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Abstract

The optimal bucket order problem consists in obtaining a complete
consensus ranking (ties are allowed) from a matrix of preferences (pos-
sibly obtained from a database of rankings). In this paper, we tackle
this problem by using (1 + A) evolution strategies. We designed specific
mutation operators which are able to modify the inner structure of the
buckets, which introduces more diversity into the search process. We also
study different initialization methods and strategies for the generation
of the population of descendants. The proposed evolution strategies are
tested using a benchmark of 52 databases and compared with the current
state-of-the-art algorithm LIAY T2, We carry out a standard machine
learning statistical analysis procedure to identify a subset of outstanding
configurations of the proposed evolution strategies. The study shows that
the best evolution strategy improves upon the accuracy obtained by the
standard greedy method (BPA) by 35%, and that of LIAY 72 by 12.5%.
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1 Introduction

Rank aggregation serves as an umbrella term for a series of problems whose goal
is to compute a consensus ranking from a dataset containing ordered lists of
items or other types of preference information about such items [T}, 2 Bl [, [l
6, [7, 8, [0, 10]. Rank aggregation is currently a very active field of research in
which many disciplines converge, such as social sciences, mathematics, computer
sciences, etc. (see [II], Section 1] and the references therein).

Although the seminal problem in this field is the well-known Kemeny prob-
lem (KP) [3], there are many variants of the problem and many alternative
appellations for them: consensus ranking problem, social choice problem, rank
aggregation problem, etc., according to the different types of rankings consid-
ered as input/output, the different measures/distances to compute the differ-
ences between the rankings and the function to optimize. In addition, several
relations between rank aggregation and other operations research problems have
been addressed, e.g. the linear ordering problem [12 8] or the feedback arc set
problem [13], [14].

According to Cook [15], there are two broad classes of approaches (ad hoc
and distance-based) for aggregating preference rankings to find a consensus.
Here we focus on the optimal bucket order problem (OBOP), an optimization
problem that belongs to the distance-based approach. In the OBOP [9], it is
assumed that several preferences/precedences given by different voters about
some items are condensed into a pair order matrix [16] C, where each cell
C(u,v) € [0,1] may be interpreted as the probability that u precedes v, and it
is assumed that C(u,v)+C(u,v) = 1 and C(u,u) = 0.5. Actually, the input for
the OBOP is a pair order matrix, whichever way it was obtained. The aim in
the OBOP is to obtain a complete ranking with ties, or equivalently, a bucket
order matriz, that minimizes the L' matrix distance with respect to the input
pair order matrix C (see Section |2| for the details).

Among the wide family of rank aggregation problems which produce a bucket
order as output, although considering different distances to define the objective
function, we can highlight the recent works [17] [18] and [I9]. All these proposals
work within Kemeny’s original axiomatic framework (i.e. the search space of the
consensus ranking is formed by all possible rankings with ties, and the distance
to be minimized is the Kemeny distance).

The OBOP is a problem of both theoretical and applied interest. Apart from
the usual fields of application of rank aggregation problems (e.g. social choice
theory, voting, meta-search, consensus decision making, etc.), the OBOP has
frequently been applied to seriation problems, e.g. in paleontology [20] and in
archaeology [21]), the aggregation of visitors’ browsing patterns in web portals
[22] and discovering of ordered labels from clickstream data [23], among others.

The OBOP falls into several pattern recognition-based disciplines: machine
learning, as it tries to learn the consensus of order from a dataset of rankings;
preference learning, as it can also accommodate input data coming from collec-
tions of pairwise preferences (e.g. statistics computed from rating data); and
optimization, as it is defined as the search for the optimal bucket order given



the data.

In particular, in this paper we focus on the optimization aspect of the prob-
lem. Given that the OBOP is NP-hard [9], the standard techniques to approach
the OBOP in the literature are greedy heuristics. More specifically, the use
of the bucket pivot algorithm (BPA) [9] [16] can be considered as the standard
option. In fact, some recently-presented improved BPA methods can now be
considered as state-of-the-art [11].

In this paper we propose to use metaheuristics to tackle the OBOP. In par-
ticular, we choose evolution strategies (ES) [24] as the method to guide the
search. We consider that ES are especially appropriate for the OBOP, as we
can use greedy solutions to seed the search process and mutation operators to
explore their neighborhoods. Our contributions in this paper are:

e we design several mutation operators at the level of items and buckets;
e we study three different initialization methods;

e we propose three different strategies to select the mutation operator to be
applied;

e we test the designed the different configurations for the designed ES algo-
rithm using a benchmark composed of 46 datasets taken from a standard
repository (PrefLib) and 6 datasets obtained from well-known rating-based
preference data (MovieLens-100k);

e we carry out a study from three different dimensions: accuracy of the
solutions obtained, efficiency of the algorithms designed (time and number
of evaluations), and inner structure of the solutions (number of buckets
and similarity of the solutions found by the different algorithms);

e the statistical analysis of the experimental results clearly shows a signifi-
cant difference in favor of the ES with respect to current greedy state-of-
the-art algorithms.

The rest of this paper is organized as follows. Section [2]introduces the target
problem, namely OBOP, while in Section [3] we describe our metaheuristic-based
approach to solve it. Section [4] contains the experimental evaluation carried out
using a benchmark of 52 datasets and a thorough analysis of the results in terms
of accuracy, efficiency and inner structure of the solutions. Finally, in Section
we present our concluding remarks.

2 The optimal bucket order problem

Given a set of items I = {1,...,n}, a bucket order B [4] is an ordered sequence
of k subsets (buckets) I, o, ..., I of I, 1 < k < n, which is an ordered partition
of I (i.e., they are pairwise disjoint and the union of all of them is equal to I).
For instance, for n = 4 we will write 1|3|2,4 to denote the bucket order with
3 buckets I; = {1}, I = {3} and I3 = {2,4}, indicating that 1 precedes the



other three items, 3 precedes 2 and 4, and there is no preference between 2 and
4 (which are tied).

In general, by ranking we understand any precedence order among (some
of) the items in I (possibly with ties). Incomplete rankings do not rank all
the items, while in partial rankings there is no precedence relation among some
items. According to this, a bucket order is a partial complete rankinﬂ

Given a bucket order B and u,v € I, we will write u <p v to express that u
precedes v (u is preferred to v). If u and v are tied, we will write u ~5 v. In
[16] a bucket order B is represented by means of a matrix B of dimension n X n:

1 if u=<pwv
B(u,v) =< 05 if u~pv (includes u=v) (1)
0 if v<pu

In particular, B(u,v) + B(v,u) =1 for all u,v € I.
A pair order matriz [16] is a matrix C such that C'(u,v) € [0,1] for all u,v €
I, with C'(u,v) + C(v,u) =1 if u # v and C(u,u) = 0.5. C may be interpreted
as a precedences matrix (possibly obtained from a database of rankings, from a
database of ratings, etc.), where C'(u, v) expresses the probability of u preceding
v. Given two pair order matrices C; and Cs, we consider the following L' matrix
distance:
D(Cy,Ca) =Y |Cy(u,v) — Ca(u,v)]. (2)
UFv

Then, given a pair order matrix C, the optimal bucket order problem (OBOP)
consists in finding the bucket order B such that D(B,C') is minimum.

In [25] the distance (2) was characterized as the only distance measure for
the set of partial orderings determined by a certain set of axioms. Hence, the
OBOP should be reported within this ranking aggregation framework.

2.1 Solving OBOP by using greedy algorithms

As the OBOP is an NP-hard problem [J], several greedy heuristic algorithms
have been proposed to solve it. Undoubtedly, the bucket pivot algorithm (BPA)[9,
16] can be considered the standard greedy method for dealing with the OBOP.

