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Abstract

The evolution of gene regulatory networks in variable environments poses
Multi-objective Optimization Problem (MOP), where the expression levels
of genes must be tuned to meet the demands of each environment. When for-
malized in the context of monotone systems, this problem falls into a sub-class
of linear MOPs. Here, the constraints are partial orders and the objectives
consist of either the minimization or maximization of single variables, but
their number can be very large. To efficiently and exhaustively find Pareto
optimal solutions, we introduce a mapping between coloured Hasse diagrams
and polytopes associated with an ideal point. A dynamic program based
on edge contractions yields an exact closed-form description of the Pareto
optimal set, in polynomial time of the number of objectives relative to the
number of faces of the Pareto front. We additionnally discuss the special
case of series-parallel graphs with monochromatic connected components of
bounded size, for which the running time and the representation of solutions
can in principle be linear in the number of objectives.
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1. Introduction

Adaptation to changing environments via gene regulation is by nature
a multi-objective problem, where the expression level of genes must be op-
timally set given multiple possible combinations of environmental signals
(Poelwijk et al., 2011). The multi-valued output response to a collection of
inputs is determined by the connectivity of the gene network (Alon, 2006).
Biological evolution adds a second layer of complexity, whereby the strength
of the connections can be altered by mutations, modulating the multi-valued
response itself. There does not currently exist any generic approach as to
predict bounds to how well this response can be optimized, given the con-
nectivity of the network.

Here, we apply the notion of Pareto optimality to gene expression in sev-
eral environments. Pareto optimality is a natural extension of the concept
of maximum to multi-objective optimization problems. A solution is part of
the Pareto optimal set, or Pareto front, if it is impossible to improve one ob-
jective without worsening another. Instead of imposing an aggregation of the
different objectives into a scalar function, Pareto optimality keeps track of all
potentially interesting solutions in the presence of trade-offs. The Pareto ap-
proach, originally introduced in economics (Pareto, 1906; Voorneveld, 2003),
has proved useful in many engineering applications (Ehrgott and Gandibleux
, 2000; Zitzler et al., 2003; Geilen et al., 2005), decision-making analysis (Yang
and Catthoor, 2003), and recently, medecine (Cruz-Ramı́rez et al., 2013) and
biology (Shoval et al., 2012; Schuetz et al., 2012).

We approach the problem in the framework of monotone systems, which
is widely used in control theory (Angel and Sontag, 2003), and more specifi-
cally for modelling gene regulatory networks (Sontag, 2005). This formalism,
as detailed in section 2, leads us to define partial order constraints between
the expression levels of a gene given the environmental inputs. Expression
of a gene is considered to be either beneficial or detrimental in each given
environment, meaning that expression of a gene must be either minimized
or maximized given an input. The expression level of the gene in each envi-
ronment corresponds to a dimension of the decision space. Given that one
objective is associated with each environment, the objective space has the
same dimensionality.

The partial order constraints that define the feasible set imply that our
problem falls into the category of linear Multi-objective Optimization Prob-
lems (linear MOPs) (Greco et al., 2005). This problem could in principle be
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tackled with existing strategies, such as the multi-objective simplex algorithm
or Benson’s algorithm (Ehrgott and et al., 2012; Löhne, 2017). However, al-
though such algorithms can cope with large sized decision spaces, in our case
the number of optimization objectives equals the number of decision vari-
ables and can reach several dozen. The unusually high number of objectives
imposed by our application is considered a particularly difficult problem in
the general case, as the category of many-objectives optimization problems
starts as soon as there are more than three or four objectives (Fleming and
Purshouse , 2002; Jaimes and Coello, 2015).

The algorithm presented here exploits the specificities of our linear MOP,
in which constraints are exclusively partial orders and objectives are either
the maximization or minimization of coordinates of the decision variables.
This algorithm provides an efficient, exact and exhaustive description of the
Pareto front, even with such a large number of objectives.

Note that the resolution of the problem provided in the present work could
apply beyond the framework of monotone systems, in cases where constraints
are expressed in the form of partial orders from the start. This could be the
case for task scheduling problems: some tasks must be realized in a certain
temporal order relative to each other due to design constraints (Policella et
al., 2007) (e.g. the assembly of the different parts of a car), with some having
to be carried out as soon as possible and others as late as possible due to
externalities (e.g. supply constraints, processing unit occupancy).

This paper is structured as follows: in section 2, we detail the prob-
lem of determining bounds to the evolutionary potential of gene regulatory
networks and its formalization in terms of multi-objective optimization un-
der partial order constraints. In section 3, we provide a graph formulation
of this problem, using Hasse diagrams (Skiena, 1990), which we colour ac-
cording to optimization objectives. In section 4, we describe and prove a
graph algorithm based on successive edge contractions with appropriate ver-
tex colouring rules. In section 5, we discuss the complexity of our algorithm
as a function of the number of objectives N and of the number NP of maxi-
mal convex subsets of the Pareto front, or maximal efficient faces as defined
in the papers (Yu and Zeleny, 1975) or (Ecker et al., 1980). This leads us
to propose an improved version of the algorithm running in O(P (N) · NP )
time, where P is a polynomial. We discuss how a parameterized complexity
approach (Alber et al., 2004) can provide a combinatorial description of the
Pareto front, with a complexity of O(N) in the case of series-parallel par-
tial orders with monochromatic connected components of bounded size. In
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section 6, we provide an example of an explicit resolution and an exhaus-
tive characterization of Pareto front sizes in the problem of 2D dimensional
gradients of signals with stress patches.

