only considers the insertion of full deliveries. Moreover, only feasible

13

insertions in terms of load capacity and distance constraints are enumerated, and a new route is

created if no such position exists.

5.2 Randomized variable neighborhood descent

We first recall the concept of block (Cassani and Righini 2004), which is needed to describe

some neighborhoods. A block Bi is defined as a sequence of consecutive visits that starts at a

pickup customer i and ends at the corresponding delivery customer (n + i). A block Bi is a

simple block if there is no customer between i and (n + i). A block Bi is a compound block

when there is at least one block Bj ∈ Bi such that Π(i) < Π(j) < Π(n+ j) < Π(n+ i), where

Π(i) is the position of the customer i in the route. It is noteworthy that a compound block

cannot contain a pickup customer without its corresponding delivery customer and vice versa.

As in the RVND of Souza et al. (2010) and Subramanian et al. (2010), there is no pre-

defined order for the neighborhoods, that is, before every execution of the local search, a

new neighborhood order is randomly chosen. Each neighborhood is defined relatively to one

type of move, which can be applied on different p-d pairs and routes. Each neighborhood is

evaluated exhaustively, considering the moves in random order of p-d pairs, and applying the

first improving move. After each improvement, the search restarts from the first neighborhood

structure. Otherwise, the search continues on the next neighborhood structure and finishes when

all the neighborhoods have been examined without success. Our RVND uses simple extensions

of known enumerative neighborhoods for vehicle routing and pickup-and-delivery problems,

which are listed in the following. Neighborhoods N (1), N (2), N (5), and N (6) can be traced back

to Cassani and Righini (2004).

Intra-route neighborhood structures:

N (1) – PairSwap considers two pairs of customers (i, n+ i) and (j, n+ j) and swaps the pickup

customer i with the pickup customer j, as well as the delivery customer (n+ i) with the

delivery customer (n+ j).

N (2) – PairShift considers a pair of customers (i, n+ i) and relocates the pickup i in a position

of the interval [Π(i)−∆,Π(i) + ∆] and the delivery (n+ i) in a position of the interval

[Π(i) + 1,Π(i) + ∆]. Parameter ∆ limits the size of the neighborhood (see Section 6).

14

N (3) – PickShift relocates a pickup customer i in another position before the delivery cus-

tomer (n+ i).

N (4) – DelShift relocates a delivery customer (n + i) in another position after the pickup

customer i.

N (5) – BlockSwap swaps a block Bi with another block Bj .

N (6) – BlockShift relocates a block Bi in another position.

Inter-route neighborhood structures:

N (7) – InterPairSwap selects a pair of customers (i, n + i) from a route r1 and another pair

(j, n+ j) from a route r2 and swaps the pickup customer i with the pickup customer j.

The delivery customer (n+ i) is swapped with the delivery customer (n+ j).

N (8) – InterPairShift takes a pair of customers (i, n+ i) from a route r1 and transfer this pair

to a route r2. After defining Π(i) in r2, the delivery customer is inserted in a position of

the interval [Π(i) + 1,Π(i) + ∆].

N (9) – InterBlockSwap selects a block Bi from a route r1 and another block Bj from a route r2

and swaps them.

N (10) – InterBlockShift transfers a block Bi from a route r1 to a route r2.

Finally, we rely on the following theorem to perform a post-optimization after each local search:

Theorem 1 (Şahin et al. 2013). If the distance matrix satisfies the triangle inequality, then there

exists an optimal solution of the MPDPSL such that between each visit to a pickup customer i

and its corresponding delivery (n+ i) no other pickups or deliveries of this same p-d pair occur.

As such, we scan the solution and search for visits to the same p-d pair (i, n+ i) appearing in

the order i→ i→ n+ i→ n+ i in a route (with possible visits to other customers in-between).

If this situation occurs, the two visits can be merged as one single visit while maintaining

feasibility and improving the total distance. There are 2 × 2 possibilities for insertion of the

merged p-d in place of the previous services, and the best one in terms of distance is chosen.

5.3 RCSP-insertion neighborhood

The improvement procedure of the previous section relies on the enumeration of many possible

moves to produce improved solutions. However, we know that MPDPSL solutions can include an

15

arbitrarily large number of visits to the same p-d pair (as illustrated in Figure 2). Enumerating

all possible combinations of splits and placements of visits would take an exponential time. For

this reason, previous methods adopted strategies which limit the number of split loads (Nowak

et al. 2008, Şahin et al. 2013). To address this issue, we propose a larger (exponential-size)

neighborhood, which seeks to optimize the split loads and can be efficiently explored via dynamic

programming.

In the proposed RCSP-insertion neighborhood, the problem of finding the best reinsertion of

each pickup and delivery pair, with possible split loads, is addressed as a resource-constrained

shortest path problem (RCSP) in a directed acyclic graph followed by a knapsack problem. This

optimization is conducted once for each p-d pair, considering the pairs in random order. For

each p-d pair (x, n+ x), the method works as follows:

– Remove all occurrences of x and n+ x from all routes.

– Phase 1: For each route σ, evaluate the possible insertions and combinations of insertions

of the p-d pair (x, n + x) via dynamic programming (RCSP), therefore characterizing

all non-dominated trade-offs between the extra travel distance and the quantity of load

picked-up from x and delivered to n+ x.

– Phase 2: Based on the known trade-offs (labels) for each route, find the best combination

of insertions in all routes in order to fulfill the total demand qx. This selection can be

done by solving a variant of the knapsack problem.

Phase 1: Evaluation of non-dominated insertions for each route. Consider a route

σ = (σ1, . . . , σn(σ)), in which each element represents a visit to a depot, pickup or delivery node.

This phase aims to evaluate the minimum additional distance incurred when inserting visits

to the p-d pair (x, n + x) in the route σ, in order to service any demand quantity q in the

interval [0, qx]. Trade-offs between distance and delivery quantity can be found by solving a

resource-constrained shortest path problem in a directed acyclic graph H = (V ′, A), illustrated

in Figure 3 and defined in the following.

16

Customer Depot

Figure 3: Auxiliary graph H for a route containing n(σ) = 6 visits

The node set V ′ is divided into two groups of nodes, V ′ = Vroute ∪ Vinsert:

– Vroute = {v1, . . . , vn(σ)} contains one node per (depot or customer) visit in the route.

– Vinsert = {vp1 , vd1 , . . . , vpn(σ)−1, v
d
n(σ)−1} contains a pair of nodes (vpi , v

d
i) between each node

pair (vi, vi+1). The nodes vpi represent possible pickups at x, and the nodes vdi represent

possible deliveries at n+ x.

The total number of nodes in the graph is |V ′| = 3× n(σ)− 2.

The arc set A is also divided into two sets A = Atravel ∪Aload. Each arc is characterized by

a distance δdista and a delivered load δloada . The arcs in Atravel (dashed arrows in Figure 3) can

either connect successive visits in Vroute, or connect a visit vi with its candidate pickup vpi , or

connect a candidate delivery vdi with the next visit vi+1. Each such arc a ∈ Atravel represents

a pure vehicle relocation without any load destined for customer x, such that δloada = 0, and

the associated distance is:

δdista =


dσi,σi+1 if a = (vi, vi+1)

dσi,x if a = (vi, v
p
i)

dn+x,σi+1 if a = (vdi , vi+1).