BPA (Figure [I)) receives as input a set of items I and a pair order matrix
C. Then, one of the items is chosen at random to be the pivot p and, based
on a given threshold 8, 0 < 8 < 0.5, the rest of the items are split into three
sets: L={uel|Cpu <3-BLR={uell|}+pB<C(pu)}and
S=I\(LUR)={u€el|$-B<C(pu) <i+p}, which is the central bucket
containing the pivot p. The final ranking is generated by recursively calling
BPA for the successive L and R buckets.

Although BPA exhibits a good performance when applied to the OBOP
[9, 26], 22], it does suffer from certain drawbacks. In fact, the random selection
of the initial pivot has a significant impact on the bucket order obtained. Krenke

n the literature, they are also called weak orders, ordered partitions and partial linear
orders, among others



BPA(1,C, 5)
Input: I, set of items; C, pair order matrix; 5 € [0, 0.5]
Output: Bucket order
1 if I = () then return ¢
Pick a pivot p € I at random
L+ 0,8+ {p}, R« 0.
for all item u € I — {p} do
if C(p,u) <% — B then L + LU {u}
else if%—ﬂgC’(p,u) <1+ pBthen S+ SuU{u}
else if 5 + 3 < C(p,u) then R < RU {u}
end if
end for
0 return concatenate(BPA(L,C, ), S,BPA(R,C, j3))

= © 00 3O Ui Wi

Figure 1: The bucket pivot algorithm (BPA)

et al. [26] propose to reduce this risk by using a two-step approach (BPA-CC):
first, the items are clustered into groups by using precedence-based similarity;
then, BPA is run over the clusters obtained. To do this, a secondary precedence
matrix C’, which is defined over the clusters, is computed by collapsing the
original one.

More recently, Aledo et al. [II] proposed several BPA-based methods which
incorporate a criterion for the selection of promising pivots, and which also use
more than one item as pivot when making the decision about where to place
the remaining items. In this way, the authors tackle the problem detected in
[26] regarding the “danger of ordering entities based solely on their pairwise
preferences with respect to the pivot”. The best algorithm proposed in [11],
namely LIAY P2 significantly improves upon both the original BPA and BPA-
CC. This algorithm constitutes the current state of the art when solving the
OBOP, and it will be used for comparison against our proposals in this study.

3 A metaheuristic approach for the optimal bucket
order problem

Given the NP-hardness of rank aggregation problems [27] 28] [29] 9], in addition
to heuristic greedy algorithms, several metaheuristics approaches have also been
developed to tackle them: genetic algorithms [30} [31], local search (HC, ILS,
VNS) [32], ant colony [33] and differential evolution [I8]. The successful results
obtained by metaheuristic algorithms in other rank aggregation problems led us
to apply this type of search engines to the OBOP.

In the OBOP the solution is an ordered partition of [[n]], and the number



of possible partitions is determined by the Fubini number [34],

n

Fub(n) = Y k!S(n, k),

k=0

where S(n,k) is a Stirling number of second kind, which can be computed
recursively via

S(n,k)=k-S(n—1,k)+Sn—1,k—1),
S(n,n) =1, S(n,0)=0.

In order to get an idea of the cardinality of the search/solution space of the
OBOP, below we show some values of Fub(n):

n 10 50 100 150
Fub(n) 102x10° 1.99 x10™ 5.56x10'73  3.09%10236

In this paper we propose the use of evolution strategies (ES) as the meta-
heuristic search engine to tackle the OBOP. ES are specialized evolutionary
algorithms whose most striking quality is their efficiency in terms of time com-
plexity [24]. ES (see for example [35]) are usually only based on mutation as
the variation operator, whereas crossover is rarely used. Selection is based on
the fitness value. Specifically, in this study we follow the (1 + A)-ES, which
means that the population has a single parent from which X offspring/children
are generated at each iteration/generation. Then, the A offspring compete with
the parent to replace it for the new iteration, that is, elitist replacement is
applied. This scheme has proved to be better than the original (1, A)-ES, in
which the best of the A offspring is selected as parent for the next iteration, the
current parent always being discarded. Figure [2] shows the pseudocode of the
(1 4+ X\)—ES (adapted from [35]).

(14 A\) — EvolutionStrategy(I,C, \)
Input: I, set of items; C, pair order matrix;
A, the number of offspring
Output: Bucket order
1 Initialize a population with 1 individual (parent)
2 Evaluate parent
3 repeat
4 A + Generate \ offspring from parent
5 Evaluate individuals in A
6
7
8

parent < best(parent U A)
until the stopping condition holds
return parent // the best solution found

Figure 2: Pseudocode of the (1 + \)—ES

The next subsections detail the design of the main components in our pro-
posed (14 A\)—ES.



3.1 Individual representation and evaluation

Any potential solution (bucket order) B of the elements in I = [[n]] can be
represented as a sorted list of buckets B = (11, I, .. Ik) 1 <k <n, Where
each bucket is a non-empty set of items satisfying I NI =101 j an

Ui L = [[n]].

For a given bucket order B, the fitness function is given by

f(B):D(B7C>:Z|B(uvv)_c(uav)|v (3)

uFv

where B is the matrix associated with B according to . As stated above, our
goal is to find the bucket order B which minimizes (3.

3.2 Initial solution generation

We selected the following three procedures in order to construct the initial
solution, thus considering one random method and two (fast) informed ones.

e BPA: the heuristic bucket pivot algorithm for the OBOP (Figure .

e Borda: the Borda count method [36]) generates a permutation as output.
However, during the computation some items are tied with respect to the
score used to create the ranking, and the method randomly/arbitrarily
breaks the ties in order to obtain a permutation. Here we use the Borda
count algorithm but without tie-breaking, thus generating a bucket order.

e Rd: a ranking is generated at random. First, we generate a random
permutation (one item per bucket). Then, the list is scrolled from the
beginning and each item is joined to the previous bucket with a probability
of 0.5. Otherwise, the item is included in a new bucket.

Note that BPA (which depends on the randomly selected pivot) and Rd may
obtain different bucket orders in different calls, while Borda (allowing ties) is a
deterministic procedure.

3.3 Mutation operators

First, it should be pointed out that no repair operator is used in the proposed
evolution strategy. Consequently, all the operators must be closed, in the sense
that if the input is a bucket order for [[n]], then so is the output.

We propose two types of mutation operators. The first type is a direct
adaptation to the level of buckets of the mutation operators defined to deal
with permutations. We consider the three most popular permutation-oriented
mutations, i.e., insertion, interchange and inversion [35] [12]:

e Bucket insertion: a random bucket is moved from its position to another
random one.

Example: 1,2|3|4,5,6|7,8 — 7,8|1,2|3]4,5,6



e Bucket interchange: two buckets are randomly chosen and their positions
are interchanged.
Example: 1,2|3|4,5,6|7,8 — 7,8|3|4,5,6|1,2

e Bucket inversion: a sublist of consecutive buckets is randomly selected.
Then, the order of the buckets in the sublist is reversed.
Example: 1,2(3[4,5,6(7,8 — 4,5,6/3[1,2|7,8

Note that the above operators do not change the number of buckets, their
size or composition; they just change the positions of the buckets in the ranking.
In order to obtain greater diversity in the search process, we also introduce four
new mutation operators, which modify the inner composition of the buckets:

e Bucket union: two consecutive buckets are randomly selected and joined
in a bucket.
Example: 1,2|3|4,5,6|7,8 — 1,2, 3|4,5,6/7,8

e Bucket division: a bucket (with at least two items) is randomly selected
and randomly divided into two buckets. Note that there is no order inside
a bucket, so the items are randomly placed in any of the two new buckets
(probability of 0.5).
Example: 1,2|3|4,5,6|7,8 — 1,2|3|4,6]|5|7,8

e Item insertion: an item is picked at random from a randomly selected
bucket. Then, the item is (randomly) inserted in a different position in
the ranking. The item can either be added to an existing bucket or used
to create a new (singleton) bucket. The item is never reinserted in the
original bucket. If the original bucket had a single element, it would
become empty and therefore be removed.