2. Multi-objective optimization in regulatory networks

Organisms are typically confronted with a large variety of environmental
signals that can themselves combine into an even larger diversity of spatio-
temporal niches (Chait et al., 2016). Whether organisms are able to evolve
an appropriate response to this diversity of environments depends funda-
mentally on the constraints imposed by their current regulatory responses.
Despite the multi-objective nature of this problem, research on the evolution
of gene regulatory networks has so far relied almost exclusively on explicit
simulations of complex responses given a single objective, such as the num-
ber of maxima of a biological trait in a gradient (François and Hakim, 2004),
but Pareto optimality has been considered only scarcely (Warmflash et al.,
2012). One issue is that the diversity of environmental conditions is rarely
known and the number of potential environments is very large. For example,
an Escherichia coli bacterium harbours more than 400 regulatory genes re-
sponding to typically as many signals. Following an inference approach and
testing all potential environments given a fixed gene regulatory architecture
would require the consideration of combinations of these signals, the number
of which is very large.

In cells, external signals are processed by signal molecules or gene prod-
ucts (e.g. transcription factors) modulating the production or the activity of
others. These modulations follow various connectivity patterns comprising
cascades and logical integration. While it is not yet possible to fully predict
the response of an arbitrary gene network based only on its connectivity, sim-
plified approaches allow classification of the behaviour of networks, among
which is the theory of monotone systems (Angel and Sontag, 2003). A system
is said to be monotone if the relation between any pair of input and output
is monotone and this monotonicity is independent of the state of the rest of
the system.

Gene networks are most often represented by signed graphs, where the
sign of the arrow connecting two genes represents a monotone relation be-
tween the upstream and downstream gene. It is not guaranteed that the
relation between any two arbitrary genes taken within a larger signed net-
work is monotone. Nevertheless, it has been shown that gene networks are
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essentially monotone both in practice and in theory (Gjuvsland et al., 2013;
Sontag, 2005), in the sense that: (i) the whole network can be decomposed
into a few large monotone components and (ii) the network can be made
monotone by removing a small number of genes (a few among hundreds to
thousands). It is important to note that the monotonicity described here is
established only by the sign of the interactions. Thus, mutations changing
the strength of interactions but conserving the signed regulatory architecture
leave the monotonicity properties invariant.

In this work, we focus our attention on the expression level g ∈ R of
a given gene in response to a vector of input signals I ∈ Rk (Figure 1).
We assume that the response F between the multiple inputs I and the
single output g is monotone. A variable environment can be represented
by a list of vectors of input signals I1, ..., IN ∈ Rk and their correspond-
ing responses g1, ..., gN ∈ R, indexed by environment. The resulting vector
G = (g1, ..., gN) ∈ RN is the vector of expression levels of a single gene in the
N environments, RN being the decision space.

The natural order on R induces a partial order between the elements
Ii ∈ Rk, which, given the monotonicity of F , induces partial order con-
straints between the values g1, ..., gN . These partial order constraints in turn
determine the feasible space for the vector G ∈ RN . Here we are interested
in predicting the evolutionary potential of a fixed signed regulatory network
topology. Under the latter condition, mutations alter the strength of the
connections, leading to the modification of the response function from F to
F ′, but the monotonicity of F and F ′ is the same. This way, via a transfor-
mation from F to F ′, mutations occuring during biological evolution move
the system from G to G′ in the feasible space constained by the partial order.

We now introduce the optimization objectives: certain coordinates gi
must be maximized while others must be minimized, in accordance with
the idea that genes can be considered either detrimental (cost of gene ex-
pression) or beneficial, depending on the environment. Searching for Pareto
optimal solutions given the partial order constraints finally reveals the set of
expression levels G that can be reached during the evolution of a fixed signed
monotone regulatory network.
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Figure 1: Evolution of gene regulatory networks in variable environments. A) Ik is a
vector of signals xk, yk, zk, ... which are sensed by the organism in environment k. Other
signals, for example the presence of an antibiotic, may not be sensed. The Gene Regulatory
Network is assumed to have monotonous input-ouput relations. Consider the expression
of a single gene gk in the different environments. To illustrate our problem, we assume
that g is an antibiotic resistance gene, which provides a fitness benefit in the presence of
antibiotics and a cost otherwise (e.g. burden of unnecessary protein expression). B) The
variable environment consists of several combinations of sensed signals Ik, some of which
correspond to environments with antibiotics (in blue). The arrows indicate increasing
values x, y, z. C). The natural partial order between coordinates (x, y, z) ∈ R3 induces a
partial order between the gk values due to the the monotonicity of the response, where,
additionally, g2 and g3 must be maximized to resist antibiotics, while the other gk values
must be minimized to limit cost of expression.

