
Gutenberg School of Management and Economics

& Research Unit “Interdisciplinary Public Policy”

Discussion Paper Series

Stabilized Branch-and-Price Algorithms for
Vector Packing Problems

Katrin Heßler, Timo Gschwind, Stefan Irnich

August 9, 2017

Discussion paper number 1713

Johannes Gutenberg University Mainz
Gutenberg School of Management and Economics

Jakob-Welder-Weg 9
55128 Mainz

Germany
wiwi.uni-mainz.de

http://www.wiwi.uni-mainz.de/

Contact Details:

Katrin Heßler
Logistikmanagement
Johannes Gutenberg University Mainz
Jakob-Welder-Weg 9
55128 Mainz
Germany

khessler@uni-mainz.de

Timo Gschwind
Logistikmanagement
Johannes Gutenberg University Mainz
Jakob-Welder-Weg 9
55128 Mainz
Germany

gschwind@uni-mainz.de

Stefan Irnich
Logistikmanagement
Johannes Gutenberg University Mainz
Jakob-Welder-Weg 9
55128 Mainz
Germany

irnich@uni-mainz.de

All discussion papers can be downloaded from http://wiwi.uni-mainz.de/DP

http://wiwi.uni-mainz.de/DP

Stabilized Branch-and-Price Algorithms for Vector Packing Problems

Katrin Heßler∗,a, Timo Gschwinda, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

This paper considers packing and cutting problems in which a packing/cutting pattern is constrained
independently in two or more dimensions. Examples are restrictions with respect to weight, length, and
value. We present branch-and-price algorithms to solve these vector packing problems (VPPs) exactly. The
underlying column-generation procedure uses an extended master program that is stabilized by (deep) dual-
optimal inequalities. While some inequalities are added to the master program right from the beginning
(static version), other violated dual-optimal inequalities are added dynamically. The column-generation
subproblem is a multidimensional knapsack problem, either binary, bounded, or unbounded depending
on the specific master problem formulation. Its fast resolution is decisive for the overall performance of
the branch-and-price algorithm. In order to provide a generic but still efficient solution approach for the
subproblem, we formulate it as a shortest path problem with resource constraints (SPPRC), yielding the
following advantages: (i) Violated dual-optimal inequalities can be identified as a by-product of the SPPRC
labeling approach and thus be added dynamically; (ii) branching decisions can be implemented into the
subproblem without deteriorating its resolution process; and (iii) larger instances of higher-dimensional
VPPs can be tackled with branch-and-price for the first time. Extensive computational results show that
our branch-and-price algorithms are capable of solving VPP benchmark instances effectively.

Key words: Cutting, Vector packing, Shortest path problem with resource constraints, Dual-optimal
inequalities, Stabilization

1. Introduction

In this paper, we analyze different covering formulations and column-generation-based solution ap-
proaches for packing and cutting problems with two or more dimensions. While the 1-dimensional case
includes the classical bin packing problem (BPP) and cutting stock problem (CSP) that are both well stud-
ied and recently surveyed by Delorme et al. (2016), we focus on the multidimensional case where pack-
ings/cutting patterns are constrained independently in all dimensions. Examples are restrictions with respect
to weight, length, and value. In the following, we refer to these problems as vector packing problems (VPPs).
The literature uses different names for VPPs such as p-dimensional vector (bin) packing (Buljubašić and
Vasquez, 2016; Spieksma, 1994; Brandao and Pedroso, 2016), vector bin packing (Panigrahy et al., 2011),
or (for two dimensions) two-constraint bin packing (Monaci and Toth, 2006). In contrast to VPPs, there
is another family of multidimensional packing problems where dimensions are not independent, e.g., when
packing rectangles (Huang and Korf, 2012) or 3-dimensional items (Martello et al., 2000). These problems
are not addressed here.

VPPs have various practical applications. For example, consider a logistics company that has to transport
items with different lengths and weights. The smallest amount of vehicles possible should be used for

∗Corresponding author.
Email addresses: khessler@uni-mainz.de (Katrin Heßler), gschwind@uni-mainz.de (Timo Gschwind),

irnich@uni-mainz.de (Stefan Irnich)

Technical Report LM-2017-04 August 9, 2017

transportation. How can the items be packed into the vehicles taking into account the length of the vehicles
and the maximum loading weight? Another example is the static resource allocation problem. Given a set of
servers with known capacities and a set of services with known demands the aim is to minimize the number
of required servers (Panigrahy et al., 2011).

In the literature, several heuristic and exact methods have been introduced to solve VPPs. The first
exact approach was proposed by Spieksma (1994). The author incorporated lower bounds into a branch-
and-bound algorithm and, additionally, introduced a heuristic based on the first-fit decreasing heuristic.
The approach was improved by Caprara and Toth (2001) who exploited on the one hand lower bounds
combined with heuristics and on the other hand a branch-and-bound algorithm to find exact solutions for
VPPs. Alves et al. (2014) further enhanced the approach by calculating lower bounds based on dual-feasible
functions. Recently, Brandao and Pedroso (2016) adapted the arc-flow formulation with side constraints
(Valério de Carvalho, 1999) to packing problems including VPPs. The solution was accelerated by means
of graph compression to reduce symmetry and to combine sub-graphs. In contrast, Hu et al. (2017) used
the covering formulation of Gilmore and Gomory (1961) and introduced a branching strategy based on
dominance relations between cutting patterns. Besides exact approaches, heuristics have been applied to
solve larger instances. Buljubašić and Vasquez (2016) used a consistent neighborhood search to find heuristic
solutions. Variants of the first-fit decreasing algorithm were presented by Panigrahy et al. (2011), yielding
good heuristic VPP solutions.

We formally define the VPP as follows: Let D ≥ 1 be an integer specifying the dimension. A given
set I of items needs to be packed into a minimum number of equally sized bins. Bins are characterized
by capacities given by a D-dimensional vector W = (W 1, . . . ,WD). Items i ∈ I are characterized by
weights/seizes which are given by D-dimensional vectors wi = (w1

i , . . . , w
D
i) ≤ W. Although classified

differently as 1/V/I/R and 1/V/I/M in (Dyckhoff, 1990), the BPP and the CSP are essentially the same
problem as pointed out in (Ben Amor and Valério de Carvalho, 2005, p. 132). The relationship between BPP
and CSP is the following: In the BPP, all items are modeled as individual objects. As a consequence, each
and every item i ∈ I has a demand of qi = 1 and a model must include a corresponding covering/packing
constraint. In contrast, in the CSP all items of the same weight are aggregated. We formally introduce
the set of aggregated items as follows: Let I[w] be the equivalence classes of items with identical weight.
Then, the set I of aggregated items is the coset I/I[w] that contains one representative item for each of
the different weights. As a consequence, any two different aggregated items i1, i2 ∈ I have different weights
wi1 �= wi2 . The demand of an aggregated item i ∈ I is qi = |I[wi]| = |{j ∈ I : wj = wi}| ≥ 1, and at least
some aggregated items have a demand greater than 1.