Example: 1,2|3|4,5,6|7,8 — 1,2,4|3]5,6|7, 8.

e Item interchange: two different buckets are selected at random. Then,
one item from each bucket is randomly selected and the chosen items are
interchanged. Example:
1,2|3|4,5,6|7,8 — 1,2|4|3, 5,617, 8.

Observe that the neighborhoods associated with the previous operators (es-
pecially the ones associated with bucket division, item insertion and item inter-
change) are rather large. This fact prevents us from using local search algorithms
based on a systematic exploration of the neighborhoods; on the contrary, it in-
vites us to choose ES as search engines, as they provide an efficient exploration
of the search space.

Finally, it is worth pointing out that there is (always) at least one sequence
of the previous mutations that allows the transformation of any given solution
into any other.



3.4 Population generation

The last component of our ES is the way in which the mutation operators are
selected in order to generate the A children from the current parent.
We propose to explore three different schemes of mutation operator selection:

e Random (Rd): for each of the offspring, the mutation to be applied is
randomly selected from the set of the (seven) available operators.

e All (All): the seven mutations are applied in each generation, each one
generating at least one offspring. This implies A > 7.

e Unique (Uni): all the offspring of each generation are generated with the
same mutation operator, which is cyclically changed for each iteration.

Both Rd and All have a potentially larger neighborhood than Uni. Regarding
Uni, it resembles a variable neighborhood search (see for example [37]).

4 Experimental Study

In this section we describe the datasets used and the experiments carried out
in order to evaluate our proposal. All the experiments were ran on standard
computers (3 GHz processor and 32 GB RAM) with Linux operating systems.
All the algorithms were implemented in Java (sequential implementation) and
the processes were allowed to use a maximum of 2 GB of RAM.

4.1 Datasets

We considered a representative benchmark of 52 datasets with sizes (i.e., number
n of ranked items) of between 50 and 250. The datasets can be divided into two
groups:

e We used the PrefLiH?] repository as our main source. We focused on
datasets of type “election data” (ED), in particular the datasets with
sizes in the range 50-250. After that, in order to have a manageable num-
ber of datasets, we selected a subset according to the following rule: if
several datasets have the same number of items (n), then select the one
with the higher number of voters (m) (alphanumerical order is used for
tie-breaking). After this reproducible filtering process, we obtained 46
datasets.

Among the different formats available in PrefLib, we work with datasets in
pwg format, which basically (after normalization) codify precedence order
matrices.

e A usual situation with rank data is that for large values of n the number
of voters is small. In fact, the datasets selected from PrefLib have m = 4

2PrefLib: A library for Preferences [38]. http://www.preflib.org/
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in most cases, where each voter corresponds to a particular search engine.
To deal with datasets with more voters, in [26] the authors propose col-
lecting the statistics from preference data. In this sense, we considered the
Movielensﬂ 100k dataset, which was developed by GroupLens and contains
100000 ratings (1, ..., 5) given by 943 users to 1688 movies. All the users
in the dataset rated at least 20 movies.

From the Movielens 100k dataset we generated 6 datasets with n =
50, 100, 150, 200 and 250 (two datasets) items (movies). For the sake of
reproducibility, below we describe how we carried out the selection of the
movies. To create the dataset ML-x-y, we started with the movie num-
bered y and selected the set of movies {y,y+6-1,y+6-2,...,y+6-(z—1)}.
Then we took all the users that rated at least one of these movies and cre-
ated a dataset of bucket orders: one bucket order by user, where each
bucket contains the movies with the same rating (1,...,5). The obtained
bucket orders contain many ties (there are, at most, 5 buckets) and are
rather incomplete, since each user only ranks a small percentage of the
available movies.

Observe that the number of voters (samples or rankings) has no influence
on the experiments’ computational complexity, as the dataset information is
collapsed into the n x n precedence order matrix.

Table [1) shows the main features of the datasets considered. In particular,
the first three columns are:

e DB: the identifier of the database in the PrefLib repository.
e n: the number of items to sort.
e m: the number of voters/instances/rankings in the dataset.

In addition, the last three columns of Table [1| show the results (fitness) of
running the three initialization methods described in Section In the case
of BPA and Rd, we show the average + variance over 30 independent runs. As
Borda (allowing ties) is a deterministic algorithm, it has no variance. The best
result for each dataset is boldfaced.

According to statistical tests (Friedman followed by a post-hoc test, a =
0.05), there is no statistically significant difference between BPA and Borda
as initialization methods (p-value 0.43). As expected, these two heuristic al-
gorithms clearly outperform the non-informed initialization method proposed
(Rd). The ranking obtained by the Friedman test is Borda (1.42), BPA (1.58)
and Rd (3). Borda is better than BPA in 30 out of the 52 datasets and worse
in 22 datasets. In Table [1| we can observe how Borda is systematically better
than BPA when n is larger (> 100). In other words, as n increases the negative
effect of the random pivot selection in BPA is amplified.

3Downloaded from http://grouplens.org/datasets/movielens/100k/
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Table 1: Description of the databases used in the experiments, and the results
of applying the three initialization methods.