3. Notations and formulation of the problem

3.1. Pareto optimality

We consider a partially ordered set (Ω,�) with the corresponding strict
order x � y ⇐⇒ (x � y and x 6= y). We denote Par(X) the strong Pareto
optimal set of X ⊆ Ω. Par(X) contains the elements of X which are not
stricly dominated, in the sense of the partial order above, by another element
of X:

x ∈ Par(X) ⇐⇒ x ∈ Xand ∀y ∈ Xwith y � x we have y = x. (1)

We note here for our later proof two elementary properties of Pareto
fronts, which are general properties of upper sets (Davey, 2002):

Property 1. ∀A1, ..., AI ⊆ Ω, Par
(⋃I

i=1Ai

)
⊆
⋃I

i=1 Par(Ai).

Property 2. Consider A,B ⊆ Ω, B such that every y ∈ B is dominated by
an element x ∈ Par(B), and Par(A) ⊆ B. Then Par(A) = Par(A ∩B).
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The latter property is proved as follows. Par(A) ⊆ B implies Par(A) ⊆
Par(A∩B). The reverse inclusion comes from using X = A∩B and Y = A
in: if X ⊆ Y and Par(Y ) ⊆ Par(X), then Par(X) = Par(Y ).

For the remainder of this work, we will consider N bounded variables
(x1, ..., xN) ∈ [0, 1]N and use the convenience notation x0 = 0 and xN+1 = 1.

3.2. Optimization objectives

Our multi-objective optimization problem consists of minimizing some of
the variables and maximizing all the others. Formally, we have a partition
{N+,N−} of the index set N = {1, 2, . . . , N}. We define a Pareto ordering
� on RN with the signature {N+,N−} as follows: if x = (x1, x2, . . . , xN) ∈
RNand y = (y1, y2, . . . , yN) ∈ RN then

x � y ⇐⇒ ∀i ∈ N+ : xi ≥ yi and ∀j ∈ N− : xj ≤ yj, (2)

i.e. for the variables in the ascending set {xi|i ∈ N+} “larger is better”, while
for those in the descending set {xj|j ∈ N−} “smaller is better”. In other
terms, the ideal point has coordinates 0 for indexes in N− and 1 for indexes
in N+. We define the corresponding (weak) strict Pareto order through
x � y ⇐⇒ x � y ∧ x 6= y. Partial order constraints correspond to a set of
(weak) inequalities of the type xi ≥ xj between coordinates of x ∈ Ω.

We consider a sub-class of linear MOPs:

max xi, ∀i ∈ N+

min xi, ∀i ∈ N−
s.t. 0 ≤ xi ≤ 1,∀i ∈ N
and xi ≤ xj, for some i, j ∈ N

(3)

This problem has the particularity that the number of objectives equals
the number of decision variables. The dimension of the objective space can
thus become very large compared to what has typically been considered so
far for linear MOPs. We present in the following an algorithm which solves
this subclass of large size linear MOPs efficiently.

3.3. Graph representation of the problem

Vertex colouring — We introduce a graph stucture whose vertices VI
are associated with a group of variables {xi}i∈I , I ⊆ {0, ..., N + 1}, called
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aggregate, and denoted as xI . An aggregate xI represents a state such that
∀i, j ∈ I, xi = xj, a value noted xI . A vertex can be of one of the four
following natures (or colours indicated in parentheses, as used in Figure 2):

• if I ⊆ N−, VI is a descending vertex (red);

• if I ⊆ N+, VI is an ascending vertex (blue);

• if I comprises indexes from both N− and N+, VI is a Trade-Off Vertex
or TOV (grey);

• if 0 ∈ I or N + 1 ∈ I, VI is a boundary vertex (black).

Partial order constraints — Edges express order constraints between
variables, according to the convention of so-called Hasse diagrams: edge
E (i→ j) points from Vi to Vj if and only if xi ≥ xj. The inequality con-
straints can be consistently carried over to aggregates provided their index-
sets I and J are disjoint, and we will use the obvious notation xI ≥ xJ .
Variables engaged in cyclical inequalities are trivially equal to each other
and are thus assumed to be aggregated, resulting in acyclic diagrams.
Relations between vertices — Two vertices Vi and Vj connected by
E (i→ j) are said to be conflicting if Vi is descending and Vj is ascending.
We say that a vertex Vi aims at another vertex Vj if: either Vi is descending
and points to Vj via an edge E (i→ j); or vice versa, Vi is ascending and
is pointed from Vj via an edge E (j → i), independently of the colour of Vj.
Note that conflicting vertices necessarily aim at each other. A maximal con-
nected component of the Hasse diagram exclusively comprising ascending or
descending vertices is called a monotone connected component. A vertex is
qualified as extremal (in the sense of the monotone connected components)
if it only aims at vertices of different colour. Note that conflicting vertices
are not necessarily extremal as they may point to other vertices of the same
colour, and extremal vertices are not necessarily conflicting as they may point
to TOVs or to boundary vertices.
Edge contraction rules — An edge contraction between two vertices VI
and VJ consists of removing E (I → J), and replacing VI and VJ by a unique
vertex VK , where K = I ∪ J . While all vertices that are not affected by the
contraction are of constant colour, the colour of VK is determined consistently
with the colour definitions:

• if VI and VJ are ascending, VK is ascending;
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• if VI and VJ are descending, VK is descending;

• if VI or VJ is a boundary vertex, VK is a boundary vertex;

• if VI and VJ are different and none of them is a boundary vertex, VK
is a TOV;