The models that we compare are all variations of the famous covering formulation of Gilmore and Gomory
(1961) for CSP that is based on cutting patterns. For the VPP, a pattern (or packing) describes how a subset
of the items is packed into a bin. Assuming I = {1, 2, . . . ,m}, i.e., m is the number of aggregated items,
the set of feasible patterns for the VPP, with different levels of aggregation, can be defined as

P =

{
(a1, . . . , am)� ∈ Zm

+ :

m∑

i=1

aiw
d
i ≤ W d for all 1 ≤ d ≤ D

}
.

In order to uniquely refer to a pattern p ∈ P we write its coefficients as ap = (ap1, . . . , a
p
m)�. Using integer

decision variables xp for the number of times pattern p ∈ P is used, the VPP can be formulated as

zVPP = min
∑

p∈P

xp (1a)

(VPP) s.t.
∑

p∈P

api xp = qi, i ∈ I (1b)

xp ≥ 0 integer, p ∈ P. (1c)

The objective (1a) is the minimization of the patterns/bins that are used. Constraints (1b) ensure that all
items are packed as often as their demand requires. As already mentioned by Gilmore and Gomory (1961),

2

Table 1: Comparison of covering formulations of the VPP

01-VPP B-VPP U-VPP

Aggregation none partial or full full
(Aggregated) Items I I = I I I = I/I[w]
Weights wi can be identical can be identical all different
Demand qi qi = 1 qi ≥ 1 qi ≥ 1

Bound on Pattern Coefficients ui api ≤ 1 = u01
i api ≤ uB

i ≤ qi api ≤ uU
i = mind�Wd

wd
i

�
Pattern Set P01 PB PU = P
Domain of Variables xp ∈ {0, 1} xp ∈ Z+ xp ∈ Z+

Number of Constraints m m01 = |I| > mB ≥ mU = |I/I[w]|
LP Bound zLP z01-VPP

LP = zB-VPP
LP ≥ zU-VPP

LP

Subproblem 01-MKP B-MKP U-MKP
Branching (Ryan and Foster, 1981) (Vanderbeck, 1999) (Vanderbeck, 1999)

Dual Inequalities
PIs πh ≥ πi DDOIs DDOIs DOIs

PIs with wh +wi �≤ W DOIs DOIs DOIs
SIs πh ≥

∑
i∈S πi can be invalid can be invalid DOIs

SIs with wh +wi �≤ W for all i ∈ S DOIs DOIs DOIs
WSIs πh ≥

∑
i tiπi invalid can be invalid DOIs

Note: PIs=Pair Inequalities, SIs=Subset Inequalities, and WSIs=Weighted Subset Inequalities

(1b) can be replaced by covering constraints, i.e.,
∑

p∈P api xp ≥ qi for all i ∈ I. The domain of the decision
variables is given by (1c).

The quality of the linear relaxation bound is crucial to solve mixed-integer problems. As in the BPP (i.e.,
D = 1 and qi = 1 for all i ∈ I), patterns can be restricted to only have binary coefficients ap ∈ {0, 1}m when
modeling individual items. While such a constraint does not impact the validity of integer VPP solutions
to (1) (also for D ≥ 2), the linear relaxation is generally tighter than without the binary requirement. It
means that a proper subset of patterns is used:

P01 =
{
(a1, . . . , am)� ∈ P : ai ≤ 1 for all i ∈ I

}

We denote formulation (1) using only binary patterns P01 as binary VPP (01-VPP). In this case, optimal
solutions to the 01-VPP have binary xp-variables.

Also for VPP with non-unit demand, the patterns’ coefficients can be further constrained. Whenever
the demand qi of some item i ∈ I is smaller than �W d/wd

i � for all d ∈ D, the pattern set

PB =
{
(a1, . . . , am)� ∈ P : ai ≤ qi for all i ∈ I

}
(2)

is a proper subset of P . We denote formulation (1) using only bounded patterns PB as bounded VPP (B-
VPP). For completeness, formulation (1) with no additional bounds on pattern coefficients is referred to as
unbounded VPP (U-VPP) and the pattern set is explicitly denoted by PU = P in the following.

Table 1 summarizes differences between the pure binary formulation 01-VPP, the bounded formulation B-
VPP, and the unbounded formulation U-VPP. Note that for a given set of individual items I, the formulations
01-VPP and U-VPP are unique. They represent the two extremes of aggregation (completely disaggregated
vs. fully aggregated), while B-VPP is a family of formulations resulting from different types of aggregation
and exploitation/disregarding of the coefficient bounds api ≤ qi in (2).

Due to the huge number of variables, formulation (1) is typically solved with the help of a column-
generation algorithm (Desaulniers et al., 2005). One starts with a (small) subset of patterns P ′ ⊂ P and
the linear relaxation of (1) using only variables xp with p ∈ P ′. This so-called restricted master program
(RMP) is then optimized. Let π = (π1, . . . , πm)� be the dual solution w.r.t. the covering constraints (1b).
The task of the pricing subproblem is then to provide (at least) one new pattern p with negative reduced
cost c̃p = 1 − π�ap or to prove that no such pattern exists. In the former case, the resulting RMP (with

3

the generated pattern/s) is re-optimized and the column-generation process is repeated. In the latter case,
the linear relaxation of (1) is solved providing a lower bound zV PP

LP on zV PP . An optimal integer solution
to (1) requires the integration of column generation into a branch-and-bound scheme a.k.a. branch-and-price
(Lübbecke and Desrosiers, 2005).

The pricing problems of the different formulations 01-VPP, B-VPP, and U-VPP seek to find a pattern
with negative reduced cost c̃p that is feasible for the pattern set considered in the respective formulation.
They are equivalent to solving one of the following integer programs:

max

m∑

i=1

πiyi (3a)

s.t.
m∑

i=1

wd
i yi ≤ W d, d ∈ D (3b)

(01-MKP) yi ∈ {0, 1}, (B-MKP) yi ∈ {0, 1, . . . , uB
i }, (U-MKP) yi ∈ Z+, i ∈ I (3c)

where uB
i = min{qi,mind�Wd

wd
i

�}. The pricing subproblems are thus variants of multidimensional knapsack
problems (MKPs, Kellerer et al., 2004), either binary (01-MKP) for 01-VPP, bounded (B-MKP) for B-VPP,
or unbounded (U-MKP) for U-VPP. For U-MKP, it is valid to bound the variables yi in (3c) from above by
uU
i = mind�Wd

wd
i

�. For convenience, we define a corresponding upper bound u01
i = 1 for all i ∈ I for 01-MKP.