17

Finally, the arcs in Aload (solid arrows in Figure 3) correspond to trips which carry some load

of x. The following cases should be distinguished.

– Direct arc: a = (vpi , v
d
i). This arc corresponds to a direct travel between x and n+ x.

It is characterized by a distance δdista = dx,n+x and a load δloada = Q −
i∑

k=1

qσk , which

corresponds to the free capacity in the vehicle after client σi.

– Indirect pickup–delivery arc: a = (vpi , v
d
j) with i < j. This arc corresponds to a trip

segment starting at the pickup location x, serving the locations (σi+1, σi+2, . . . , σj), and

ending at the delivery location n+ x. Following the same principles as previously,
δdista = dx,σi+1 +

j−1∑
k=i+1

dσkσk+1
+ dσj ,n+x, and

δloada = min
l∈{i,...,j}

(
Q−

l∑
k=1

qσk

)
.

In this equation, δloada represents the smallest amount of free capacity in the vehicle at

any point of the trip between σi and σj .

– Indirect delivery-delivery arc: a = (vdi , v
d
j) with i < j. This arc corresponds to a trip

segment starting at the delivery location n+ x, returning to the pickup location x, serving

the locations (σi+1, σi+2, . . . , σj), and ending at the delivery location n+ x. As such,
δdista = dx,n+x + dx,σi+1 +

j−1∑
k=i+1

dσkσk+1
+ dσj ,n+x, and

δloada = min
l∈{i,...,j}

(
Q−

l∑
k=1

qσk

)
.

After the construction of the graph H, the RCSP between v1 and vn(σ) is obtained by

means of a simple variant of Bellman’s algorithm. The algorithm computes for each vertex

v ∈ V ′, in topological order, a set of labels Sv = {svk | k ∈ {1, . . . , |Sv|}} in which each label

svk = (sdistvk , sloadvk) is characterized by a distance sdistvk and a load sloadvk transferred from x to

n+ x. Starting at the depot with Sv1 = {(0, 0)}, the labels are iteratively propagated as follows:

for v ∈ (vp1 , v
d
1 , v2, v

p
2 , v

d
2 , . . . , vn(σ)),

Sv =
⋃

w|(w,v)∈A

⋃
swi∈Sw

{(sdistwk + δdist(w,v), s
load
wk + δload(w,v))}.

(5)

18

Non-dominated labels are eliminated at each step. A label svk is dominated by a label svk′

if sdistvk ≥ sdistvk′ and min{sloadvk , qx} ≤ min{sloadvk′ , qx}. Moreover, a completion bound is used to

eliminate additional labels: for any vi ∈ Vroute, any label svik that covers the total demand of

the client x (such that sloadvik
≥ qx) leads to a distance bound of sdistvik

+
nσ−1∑
k=i

dk,k+1. The best

distance bound is updated during the search, and any label whose distance exceeds this bound

can be pruned.

For each route σ, the set of non-dominated labels S(σ) = Svn(σ) is stored at the end of the

algorithm. For single-vehicle problem instances, the best combination of insertions of visits

to the p-d pair (x, n + x) corresponds to the single non-dominated label s ∈ S(σ) such that

sload ≥ qx. In cases involving multiple vehicles, the best visits for the p-d pair (x, n+ x) can be

distributed into multiple routes. As described in the following, the best combination of insertions

can be found by solving a knapsack problem based on the labels S(σ) for each route σ.

Phase 2: Combination of insertions in multiple vehicles. In the presence of multiple

vehicles, the algorithm searches for a good combination of insertions in different routes in order

to cover the total demand. This problem can be formulated as a knapsack problem with an

additional constraint that limits the selection to one label at most in each route. Let Cσ be

the distance of a route σ before the insertion of any visit to the p-d pair (x, n+ x). Each label

sσj ∈ S(σ) corresponds to a detour cost of sdistσj − Cσ, to deliver a load quantity sloadσj from the

pickup x to the delivery n+ x. We thus define a binary decision variable yσj , equal to 1 if and

only if the label sσj is selected. This leads to the optimization problem of Equations (6–9).

min
∑
σ∈R

∑
sσj∈S(σ)

(
sdistσj − Cσ

)
yσj (6)

∑
σ∈R

∑
sσj∈S(σ)

sloadσj yσj ≥ qx (7)

∑
sσj∈S(σ)

yσj ≤ 1 σ ∈ R (8)

yσj ∈ {0, 1} σ ∈ R, sσj ∈ S(σ) (9)

This formulation is identical to the one used in Boudia et al. (2007) for the SDVRP. At this

stage, the challenges specific to the MPDPSL have already been relegated to the determination

19

of the labels (sdistσj ,sloadσj); a task which could not be done by inspection in O(n), but instead

required a pseudo-polynomial search algorithm (Phase 1) to produce non-dominated pairs of

insertion positions —as well as combinations of insertion positions— within each route.

To solve Equations (6–9), we tested different exact techniques, either based on dynamic

programming or integer programming. In our experiments, these methods led to a significant

computational-time overhead. Similarly to Boudia et al. (2007), we thus opted for a heuristic

resolution, using a greedy heuristic which iteratively selects the label sσj with maximum ratio

sloadσj /(sdistσj − Cσ). In our experiments, this heuristic matches in 69% of the cases the optimal

result. Finally, the best visit insertions are performed, forming the new incumbent solution in

the algorithm.

5.4 Perturbation mechanism

The last component of ILS–PDSL, the perturbation mechanism, is designed to escape from

the local minimums of the previous neighborhood improvement procedures. It relocates npert

random p-d pairs from their original routes to new random positions, inserting both pickup

and deliveries consecutively. The number of pairs npert to be relocated, which determines the

strength of the perturbation, is randomly selected in {1, 2, ..., pmax} with uniform distribution.

As such, pmax is a method parameter which establishes a maximum limit on the impact of the

perturbation.

6 Computational results

Our computational experiments have been conducted on the two existing sets of PDPSL instances

from previous literature, as well as new MPDPSL instances. The first set originates from Nowak

et al. (2008), and the second from Şahin et al. (2013). These instances were generated in such

a way that each load occupies 51% to 60% of the capacity of the vehicle. In those conditions,

Nowak et al. (2008) noticed that the savings related to split loads tend to be the greatest.

The first set contains three subsets of 15 instances each, with 75, 100 and 125 pickup and

delivery pairs. In each instance, the pickups can occur in only five different locations, and each

subset has a different number of delivery locations: 15, 20 and 25 delivery locations, respectively.

The second set was derived from the instances of Ropke and Pisinger (2006). It contains four

20

subsets of 12 instances each, with 50, 100, 250 and 500 pickup and delivery pairs. In this

set, both pickup and delivery locations are randomly generated, such that coincident service

locations are unlikely.