Resolution tree — We have just introduced all of the notions for represent-
ing our initial problem and any state resulting from edge contractions in the
form of 4-colour directed acyclic graphs, for which we reserve the term Hasse
diagrams, or diagrams, denoted H with an index. The steps of the dynamic
algorithm described below generate another type of graph, which we call the
resolution tree. To avoid any confusion between the two kinds of graphs, the
vertices of the resolution tree are called nodes. Each node of the resolution
tree corresponds to a Hasse diagram, and each edge of the resolution tree
corresponds to an operation of edge contraction applied to a Hasse diagram
(Figure 2). A branch will only refer to a branch of the resolution tree. A
vertex aiming at several other vertices in H will be called a junction, whereas
a node connected to several downstream nodes in the resolution tree will be
called a branching.
Graph formulation of the optimization problem — Let ΩH ⊆ [0, 1]N

be the space of all vectors respecting the partial order constraints represented
by H. Determine Par(ΩH), the set of vectors optimal under the Pareto order
� on RN .

4. Resolution by edge-contractions of the Hasse diagram

4.1. Graph contraction algorithm

The algorithm starts by setting H0 = H. Steps 1 to 4 described below
(and illustrated in Figure 2) are then recursively applied to all diagrams Hn,t,
t = 1, ..., Tn, generated at depth n until step 2 can no longer be performed,
i.e. the diagram in question no longer contains any ascending or descending
vertex (equivalently, only contains TOVs and boundary vertices):

1. Perform a transitive reduction of Hn, i.e. remove any direct edge
E(u→ v) if there exists a longer path from Vu to Vv on Hn.

2. Select an extremal vertex Vi.
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3. Consider the vertices Vk, k = 1, ..., K which Vi aims at. There is al-
ways at least one such vertex, in limiting cases provided by boundary
vertices. Define the diagrams Hn,k, k = 1, ..., K by respectively con-
tracting the edge connecting Vi and Vk according to the colouring rules
defined in section 3.3.

At the end of this branching process, we are left with a collection of
terminal graphs Ht, t = 1, ..., T , and we posit that the solution of the initial
problem is:

Par(ΩH) =
T⋃
t=1

ΩHt .

The proof of the algorithm is provided in Appendix A.

4.2. Improved algorithm

The algorithm described so far has potential redundancies: (i) duplicated
diagrams representing the same parameterization; (ii) diagrams Hi which
aggregate the initial variables into a sub-partition of another diagram Hj.
Case (i) happens when an extremal vertex conflicts with two or more other
vertices, because the two corresponding contractions occur in a certain order
along a resolution branch, and in another order along another branch. Case
(ii) happens when a vertex V0 aims at a TOV V1 and a conflicting vertex
V2: along a first resolution branch, V0 aggregates with V1, then V2 aggregates
with the resulting TOV, whereas along a second branch, V0 aggregates with
V2, resulting in two distinct TOVs. Consequently, the parameterization given
by two distinct TOVs in the second branch includes the solution obtained in
the first.

A way to fix the redundancies due to case (i) would be to store known
nodes of the resolution tree in a hash table (Kambhampati, 2000). We pro-
pose instead an improved version of the contraction rules, which ensures
that every terminal diagram represents a distinct face of the Pareto front
and which also removes sub-representations of the Pareto front due to case
(ii).

We define frozen edges as edges which cannot be contracted. Further-
more, we impose this property to be inherited downstream of the resolution
tree, i.e. a frozen edge remains frozen after contraction of other edges. Oth-
erwise, an edge is qualified as free. The improved version of the algorithm
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consists of modifying step 3 of the original algorithm as follows:

Modified contraction rule : If possible, contract extremal vertices Vi
which aim at other vertices via a single free edge. Otherwise: (i) contract
in priority Vi with conflicting vertices, then with TOVs, and, (ii) for each
k = 2, ..., K, the edges contracted to obtain Hn,i, i = 1, ..., k − 1, are frozen
in Hn,k.

As shown in the proof (Appendix B), the priority and edge freezing rules
ensure that the terminal diagrams HN,t, t = 1, ..., NP describe all distinct
faces of the Pareto front. A pseudo-code of the improved algorithm is pro-
vided in Appendix C and its Python implementation can be downloaded at
https://hal.inria.fr/hal-01760120.

5. Complexity of the algorithm

5.1. Comparison of running times

Here, we discuss worst case estimates and test numerically the complexity
of different Multi-objective Linear Programs (MOLPs). We call N the num-
ber of variables and NP the number of faces of the Pareto front. We remind
the reader that a face is defined as a maximal convex subset of the Pareto
front (Ecker et al., 1980), which is itself a subset of the convex polytope ΩH.

The running time for improved versions of the Benson algorithm (Ehrgott
and et al., 2012) has been shown to increase exponentially with either the
number of faces or vertices of the Pareto front, for a fixed dimension of
the decision space (Bökler et al., 2017). In our linear MOP, the number of
objectives increases linearly with the number of variables N . The running
time of Benson’s algorithm is thus expected to scale as O(NN

P ).
For the graph contraction algorithm, each branching operation requires

to copy a Hasse diagram of size at most N , then to visit at most every vertex
to find an extremal one. The diagram can be maintained transitively reduced
by only testing for indirect paths connecting the fused vertex and the vertices
that were aiming at it before contraction, which is performed in O(N + E)
running time with E the number of edges. An upper bound is then O(N2)
operations per branching. From each node of the tree, there are at most N
branches. Finally, the size of the resolution tree is bounded by O(N · NP ).
Indeed, the tree has a depth of N and each leaf of the tree corresponds to
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one of the NP faces of the Pareto front. The resulting worst case running
time then scales as O(N4 ·NP ).