We now briefly discuss the main advantages and disadvantages of the different covering formulations.
The master program of 01-VPP is the largest of the three in terms of number of constraints, while the
master of U-VPP is the smallest. Regarding the number of variables, i.e., the number of different feasible
patterns, there is no general order between the three formulations, since it depends on the demands qi and
the share of items with identical weights in I. To be precise, the number of feasible patterns for 01-VPP
is O (

∑min{u,|I|}
i=1

(|I|
i

)
), with u = maxi mind�Wd

wd
i

�. For U-VPP, it is O (
∑u

i=1

(|I/I[w]|+i−1
i

)
). In the special

case of complete aggregation, i.e., I = I/I[w], the number of B-VPP patterns is by definition not greater
than that of U-VPP, i.e., |PB | ≤ |PU |.

Concerning the linear relaxation bounds, z01-VPP
LP = zB-VPP

LP ≥ zU-VPP
LP holds. The equality z01-VPP

LP =
zB-VPP
LP results from the constraint aggregation approach discussed in (Ben Amor et al., 2006). The following

Example 1 shows a small instance with strict inequality between zB-VPP
LP and zU-VPP

LP . Moreover, Rietz (2003)
has shown that the 01-VPP with D ≥ 2 does not posses the modified integer round up property (MIRUP)
(see also Scheithauer and Terno, 1995; Caprara et al., 2014). The property is also unclear for CSP, i.e.,
U-VPP with D = 1, and herewith also for U-VPP in higher dimension. Still, linear relaxation bounds seem
to be rather tight for most instances and all three formulations (see Section 2.4.4).

Example 1. The following VPP example has the same LP bound for the covering formulations 01-VPP
and B-VPP but different LP bounds for 01-VPP/B-VPP and U-VPP. Consider a two-dimensional VPP
with W = (6, 6)� and items I = {1, 2, 3} with weights w1 = (3, 3)� and w2 = w3 = (2, 2)�. For 01-VPP,
z01-VPP
LP = 1.5. An optimal solution is 0.5 times (1, 1, 0)�, 0.5 times (1, 0, 1)�, and 0.5 times (0, 1, 1)�. For

B-VPP, consider I = {1, [2]} with q1 = 1 and q2 = 2. Then, zB-VPP
LP = 1.5. An optimal solution is 1 time

(1, 1)� and 0.5 times (0, 2)�. For U-VPP, I = {[1], [2]} and zU-VPP
LP = 7/6. An optimal solution is 0.5 times

(2, 0)� and 2/3 times (0, 3)�.

Recall that the subproblems of formulations 01-VPP, B-VPP, and U-VPP are 01-MKPs, B-MKPs, and U-
MKPs with m01 ≥ mB ≥ mU items, respectively. Recall also that in the 1-dimensional case, all three versions
can be solved in O (mW) time, where W is the 1-dimensional capacity. Moreover, the space requirement is
(applying storage reduction techniques) O (m+W) for binary and bounded knapsack problems, while it is
O (W) in the unbounded case (Kellerer et al., 2004). In higher dimensions, the solution of the MKPs with
a straightforward dynamic-programming algorithm requires O (mW) time, where W =

∏
d W

d.
To obtain integer solutions, the well known branching rule of Ryan and Foster (1981), which has proven

to be quite effective for set-partitioning in general, can be applied to 01-VPP. For B-VPP and U-VPP,
4

however, Ryan-Foster branching is not applicable and one has to resort to alternative branching rules such
as the branching scheme presented by Vanderbeck (1999). Note that Ryan-Foster branching is a special
case of the Vanderbeck branching. All branching decisions taken in any of the three formulations have a
non-trivial impact on the subproblem and have to be accounted for in its solution. Overall, branching is
much more complex in the B-VPP and U-VPP cases compared to 01-VPP. On the other hand, formulation
01-VPP suffers from severe symmetry issues with respect to items with identical weights.

Another difference of the three formulations originates from efforts to stabilize the column-generation
process using (deep) dual-optimal inequalities ((D)DOIs, see Section 2.3). This technique has already been
successfully applied to BPP and CSP by Ben Amor et al. (2006) and Valério de Carvalho (2005). Additional
classes of valid DOIs and DDOIs as well as the dynamic separation of violated (D)DOIs have been proposed
and applied to different coloring and packing problems by Gschwind and Irnich (2016). It is shown in
Section 2.3 that the dual inequalities used in (Gschwind and Irnich, 2016), namely weighted subset inequalities
(WSIs) and pair inequalities (PIs), are DOIs for U-VPP. For B-VPP and 01-VPP, however, the PIs are
DDOIs whereas the WSIs are generally neither DOIs nor DDOIs.

The contribution of the paper at hand is the following: We present a unified modeling and solution ap-
proach for the three MKP subproblems (binary, bounded, and unbounded) based on dynamic programming
and the shortest path problem with resource constraints (SPPRC, Irnich and Desaulniers, 2005). From a
worst-case complexity point of view, its temporal effort of O (mW) is equivalent to the above-mentioned
dynamic-programming approaches. It exploits that many of the dynamic-programming states are not reached
in practice, giving it an attractive time and space consumption in the average case. Even more, the SPPRC-
based solution approach can cope with the Ryan-Foster and the Vanderbeck branching schemes. In addition,
the approach allows to identify violated (D)DOIs as a by-product of the pricing. Computational results in-
dicate that our unified approach for solving 01-VPP, B-VPP, and U-VPP is very competitive with the most
recent exact VPP approaches presented in the literature.

This paper is organized as follows. Section 2 presents the unified solution approach with subsections
on the SPPRC formulation of the MKP subproblems, their resolution via dynamic-programming labeling,
the discussion of stabilization using (D)DOIs, and branching. Section 3 presents the computational results.
Final conclusions are drawn in Section 4.

2. Unified Branch-and-Price

We now describe the components of the branch-and-price algorithm. In Section 2.1 the column-generation
pricing problem, the MKP, is modeled as an SPPRC. Two alternative labeling algorithms for its solution
are presented in Section 2.2. The stabilization of the column-generation process via (D)DOIs is described
in Section 2.3. Branching rules including the resulting modified MKP subproblem, its representation as an
SPPRC, and the impact of branching decisions on (D)DOIs are discussed in Section 2.4.

2.1. SPPRC Formulation for MKP Subproblems
All three variants of the MKP (U-MKP, B-MKP, and 01-MKP) can be formulated as SPPRCs with

D + 1 resources as follows: The underlying digraph G = (V,E) consists of m + 1 vertices V = {0, . . . ,m}
and m +

∑
i∈I ui arcs E. For each item i ∈ I, there exist ui + 1 parallel arcs denoted by E(i) connecting

vertex i− 1 with vertex i. Recall that, depending on the MKP variant, the number ui is defined differently,
see above. We assume that the arcs e ∈ E(i) are indexed by ai(e) ∈ {0, 1, . . . , ui}. Moreover, we define the
weight of the ai(e)th arc e of E(i) as w(e) := ai(e)w and its profit as π(e) := ai(e)πi.