Both exact and heuristic approaches were developed in C++. ILS–PDSL was implemented

using OptFrame (Coelho et al. 2011), a computational framework for the development of efficient

heuristic algorithms for combinatorial optimization problems. Each test was executed on a

single thread, the ILS–PDSL on an Intel Core 2 Quad 2.4 GHz with 4 GB of RAM, and the

B&P on an Intel Core i7-3960X 3.3 GHz with 64 GB of RAM. We compare the performance of

ILS–PDSL with that of the “TESA” algorithm of Nowak et al. (2008), and the “TABU” search

of Şahin et al. (2013). Our computer is nearly identical to the one used in Şahin et al. (2013):

an Intel Core 2 Quad 2.33 GHz with 3.46 GB of RAM. Moreover, the CPU time of Nowak et al.

(2008) has been scaled in Şahin et al. (2013) to take into account the speed difference between

their respective computers.

ILS–PDSL uses three main parameters: the strength of the perturbation operator pmax, the

range of insertions ∆ considered in the PairShift neighborhoods, and the stopping criterion Tmax.

The first two parameters have been calibrated in preliminary analysis, considering values of

pmax ∈ {1, . . . , 10} and ∆ ∈ {1, . . . , 10}, and the configuration pmax = 3 and ∆ = 5 led to good

results. Finally, the stopping criterion Tmax has been set to be identical to that of the TABU

search of Şahin et al. (2013), for each group of instances, in order to compare with previous

authors in similar CPU time.

Depending on the instance set, previous authors have either reported results on a single

run, or best results over multiple runs. Both measures tend to be influenced by the variance

of the performance of an algorithm over different runs with different seeds. We thus opted to

report the average solution quality over several runs, which is a better estimate of the average

behavior of an algorithm. In the following, we will report solution values and their “Gap(%)”

for each instance. Let z be the solution value of the proposed method, and zbks be the best

known solution (BKS) ever found in previous literature for this instance (possibly over multiple

runs, with different algorithms and parameter settings), then Gap(%) = 100× (z − zbks)/zbks.

21

6.1 Metaheuristic – Performance evaluation on PDPSL instances

We first evaluate the performance of the ILS–PDSL. For this purpose, we establish a comparison

with previous metaheuristics available in the literature, which were tested on PDPSL instances.

Instances from Nowak et al. (2008). Nowak et al. (2008) and Şahin et al. (2013) reported

the solution quality of their algorithms, TESA and TABU, based on one run per instance. To

provide a reliable estimate of performance, we repeated our experiments 20 times with different

random seeds, and report the average solutions on each instance. The best results are also

indicated to establish bounds for future research. We adopted the same time limits as Şahin

et al. (2013): 25.50 minutes per run for each instance with 75 pairs, 56.20 minutes for each

instance with 100 pairs, and 95.90 minutes for each instance with 125 pairs. Tables 1, 2 and

3 display the results on these instances. For each instance, the result of the best method is

highlighted in boldface.

Table 1: Results for the PDPSL with 75 pairs – Instances from Nowak et al. (2008)
Time limit set to 25.5 minutes per run

TESA TABU ILS–PDSL

Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)

75 1A 3796.32 3830.12 0.89 3894.34 2.58 3786.30 -0.26 3727.32 -1.82

75 1B 3808.16 3857.12 1.29 3842.88 0.91 3764.84 -1.14 3683.20 -3.28

75 1C 3790.03 3810.50 0.54 3790.03 0.00 3767.15 -0.60 3686.44 -2.73

75 1D 3799.32 3799.32 0.00 3862.23 1.66 3755.47 -1.15 3707.17 -2.43

75 1E 3788.37 3868.96 2.13 3820.87 0.86 3781.96 -0.17 3719.38 -1.82

75 2A 3161.69 3313.48 4.80 3177.98 0.52 3104.55 -1.81 3044.34 -3.71

75 2B 3169.92 3296.36 3.99 3179.00 0.29 3102.96 -2.11 3069.97 -3.15

75 2C 3121.97 3203.25 2.60 3121.97 0.00 3085.99 -1.15 3040.38 -2.61

75 2D 3117.69 3266.42 4.77 3117.69 0.00 3074.07 -1.40 3010.40 -3.44

75 2E 3148.70 3332.59 5.84 3168.66 0.63 3109.04 -1.26 3075.34 -2.33

75 3A 3897.12 4058.37 4.14 3910.04 0.33 3892.26 -0.12 3817.39 -2.05

75 3B 3868.75 4172.42 7.85 3868.75 0.00 3860.70 -0.21 3771.77 -2.51

75 3C 3858.71 4090.65 6.01 3900.38 1.08 3866.62 0.20 3787.46 -1.85

75 3D 3845.05 4110.39 6.90 3888.20 1.12 3850.45 0.14 3762.61 -2.14

75 3E 3893.36 4052.23 4.08 3908.01 0.38 3826.36 -1.72 3733.67 -4.10

Avg 3.72 0.69 -0.85 -2.66

Xeon Intel Core 2 Quad Intel Core 2 Quad

CPU 2.4 GHz 2.4 GHz 2.4 GHz

2 GB 4 GB 4 GB

From these experiments, ILS–PDSL appears to produce solutions of higher quality than the

TESA and TABU algorithms, as it was able to find better average results on all 45 instances.

22

Table 2: Results for the PDPSL with 100 pairs – Instances from Nowak et al. (2008)
Time limit set to 56.2 minutes per run

TESA TABU ILS–PDSL

Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)

100 1A 4992.59 5073.40 1.62 4992.59 0.00 4886.80 -2.12 4823.76 -3.38

100 1B 5036.55 5036.55 0.00 5042.30 0.11 4921.42 -2.29 4861.49 -3.48

100 1C 5015.09 5029.38 0.29 5015.09 0.00 4922.82 -1.84 4813.72 -4.02

100 1D 4996.08 5012.97 0.34 4996.08 0.00 4922.44 -1.47 4831.00 -3.30

100 1E 5015.26 5130.15 2.29 5015.26 0.00 4896.29 -2.37 4792.94 -4.43

100 2A 4204.28 4450.06 5.85 4258.49 1.29 4169.72 -0.82 4096.25 -2.57

100 2B 4306.73 4484.47 4.13 4306.73 0.00 4225.95 -1.88 4156.74 -3.48

100 2C 4215.07 4473.39 6.13 4259.09 1.04 4201.15 -0.33 4134.60 -1.91

100 2D 4244.77 4424.57 4.24 4267.37 0.53 4194.76 -1.18 4089.79 -3.65

100 2E 4228.82 4559.26 7.81 4228.82 0.00 4200.25 -0.68 4132.97 -2.27

100 3A 5126.71 5294.37 3.27 5126.71 0.00 4987.04 -2.72 4934.62 -3.75

100 3B 5084.70 5371.74 5.65 5161.29 1.51 5042.60 -0.83 4974.61 -2.17

100 3C 5075.45 5216.80 2.78 5098.71 0.46 5004.95 -1.39 4938.02 -2.71

100 3D 5106.32 5467.79 7.08 5106.32 0.00 5010.16 -1.88 4941.18 -3.23

100 3E 5076.14 5572.47 9.78 5076.14 0.00 5029.86 -0.91 4884.24 -3.78

Avg 4.08 0.33 -1.51 -3.21

Xeon Intel Core 2 Quad Intel Core 2 Quad

CPU 2.4 GHz 2.4 GHz 2.4 GHz

2 GB 4 GB 4 GB

Table 3: Results for the PDPSL with 125 pairs – Instances from Nowak et al. (2008)
Time limit set to 95.9 minutes per run