We have measured the running time using Bensolve implemented in Mat-
lab and the graph contraction algorithm implemented in Python for the prob-
lem of optimization of gene expression in 1D and 2D discretized gradients of
environmental signals with random stress patches. The corresponding Hasse
diagrams are respectively 1D chains (total order, Figure 3, top panels) or
2D square lattices (partial order, Figure 3, bottom panels) comprising up
to 81 objectives. Minimization or maximization objectives are attributed
randomly with even probabilities. We tested the same random set of 100
instances for each size of the problem with both algorithms (computer In-
tel core i7 with 8Go 1600MHz RAM on Windows 10). A table of the data
corresponding to Figure 3 are reported in the Supplementary Material.

For the 1D instances, there is no duplication of the Hasse diagrams
(NP = 1). As predicted, the running time increases over-exponentially with
Bensolve and polynomially for the graph contraction algorithm (Figure 3, top
panels). We estimate the largest polynomial exponent to be between 2 and 3
in this case (Figure 3, top right panel, inset). Similar trends are observed for
2D instances (Figure 3, bottom left panel). Interestingly, the running time
per Pareto face is observed to be almost constant with the graph contrac-
tion algorithm (Figure 3, bottom right panel). This may be due to partial
orders on a 2D lattice with randomized objectives leading statistically to
monochromatic domains of bounded size as described in the next section.

5.2. Graph interface and parameterized computation of the Pareto front

In particular cases of our problem, the graph contraction algorithm can
lead to further decrease in computational complexity by using a combinato-
rial description of the Pareto front.

For this, we introduce a specific subset of the diagram which we call the
interface I. This interface comprises all the conflicting vertices of the full
diagram. For each resolution of I, the solutions of the monotone connected
components can be computed independently, then assembled combinatorially.
Parameterization by the different resolutions I can exponentially reduce the
computing time and the size of the description of the full solution. In particu-
lar for series-parallel partial orders, the resolution of I is unique. Under the
additional assumption that the size of monotone (or monochromatic) con-
nected components is bounded, one obtains a resolution and a description
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of the Pareto front in O(N), even though the Pareto front may comprise an
exponential number of faces.

We define the interface I of the initial problemH0 as the set of all conflict-
ing vertices. I contains all extremal vertices of H0 which do not directly aim
at the maximum or minumum bound. While I can be composed of several
connected components, a monotone connected component of H0 may inter-
sect several connected components of I. We call Hu the diagrams obtained
by aggregating first all the extremal vertices of H0 in I. As all conflicting
vertices have been aggregated into TOVs at this point, the algorithm only
results in aggregation of extremal vertices with existing TOVs. In this sense,
the remaining monotone connected components of each Hu are isolated from
each other by TOVs.

Now call Cu,v, v = 1, .., Vu the montone connected components ofHu taken
together with the TOVs they aim at. Each Cu,v can be solved separately,
leading to its own set of leaves Cwu,v, w = 1, ...,Wu,v. The parametrizations of
the different parts of the Pareto front ofHu can be obtained by concatenating
all possible combinations of the w indexes of the Cwu,v. Here the concatenation
⊕ between diagrams is defined as the merging of vertices which represent
aggregated variable sets with a non-empty intersection. With this notation,
we have:

Par(H) =
U⋃

u=1

Par(Hu) (4)

with for every u:

Par(Hu) =
⋃

(w1,...,wv)∈W ?

(
Cw1
u,1 ⊕ ...⊕ Cwv

u,v

)
(5)

where W ? = {1, ...,Wu,1} × ...× {1, ...,Wu,v}.
Such a combinatorial representation of the Pareto front can be expo-

nentially smaller than the number of faces of the Pareto front itself. In
particular when the size of the Cu,v is bounded, the number of terms of the
concatenation representing Par(Hu) increases linearly, while they represent
an exponentially increasing number of faces of the Pareto front.

In the case of series-parallel diagrams H, we have U = 1. This is due
to the forbidden sub-graph characterization of series-parallel graphs: fence
subgraphs (“N” shaped motifs) are absent. This property implies that there
cannot be conflicting vertices which each participate to a junction. In other
words, at least one of the two has no other alternative than contracting with
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its conflicting vertex, leading to the absence of branching process during
the resolution of the interface of the Hasse diagram. Under the additional
condition that monochromatic connected components have bounded size, all
C1,v have a bounded size, and the complexity of the resolution of these sub-
diagrams is bounded. Thus the Pareto front of the full problem admits
a representation which complexity grows linearly with the number of C1,v,
which itself increases at most linearly with the number of initial variables.