An example of the digraph G is shown in Figure 1. In general, every 0-m-path (0, e1, 1, e2, 2, . . . ,m −
1, em,m) in G defines a pattern (a1(e1), a2(e2), . . . , am(em))�. This pattern is feasible if and only if∑m

i=1 w(ei) ≤ W holds. Hence, the MKP pricing problem is the problem of finding a maximum profit
0-m-path in G with a D-dimensional weight not exceeding W. If the profit π =

∑m
i=1 π(ei) exceeds 1, then

the pattern (a1(e1), a2(e2), . . . , am(em))� has negative reduced cost c̃ = 1 − π. This is an SPPRC with m
independent capacity constraints.

5

0 1 2 · · · m− 1 m

(0, 0)

(w1, π1)

(2w1, 2π1)

(3w1, 3π1)

(0, 0)

(w2, π2)

(0, 0)

(wm, πm)

Figure 1: SPPRC digraph for a MKP with u1 = 3, u2 = 1, and um = 1. The arcs e ∈ E are shown with their D-dimensional
weight and profit component (w(e), π(e))).

2.2. Subproblem Solution via Dynamic-Programming Labeling
Dynamic-programming labeling for solving SPPRCs offers several algorithmic choices such as mono-

directional (pure forward or pure backward) or bidirectional labeling, and the dominance rules used to
discard partial paths that provably lead to only non-optimal 0-m-paths. Forward dynamic programming
starts at the trivial forward path F = (0) with the initial label (0, 0) and labels are extended iteratively to
1, 2, . . . ,m to finally form feasible 0-m-paths. Accordingly, every forward partial path F = (0, e1, 1, . . . , ej , j)

from 0 to some j ∈ V is represented by the label L(F) = (
∑j

i=1 w(ei),
∑j

i=1 π(ei)) = (w, π). Forward
extension along an arc ej+1 ∈ E(j + 1) produces the label L(F, ej+1, j + 1) = (w +w(ej+1), π + π(ej+1)).

Conversely, backward dynamic programming starts with the trivial backward path B = (m) with the
initial label (0, 0) and labels are extended iteratively to m − 1,m − 2, . . . , 1, 0 to finally form feasible 0-m-
paths. Here, every backward partial path B = (j, ej+1, j+1, . . . , em,m) from some j ∈ V to m is represented
by the label L(B) = (

∑m
i=j+1 w(ei),

∑m
i=j+1 π(ei)) = (w, π). Backward extension along an arc ej ∈ E(j)

produces the label L(j − 1, ej , B) = (w +w(ej), π + π(ej)).
Forward and backward labels are feasible if their weight component does not exceed W. Every forward

label at vertex m and every backward label at vertex 0 implies a negative reduced-cost pattern if and only
if 1− π is strictly negative.

A forward label L(F) = (w, π) and a backward label L(B) = (w′, π′) that end and start at the same
vertex can be merged to form a complete feasible 0-m-path if w+w′ ≤ W. The reduced-cost of the imposed
pattern is 1− (π + π′).

Labeling with Weak Dominance. Our first dynamic-programming algorithm is a pure forward labeling al-
gorithm and the one with the better worst-case time complexity. It uses the following simple dominance
rule.

Rule 1. (Weak Dominance) A forward label L(F) = (w, π) of a forward partial path F dominates another
forward label L(F ′) = (w′, π′) of a forward partial path F ′ ending at the same vertex if w = w′ and π ≥ π′.

Dominated labels can be discarded except for cases of mutual dominance, i.e., identical costs, in which
case one of the labels can be discarded while the other one must be kept.

The time complexity of a forward labeling algorithm that uses Rule 1 depends on the way how labels are
stored. In our implementation, we use a hash table for the labels referring to the same vertex. For a label
(w, π), w is the hash key and π the value to be stored in the hash table. Note that the number of possible
keys is exactly K :=

∏D
d=1(W

d + 1). If the hash table is designed appropriately, arbitrary insertions and
lookups of key-value pairs can be guaranteed to take amortized constant time per operation (Cormen et al.,
2009, Chapter 11). In cases where the dimension D and the capacities W 1, . . . ,WD are very large, K may
become so huge that a hash table of appropriate size does not fit into the main memory of the computer.
Then, with a smaller hash table, its load factor becomes critical and constant-time operations can no longer
be ensured. Hence, the overall worst-case complexity is bounded by O (mK) when computer memory of
O (K) is available.

6

Labeling with Strong Dominance. Our second dynamic-programming algorithm is a bidirectional algorithm.
The idea of bidirectional labeling is to alleviate the combinatorial explosion that typically occurs when
partial paths grow longer. As a consequence, bidirectional labeling algorithms often, though not always,
have a better average-case time effort than their monodirectional counterparts. For (E)SPPRC, the idea
was first presented and successfully used by Righini and Salani (2006). They merge labels “in the middle”,
which in our context is at vertex �m/2� ∈ V (or �m/2� ∈ V if m is odd). Recent studies of Tilk et al.
(2017) have shown that one can often benefit from choosing the merge point dynamically, comparing the
(expected) workload in forward and backward direction.

In the bidirectional algorithm, we use the following stronger dominance rule whose application, however,
produces additional effort in the worst case.

Rule 2. (Strong Dominance) A forward (backward) label L(P) = (w, π) of a partial path P dominates
another forward (backward) label L(P ′) = (w′, π′) of a partial path P ′ ending at the same vertex if w ≤ w′

and π ≥ π′.

Note that there exist better dominance algorithms than straightforward pairwise comparison of labels.
For dominance between ∆-dimensional vectors, Bentley (1980) invented a multi-dimensional divide-and-
conquer algorithm that requires O (n log(n)∆−1) time to determine all Pareto-optimal out of n vectors. In
our application, we have ∆ = D + 1 (labels have weights and profit). We use the algorithm of Bentley only
for 2-dimensional VPPs but not for the 20-dimensional VPPs (see Section 3) even if log(n)D is in the worst
case better than linear.

Figure 2 visualizes the differences between the weak and the strong dominance.