TESA TABU ILS–PDSL

Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)

125 1A 5950.44 6020.05 1.17 6002.15 0.87 5762.68 -3.16 5682.79 -4.50

125 1B 5938.94 5938.94 0.00 5998.06 1.00 5785.19 -2.59 5678.06 -4.39

125 1C 5933.69 5977.69 0.74 5933.69 0.00 5758.32 -2.96 5625.24 -5.20

125 1D 6060.85 6138.94 1.29 6083.59 0.38 5802.33 -4.27 5701.05 -5.94

125 1E 5906.34 6024.26 2.00 5906.34 0.00 5755.05 -2.56 5660.45 -4.16

125 2A 5396.85 5717.54 5.94 5444.23 0.88 5262.65 -2.49 5183.40 -3.96

125 2B 5456.91 5745.38 5.29 5460.81 0.07 5313.86 -2.62 5209.02 -4.54

125 2C 5412.81 5667.26 4.70 5412.81 0.00 5289.23 -2.28 5145.39 -4.94

125 2D 5475.40 5778.58 5.54 5494.71 0.35 5321.00 -2.82 5234.01 -4.41

125 2E 5419.02 5780.01 6.66 5419.02 0.00 5281.44 -2.54 5191.63 -4.20

125 3A 6237.20 6934.05 11.17 6252.24 0.24 6128.28 -1.75 6050.78 -2.99

125 3B 6300.04 6918.16 9.81 6300.04 0.00 6152.84 -2.34 6057.74 -3.85

125 3C 6324.66 6607.30 4.47 6332.93 0.13 6129.45 -3.09 6024.87 -4.74

125 3D 6317.05 7239.79 14.61 6359.16 0.67 6166.94 -2.38 6040.13 -4.38

125 3E 6257.16 6776.37 8.30 6277.38 0.32 6137.54 -1.91 6057.75 -3.19

Avg 5.45 0.33 -2.65 -4.36

Xeon Intel Core 2 Quad Intel Core 2 Quad

CPU 2.4 GHz 2.4 GHz 2.4 GHz

2 GB 4 GB 4 GB

23

The largest improvements occur on the largest data sets. Considering the average gaps, we

observe negative values for every instance set (−0.85%, −1.51% and −2.65%), meaning that

the average solution quality of ILS–PDSL is better than the BKS in the literature. Finally,

considering the best results out of 20 runs, we observe large improvements of the BKS (3.41%

overall), with new best solutions for all 45 instances.

We conducted a Friedman test comparing the solution values for each instance to validate the

statistical significance of the results. This test led to a value p < 2.2× 10−16, which indicates a

significant difference of performance. We also performed pairwise Wilcoxon tests to locate these

differences which, as reported in Table 4, support the existence of significant differences between

all three methods: ILS–PDSL is significantly better than TABU, which is in turn significantly

better than TESA.

Table 4: Results of pairwise Wilcoxon tests – Instances from Nowak et al. (2008)

Algorithms p-value

TESA and TABU 2.12× 10−10

ILS–PDSL and TESA 5.68× 10−14

ILS–PDSL and TABU 5.68× 10−14

Instances from Şahin et al. (2013). Şahin et al. (2013) introduced a second set of instances

and presented, for each instance with 50, 100 or 250 p-d pairs, the best solutions obtained by

TABU over 20 runs. For the instances with 500 pairs, the authors presented the best solutions

over five runs. As indicated by the authors in a private communication, the associated time

values correspond to the average time of one run. These values also depend on the specific

instance. As such, we have defined for each group of instances a termination criterion Tmax

which is smaller or equal to the average CPU time of TABU: 5 seconds for the instances with 50

service pairs, 40 seconds for the instances with 100 pairs, 5 minutes for the instances with

250 pairs, and 1 hour for the instances with 500 pairs. Tables 5–8 display the results of these

experiments. In these tables, the solution quality of the best method is highlighted in boldface.

Since the best solution quality of TABU has been measured over multiple runs (20 or 5),

the comparison is established with the best solution of ILS–PDSL over the same number of

runs. When analyzing the tables, we observe that ILS–PDSL produces best solutions of higher

quality than TABU (better than the BKS) on 47 instances out of 48. The significance of these

24

Table 5: Results for the PDPSL with 50 pairs – Instances from Şahin et al. (2013)
Time limit set to 5 seconds per run

TABU ILS–PDSL

Instance T(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)

50A 4.5 16791.20 15481.36 -7.80 15913.01 -5.23

50B 4.3 17115.50 15422.03 -9.89 15814.13 -7.60

50C 4.5 14956.00 14131.43 -5.51 14591.86 -2.43

50D 4.3 16290.00 14947.06 -8.24 15345.82 -5.80

50E 7.6 11397.50 9517.49 -16.49 9895.06 -13.18

50F 7.4 9532.59 8429.16 -11.58 8927.89 -6.34

50G 6.2 9665.06 8820.07 -8.74 9175.39 -5.07

50H 11.2 9199.58 7608.63 -17.29 7930.69 -13.79

50I 5.8 14469.40 12864.70 -11.09 13235.73 -8.53

50J 6.5 13200.20 11891.39 -9.92 12131.98 -8.09

50K 2.3 12759.30 12337.42 -3.31 12594.40 -1.29

50L 4.4 14867.80 13426.21 -9.70 13973.27 -6.02

Avg 5.7 -9.96 -6.95

Table 6: Results for the PDPSL with 100 pairs – Instances from Şahin et al. (2013)
Time limit set to 40 seconds per run

TABU ILS–PDSL

Instance T(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)

100A 25.1 27301.2 25398.19 -6.97 26268.75 -3.78

100B 19.4 27090.1 25027.88 -7.61 26020.76 -3.95

100C 34.0 27221.3 25319.76 -6.99 25833.95 -5.10

100D 19.0 28574.7 26110.15 -8.62 27177.34 -4.89

100E 74.7 15320 13498.17 -11.89 14022.84 -8.47

100F 95.8 17574.2 13548.03 -22.91 13919.54 -20.80

100G 50.1 14888.4 14508.21 -2.55 15062.04 1.17

100H 57.9 16259.7 14445.99 -11.15 15021.09 -7.62

100I 32.4 24994.4 22603.21 -9.57 23292.98 -6.81

100J 37.5 23025.5 21284.65 -7.56 21843.80 -5.13

100K 30.4 24509 22435.89 -8.46 23248.32 -5.14

100L 49.3 23994.7 20705.86 -13.71 21400.98 -10.81

Avg 43.8 -9.83 -6.78

25

Table 7: Results for the PDPSL with 250 pairs – Instances from Şahin et al. (2013)
Time limit set to 5 minutes per run