[ DB I n m | Random Borda BPA |
ED-T0-1T 50 11 1204.17 F 52.8 805.7 £ 0 846.0 £ 60.5
MTL-050-6 50 936 1215.9 + 56.8 695.6 £ 0 633.3 £ 82.1
ED-10-02 51 9 1254.9 £+ 50.2 778.8 £ 0 822.2 £ 65.0
ED-10-15 52 4 1294.8 £ 67.4 834.8 £ 0 894.6 £ 56.1
ED-T10-03 54 10 1431.0 £ 64.1 931.4 £ 0 972.6 £ 85.5
ED-15-34 55 4 1484.7 £ 100.7 631.5 £ 0 669.2 £ 59.6
ED-15-77 56 4 1537.3 £ 109.5 691.3 £ 0 640.0 £ 42.8
ED-10-16 57 16 1526.8 * 76.3 955.1 £ 0 907.9 £ 61.4
ED-15-54 60 4 1741.6 £ 107.2 632.5 £ 0 611.9 £ 57.9
ED-10-17 61 17 1813.0 £ 94.9 1122.2 £ 0 1123.9 £ 121.4
ED-10-14 62 15 1854.9 £+ 109.6 1204.8 £ 0 1266.7 £ 104.4
ED-T5-11 63 1 1931.4 &£ 144.9 712.0 £ 0 701.7 £ 57.8
ED-15-30 64 4 1971.0 £ 130.0 835.5 £ 0 813.8 £ 41.1
ED-T5-31 67 1 2218.2 £ 170.5 863.5 £ 0 854.0 £ 72.3
ED-15-35 68 1 2216.0 £ 121.0 9875 £ 0 953.1T £ 65.9
ED-T15-15 69 4 2340.4 £ 163.3 1060.0 £ 0 1057.2 £ 91.2
ED-T15-16 70 4 2462.3 £ 149.1 931.0 £ 0 930.1 £ 73.6
ED-T5-10 71 4 2481.7 £ 145.0 10985 £ 0 986.8 £ 118.8
ED-T15-60 72 1 2548.2 £ 199.2 959.5 £ 0 920.2 £ 73.6
ED-15-57 73 1 2543.6 = 139.9 12315 £ 0 1166.0 = 101.6
ED-15-51 i 4 29002.8 + 238.6 1078.0 £ 0 1100.9 £ 76.4
ED-15-69 81 4 3270.6 + 208.2 1109.0 £ 0 11282 £ 78.1
ED-15-26 32 1 3304.6 £ 140.0 1248.0 £ 0 1253.0 &£ 108.4
ED-15-19 87 4 3746.6 £ 190.0 1383.5 £ 0 1416.7 £ 68.8
ED-15-39 89 1 3865.5 + 231.8 1333.0 £ 0 1376.2 £ 140.1
ED-15-24 91 1 4043.6 £ 251.9 14975 £ 0 1488.1 & 1444
ED-15-13 93 4 4214.6 £ 225.1 2120.5 £ 0 2014.7 £ 258.1
ED-15-27 95 4 44486 £ 195.7 17855 £ 0 1755.5 & 104.4
ED-15-21 96 4 4498.3 £ 271.3 1787.5 £ 0 1811.1 £ 1244
ED-15-08 99 4 4765.6 + 225.2 2057.5 £ 0 1789.6 + 165.3
ED-14-02 [[ T00 5000 4880.9 £ 144.2 3245.1 £ 0 3082.8 £ 239.4
ML-T00-1T || 100 941 4851.7 £ 162.7 2808.5 £ 0 2736.4 * 262.4
ED-15-28 || 102 1 5061.9 + 292.3 2139.6 £ 0 2017.6 £ 53.2
ED-T1-03 [ 103 5 5143.0 £ 328.9 2130.5 £ 0 2184.9 £ 155.7
ED-15-29 || 106 4 55564.8 & 204.0 2041.0 £ 0 2102.1 £ 165.3
ED-15-07 [[ T10 4 5979.6 + 376.6 2063.0 £ 0 2060.1 £ 159.0
ED-15-22 [[ 112 1 6099.0 £ 357.6 24485 £ 0 2497.5 £ 160.5
ED-15-09 || 115 1 6544.9 + 391.4 2448.0 £ 0 2478.3 £ 156.3
ED-15-20 || 122 4 73735 £ 309.1 3436.5 £ 0 3440.0 £ 254.9
ED-15-17 || 127 4 7956.2 £ 346.3 3246.0 £ 0 3344.2 £ 209.1
ED-15-33 || 128 4 8071.3 £ 411.7 3289.5 £ 0 3352.8 * 244.9
ED-15-40 [[ 131 1 8445.2 & 430.1 3756.0 £ 0 3777.3 £ 264.1
ED-15-23 || 142 4] T0034.0 £ 403.6 3973.0 £ 0 3999.2 * 274.6
ML-T50-2 || 150 9371 || 11017.6 & 419.8 6249.6 £ 0 7023.5 £ 519.3
ED-15-32 [[ 153 4] 11582.2 £ 474.2 4320.5 £ 0 44T7.0 £ 257.5
ED-15-14 || 163 4] 13196.2 £ 63877 4887.5 £ 0 5011.9 £ 319.7
ED-T0-50 || 170 41 141822 £ 467.2 6710.2 £ 0 7895.8 £ 474.2
ML-200-3 ]| 200 936 || 19920.9 £ 541.2 11646.9 £ 0 13273.2 &+ 1016.5
ED-T1-01 || 240 5 || 28538.4 £ 1173.4 74788 £ 0 6399.1 + 260.8
ED-T1-02 || 242 5 || 29189.5 £ 905.1 14818.6 £ 0 14955.8 £ 945.7
MIL-250-4 || 250 942 31018.2 £ 516.7 22125.5 £ 0 23552.3 £ 1150.6
MT.-250-5 [[ 250 939 || 30677.6 £ 578.6 21770.3 £ 0 23362.3 £ 1223.9
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4.2 Experiment design and results analysis

In this section we analyze the performance of our proposal on the selected
databases. As we have defined three ways of generating the initial solution
(parent), and three schemes to generate (by mutation) the population of de-
scendants, we obtain nine configurations of evolution strategies to be tested:
{Borda, BPA, Rd} x {Rd, All, Uni}. Furthermore, we include LIAY "2 in the
comparison study. LIAY 2 is a BPA-based algorithm which uses an informed
criterion (LIA) for pivot selection and also considers a multi-pivot strategy to
decide where to place the items. This algorithm represents the current state of
the art for the OBOP [11]|ﬂ

Since the ES are of a stochastic nature, we performed 30 independent runs
for each configuration and dataset. As parameters, we set A = 7 (to be coherent
with the number of mutation operators proposed), and the maximum number
of fitness evaluations to 10n2.

4.2.1 Accuracy results

In this section we discuss the results obtained by each algorithm regarding
fitness, i.e., the distance of the obtained bucket orders to the precedence matrix
C'. These values (averaged over 30 runs) are shown in Table 2, where the best
result/s for each dataset is/are highlighted in boldface.

Note that several configurations of the ES achieve the same best fitness
solution. Regarding the (averaged) performance, Borda-Uni, Borda-Rd and
BPA-Uni obtain the best fitness for the considered benchmark. Nonetheless, to
properly evaluate the results, we followed a standard machine learning statistical
analysis procedure [39, 40]. In particular, the ExReport tool was used [41].

First, a Friedman test (o« = 0.05) was performed. The obtained p-value (1.9e-
42) rejected the null hypothesis that all the methods are equivalent. Then, the
algorithm ranked first by the Friedman test (Borda-Uni) was used as control
and a Holm post-hoc test (o = 0.05) was applied to discover the outstanding
methods. Figure [3](a) shows the rank distribution for the Friedman test. In
particular, the boxes corresponding to algorithms which are not statistically dif-
ferent from Borda-Uni are in white. We observe that the different ES configura-
tions signiﬁcantlyﬂ outperform the current state-of-the-art algorithm (LIAYF2),
which is ranked in 10th position (average position is 9.90). Regarding the ES
algorithm, Borda-Uni is significantly better than the rest of the configurations
except Borda-Rd.

4Remarks:
. LIA]\G/“:'2 outperforms Borda and BPA by 21% for the studied benchmark.

e For completeness we also studied the three ES configurations which result from using
LIA]\G“32 as initial solution for the ES. However, the higher quality of this initial solution
does not have a positive impact on the search and so we discarded it as an initial solution
(see |A] for details).

5Pairwise post-hoc test confirms this fact.
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Table 2: Fitness (distance) results for the 52 datasets. The average £ variance
over the 30 runs is shown in the first row, and the best solution out of the 30
runs is shown in the second row.