6. Applications

6.1. Example of stress patches in 2D gradients

To illustrate our algorithm, we show an example of Pareto optimal solu-
tions in the case of a 2D gradient (Fig. 4). In this problem, all combinations
of five levels of each signal (A and B) result in 25 environments. We consider a
monotonous response regulatory network, leading to partial order constaints
between expression levels that reflect the partial order between signal inten-
sities. Gene expression must be minimized in the absence of stress (cost of
gene expression) and maximized in the stress patches (red vertices in Fig. 4,
benefit of gene expression, e.g. antibiotic resistance gene in the presence of
antibiotics). Computation shows that the Pareto optimal set comprises two
distinct faces of dimensions 5 and 6.

6.2. Exhaustive characterization of Pareto fronts

The Pareto optimal sets corresponding to all stress patches configurations
in 2D gradients comprising N = 16 environments (all combinations between
4 levels of 2 signals) have been computed. Figure 5 shows the distribution
of Pareto front dimensions (maximum face dimension) and of the number of
faces. The corresponding bivariate table is provided in the Supplementary
Material.

7. Discussion and conclusion

We have introduced a multi-objective optimization problem relevant to
the evolution of gene regulatory networks, where the monotone nature of the
input-output response leads to partial order constraints between the level of
expression of a gene in different environments. In turn, selective pressures
tend to maximize or minimize the expression of the gene in the variable
environment, such that the number of objectives is equal to the number of
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different environments. More generally, this approach can provide bounds
on the optimal solutions accessible by monotone regulatory systems.

We have described and demonstrated an algorithm which provides an
exact parameterization of the full Pareto front for this problem. This corre-
sponds geometrically to finding a polytope defined by partial order relations
within the hypercube [0, 1]N given an ideal point located at a corner of this
hypercube. The solution is obtained in polynomial time with the number of
objectives N (which equals the number of variables in our specific problem)
relative to the number NP of faces of the Pareto front. The graph contraction
algorithm exploits the particularities of this linear MOP, and scales polyno-
mially with the number of objectives, in contrast to general Multi-Objective
Linear Programs (MOLPs), in which complexity scales at least exponentially.

To achieve this, we established a mapping between Hasse diagrams and
polytopes, whereby a colouring of the graph encodes the location of the ideal
point. In this approach, vertices represent sets of aggregated variables, edges
correspond to ordering relations, and colours correspond to the optimization
objectives associated with the variables. Following a dynamic programming
approach in the space of coloured graphs, the initial polytope is recursively
reduced to lower-dimension spaces, corresponding to edge contractions in its
diagrammatic representation. The Pareto front ultimately consists of the
union of spaces corresponding to the terminal Hasse diagrams obtained after
N contractions.

We have furthermore introduced a parmeterized complexity approach,
by considering a specific subgraph, which we call the interface and which
corresponds to the smallest set containing all the potential trade-offs. The
edge contraction algorithm can be applied to this subgraph prior to the rest
of the graph. For each resolution of the interface, the remaining coloured
connected components can then be solved independently of one another, and
the Pareto front can be represented combinatorially from the solutions of
these isolated components. Interestingly, for series-parallel partial orders,
the interface has a unique resolution. When, additionally, the remaining
coloured connected components are of bounded size, the Pareto front, though
of exponential complexity, can be computed and represented in O(N).

A source of efficiency of the graph contraction algorithm is the exploita-
tion of the fact that each constraint is related to only two objectives (even
though every objective or variable can be related to an arbitrary number of
constraints). It would be interesting to investigate whether the process of
conflict resolution used here could be applied more generally to efficiently
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solve linear MOPs with a large number of objectives but where each con-
straint is associated with a bounded number of them.
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Appendix A. Proof of the graph contraction algorithm

This proof proceeds in three steps:

Step 1 We first show that for each iteration of the algorithm, Par(ΩHn) =
Par(

⋃K
k=1 ΩHn,k

).

Step 2 Next we show that Par(
⋃K

k=1 ΩHn,k
) =

⋃K
k=1 Par(ΩHn,k

).

Step 3 Finally we show that the terminal graphs satisfy Par(ΩHt) = ΩHt .

For brevity’s sake we treat only the case of an ascending connected com-
ponent, the demonstration being easily adapted for a descending connected
component.

Step 1
Consider an ascending subgraph V in Hn and a maximal vertex V (xI∗) ∈

V . There are two possibilities:

1. The vertex upper bound, VN+1, is directly connected to VI∗ . In this
case VN+1 is the unique vertex pointing to VI∗ . Indeed, if there would
be another vertex V pointing to VI∗ , there would be a chain of vertices
pointing from VN+1 to V then VI∗ (as VN+1 is a global upper bound).
This would contradict the fact that we have taken the transitive reduc-
tion of the diagram.

16



2. Otherwise, call VIk , k = 1, ..., K the vertices pointing to V (xI∗).

In both cases, we define the sets

ω (I∗|Ik) =
{
x ∈ RN such that xI∗ = xIk

}
.

A necessary condition for x ∈ Par(ΩHn) is x ∈
⋃K

k=1 ω (I∗|Ik). Suppose
otherwise that ∀k : xI∗ < xIk (in the case 1, xI∗ < xN+1). There would exist
ε > 0 such that for all k : x

I∗
+ ε < xIk . If we denote by εI∗ ∈ RN the

vector with coordinates xj = ε for j ∈ I∗ and otherwise 0, we have for all
x + εI∗ ∈ ΩHn and x + εI∗ � x as by assumption I∗ ⊆ N+. This contradicts
x ∈ Par(ΩHn).