TABU ILS–PDSL

Instance T(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)

250A 287.3 58847.6 56857.45 -3.38 58821.37 -0.04

250B 253.0 57559.1 55871.66 -2.93 57637.00 0.14

250C 299.5 57495.9 56483.36 -1.76 58107.41 1.06

250D 356.1 59396.7 57368.20 -3.42 59438.78 0.07

250E 3174.6 31736.8 28327.20 -10.74 29454.09 -7.19

250F 1123.1 27596 24820.19 -10.06 25562.37 -7.37

250G 1089.3 29421.8 26552.49 -9.75 27549.93 -6.36

250H 939.5 31911.5 27326.55 -14.37 28656.36 -10.20

250I 468.2 50154.8 48124.77 -4.05 50165.75 0.02

250J 448.8 53636.2 51119.88 -4.69 52868.55 -1.43

250K 537.5 50084.4 46946.17 -6.27 49128.23 -1.91

250L 392.3 54393.4 52580.00 -3.33 55067.03 1.24

Avg 780.8 -6.23 -2.66

Table 8: Results for the PDPSL with 500 pairs – Instances from Şahin et al. (2013)
Time limit set to 1 hour per run

TABU ILS–PDSL

Instance T(s) Best-5 Best-5 Gap(%) Avg-5 Gap(%)

500A 2124.6 106674 105536.28 -1.07 107176.11 0.47

500B 2374.2 110881 107657.18 -2.91 109636.75 -1.12

500C 1985.8 109181 107676.77 -1.38 109991.16 0.74

500D 2247.0 109746 104432.98 -4.84 107220.16 -2.30

500E 10860.4 63068.4 62322.13 -1.18 63411.06 0.54

500F 10815.8 68829.7 62951.49 -8.54 64701.06 -6.00

500G 11101.8 70038.8 67147.93 -4.13 69658.51 -0.54

500H 16763.8 60568.5 60489.14 -0.13 62636.44 3.41

500I 5075.4 93178.2 94264.57 1.17 97404.34 4.54

500J 4698.0 96984.8 94512.62 -2.55 97141.73 0.16

500K 4539.6 97429.5 96717.63 -0.73 98134.65 0.72

500L 5996.2 98102.7 95634.88 -2.52 97539.59 -0.57

Avg 6548.6 -2.40 0.00

26

improvements is again confirmed by a pairwise Wilcoxon test with a value p = 2.35×10−13. The

magnitude of these improvements is also larger than on previous instances, with an improvement

of 7.11% on average (comparing best solutions together), which seems to indicate that these

instances with a wider diversity of possible pickup and delivery locations are more difficult to

solve, and remain challenging for future works.

6.2 Metaheuristic – Sensitivity analysis

In order to examine the relative role of each component in the proposed heuristic, we started

from the standard version of the algorithm and generated some alternative configurations by

removing, in turn, a different neighborhood:

Base – The standard configuration, with all local-search neighborhoods and the RCSP insertion;

WN1 – Base configuration without the PairSwap neighborhood;

WN2 – Base configuration without the PairShift neighborhood;

WN34 – Base configuration without the PickShift and DelShift neighborhoods;

WN5 – Base configuration without the BlockSwap neighborhood;

WN6 – Base configuration without the BlockShift neighborhood;

WR – Base configuration without the RCSP insertion neighborhood. We note that the removal

of the RCSP insertion neighborhood forces the algorithm to work on a classic pickup and

delivery problem, without possible split moves.

The resulting algorithms have been all tested on the instances of Nowak et al. (2008),

performing five runs for each of the 45 data sets, and using the same termination criterion as in

Section 6.1. Table 9 displays, for each variant of the algorithm, the average gap for each set of

instances (Gap-75, Gap-100 and Gap-125) as well as the average gap overall (Avg).

Table 9: Results for each configuration of the ILS–PDSL – Instances from Nowak et al. (2008)

Configuration Gap-75(%) Gap-100(%) Gap-125(%) Avg(%)

Base -1.07 -1.82 -2.57 -1.82

WN1 -0.25 -0.93 -1.37 -0.85

WN2 -0.98 -1.58 -2.52 -1.70

WN34 -0.75 -1.55 -2.46 -1.59

WN5 -0.98 -1.74 -2.67 -1.80

WN6 -0.80 -1.45 -1.95 -1.40

WR 48.84 48.93 47.18 48.32

27

In this table, we observe that the Base configuration leads to the best overall gap (−1.82%),

as well as the best average gaps on the 75-pairs and 100-pairs instances. Still, the best average

gap on the 125-pairs instances is attributed to the WN5 variant, without the BlockSwap

neighborhood. This effect is possibly due to the variance of the solution quality of the algorithm

on this relatively small sample of 15 instances, but it also demonstrates that some neighborhoods

have a much larger impact than others. In decreasing order of importance, the most important

neighborhood is the proposed RCSP insertion, followed by the PairSwap neighborhood, the

BlockShift, PickShift and DelShift neighborhoods, and then the others. The RCSP insertion, in

our context, is essential since it manages the optimization of the split loads.

The gaps obtained by all ILS–PDSL variants (on all runs) can also be better observed by

means of box plots, as in Figure 4. In these box plots, represented without the results of WR so

as to enhance readability, we can observe the general superiority of the Base configuration. The

removal of PairSwap (WN1) has a large negative impact on the final solutions, followed by the

removal of BlockShift (WN6), the removal of PickShift and DelShift (WN34), the removal of

PairShift (WN2) and the removal of BlockSwap (WN5).

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

Base WN1 WN2 WN34 WN5 WN6

−
6

−
4

−
2

0
2

Configuration

G
A

P

Figure 4: Box plot showing the gaps for each configuration of the ILS–PDSL

28

We performed a Friedman test based on the gap values of each algorithm to validate the

previous observations. The test led to a value p < 2.2 × 10−16, demonstrating significant

statistical differences. Then, we performed paired-sample Wilcoxon tests to compare the Base

algorithm with all other algorithms. The results of these tests are reported in Table 10.

Table 10: Results from paired-sample Wilcoxon tests with the Base algorithm

Algorithms p-value

Base – WN1 3.26× 10−16

Base – WN2 0.18

Base – WN34 0.01

Base – WN5 0.78

Base – WN6 5.05× 10−05

Base – WR < 2.2× 10−16

These results confirm, with high confidence, the hypotheses that the Base algorithm produces

results of significantly (better) quality than the WN1, WN34, WN6 and WR configurations,

with p-values which are always smaller than a threshold of 0.05. This highlights the importance

of the neighborhoods which were deactivated in those configurations. A pairwise Wilcoxon

test between the Base configuration and WN2 and WN5 led to p-values of 0.18 and 0.78, such

that the significance of the difference of performance is not established in these cases. We can

still reasonably conjecture that the associated neighborhoods (PairShift and BlockSwap) have

a smaller impact, which would be better visible with additional runs and/or test instances.

Besides, the CPU time consumption dedicated to these neighborhoods is very small, hence our

choice to maintain them in the Base algorithm.