SPPRC with Weak Dominance (Rule 1), dominance indicated by �:

w1

w2

1 2 3 4 5 6

1

2

3

4

5

6

•
0

•
.2

w1

w2

1 2 3 4 5 6

1

2

3

4

5

6

•
0

•
.2

•
.3

•
.5

w1

w2

1 2 3 4 5 6

1

2

3

4

5

6

•
0

�
�.2 .4

•
.3

•
.5

•
.1

•
.3 • .6

SPPRC with Strong Dominance (Rule 2), dominance indicated by �:

w1

w2

1 2 3 4 5 6

1

2

3

4

5

6

•
0

•
.2

w1

w2

1 2 3 4 5 6

1

2

3

4

5

6

•
0

�
�.2

•
.3

•
.5

w1

w2

1 2 3 4 5 6

1

2

3

4

5

6

•
0

•
.4

•
.3

•
.5

•
.1

• .6

Figure 2: Comparison of two variants for solving 01-MKP with w1 = (3, 3),w2 = (2, 1),w3 = (1, 2), π1 =
0.2, π2 = 0.3 and π3 = 0.1. For the SPPRC with Weak Dominance, the label consisting of item set
{1} with profit 0.2 and weight (3, 3) is discarded by Rule 1 at the final step. In the end, the undomi-
nated labels are ((0, 0), 0), ((1, 2), 0.1), ((2, 1), 0.3), ((3, 3), 0.4)((4, 5), 0.3), ((5, 4), 0.5), ((6, 6), 0.6) with corresponding item sets
∅, {3}, {2}, {2, 3}, {1, 3}, {1, 2}, and {1, 2, 3}, respectively. For the SPPRC with Strong Dominance, the label with profit 0.2
and weight (3, 3) is dominated by the label with profit 0.3 and weight (2, 1) and is therefore discarded at the second step. In
the end, the undominated labels are ((0, 0), 0), ((1, 2), 0.1), ((2, 1), 0.3), ((3, 3), 0.4), ((5, 4), 0.5), ((6, 6), 0.6) with corresponding
item sets ∅, {3}, {2}, {2, 3}, {1, 2}, and {1, 2, 3}, respectively.

7

2.3. Dual Inequalities
For the VPP, any linear inequality in the dual variables πi, i ∈ I, is a dual inequality. We denote by D∗

the set of optimal solutions of the dual model to the linear relaxation of (1), i.e., the dual-optimal space.

Dual Inequalities for U-VPP. Following Ben Amor et al. (2006), a dual inequality t�π ≤ t (with t ∈ ZI

and t ∈ Z is a dual-optimal inequality if D∗ ⊆ {π : t�π ≤ t}. In (Gschwind and Irnich, 2016, Theorem 1(ii))
it is proven that for any t ∈ ZI

+ and an item h ∈ I with

wh ≥
∑

i∈I

tiwi it follows that πh ≥
∑

i∈I

tiπi (4)

is a DOI for U-VPP. These DOIs are called weighted subset inequalities (WSIs). The interpretation of the
precondition is that whenever item h is used (in a solution) this item can always be replaced by one or
several occurrences of the items S = S(t) := {i ∈ I : ti > 0}, where the coefficient ti specifies the number
of occurrences. The DOI then says that covering one unit of demand of item h cannot be cheaper than
covering ti units of demand for all i ∈ S.

WSIs were first introduced in (Gschwind and Irnich, 2016) and generalize the subset inequalities (SI) of
Ben Amor et al. (2006), in which it is required that all coefficients ti are binary. Hence, dual inequalities
πh ≥

∑
i∈S πi with h ∈ I and S ⊂ I are DOIs for U-VPP if wh ≥

∑
i∈S wi holds.

A special case of the SIs is two items i, h ∈ I that fulfill wi ≤ wh. In this case, the so-called pair
inequality πi ≤ πh is a DOI for U-VPP. It means that covering one unit of demand of item h is not cheaper
than one unit of demand of item i.

Dual Inequalities for 01-VPP. The situation of 01-VPP and B-VPP requires a more differentiated analysis.
We start by analyzing dual inequalities for the 01-VPP. The formulation (1) for the 01-VPP is a pure
binary formulation with binary constraint matrix A, right-hand side 1 ∈ RI , and cost coefficients 1 ∈ RP .
Moreover, the coefficient matrix A has the (h, i)-row replacement property (Gschwind and Irnich, 2016) for
every two items h, i ∈ I with wh ≥ wi. The (h, i)-row replacement property means that any pattern a ∈ P
with ah = 1 and ai = 0 can be modified into one with ah = 0 and ai = 1 (keeping all other coefficients
unchanged) so that again a feasible pattern results. Hence, all preconditions of Proposition 5 of (Gschwind
and Irnich, 2016) are fulfilled. Thus, the set of all PIs {πh ≥ πi : wh ≥ wi} forms a set of deep dual-optimal
inequalities (DDOIs) for 01-VPP. By definition (Ben Amor et al., 2006) for a set of dual inequalities to be
DDOIs, there must exist at least one dual-optimal solution π∗ ∈ D∗ that fulfills all inequalities of the set.
In particular, all DOIs are DDOIs but the reverse is not necessarily true, because DDOIs may cut off some
but not all dual-optimal solutions from D∗.

However, for the 01-VPP, specific pair inequalities that fulfill some additional requirements can be proven
DOIs. For example, if in addition to wh ≥ wi the condition wd

h+wd
i > W d holds for at least one dimension

1 ≤ d ≤ D, then this PI is a DOI for 01-VPP. Generalizing, for a SI defined by a subset S ⊂ I and item
h ∈ I, the additional conditions that wd

h + wd
i > W d for at least one dimension 1 ≤ d ≤ D for all i ∈ S

guarantee that this SI is a DOI for 01-VPP. These are restricted SIs; general SIs may neither be DOIs nor
DDOIs for 01-VPP if only wh ≥

∑
i∈S wi holds.

Dual Inequalities for B-VPP. Now we derive (D)DOIs for B-VPP by discussing their relationship to (D)DOIs
of 01-VPP. Recall first that B-VPP is a family of formulations; every B-VPP can be derived from formulation
01-VPP via a (partial) constraint aggregation as already discussed in Section 1. Indeed, let h and i be two
items of 01-VPP with identical weights wh = wi, i.e., items from the same equivalence class I[wh] = I[wi].
For these two items, the two pair inequalities πi ≤ πh and πh ≤ πi imply the dual equality πh = πi. Hence,⋃
{πh = πi : wh = wi} ∪ {πh ≥ πi : wh ≥ wi} are DDOIs for 01-VPP. Now, any aggregation over some or

all I[wh] with h ∈ I leads to a specific choice of aggregated items I and herewith to one specific B-VPP.
In any case, Propositions 6 in (Gschwind and Irnich, 2016) ensures that all pair inequalities remain valid
DDOIs for the B-VPP.

All theoretical results about the discussed dual inequalities for the three VPP formulations are summa-
rized in the bottom part of Table 1.

8

Use of Dual Inequalities for Stabilization. Dual inequalities can be added as additional columns of (1)
in order to stabilize the column-generation process for solving the linear relaxation. If the set of dual
inequalities is DDOIs, this addition does not change the lower bound of the linear relaxation (this is shown
in Proposition 1 in (Ben Amor et al., 2006) and in Proposition 1 in (Gschwind and Irnich, 2016)). For a
WSI (4) that replaces item h ∈ I by multiple (aggregated) items i ∈ S = S(t) each ti times, the associated
column in (1) has a cost of zero and the coefficients t− uh, where uh is the hth unit vector in RI .