Dataset TTA RA-Rd RA-ATl Rd-Uni Borda-Rd Borda-ATl Borda-Uni BPA-Rd BPA-AT BPA-uni
ED-T0-1T[ 616 4EIT3 5871177 59T TE205 STT2ES0 576.1E5.2 T3 SELS 575.2E1.0 SELIFICY ST TEILT 5728387
567.2 572.2
ML-050-6 455 6i0 0 419 7i0 7 419 Gio [ 419 2i0 3 T9.6573 420 5i4 pi B EI0. 419 7i1 G 420 9i3 419 7i1 §
ED-T0-02 56 BE20 54 .6i19.7 >6‘3 2130 T 546 6ilo 3 5IZ7E 145 045 7113 5 55551 537 3i10 7 >42 0114 P 539 >i13 T
556.4 525.0 525.0 544.4
ED-T0-T5[ 606, 3576 60921388 611 4i39 T 583 8i14 3 SSLTETT 585 3i15 7 583 1F86 588 9j:24 3 590 5i23 7 580 4i4 T
577.0 577.0 577.0
ED-T0-03 620 0j:10 SSL7ETIA 071 01 o 7 020 3130 7 ST3.8E1a 014 1j:2 3 EEREPR 014 913.0 013 911 7 014 oj:? G
ED-15-31 039 4:&28 T17.4139 455 5i10 7 448 3i6 T 1163133 446 8i2 3 446 9i3 P 448 7i8,1 447 1i3 3 446 Oil 3
444.5 444.5
ED-15-77 569 7i0 U SUSEEITT 506 0i12 7 505 OiG 7 508 3 ES 505 6i9 pi 502 8i6 T 503 4i6.2 504 6i7 T 505 1is 3
ED-T0-T6 718 2:t1 R 5915177 090 j:2 T 590 j:G T 588017 590 Oj:5 5 589 2j: ) 090 1j:3.3 588 8j:2 T 590 Oj:4
62.5 585.1 586.7 585.1 586.7 586.7
ED-15-54 479 00 12Z0T105 1219592 416 S:ko 3 7783 T 2T TS .6 L 50 414 6:&3 3 416 Oi4 T 41:11,8i3.3
10.5 10.5 10.5
ED-T0-17 796 0111 T 700.6F21.7 702 0126 3 707.212 - 693.0F18.7 703 :t26 696 0j:16 7 691 6j:11 T 692 1117 7 GO2.8F18.2
683.8 683.8 683.8 683.8
ED-T0-14 76 2:t19 TTYEECI3 10 3i 1 7 7641736, 753.255.5 705 3117 i P a:tS T 752 1i7 T 750 916 5 749.956.3
744.6 N
ED-T5-11 570 OiO 0 510 Sil 7 504 2i17 7 496 4i13 7 9555104 493 5i8 7 Si K 492 9i9 0 497 1i16 7 2906755
ED-T5-30 69 Oj:O 5 600 8j:22 i 602 oj:24 T 59 Ij: 2 7 5 1 4j:19 579 0119 T 574 2j:15 602 1j:25 G 600 oj:22 7 GO1.0E17.2
ED-15-31 679 5i0 %10 9i10 3 612 aill 3 soe 7i13 5 607 5i9 7 604 Oi12 T eoo 4i11 8 607 4i9 3 607.0i9.8 609 1i7 7
592.5 589.5
ED-T5-35 782 4i42 S OTgSEIT 679 6j:4 7 681 6j:7 pi 678 2:3 G ] o 4j:7 3 678 6j:3 679 7:!:u 3 OS0SE0A 679 1j:o
D-15-15 1 OiO T 749 0i1‘3 5 750 4114 7 746 i15 5 739 0111 T 737 7i9 7 73 7:t10 7 740 OiIO 5 TIT5ET0T 744 7i10 T
728.0
ED-15-16 731 OiO 0 693 2i13 T 695 4i12 0 590 9i12 T 679 719 3 § 3 1i12 G 682 Sill F B 5 6i11 3 GSTSIIIT  © 6 7i11 T
ED-T5-T0 873 uj:O 0 671 4j:5 7 672 Oj:u 7 671 4j:7 0 676 Sj:Q i 674 5j:8 T 674 1j:9 5 671 Oj:G T 67(23616i'56.2 669666j:54 G
ED-15-60 714.5i0.0 678 7i10 5 679 a:tlS 8 680 2i12 G 673.9i7.7 673 5i7 5 67o 6:&11 4 672 Qig 3 B74.7E70 STZIITT
714.5 659.5 659.5
ED-15-57] 9388105 841 6:{:16 0 34,7111.4 837 0j:12 T IT.0E13.7 44 1113 7 834 3j:13 7 830 7:{:14 T 83B0EI00 T 2j:10 7
938.5 822.5 822.5 82
ED-I5-5T] 918.0£0.0 790 3i 0 780.5E85 T 6 3:t6 0 T8T.TEA. T 6 3i6 T 785 1i3 T 6 9i6 3 7 9 9i9 7 78 Asie.
. 777.0 779.0 778.0
ED-15-60] 97831551 823 Oill 0 5 2E1T.0 822 2i10 pi T8, 1E£7.7 18 3i7 5 815 Qis 3 820 4i9 3 21 2i10 T I3 3E10.
973.0 809.0 . 809.0
ED-T5-26] 1099 0E0.0 806 7:{:16 8 55.0F20.4 808 9124 0 9. 8E13.0 847 9:{:6 8 802 1115 T 804 0117 T oO 01 T 5T.6EX11.4
84 844.0 844.0 844.0 844.0 844.0 844.0 844.0
ED-15-10 1177 5i63 T 1018, 6i15 9 T0ISGEIET  T0ITSEI6d 1010180 1010 0E1T0 1005 6i4 T 1016 8F15.6 1021.5516.0 1016.3EX15.3
999.5 999.5 999.5 999.5 999.5
ED-T15-39 12%5.108109.2 939 2ETT 939 G:tS 5 939 1110 3 932 717 7 U3Z3EET 929 6:t7 3 9102553 9391563 90,9567
ED-15-24] 1280.550.0 TOS3.6E30.5 1000 6i29 7 1044 4:t27 5 1044 124 z 1046 3i23 1032 519 z 1041 0i22 ] 1001 7i31 0 1044 1i22 T
1280.5
ED-T5-13[ 1699 5500 1406 5i69 7 1424 9i101 1392 6i7 5 1410 2i34 0 1402 7i27 5 1394 Bil 5 1393 1i6 0 1394 Ois [ 1391 iﬁ 5