6.3 Metaheuristic and exact – Multiple vehicles and distance constraints

As discussed in Sections 1 and 3, the absence of distance constraints in the classical benchmark

instances leads to the use of a single vehicle. To investigate real MPDPSL test cases, we generated

two sets of instances with distance constraints. The first set includes 40 small instances with 10

to 25 p-d pairs and a distance constraint L = 300. The second set extends the 45 medium-size

instances from Nowak et al. (2008) with a distance constraint set to L = 1000. All instances

are available at https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html. The first set of

instances allows to compare the results of the metaheuristic with some optimal solutions found

by the B&P. Due to their larger size, the instances of the second set are only solved heuristically.

29

https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html

Table 11 presents the results obtained on the first set. The first group of columns report the

average and best solutions found by the ILS-PDSL over 20 runs as well as the percentage gap

between these two values. A time limit of one minute was imposed for each run. The second

group of columns reports the results of the B&P algorithm, considering a time limit of two hours.

When this limit is reached, the time is reported as “tl”. From left to right, the columns indicate

the root node relaxation value, the time needed for the root node resolution, the final lower and

upper bounds, the total CPU time, the percentage gap between the LB and UB, and finally

the number of nodes explored in the branch-and-bound tree. For a few instances, indicated

with “–”, the B&P could not complete the resolution of the root node within the time limit.

When the exact method can prove optimality, the upper bound value is underlined. Finally,

note that the B&P receives the best solution of the ILS-PDSL as initial upper bound, therefore

the columns UB is always smaller or equal to the best solution of the ILS-PDSL. In a few cases,

the B&P found a better UB during the execution. These solutions are highlighted in boldface.

These results show that the B&P can solve instances of small and medium size. Out of the

40 instances of the first set, optimal solutions were found for 20 instances: for all instances with

10 p-d pairs, all but one with 15 pairs, and one with 20 pairs. For the last open instance with

15 pairs, the B&P improved the upper bound found by the heuristic and attained a very small

optimality gap (0.4%). For the largest instances, the time needed for column generation becomes

prohibitively high. In particular, the time limit of 2 hours was attained during the resolution of

the root node on two instances with 25 p-d pairs. In the other cases, the B&P still manages to

find decent-quality lower bounds, at most 14.7% away from the heuristic upper bound.

Considering the metaheuristic results, we observe that 18 out of the 20 known optimal

solutions were found in at least one run. The average percentage deviation between the average

and best solutions of ILS–PDSL, over the complete set of instances, amounts to 0.98%, therefore

illustrating the good stability of the method. Similarly, the deviation between the average

solutions and the lower bound found by the B&P method (eliminating instances 25-2 and 25-5)

amounts to 4.65%. This guarantees a good proximity between the solutions of ILS–PDSL and

the true optima, even if this estimate is naturally pessimistic due to the gap between the LB

and the optima.

Tables 12–14 display the results of the metaheuristic for the second instance set, using the

same time limits as in Section 6.1: the average solution in the 20 executions (Avg-20), the

30

Table 11: Results for the MPDPSL – Small instances
ILS-PDSL time limit set to 1 minute per run, B&P time limit set to 2 hours

Instance
ILS-PDSL Branch-and-Price

Best-20 Avg-20 Gap(%) LB0 T0(s) LB UB T(s) Gap(%) Nodes

10-1 953 953.0 0.0 861.2 0.3 953.0 953 7.3 0.0 23

10-2 1020 1021.8 0.2 907.7 2.5 1020.0 1020 42.8 0.0 29

10-3 968 970.7 0.3 787.5 1.2 968.0 968 1318.7 0.0 1865

10-4 979 979.0 0.0 851.4 1.0 979.0 979 518.3 0.0 681

10-5 1026 1026.0 0.0 891.6 0.2 1026.0 1026 41.7 0.0 293

10-6 742 742.0 0.0 653.7 0.5 742.0 742 5.9 0.0 15

10-7 1019 1019.0 0.0 902.7 0.6 1019.0 1019 15.8 0.0 25

10-8 818 818.0 0.0 725.9 0.6 818.0 818 19.4 0.0 31

10-9 765 765.0 0.0 680.6 3.0 765.0 765 161.6 0.0 89

10-10 1058 1058.0 0.0 1008.7 0.1 1058.0 1058 3.7 0.0 29

15-1 1346 1379.2 2.5 1188.0 2.4 1346.0 1346 165.6 0.0 65

15-2 1116 1116.0 0.0 1073.0 40.9 1116.0 1116 666.8 0.0 29

15-3 1184 1194.6 0.9 1152.8 113.2 1175.5 1180 tl 0.4 122

15-4 1297 1302.6 0.4 1124.3 5.2 1297.0 1297 3308.3 0.0 1029

15-5 1028 1028.0 0.0 898.7 13.3 1028.0 1028 4533.0 0.0 639

15-6 1155 1157.8 0.2 1085.7 21.6 1140.0 1140 249.9 0.0 13

15-7 1102 1116.9 1.4 1076.8 96.2 1102.0 1102 857.9 0.0 13

15-8 1145 1145.3 0.0 1107.5 11.8 1145.0 1145 322.4 0.0 43

15-9 1150 1154.4 0.4 1117.1 84.0 1150.0 1150 3060.4 0.0 49

15-10 1060 1060.0 0.0 1010.1 27.5 1060.0 1060 589.3 0.0 33

20-1 1350 1351.1 0.1 1216.8 478.5 1272.1 1350 tl 6.1 49

20-2 1454 1457.9 0.3 1333.9 69.8 1452.7 1454 tl 0.1 215

20-3 861 862.2 0.1 856.7 1210.9 861.0 861 2999.7 0.0 3

20-4 1348 1350.8 0.2 1223.4 451.7 1267.4 1348 tl 6.4 37

20-5 1327 1337.0 0.7 1177.7 3117.5 1177.7 1327 tl 12.7 3

20-6 1614 1625.3 0.7 1447.3 127.0 1546.4 1614 tl 4.4 99

20-7 1399 1399.5 0.0 1297.7 2947.8 1297.7 1399 tl 7.8 3

20-8 1299 1329.3 2.3 1118.6 653.5 1143.3 1299 tl 13.6 13

20-9 1469 1588.0 8.1 1316.3 428.1 1369.4 1469 tl 7.3 17

20-10 1429 1460.5 2.2 1366.9 2379.3 1380.9 1429 tl 3.5 6

25-1 1887 1908.8 1.2 1619.3 2022.1 1665.7 1887 tl 13.3 6

25-2 1692 1748.4 3.3 – – – – tl – –

25-3 1549 1555.2 0.4 1391.0 2678.4 1391.0 1549 tl 11.4 3

25-4 1675 1685.5 0.6 1581.1 2621.1 1587.5 1675 tl 5.5 5

25-5 1415 1428.9 1.0 – – – – tl – –

25-6 1882 1923.3 2.2 1687.3 1425.6 1692.7 1882 tl 11.2 6

25-7 1487 1604.3 7.9 1442.5 4089.6 1442.5 1487 tl 3.1 3

25-8 1429 1446.6 1.2 1377.5 5308.6 1377.5 1429 tl 3.7 3

25-9 1613 1616.1 0.2 1400.9 1032.5 1422.1 1613 tl 13.4 8

25-10 1802 1802.6 0.0 1538.5 2335.8 1571.6 1802 tl 14.7 4

31

average gap (Gap), the best solution in the 20 executions (Best-20), and the standard deviation

related to the gaps (Std Dev) for each instance.