Note first that in general there is an exponential number of WSIs and SIs, while there can be at most
m2 PIs. In high dimensional VPPs, i.e., D � 2, it can happen that there are only very few PIs, if any.
The question is therefore which dual inequalities one should add to the RMP at which point of the column-
generation process. Different strategies have been described in the literature:
1. Static Approach: Valério de Carvalho (2005) and Ben Amor et al. (2006) pre-select a subset of PIs and

SIs (with S restricted to |S| = 2) for the BPP and CSP, respectively. These dual inequalities were then
added to the initial RMP.

2. Dynamic Approach: Gschwind and Irnich (2016) were the first to suggest the addition of (the most)
violated dual inequalities in every (or only some) column-generation iterations. This actually requires
a separation algorithm. For PIs, separation can be done by inspection, while for SIs in the BPP and
WSIs in the CSP they showed that separation is a by-product of solving the pricing problem. In the next
paragraph, we describe how separation can also be accomplished efficiently for VPPs using the results of
the SPPRC labeling algorithm.

3. Mixed Approach: It is obvious that the static and dynamic approach can be combined in the sense that
some dual inequalities are initially added to the RMP and others are separated in the column-generation
iterations as done in (Gschwind and Irnich, 2016).

If additional columns for PIs, SIs, or WSIs are added to the RMP, the solution to the master program
may consist not only of columns of patterns but of a mixture of these and columns of dual inequalities.
Such a solution can however be transformed into a pure pattern-columns solution if the dual inequalities
are DDOIs (both statements are in fact equivalent as proven in Gschwind and Irnich, 2016, Proposition 1).
An iterative transformation procedure in the case that all added dual inequalities are WSIs is described in
detail in (Gschwind and Irnich, 2016, Algorithm 1). The basic idea is as follows. In each iteration, it chooses
from the current (partly transformed) solution a pattern column with coefficients a and a WSI column
with coefficients t− uh that are compatible, meaning that a+ t− uh represents a feasible pattern. Let x∗

and y∗ be the solution value of the chosen pattern and WSI column, respectively. Then, a new solution is
constructed from the current one by decreasing the solution values of the chosen pattern and WSI columns
by min{x∗, y∗} and increasing the solution value of the column corresponding to pattern a+ t− uh by the
same amount. The procedure continues until no more compatible pattern and WSI column-pair exists. If all
WSIs that have been added are DDOIs, it is guaranteed that none of them has positive value in the current
transformed solution so that a pure pattern-columns solution is found.

As described and done in (Gschwind and Irnich, 2016) where, e.g., SIs are used for BPP, it is also possible
to add to the RMP dual inequalities that are (generally) no DDOIs. The intention of this overstabilization
when using appropriate families of dual inequalities is twofold: First, although they are generally not, these
inequalities may in fact be DDOIs for most instances. Second, whether they are actually DDOIs or not, their
addition has a stabilizing effect on the column-generation process. Moreover, if the added inequalities are no
DDOIs for the given instance, i.e., all dual-optimal solutions are cut-off, this defect can be remedied typically
without significant additional computational effort. The recovery procedure of Gschwind and Irnich (2016)
can be used to detect and handle overstabilization if all added dual inequalities are WSIs. It proceeds by
first trying to build from the RMP solution a pure pattern-columns solution. If this is not possible the RMP
has been overstabilized. In this case, there exists a WSI column replacing item h ∈ I with positive value,
but no compatible pattern column exists in the solution. The recovery procedure then eliminates all WSIs
replacing item h from the RMP, forbids their re-separation/generation, and restarts the column-generation
process to optimize the RMP. The process iterates until a pure pattern-columns solution is found.

Separation of Violated Dual Inequalities. Since the number of valid PIs πh ≥ πi is at most quadratic, violated
PIs can be found by simple inspection. For this purpose, the list of pairs (h, i) ∈ I × I with wh ≥ wi can

9

be determined in a preprocessing step prior to the column-generation process and stored requiring O (m2)
time and space only. Then, in every separation step, this list needs to be parsed and πh < πi is tested.

Direct inspection is clearly not possible for SIs and WSIs due to their exponential number. When solving
the pricing problem with the SPPRC labeling algorithm, however, violated SIs and WSIs can be effectively
identified. If Rule 2 is applied for dominance, the identification even is a direct by-product of the labeling
procedure: Consider for each single item h ∈ I its associated label Lh = (wh, πh) which results from the
extension of (0, 0) along the second arc (with multiplicity 1) between h− 1 and h. If Lh is dominated using
the strong dominance Rule 2, with strict > in the profit component, then a violated SI or WSI in which h is
replaced is found. The item set S of the SI or WSI and, in case of the U-VPP the multiplicities t = (ti), can
be read from the dominating label (w, π). Indeed, the item set S is the item set of the dominating label and
(if needed) the multiplicities t = (ti) are those counting the number of aggregated items in the dominating
label. In Figure 2, item h = 1 with label L1 = ((3, 3), 0.2) is dominated by the label ((2, 1), 0.3). This latter
label has item set S = {2} (with multiplicity 1). Hence, the PI π1 ≥ π2 is violated.

If in the example of Figure 2 a fourth item h = 4 with weight w4 = (5, 5) and profit π4 = 0.5 existed,
then its label L4 = ((5, 5), 0.5) would be dominated by the label ((5, 4), 0.5), which has item set S = {1, 2},
so that the violated SI would be π4 ≥ π1 + π2.

When using the weak dominance Rule 1, however, this procedure is not applicable. Furthermore, the
procedure does not produce most violated SIs/WSIs. Still, with some additional effort both cases can be
effectively handled using information from the SPPRC as follows: Consider the set P of all Pareto-optimal
labels of the final stage m and add the label Lh = (wh, πh) for each item h ∈ I to P. Then, invoke the
dominance algorithm using the strong Rule 2 on the set P and track for each Lh, h ∈ I the labels that
dominate it with strict > in the profit component. Finally, for each h ∈ I this list needs to be scanned for
(the most) violated SIs/WSIs. When using the algorithm of Bentley (1980) for the dominance algorithm,
this separation procedure requires O (n log(n)D) and O (n) time and space, respectively.

2.4. Branching Schemes
Vanderbeck (1999) suggested a branching scheme for bin packing and cutting stock problems that we

adapt to the multidimensional case. We first summarize the branching scheme and explain how the branching
constraints are considered in the subproblem. Afterwards, we focus on how to treat DOIs along the branch-
and-bound tree.