As by definition, ΩHn ∩ ω (I∗|Ik) = ΩHn,k
, we can use Proposition 2 and

have that Par(ΩHn) = Par(ΩHn ∩
⋃K

k=1 ω (I∗|Ik)) = Par(
⋃K

k=1 ΩHn,k
).

Step 2
We only have to show that Par(

⋃K
k=1 ΩHn,k

) ⊃
⋃K

k=1 Par(ΩHn,k
), the in-

clusion in the other direction follows directly from Proposition 1. We only
discuss the case k ≥ 2 as the result is trivial otherwise (in particular in case
1 of the first step).

Consider two distinct indexes from the set {1, .., K} , which we can take
to be 1 and 2 without loss of generality. Consider x ∈ ΩHn,1 and suppose
there exists y ∈ ΩHn,2 such that y � x. Then by virtue of VI∗ being an
ascending vertex and by definition of the Pareto order:

yI∗ ≥ xI∗ (A.1)

Next, as VI∗ was maximal within its ascending subgraph, any vertex pointing
to it must contain at least one descending variable, from which it follows that

xI1 ≥ yI1 . (A.2)

Indeed, the latter inequality is trivially true if all i ∈ I1 label descending
variables, i.e. I1 ⊆ N−. If not, we can choose an i+ ∈ I1∩N+ and i− ∈ I1∩N−
for which the statement y � x implies both yi+ ≥ xi+ and xi− ≥ yi− and
hence, together with xi+ = xi− and yi+ = yi− by definition of the aggregates,
we obtain the equality xI1 = yI1 .
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We also have x ∈ ΩHn,1 ⊆ ω (I∗|I1) =
{
z ∈ RN such that zI∗ = zI1

}
im-

plying:
xI∗ = xI1 . (A.3)

Finally, y ∈ ΩHn,2 ⊆ ΩHn and in Hn, vertex VI1 points to VI∗ by hypothesis,
which implies:

yI1 ≥ yI∗ . (A.4)

Examining the above relations in the order (A.2-A.4-A.1-A.3), we see that all
the variables at play must be equal, in particular yI1 = yI∗ . Then y ∈ ω (I∗|I1)
and consequently y ∈ ΩHn,1 . To summarize, we have just demonstrated:

∀j ∈ {1, ..., K} ,∀x ∈ ΩHn,j
: (y ∈

K⋃
k=1

ΩHn,k
and y � x)⇒ (y ∈ ΩHn,j

).

(A.5)
Now, if we take in particular x ∈ Par(ΩHn,j

) in relation (A.5), relation (1)
implies that y = x by maximality of x in ΩHn,j

. This gives:

∀j ∈ {1, ..., K} ,∀x ∈ Par(ΩHj
),∀y ∈

K⋃
k=1

ΩHk
: (y � x⇒ y = x). (A.6)

Applying this time relation (1) in the backward direction demonstrates the
announced result:

∀j ∈ {1, ..., K} : Par(ΩHn,j
) ⊆ Par(

K⋃
k=1

ΩHn,k
). (A.7)

Step 3
By construction a terminal graph Ht contains only boundary vertices and

TOVs. Now consider x, y ∈ ΩHt , y � x, and consider a vertex VI in Ht. If VI
is a boundary vertex, then the variables in I are already at their optimum
bounds, and xI = yI . Otherwise, VI is a TOV and as in Step 2 above we can
choose an i+ ∈ I∩N+ and i− ∈ I∩N− for which the statement y � x implies
both yi+ ≥ xi+ and xi− ≥ yi− and hence xI = yI . As the aggregates form
a partition of the initial index set N , the above immediately implies x = y,
and hence, by relation (1), x ∈ Par(ΩHt). As this is true for any x ∈ ΩHt ,
we have demonstrated our result: ΩHt = Par(ΩHt).
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Appendix B. Proof of the improved algorithm

A potential issue with the frozen edge rule would be the creation of an
extremal vertex not connected to any free edge, thus prematurely stopping
the algorithm. This cannot happen due to the priority contraction of single
free edges, which implies that frozen edges are generated only at stages when
every extremal vertex is connected to two or more free edges. Therefore, the
algorithm can be consistently run until the leaf of each branch is reached.

As the treatment of single free edge contractions does not differ from the
rules of the initial algorithm, we set ourselves at a branching of the resolution
tree corresponding to k ≥ 2 alternative contractions of an extremal vertex V0
aiming at V1, ..., Vk, where the j first Vi conflict with V0, and the remaining
Vi are TOVs, where 0 ≤ j ≤ k.

We show first that the edge freezing rules lead to all admissible (in the
sense of other rules) and distinct partitions of the initial variables. Consider
the first contraction of E (0→ 1). The resulting graph Hn,1 induces all ad-
missible partitions such that x0 and x1 are in the same set. Consider then the
contraction of E (0→ 2), where E (0→ 1) is frozen according to the modi-
fied algorithm. The resulting branch Hn,2 induces all partitions such that x0
and x2 are in the same set but x1 is not. For each i-th iteration of this pro-
cess, the sub-tree stemming from Hn,i induces partitions such that x0 and xi
are in the same aggregate but x1, ..., xi−1 are not. Therefore, throughout the
different branches, the contractions with V0 enumerate without redundancy
all accessible subsets of {x0, ..., xk} containing x0.