o

1237 o:tIS 7 1243 3j:21 7 1231 oj:lG 3 1230 9j:13 2 1234 2:{:22 7 1234 4ilo 9

o

.5
ED-T5-27| I357.0Ex2. 1233 6:!:21 3 1243 2j:28 2 1233 oj:19.
1354.5 1220.5

ED-T5-21] 1511.550.0 1291 3i25 9 1287 1i24 7 1288.5£25.0 1269 Oilﬁ) 5 1273 8i22.1 1259 1i13 2 1287 4i26 T 1290 5i26 a 1287 3i27 T
ED-T5-0; 14%;;;;5;:%20.0 1333 O:t29 5 1336 2132 9 132;5;%%;;7.8 1326 7:t22 2 1331(;2%323.9 1309 515 9 132 6:t24 7 1322 5:t23 5 1337 4:t45 7
ED-T4-02] 2025.7X0.0 2012 5i21 5 2022 6i9 3 1983.5F 189 1994 131 3 2005.3E30.6 2002 :t2' 9 2014 4i24 2 2017 6:t21 6 2012 7j:21 9
ML-T00-T 20822322&:%7.9 1890 Bjtl 8 1900 Qi22 0 187179’!791:;23[2.5 190 4i39 2 191129§i324 1878 9i23 3 1900 Ojt33 4 1907 3i34 6 i 97 3i28 0
ED-T5-2 18(152.628:?:20.0 168106683421{:234 6 16 9 j:18.5 1684 4j:1 i 1668 7j:9 2 1671 j:10.4 1669 j:13 T 1674 2j:16 0 16713654:1‘:52 1671%?3:%8 T
ED-T1-03| 1756.5£0.0 1561 9i49 6 1562 4i39A1 1555 1i28.3 1546 4i23 8 1543 6i21.1 1533 7:tl2 8 1557 liSO 3 1553 3i26 T 1551 2i23 1
ED-15-29 16%%202::&21.0 1444 7i26 2 1437 6i23,5 143184}%20 3 1433 0i21 2 1434 9i20.9 1440 1i23 6 1443 5i25 0 1440 6i28 9 1438 0i26 £
ED-T5-07 17?7908:?00.0 1461 6i12 7 1461 3i13.2 1464 6j:1'.5 1432495:#0 6 1464 4i15. 1455 519 3 1460 5i12 1409 1i14 0 1457 ')j:9 4
ED-15-22 2092)%.953:-&50.0 1781 1jt48 9 1769 3i47.0 1770 2:&4}7. 175127.él:)t.254.1 1756 Oi34.0 175(]7 2i19 2 17810 9jt54 8 1768 6i54 2 17715 6i54 4
ED-T5-09 20%%303:{:00.0 1731 7:!:4 7z 1720 4:!:43.2 17lo 7j:36.8 171176.'52:.4(1]0.1 1722 7j:36. 1718 6j:30 8 1721:368?:.?)6 2 1714 7j:28 T 1716 6j:3 7
ED-15-20 2633 1i48 0 2410 4i18 5 2412 2:t17A5 2415 3i18.7 2416.1X15.3 24lo 4i15.7 2422 7i15 1 24T1.2E15.4 2407 8i18 3 2417 6i20 5
ED-15-17 2615 O:HJ 0 2366 0i49 3 2360 6i46,3 2366 9i43.0 234203.?1'??0,1 2339 4i31. 2319 3:&18 2 235263524:1&23.6 2350 GiSG 5 2353 i39 5
ED-T5-33 2571 5:t0 0 2 37 2:t16 3 2333 4i17.5 23321233.250.0 329 4:t16 0 232242!3%.156.0 2322 5:t22 2 42 3i1 0 2345 7i18 9 2345 6j:14 5
ED-15-40 30?;3 O:EO 0 2551 6jt55 7 2555 4i54.5 2526.9i16.9 2527 1i17 6 2535.9+41.4 2518 4i4 5 2531 6jt26 4 2527 3i17 0 2530 2i18 6
ED-T5-23 33%%;0;:?:20.0 2 96 3j:23 0 2 9223252:!:(2(:45 2899 2j:26.1 2 7 1j:21 2 2 72‘_)2%;:(1?6 2873 3:!:17 0 2 91 6j:20 0 2 9 2j:16 2 89 7j:27 2
ML-T50-2 5072, 7i63 4733 1:t5 2 471 OiJGAO 4704 2j:47.6 4710 4166 7 47T0.8E£61.4 4700 8:t56 3 4713 0i59 9 4737 0102 3 470 B :t56 T
ED-15-32 3621;% 3:&02 T 3159.8:&31.9 3160 7i32 0 31;;6??1289.7 3135 7i24 6 31;;“3126,7 3144 1i30 2 314 4i35 g 3160 i33 6 31;176,6i36.4
ED-T5-T4 4064 5:t0 0 3073 1j:27 3 3071 j:25 3566. Qj:.53.0 0?325(2)‘5!:.27 9 3545 7:t29 7 3509 ‘3j:29 [ 3047 9:t2 5 305 . j:35 0 3556 2j:3 2
ED-10-50 6414 4i14 T 5931 9i32 7 5530 6i37 T 5535143%;}2.9 551;94.9%%2.6 5514 8i44 0 5540 4:ko4 6 5948 1i76 9 5535 2i53 £ 5561 9i67 £
MT-200-3] 885 5 2:!:11 T 8064 2j:103 610 4:!:75.2 845811‘281:{:$6-3 558?213:1!:9792 o74 1j:102 7 488%1;:1!:7 6 806 0j:10 6 034 2j:107 490 0j:86 9

ED-TI-0T 61’%6 i(] 0 5616 3i‘§4 5 5616 ‘3130 0 0612 a:t’%S 9 560 0120 7 5602 i23 T 059’5 0:t22 £ 55 7 0i21 T 55 3 3116 0 5579 3:t17

5560.0
ED-T1-02 12695 6jt0 0 10979 8i56 2 1097 3i75 0 10983 0i64 8 10959 Sisl 7 11015 OiSO 9 10973 3i64 5 109 0 1i61 9 10971 0i57 7 10968,9i51.4
12695.6 10913.4 10919.0 10 10919.2

1091
MT-250-4 13204 3:!: T2 130 O oj:33 0 13229 T+0.0 12454.71309.T 12954, 1j:427 z 12950 oj:433 T 12741 9j:463 9 13050.2F£364.0 13077 6j:344 5 12 70 4j:446 9
229.1 12287.2 12281 12319.6

ML-250-5 13109 6i82 T 13204 7i299 8 13173 4i335 6 12489 3i370 3 12939 Oi486 7 12898 5i504 3 12611 6i461 T 130417 L4407 13104 9i403 T 12942 5i481 7
12262.1
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Now we analyze the three ways of computing the initial solution and the
three methods used to generate the descendant population. Concerning the ini-
tial solution, the statistical analysis rejects the hypothesis of all methods having
the same performance (p-value = 1.1e-9). Figure [3|(b) shows the ranking ob-
tained by the Friedman test. It can be observed that the Borda algorithm
is significantly better than Rd and BPA at generating the initial solution. Re-
garding the method for generating the descendant population, a similar analysis
reports that there is at least one method with a different performance (p-value
= 5.7e-5), and Figure [3}(c) shows the ranking obtained by the Friedman test.
As we can observe, Uni is significantly better than All and Rd as a method for
generating the descendant population.

Overall, we conclude that the evolution strategy Borda-Uni is the best op-
tion, obtaining (on average) an improvement of 35% over BPA and 12.5% over
the state-of-the-art algorithm LIAYF2.

4.2.2 Efficiency results

In this section we analyze the efficiency of the algorithms from two points of
view:

e CPU time of each complete run (10n? evaluations).
e number of evaluations until the best solution in the run is found.

Table|3|shows these two values for each algorithm/dataset averaged over the
30 runs.

By applying the same statistical analysis procedure as for accuracy, we ob-
serve that the three ES using Borda to generate the initial solution are signifi-
cantly better than the rest (Figure . Therefore, the ES configurations using
Borda as the initialization method not only are the best choice from an accu-
racy point of view, but also need less evaluations to converge towards better
solutions. Regarding the method for generating the descendant population, the
Friedman test does not reject the null hypothesis of all methods being equivalent
(p-value = 0.1461).

As regards the CPU time, note that, though the different configurations of
the ES algorithm are slower (by far) than LIAX P2 they always obtain signif-
icantly better solutions (see Section . In any case, the ES configurations
are clearly competitive: Borda-Uni needs less than one second when n < 75,
less than one minute when n < 200 and 2.5 minutes for n = 250. The statistical
analysis also reports that the ES configurations using Borda as initialization
method require significantly more CPU time than the other combinations (Fig-
ure |5)). This can be easily explained: since the complexity of most of the muta-
tion operators depends on the number of buckets, those methods starting from
solutions with a larger number of buckets (BordaEI) require more CPU time, at
least in the first generations.