2.4.1. Subproblem Transformation and Branching Rule
The idea of the branching scheme of Vanderbeck (1999) is to formulate the knapsack subproblem as

a pure binary problem. For the 01-VPP, the subproblem is already binary. For B-VPP and U-VPP, the
subproblem is transformed into a binary multi-class knapsack problem. For a better understanding, we
introduce an example of the transformation and present the general transformation afterwards.

Consider an instance of the B-VPP or U-VPP with u1 = 3 and u2 = u3 = u4 = 1. The coefficients
api ∈ {0, 1, . . . , ui} of patterns for i ∈ I = {1, 2, 3, 4} are now written in binary code using mi = �log2(ui+1)�
binary digits per item. Some examples are:

p1 =




0
1
1
1




10

=




0
0

1
1
1




2

, p2 =




1
0
1
1




10

=




1
0

0
1
0




2

, p3 =




2
0
1
0




10

=




0
1

0
1
1




2

, p4 =




3
1
1
0




10

=




1
1

1
1
0




2

. (5)

In these examples, the original 4-dimensional patterns are now represented using a 5-dimensional binary
code because

∑
i∈I mi = 2+1+1+1 = 5. For convenience, we define the binary places as pairs I01 of items

and digits, here I01 = {(1, 0), (1, 1), (2, 0), (3, 0), (4, 0)}. The binary coefficients are ãpib for (i, b) ∈ I01, e.g.,
ãp1

1,0 = 0 and ãp1

2,0 = 1.
Vanderbeck considers subsets of patterns that are defined by a pair (I0, I1) where I0 and I1 are disjoint

subsets of I01:
P̂ (I0, I1) = {p ∈ P : ãpib = 0, (i, b) ∈ I0 and ãpib = 1, (i, b) ∈ I1}

10

Whenever a solution x∗ to (1) is fractional, Vanderbeck has proven that there exists a pair (I0, I1) such that

α(I0, I1) :=
∑

p∈P̂ (I0,I1)

x∗
p

is fractional. Consequently, one can create the two branches
∑

p∈P̂ (I0,I1)

xp ≤ �α(I0, I1)� (6a)

and
∑

p∈P̂ (I0,I1)

xp ≥ �α(I0, I1)�. (6b)

Example 2. Consider an RMP with patterns p1, . . . , p4 of equation (5), demands q1 = 5, q2 = 2, q3 =
3, q4 = 4 and the optimal solution x∗

1 = 1.25, x∗
2 = 2.75, x∗

3 = 0, and x∗
4 = 0.75. To branch with the

pair (I0, I1) = ({(2, 0)},∅), find all patterns with value 0 at binary place (2, 0) ∈ I01, i.e., the pattern set
P̂ ({(2, 0)},∅) = {p2, p3} and α({(2, 0)},∅) = 2.75.

To branch with the pair (I0, I1) = (∅, {(1, 0), (3, 0)}), find all patterns with value 1 at binary places
(1, 0), (3, 0) ∈ I01, i.e., the pattern set P (∅, {(1, 0), (3, 0)}) = {p2, p4} and α(∅, {(1, 0), (3, 0)}) = 3.5.

For 01-VPP, the demand of items is 1 so that branching on single items is impossible. However, for
any two items i1, i2 ∈ I, the relation 0 ≤ α(∅, {(i1, 0), (i2, 0)}) ≤ 1 holds. Branching on (I0, I1) =
(∅, {(i1, 0), (i2, 0)}) means that the items are either forced to be packed together (6b) or not allowed to
be packed together (6a). This is Ryan-Foster branching.

When a constraint of type (6) is added to the RMP, the subproblem must take the dual price of this
constraint into account. More generally, consider a branch-and-bound node n, and let Ln and Gn be sets
of branching constraints of the form (6a) and (6b) with corresponding dual variables µj ≤ 0, j ∈ Ln and
νk ≥ 0, k ∈ Gn, respectively, that are active at n. Note that each inequality is defined on the basis of a
unique pair (I0j , I

1
j) for j ∈ Ln and a unique pair (I0k , I

1
k) for k ∈ Gn, respectively. Let the corresponding

pattern sets be P̂ (I0j , I
1
j) and P̂ (I0k , I

1
k). The associated subproblem, i.e., the MKP written with binary

pattern coefficients and branching constraints, can now be written as a pure binary problem. Herein, binary
variables ŷib for (i, b) ∈ I01 are binary representations of y-variables in the MKP (3), i.e., yi =

∑mi−1
b=0 2bŷib.

The associated pattern to ŷ ∈ {0, 1}I01 is

a(ŷ) =

(
m1−1∑

b=0

2bŷ1b,

m2−1∑

b=0

2bŷ2b, . . . ,

mm−1∑

b=0

2bŷmb

)
∈ P. (7)

Moreover, additional binary variables lj , j ∈ Ln, and gk, k ∈ Gn, are needed to indicate whether the resulting

11

pattern a(ŷ) occurs in the respective constraints (6a) and (6b). The subproblem reads as follows:

max
∑

i∈I

mi−1∑

b=0

(2bπi)ŷib +
∑

j∈Ln

µj lj +
∑

k∈Gn

νkgk (8a)

s.t.
∑

i∈I

mi−1∑

b=0

(2bwd
i)ŷib ≤ W d, d ∈ D (8b)

mi−1∑

b=0

2bŷib ≤ ui, i ∈ I (8c)

a(ŷ) ∈ P̂ (I0j , I
1
j) =⇒ lj = 1, j ∈ Ln (8d)

a(ŷ) /∈ P̂ (I0k , I
1
k) =⇒ gk = 0, k ∈ Gn (8e)

ŷib ∈ {0, 1}, (i, b) ∈ I01 (8f)
lj ∈ {0, 1}, j ∈ Ln (8g)
gk ∈ {0, 1}, k ∈ Gn (8h)

The objective (8a) consists of three terms, one for the regular profit achieved for the selected items, similar
to (3a), and two other terms that can be interpreted as penalties imposed by the branching constraints (6);
note that µj ≤ 0, j ∈ Ln and νk ≥ 0, k ∈ Gn. The capacity constraints (8b) are reformulations of (3b). The
upper bounds for the pattern coefficients are incorporated by (8c). The coupling between the ŷ-variables
and the branching-related indicator variables l and g are given by (8d) and (8e). Their linearization is
straightforward and omitted here for the sake of brevity. The domains of all variables are given by (8f)–
(8h).

2.4.2. SPPRC Graph Adaption
The main advantage of solving the MKP pricing problems (8) via SPPRC labeling is that the above

branching constraints can all be implemented by (i) modifying profits of arcs and/or (ii) aggregating stages
of the SPPRC digraph defined in Section 2.1. Such modifications do not alter the general structure of
the SPPRC. Hence, the same dynamic-programming labeling approach as presented in Section 2.2 remains
applicable.