Table 12: Results for the MPDPSL with 75 pairs – Instances from Nowak et al. (2008)
Time limit set to 25.50 mins per run

Instance Best-20 Avg-20 Gap(%) Std Dev(%)

75 1A 3782.93 3865.12 2.17 1.66

75 1B 3747.57 3836.27 2.37 1.62

75 1C 3793.62 3864.07 1.86 1.17

75 1D 3765.05 3835.80 1.88 1.15

75 1E 3757.36 3835.99 2.09 1.44

75 2A 3097.22 3200.18 3.32 1.23

75 2B 3123.89 3181.35 1.84 1.04

75 2C 3110.82 3174.16 2.04 1.19

75 2D 3097.16 3163.17 2.13 1.45

75 2E 3118.38 3192.46 2.38 1.59

75 3A 3866.08 3981.00 2.97 1.32

75 3B 3855.72 3976.12 3.12 1.61

75 3C 3886.66 3959.61 1.88 1.07

75 3D 3870.89 3944.61 1.90 1.16

75 3E 3828.10 3958.88 3.42 1.55

Avg 2.36 1.35

Table 13: Results for the MPDPSL with 100 pairs – Instances from Nowak et al. (2008)
Time limit set to 56.20 mins per run

Instance Best-20 Avg-20 Gap(%) Std Dev(%)

100 1A 4920.25 4993.39 1.49 1.02

100 1B 4940.53 5029.61 1.80 1.08

100 1C 4903.04 5010.18 2.19 1.17

100 1D 4928.88 5012.28 1.69 0.86

100 1E 4869.26 4977.90 2.23 1.05

100 2A 4212.57 4270.83 1.38 0.88

100 2B 4226.56 4304.39 1.84 1.13

100 2C 4213.68 4281.58 1.61 1.06

100 2D 4217.27 4305.97 2.10 1.27

100 2E 4186.25 4275.55 2.13 1.16

100 3A 4982.29 5131.18 2.99 1.31

100 3B 5057.84 5189.52 2.60 1.38

100 3C 5031.36 5137.47 2.11 1.38

100 3D 5049.84 5152.46 2.03 1.35

100 3E 5029.86 5144.86 2.29 1.46

Avg 2.03 1.17

These results aim to provide a useful base for comparisons with new algorithms in the

future. They also reflect the difficulty of the problems, since small deviations related to the best

solutions are usually good indications of performance. From these experiments, we observe that

32

Table 14: Results for the MPDPSL with 125 pairs – Instances from Nowak et al. (2008)
Time limit set to 95.90 mins per run

Instance Best-20 Avg-20 Gap(%) Std Dev(%)

125 1A 5794.79 5888.54 1.62 0.96

125 1B 5880.96 5966.92 1.46 0.91

125 1C 5738.87 5881.25 2.48 1.22

125 1D 5738.32 5945.99 3.62 1.49

125 1E 5822.20 5915.08 1.60 0.89

125 2A 5310.49 5419.77 2.06 0.87

125 2B 5361.25 5476.77 2.15 1.11

125 2C 5357.90 5417.37 1.11 0.66

125 2D 5331.69 5458.60 2.38 0.98

125 2E 5339.33 5443.11 1.94 1.18

125 3A 6177.11 6283.43 1.72 1.22

125 3B 6205.87 6343.14 2.21 1.17

125 3C 6230.02 6312.84 1.33 0.92

125 3D 6181.96 6351.26 2.74 1.45

125 3E 6128.42 6313.40 3.02 1.52

Avg 2.10 1.10

the average gap remains moderate: 2.36% for the 75-pairs set, 2.03% for the 100-pairs set and

2.10% for the 125-pairs set. These values are sensibly higher than those of the single-vehicle

experiments, with average gaps of 1.86%, 1.75% and 1.79%, respectively (when computed

relatively to the best solutions of 20 runs). As such, the new MPDPSL instances appear to

be more challenging, and would deserve further attention in the coming years. Finally, the

solutions of these larger multi-vehicle instances with distance constraints, and their single-vehicle

counterpart, contain a high proportion of split loads (55.69% and 58.52%, respectively), likely

due to the fact that each p-d pair occupies between 51% to 60% of the truck capacity.

7 Conclusions

In this article, we have considered the multi-vehicle one-to-one pickup and delivery problem with

split loads (MPDPSL). Because this problem combines pickups and deliveries with split deliveries,

solving it is a challenging task. In particular, since the number of visits in a solution may grow

exponentially with the instance size, no flow-based formulation with a polynomial number of

variables can represent the problem. For local-search based heuristics, the sequencing and split

deliveries decision subsets are also very interdependent, such that various neighborhoods must

be designed to jointly modify some of these decisions.

33

To address these challenges, we proposed a branch-and-price method as well as a conceptually

simple ILS, based on classic neighborhoods for pickup-and-delivery problems. Moreover, to

efficiently manage the split deliveries, we introduced an exponential-sized neighborhood, which

iteratively optimizes the pickup-and-delivery locations and splits for each service, and can be

efficiently explored in pseudo-polynomial time. The performance of the proposed methods has

been validated through extensive computational experiments. For the classical single-vehicle

problem instances, our heuristic outperforms all existing algorithms in similar computational

time, and finds new best known solutions for 92 out of 93 instances. We also proposed new

multi-vehicle problem instances and solutions for future comparisons. For 20 instances, the

branch-and-price algorithm could produce optimal solutions, and good-quality lower bounds

were otherwise generated for the majority of small and medium instances.

Overall, our research on metaheuristics takes place in a general research line which aims at

progressing towards an intelligent search and exploration of larger neighborhoods via efficient

dynamic-programming techniques, in contrast with the brute-force enumeration of simpler

neighborhoods. The MPDPSL is a very challenging problem in this regard. For future research,

we suggest to keep on generalizing these neighborhoods and their exploration techniques, as

well as extending the methodology to a wider range of difficult vehicle routing variants. For

exact methods, many research avenues are also open. Similarly to the research conducted on

the classical split delivery problem, new structural properties of MPDPSL optimal solutions

and polyhedral results may be essential to trigger new methodological progress.

Acknowledgements

This research was partially supported by the CNPQ (grants 201554/2014-3, 308498/2015-1,

425962/2016-4 and 307915/2016-6), as well as CAPES and FAPEMIG, Brazil.

References

Archetti, C., Speranza, M., 2012. Vehicle routing problems with split deliveries. International Transactions

in Operational Research 19 (1-2), 3–22.

34

Battarra, M., Cordeau, J.-F., Iori, M., 2014. Pickup-and-delivery problems for goods transportation.