6In general, the solutions returned by Borda (allowing ties) have a number of buckets
similar to the number of items, because ties are rarely found.
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Table 3: Number of evaluated solutions (x10%) until the best one is found (first
row) and CPU time in seconds (second row). Average + variance over the 30

runs.

ataset

T

ED-10-1T b
0.0014£0.0032 0. 0. 0. 0. 0. 0. 0. 0. 0.
ML-050-6 E T T T T T T T T T
0.0006£0.0005 0. 0. 0. 0. 0. 0. 0. 0. 0.
ED-10-02 - T T T T T T T T T
0.0002£0.0004 0. 0. 0. 0. 0. 0. 0. 0. 0.
ED-10-15 G T T T T T T T T T
0.0001£0.0003 0. 0. 0. 0. 0. 0. 0. 0. 0.
ED-10-03 - T T T T T T T
0.0002£0.0004 0. 0. 0. 0. 0. 0. 0. 0. 0.
ED-15-34 - T ) T I I T T
0.0002£0.0005 0. 0. 0. 0. 0. 0. 0. 0. 0.
ED-15-77 - 3 ) P ) P
0.0001£0.0003 0. 0. 0. 0. 0. 0. 0. 0. 0.
ED-10-16 - I I I p 3 ) T I
0.0001£0.0003 0. 0. 0. 0. 0. 0. 0. 0. 0.
ED-15-54 - P p) p P p
0.0001£0.0003  0.4% 0. 0. 0. 0.4 0. 0. 0. 0.
ED-T0-17 - ) : ;
0.0001£0.0003 _ 0. 0. 0. 0. 0. 0.4 0. 0. 0.
ED-10-14 G P P
0.0001:£0.0003 _ 0. 0. 0. 0. 0. 0. 0. 0. 0.
ED-15-1T - 3
0.0001:£0.0003 _ 0. 0. 0. 0. 0. 0. 0. 0. 0.
ED-15-30 E 3
0.0002:£0.0005 0. 0. 0. 0. 0 0. 0. 0. 0.
ED-15-31 E 3 3 7
0.0001£0.0003 0. 0. 0. 0.7 0 0. 0. 0. . 0.
ED-15-35 E X
0.0001£0.0003 0.6 0.6 0. 0. 0 0. 0.6 0.65£0.0 0.
ED-15-15 E 3 3 P 0 3
0.0002£0.0005 0. 0. 0. 0.7 0 0. 0. 0. 02 0.
ED-15-16 E P 0
0.0001£0.0003 0. 0. 0. 0.8 0 0. 0. 0. 02 o
ED-15-10 - 3 3 3 p
0.0001£0.0003 0. 0. 0.8 0.8 0 0. 0. 0. 03 o
ED-15-60 G 1 P p
0.0001£0.0003 0. 0. 0. 0.9 0 0. 0. 0. 03 o
ED-15-57 - 1 3 3
0.0001£0.0003 0. . 0. 0. 0.9 0 o 0. 0. 03 0.
ED-15-51 - 0 3 0
0.0002£0.0004 1. 0 1. 1. 1.1 1 1 1. L 03 1.
ED-15-69 G T 3 7
0.0002£0.0004 1. 0 1. 1. 1.4 1 1 1. L 04 1.
ED-15-26 - 1 3 5 6
0.0001£0.0003 1. 03 1. 1. 1.5 L 1 L 0 L. 03 1.
ED-15-19 - 1 1 7 0
0.0001£0.0003 1. 03 1. i L 1 1 i . 1.8240.04 1.
ED-15-39 - (RESES ; 1 BIE13 3
0.0001:£0.0003 2. 05 2. 2. 2.1 2 2 2. .04 2.00%£0.04 2. .
ED-15-24 G 0 57 5 3 5422 T
0.0002:£0.0005 2. 05 2 2. 2.2 2 2 2. 04 2.1830.04  2.1530.05
ED-15-13 - ; T 5 i 5220 9
0.0002:0.0004 2. 04 2. 2. 2.6 2 2. 2. 05 2.3630.04 2. .04
ED-15-27 - G 5 T 56E22 9
0.0003£0.0005 2. 05 2 2. 2.7 2 2 2. 04 2.56£0.04 2. .06
ED-15-21 E T 7 & 6OE 15 3
0.0002£0.0004 2. 04 2.6 2. 2.8 2 2. 2. 04 2.7130.05 2. .06
ED-15-08 E 7 7 i T
0.0002:0.0004 3.03£0.06 3. 3. 3.2 3 3. 3.03£0.08 3. 3. .09
ED-14-02 E 0 3 7 p)
0.0002£0.0004 3. 05 3. 3. 3.5 3 3 3. . 3. 3. -08
ML-T00-1 - T G 9 3
0.0001£0.0003 3. 05 3. 3. 3.4 3 3. 3. 0 3. 3. .04
ED-15-28 - 5 9 G
0.0002£0.0004 3.87+£0.14 3. 3. 4.0 3 4. 3. 4. 3.86%0.13
ED-11-03 G T G TTELT
0.0002£0.0004 3. 07 3. 3. 3.7 3 3. 3. 3. 3.57%0.09
ED-15-29 - 5 7 96E16
0.0003£0.0005 4. 08 4. 4. 4.2 4 4. 4. 4. 3.97%0.09
ED-15-07 - 5 9 95E19
0.0002£0.0005 4. .09 5.0 4. 5. 4.58%0.07
ED-15-22 G 9
0.0004£0.0005 5.34£0.19 5.5 5.6
ED-15-09 - 9 T
0.0005+0.0005 5.79£0.08  6.07£0. 6.09£0.11
ED-15-20 - 7T 105134 T
0.0004:£0.0005 7.15£0.12  7.64:£0.16 7.83£0.20
ED-15-17 - kS T34E27 1t
0.00040.0005 8.32£0.12  8.89:£0.23 8.93£0.14
ED-15-33 G ES
0.0003:0.0005 8.84£0.14  9.32%0.13 9.57%
ED-15-40 - = 1193 T
0.0003:0.0004 9.52£0.16 _ 10.01 10.16
ED-15-23 - 6 158
0.00040.0006 13.42 13.98 14.20
ML-T50-2 E T 120 133
0.0007£0.0005 16.07 17.22 17.50
ED-15-32 E 159
0.0007-0.0005 17.31 17.88 18.1
ED-15-14 E 302
0.00050.0005 22.79 23.71 24.00
ED-10-50 - 242 347
0.0005-0.0005 27.58 28.04 28.953
ML-200-3 - 154 T79L107
0.0008+0.0004 50.19 53.76 54.46+0.84
ED-T1-0T G 55621 551 556 560E21 533£52 512E10 511E329 543E31
0.00100.0002 123.10£1.62 123.80£2.20 125.70+1.74 125.2412.11 126.941£1.87 124.1642.47 124.5312.67 125.59£2.20
ED-11-02 G 512189 528101 534165 521% 193196 512107 503123 533169 507192
0.0010£0.0002 106.57£1.31 106.25+1.56 106.87+1.39 111.651+1.87 111.49+1.76 112.39+1.89 105.56+1.74 105.79L1.81 106.13£1.37
ML-350-1 - 93E70 83L57 T00L58 67130 83142 65131 72143 96154 60T 4T
0.0013£0.0005 123.46+1.43 123.95:0.48 121.05+1.32 139.37£2.80 139.531£3.02 139.1943.09 122.41+1.54 122.64£1.49 122.01+1.84
ML-350-5 G 339 169 3A0E154 T46E116 257L170 2161168 T9T 139 300150 T821128 240175
0.0014£0.0005 126.47+2.89 126.512+3.04 121.65+3.19 140.95+4.82 140.02:5.04 138.4744.64 124.4643.74 125.0043.40 124.51£4.16
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Figure 4: Distribution of Friedman-based rank for number of evaluations.
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4.2.3 Inner structure of the solutions

In this subsection we analyze the number of buckets and the number of items
included in the first bucket (the preferred ones) of the solutions obtained by the
proposed algorithm and LIA]CV,I P2 We show these data (averaged over the 30
runs) for each dataset and algorithm in Table

From Table [ we can draw the following conclusions:

For the ED datasets, the number of buckets is around 10% the number of
items. In the case of ML datasets this value drops to 4%.

The number of buckets of the solutions obtained by the ES is greater than
the number of buckets of the solutions obtained by LIAY P2 by a factor
of about 1.4.