We now want to show that the space parameterized by every terminal
diagram is a distinct face of the Pareto front. We first show that none
of the partitions are included in another. This is obtained thanks to the
prioritization of conflicting vertices contractions: when V0 aggregates with a
TOV Vl with l > j, any edge E(0→ i) with i ≤ j joining V0 to a conflicting
Vi is frozen in Hn,l. Consequently, at this stage, none of the conflicting Vi
can be aggregated to the TOV resulting from the contraction of E(0 → l).
This implies that two conflicting vertices susceptible to form a TOV cannot
both aggregate to another TOV, at any stage of the process. Therefore, a
TOV can only contain a single pair of conflicting variables, whereas at least
two such pairs would be necessary to form a sub-partition of the aggregate.

Finally, we consider two terminal graphs H1 and H2, respectively defining
spaces H1 and H2, and a dimension larger than 3, as other cases are trivial.
The partitions associated with H1 and H2 not being included in one another
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implies the existence of variables (x, y, z) such that: (i) in H1, x and y are
in a same set of the partition while z is in another set; (ii) in H2, y and
z are in a same set of the partition while x is in another set. Considering
points A ∈ H1 \ H2 and B ∈ H2 \ H1, the (x, y, z) coordinates of interior
points of the segment joining A and B are strictly different from each other.
This shows that H1 ∪H2 is non-convex. Terminal graphs thus parameterize
maximally convex subsets of the Pareto front.

Appendix C. Peusdo-code

function Pareto (G)
input: Graph G with list VG of N vertices
output: list of graphs OUT
1: i← 0
2: condition← false
3: repeat
4: i← i+ 1
5: V ← VG(i)
6: if V is maximal and V aims at a single vertex then
7: Vf ← V
8: condition← true
9: end if
10: until condition or i > N
11: i← 0
12: while ¬condition and i ≤ N do
13: i← i+ 1
14: V ← VG(i)
15: if V is maximal then
16: Vf ← V
17: condition← true
18: end if
19: end while
20: if ¬condition then
21: OUT ← G
22: else
23: Set OUT to empty list
24: Set T to empty list
25: for all V ∈ VG do
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26: if Vf aims at V then
27: Append V to T
28: end if
29: end for
30: Sort T with ascending and descending vertices first
31: for all V ∈ T do
32: e← edge between Vf and V in G
33: Gi ← graph obtained by contracting e in G
34: Gi ← transitive reduction of Gi

35: Append Pareto(Gi) to OUT
36: Freeze e in G
37: end for
38: end if
39: return OUT
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Cruz-Ramı́rez M, Hervás-Martáınez C, Fernández JC, Briceño J, de la Mata
M (2013) Predicting patient survival after liver transplantation using evo-
lutionary multi-objective artificial neural networks Artificial Intelligence
in Medicine 58 (1), pp. 37-49.

Davey BA, Priestley HA (2002) Introduction to lattices and order Cambridge
university press

Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms
Wiley, New York.

Dhaenens C, Julien L, El-Ghazali T (2010) K-PPM: A new exact method to
solve multi-objective combinatorial optimization problems European Jour-
nal of Operational Research 200:45-53.

Ehrgott M, Gandibleux X (2000) An annotated bibliography of multi-
objective combinatorial optimization OR-Spektrum 22(4):425-460.
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Figure 2: Graphical illustration of the key steps of our algorithm. Left: Selection of
an ascending connected component V in a Hasse diagram Hn−1,l and identification of an
extremal vertex VI∗ . Hn−1,l leads to two novel Hasse diagrams Hn,k and Hn,k+1 by alter-
native edge contractions leading to the aggregation of VI∗ with the respectively conflicting
vertices VI1 and VI2 . Right: The nodes of the resolution tree represent the Hasse diagrams
obtained recursively by alternative contractions of single edges (as described on the left).
Alternative contractions correspond to branching operations within the resolution tree.
The process starts with the initial problem represented by H0 and ends with the terminal
diagrams at depth N of the recursion. Terminal diagrams only contain Trade-Off Vertices
(TOVs) and variables aggregated to the lower or the upper bound. In the improved ver-
sion of the algorithm, the terminal diagrams each represent one of the distinct NP faces
of the Pareto front.
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Figure 3: Bensolve and the graph contraction algorithm are run on the same sets of
100 random instances for each size, where minimization and maximization objectives have
been attributed randomly with probability 0.5. Top left: Logarithm of the running times
for Bensolve and the graph contraction algorithm in the case of 1D gradients with random
stress patches (total order constraints). Top right: Same running times on a linear scale
for the graph contraction algorithm. Inset: average running time < T > per number
of objective divided by N2 (blue, asymptotically increasing) or N3 (red, asymptotically
decreasing). Bottom left: Same as top left graph, but for partially ordered expression
levels as imposed by 2D gradients, where the Hasse diagrams correspond to square grids.
Bottom right: Linear scale of the running time per face of the Pareto front for the graph
contraction algorithm.
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Figure 4: Example of resolution of Pareto optimal gene expression for a monotonous
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are represented the Hasse diagrams of the two Pareto faces, on top of their respective
projections along the unit vectors X, Y and Z, corresponding to the directions defined
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