In: Toth, P., Vigo, D. (Eds.), Vehicle Routing: Problems, Methods, and Applications. SIAM,

Philadelphia, PA, pp. 161–191.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., Laporte, G., 2007. Static pickup and delivery problems: a

classification scheme and survey. Top 15 (1), 1–31.

Boudia, M., Prins, C., Reghioui, M., 2007. An effective memetic algorithm with population management

for the split delivery vehicle routing problem. In: Bartz-Beielstein, T., Aguilera, M. J. B., Blum,

C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (Eds.), Hybrid Metaheuristics. Vol. 4771 of

Lecture Notes in Computer Science. Springer, pp. 16–30.

Cassani, L., Righini, G., 2004. Heuristic algorithms for the tsp with rear-loading. In: 35th Annual

Conference of the Italian Operations Research Society, Lecce, Italy.

Chemla, D., Meunier, F., Wolfler Calvo, R., 2013. Bike sharing systems: Solving the static rebalancing

problem. Discrete Optimization 10 (2), 120–146.

Chen, P., Golden, B., Wang, X., Wasil, E., 2017. A novel approach to solve the split delivery vehicle

routing problem. International Transactions in Operational Research 24 (1-2), 27–41.

Clarke, G., Wright, J. W., Jul. 1964. Scheduling of vehicles from a central depot to a number of delivery

points. Operations Research 12 (4), 568–581.

Coelho, I. M., Munhoz, P. L. A., Haddad, M. N., Coelho, V. N., Silva, M. M., Souza, M. J. F., Ochi, L. S.,

2011. A computational framework for combinatorial optimization problems. In: VII ALIO/EURO

Workshop on Applied Combinatorial Optimization. Porto, pp. 51–54.

Doerner, K., Salazar-González, J.-J., 2014. Pickup-and-delivery problems for people transportation.

In: Toth, P., Vigo, D. (Eds.), Vehicle Routing: Problems, Methods, and Applications. SIAM,

Philadelphia, PA, pp. 193–212.

Dror, M., Trudeau, P., May 1989. Savings by split delivery routing. Transportation Science 23 (2),

141–145.

Dumas, Y., Desrosiers, J., Soumis, F., 1991. The pickup and delivery problem with time windows.

European Journal of Operational Research 54 (1), 7 – 22.

Hartl, R., Romauch, M., 2016. Notes on the single route lateral transhipment problem. Journal of Global

Optimization 65 (1), 57–82.

Irnich, S., Schneider, M., Vigo, D., 2014. Four variants of the vehicle routing problem. In: Toth, P., Vigo,

D. (Eds.), Vehicle Routing: Problems, Methods, and Applications. SIAM, Philadelphia, PA, pp.

241–271.

Laporte, G., 2009. Fifty years of vehicle routing. Transportation Science 43 (4), 408–416.

35

Laporte, G., Ropke, S., Vidal, T., 2014. Heuristics for the vehicle routing problem. In: Toth, P., Vigo, D.

(Eds.), Vehicle Routing: Problems, Methods, and Applications. Society for Industrial and Applied

Mathematics, pp. 87–116.

Mitra, S., 2005. An algorithm for the generalized vehicle routing problem with backhauling. Asia-Pacific

Journal of Operational Research 22 (2), 153–170.

Mitra, S., 2008. A parallel clustering technique for the vehicle routing problem with split deliveries and

pickups. The Journal of the Operational Research Society 59 (11), 1532–1546.

Nagata, Y., Kobayashi, S., 2011. A memetic algorithm for the pickup and delivery problem with time

windows using selective route exchange crossover. In: Schaefer, R., Cotta, C., Ko lodziej, J., Rudolph,

G. (Eds.), Parallel Problem Solving from Nature. Vol. 6238 of LNCS. Springer, Berlin, Heidelberg,

pp. 536–545.

Nowak, M., Ergun, Ö., White III, C. C., 2008. Pickup and delivery with split loads. Transportation

Science 42 (1), 32–43.

Nowak, M., Ergun, Ö., White III, C. C. W., 2009. An empirical study on the benefit of split loads with

the pickup and delivery problem. European Journal of Operational Research 198 (3), 734–740.

Öncan, T., Aksu, D. T., Şahin, G., Şahin, M., 2011. A branch and cut algorithm for the multi-vehicle

one-to-one pickup and delivery problem with split loads. IEEE International Conference on Industrial

Engineering and Engineering Management, 1864–1868.

Parragh, S. N., Doerner, K. F., Hartl, R. F., 2008. A survey on pickup and delivery problems. Journal

für Betriebswirtschaft 58 (1), 21–51.

Pessoa, A., Uchoa, E., Poggi de Aragão, M., Rodrigues, R., 2010. Exact algorithm over an arc-time-indexed

formulation for parallel machine scheduling problems. Mathematical Programming Computation

2 (3), 259–290.

Ropke, S., Cordeau, J.-F., 2009. Branch and cut and price for the pickup and delivery problem with time

windows. Transportation Science 43 (3), 267–286.

Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the pickup and delivery

problem with time windows. Transportation science 40 (4), 455–472.

Şahin, M., Çavuşlar, G., Öncan, T., Şahin, G., Tüzün Aksu, D., 2013. An efficient heuristic for the

multi-vehicle one-to-one pickup and delivery problem with split loads. Transportation Research

Part C: Emerging Technologies 27, 169–188.

Silva, M. M., Subramanian, A., Ochi, L. S., 2015. An iterated local search heuristic for the split delivery

vehicle routing problem. Computers & Operations Research 53, 234–249.

36

Souza, M., Coelho, I., Ribas, S., Santos, H., Merschmann, L., 2010. A hybrid heuristic algorithm for the

open-pit-mining operational planning problem. European Journal of Operational Research 207 (2),

1041–1051.

Subramanian, A., Drummond, L., Bentes, C., Ochi, L., Farias, R., 2010. A parallel heuristic for the

vehicle routing problem with simultaneous pickup and delivery. Computers & Operations Research

37 (11), 1899–1911.

Thangiah, S., Fergany, A., Awan, S., 2007. Real-time split-delivery pickup and delivery time window

problems with transfers. Central European Journal of Operations Research 15 (4), 329–349.

Vidal, T., Crainic, T. G., Gendreau, M., Prins, C., 2013. Heuristics for multi-attribute vehicle routing

problems: a survey and synthesis. European Journal of Operational Research 231 (1), 1–21.

37

	1 Introduction
	2 Problem statement
	3 Related literature
	4 Exact Solution Approach
	4.1 Mathematical Formulation
	4.2 Column Generation
	4.3 Branch-and-Price

	5 Large Neighborhood-Based Metaheuristic
	5.1 Initial solution
	5.2 Randomized variable neighborhood descent
	5.3 RCSP-insertion neighborhood
	5.4 Perturbation mechanism

	6 Computational results
	6.1 Metaheuristic – Performance evaluation on PDPSL instances
	6.2 Metaheuristic – Sensitivity analysis
	6.3 Metaheuristic and exact – Multiple vehicles and distance constraints

	7 Conclusions