Regarding the configurations of the ES algorithm, the number of buckets of
the solutions obtained is quite similar. In any case, Borda-Uni produces a
slightly higher number of buckets (1.55 times more w.r.t. LIAY72) while
the other combinations are in the interval 1.42-1.48. From the accuracy
performance of the ES configurations, it may be inferred that this slight
difference translates into a finer partition which leads to better solutions.

The number of items placed in the first bucket, that is the preferred ones, is
greater in the solutions obtained by LIAgI P2 than in the solutions obtained
by the ES configurations, by a factor of about 2.4. If we focus on the type
of data (ED or ML), then LIAXF2 places fewer items in the first bucket
for ML datasets (by a factor of 0.49) and more items for ED datasets
(2.69).

Regarding the ES algorithm, the difference in the number of items placed
in the first bucket does not lie in the initialization method but in the way of
generating the descendant population. Specifically, the method producing
the fewest items in the first bucket is Uni. The difference between Uni and
the rest of the strategies (Rd and All) is that Uni forces the use of bucket
splitting in one out of seven generations, and this scheme of generating
the new population seems to direct the search towards more promising
regions.

To end this analysis, we compare the best solution obtained by each algo-
rithm. In particular, we calculate the extended Kendall rank correlation coeffi-
cient 7, [42] and the rank correlation coefficient 7y [42) for all the pairs
of these best bucket orders.

Given two bucket orders B! and B2, the coefficient 7, is

\/Zi:l Zj:l(azlj)2 Dict Zj=1(0%2j)2
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Table 4: Number of buckets and number of items included in the first bucket
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where

1 if object i is ranked ahead of object j in B*
af. ={ —1 if object i is ranked behind object j in B*
0 if i and j are tied in B*, or if i = j

On the other hand, the coefficient 7x handles tied items in a different way.
Given two bucket orders B! and B2, the coefficient Tx is

_ Xt 2 BB

B'.B%) = 5
TX( ) ) n(n _ 1) ( )
where
1 if object 4 is ranked ahead of or tied with object j in B*
fj ={ —1 if object i is ranked behind object j in B*

0 ifi=j

Both 7, and Tx take values in the interval [—1, 1]; the closer they are to 1,
the more similar the compared bucket orders are.

We have organized the data relating to these coefficients as follows. Let
B*(A,D) be the best bucket order found by the algorithm A for the dataset
D over the 30 runs. Then, given two algorithms A; and Ay, we denote by
7o (A1, As) (resp. 7x (A1, Az)) the average of the values 7, (B*(A1, D), B*(A3, D))
(resp. 7x (B*(A1,D),B*(A2,D))) for the 52 datasets considered in our study.

We show the results in Table[p| In this table, we have ordered the algorithms
from top to bottom and from left to right, according to the order of the algo-
rithms shown in Figure @ (Friedman test ranking considering the performance
of the algorithms). Then, above the main diagonal we show the coefficients 7,
and below the main diagonal the coefficients 7x.

Borda-Uni Borda-Rd BPA-Uni Borda-All BPA-All BPA-Rd Rd-Uni Rd-Rd Rd-All LIAgPQ Borda BPA
Borda-Uni oK 0.970 0.957 0.977 0.953 0.958 0.952 0.952 0.937 0.733 0.670 0.696
Borda-Rd 0.968 oAk 0.972 0.980 0.971 0.976 0.971 0.958 0.943 0.728 0.669 0.697
BPA-Uni 0.956 0.972 oK 0.973 0.984 0.985 0.973 0.962 0.950 0.731 0.664 0.698
Borda-All 0.977 0.980 0.971 oK 0.968 0.973 0.964 0.953 0.941 0.729 0.670 0.696
BPA-All 0.952 0.969 0.981 0.965 A 0.984 0.976 0.966 0.954 0.733 0.665 0.699
BPA-Rd 0.955 0.972 0.980 0.968 0.988 R 0.977 0.966 0.953 0.733 0.665 0.696
Rd-Uni 0.954 0.972 0.973 0.967 0.975 0.974 ok 0.971 0972 0.736 0.664 0.697
Rd-Rd 0.954 0.961 0.966 0.957 0.969 0.967  0.969 R 0977 0.735  0.659 0.695
Rd-All 0.954 0.961 0.968 0.960 0.972 0.971 0.954 0.960  *** 0.743  0.657 0.691
LIAgP2 0.737 0.731 0.734 0.732 0.735 0.735 0.739 0.740 0.730 kK 0.529 0.614
Borda 0.756 0.754 0.750 0.755 0.750 0.750 0.750 0.745 0.741  0.652 HE0.717
BPA 0.729 0.730 0.729 0.729 0.730 0.727  0.728 0.726 0.720 0.637  0.653 F**

Table 5: Coefficients 7, (above the main diagonal) and 7x (below the main
diagonal)

By studying Table [5| we can see that the solutions obtained by the ES con-

figurations are quite similar: 7, > 0.937 and 7x > 0.954. When comparing the
ES algorithm with LIAY P2 both coefficients are around 0.73.
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5 Conclusions

In this paper we propose the use of (1 4+ \) evolution strategies to tackle the
optimal bucket order problem. Several configurations of the designed ES algo-
rithm were tested using a benchmark of 52 datasets by combining different ways
of generating the initial solution and the population of descendants. The statis-
tical analysis carried out on the obtained results reveals that the ES algorithm
performs better when it starts with an informed solution having a high number
of buckets. In our study, this initial solution is obtained by using the Borda
count method allowing ties. Our study also shows that Uni (the method that
generates all the offspring in a generation by using the same mutation operator,
which is cyclically changed for each iteration) is the best method for generat-
ing the population of descendants. The combination of these two strategies,
Borda-Uni, proves to be the best configuration, obtaining a 35% improvement
with respect to the standard greedy algorithms (BPA and Borda), and a 12.5%
improvement with respect to the current state-of-the-art algorithm (LIAY£?2).

Our proposals are also very competitive in terms of efficiency. Even for
the largest datasets considered (n = 250), the CPU time does not exceeds 2.5
minutes on a personal computer, which is a very reasonable response time for
an evolutionary algorithm.
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A Statistical comparison including LIAY"? as
initialization method

Here we show the statistical analysis of accuracy for the ten algorithms studied
in Section the three ES using LIAY ¥ to obtain the initial solution, and the
three initialization methods considered in our study (Random, BPA and Borda
count allowing ties). As can be observed in Figure |§| and Table |§|, none of the
algorithms using LIAY P2 to initialize the search is in the outstanding group.
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Figure 6: Distribution of Friedman-based rank for fitness (distance).
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Table 6: Summary of control post-hoc test. Boldfaced results represent non-
rejected hypotheses with respect to Borda-Uni (a = 0.05).

method rank pvalue win tie loss
Borda-Uni 3.80 - - - -
Borda-Rd 512 1.5829e-01 33 0 19
BPA-Uni 554 1.2465e-01 33 0 19
Borda-All 6.04  4.9256e-02 41 1 10
BPA-All 6.34 2983302 34 0 18
BPA-Rd 6.37  29833e-02 41 0 11
LIAYP2.Rd 642  29596e-02 35 0 17
Rd-Uni 6.69  1445le-02 41 0 11
LIAYP2. AL 671  1.445le02 35 0 17
LIAMP2.Uni  6.77  1.3158e-02 36 0 16
Rd-Rd 9.12  1.2346e-07 49 0 3
Rd-All 9.19  83517e-08 48 0 4
LIAYM P2 12.90 2162921 52 0 0
Borda 1442 6.8802e-29 52 0 0
BPA 1458  1.1052e-29 52 0 0
Random 16.00  7.4894e-38 52 0 0
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