The type of graph modification needed to implement the given branching decisions depends on how many
(original) items interact in the branching. For a single branching decision (I0, I1) with I0, I1 ⊂ I01, the set
of affected items is Ip = proj1(I

0 ∪ I1) (projection onto the first component, i.e., the item component). We
explain the modifications required by the following three types of branching decisions:
(i) Branching decision (I0, I1) for single items, i.e., |Ip| = 1;
(ii) Branching decision (I0, I1) for more than one item, i.e., |Ip| > 1;
(iii) Several branching decisions (I0j , I

1
j) and/or (I0k , I

1
k).

In the following, we assume that a branch-and-bound node n with branching constraints j ∈ Ln and
k ∈ Gn and dual prices µj to (6a) and νk to (6b) are given, respectively.

Branching Decision for Single Items. The case of branching decisions that each affect only a single item,
i.e, Ip = proj1(I

0 ∪ I1) = {i} for an item i ∈ I can be handled by modifying the profits of some arcs. The
arcs affected by these constraints are those arcs ei = (i− 1, i) ∈ E(i) of the stage referring to item i. An arc
is affected by a branching constraint if and only if its pattern coefficients ai(ei), written as ãib(ei) in binary
coding, fulfill

ãib(ei) = 0 for all (i, b) ∈ I0 and ãib(ei) = 1 for all (i, b) ∈ I1.

In this case, the dual price µj is added if (I0, I1) = (I0j , I
1
j) for some j ∈ Ln and/or the dual price νk is

added if (I0, I1) = (I0k , I
1
k) for some k ∈ Gn.

12

Example 3. We assume that there are two branching decisions active at a branch-and-bound node nA, one
of type (6a) with dual price µA ≤ 0 and one of type (6b) with dual price νA ≥ 0. We further assume that
the (first) ≤-condition refers to (I0, I1) = ({(1, 1)},∅), i.e., to the item i = 1 and the first binary digit b = 1
with value 21. The (second) ≥-condition refers to (I0, I1) = (∅, {(1, 0)}), i.e., the same item i = 1 and the
lowest binary digit b = 0 with value 20. Figure 3 shows the modification of the SPPRC digraph.

0 1 2 3 4

(0,+µA)

(w1, π1 +µA + νA)

(2w1, 2π1)

(3w1, 3π1 + νA)

(0, 0)

(w2, π2)

(0, 0)

(w3, π3)

(0, 0)

(w4, π4)

Figure 3: SPPRC digraph for a four-item MKP with u1 = 3, u2 = u3 = u4 = 1 (cf. Figure 1 and equation (5)). The arcs e ∈ E
are shown with their D-dimensional weight and profit component (w(e), π(e)) after implementing two branching constraints.
The depicted situation refers to a branch-and-bound node with a ≤-constraint referring to (I0, I1) = ({(1, 1)},∅) with dual
price µA and a ≥-constraint referring to (I0, I1) = (∅, {(1, 0)}) with dual price νA.

Branching Decision for Several Items. Branching decisions that affect several items at the same time are
handled by item aggregation. If |Ip| = |proj1(I0 ∪ I1)| > 1 for a branching constraint defined by (I0, I1),
all items in Ip are aggregated into a single virtual item. Assuming Ip = {i1, i2, . . . , ir}, new arcs are built
as combinations of all possible multiplicities of the items i1, i2, . . . , ir.

Example 4. (continued from Example 3) We assume that a son node nB of the branch-and-bound node nA

of Example 3 has an additional active branching decision based on (I0, I1) = (∅, {(3, 0), (4, 0)}) resulting
from a ≥-condition of the form (6b) with dual price νB . Here, Ip = {3, 4} requires an aggregation over the
two items 3 and 4 with u3 = u4 = 1. The number of possible combinations is therefore (u3 +1)(u4 +1) = 4,
where each of the two items can either be included or excluded. Due to I1 = {(3, 0), (4, 0)}, the only
combination affected by the additional branching constraint is the one in which both items 3 and 4 are
included, i.e., for weight w3 +w4 and original profit π3 + π4. The modified arc now has profit π3 + π4 + νB .

0 1 2 {3, 4}

(0,+µA)

(w1, π1 +µA + νA)

(2w1, 2π1)

(3w1, 3π1 + νA)

(0, 0)

(w2, π2)

(0, 0)

(w3, π3)

(w4, π4)

(w3 +w4, π3 + π4 + νB)

Figure 4: Modified SPPRC digraph resulting from three branching decisions. The first two decisions produce a digraph as in
Figure 3. The additional third branching constraint, i.e., a ≥-condition on (I0, I1) = (∅, {(3, 0), (4, 0)}) with dual price νB
leads to the aggregation of the original items 3 and 4 indicated in red.

Several Branching Decisions. It can happen that several branching constraints overlap, i.e., the affected item
sets are overlapping. More formally, consider several branching constraints affecting item sets Ip1 , . . . I

p
r .

These item sets are overlapping if they can be (re-)ordered such that (Ip1 ∪ . . . ∪ Ipj−1) ∩ Ipj �= ∅ for all
j ∈ {1, . . . , r}. In this case, each such union Ip = Ip1 ∪ . . .∪ Ipr of the items must be aggregated. This works
as described before by constructing all possible combinations of items in Ip.

13

Example 5. (continued from Example 4) We assume now that at a son node nC of the branch-and-bound
node nB of Example 4 has an additional active branching decision on (I0, I1) = ({(2, 0)}, {(3, 0)}) resulting
from a ≤-condition of the form (6a) with dual price µC . At node nC the sets of overlapping item sets are
Ip1 = {1} (resulting from the constraints active at the grandfather node nA) and Ip2 = {3, 4}∪{2, 3} = {2, 3, 4}
(resulting from the constraints defining nB and nC). The aggregation of items 2, 3, and 4 allows for eight
combinations, each resulting from the inclusion or exclusion of the respective item. The modifications of
nodes nA and nB remain and, additionally, µC is added to the profit of arcs excluding item 2 and including
item 3. Figure 5 shows the modification of the SPPRC digraph.

In general, the item sets Ip may consist of non-consecutive items, e.g., Ip1 = {1, 3} and Ip1 = {2, 4}, so
that the items/nodes of the SPPRC digraph have to be re-ordered.

0 1 {2, 3, 4}

(0,+µA)

(w1, π1 +µA + νA)

(2w1, 2π1)

(3w1, 3π1 + νA)

(0, 0)

(w2, π2)

(w3, π3 + µC)

(w4, π4)

(w3 +w4, π3 + π4 + νB + µC)

(w2 +w4, π2 + π4)

(w2 +w3, π2 + π3)

(w2 +w3 +w4, π2 + π3 + π4 + νB)

Figure 5: Fourth branching with (I0, I1) = ({(2, 0)}, {(3, 0)}) and ≤-condition (6a) with dual price µC . The profit of arcs
excluding item 2 and including item 3 has to be modified by adding µC . The modification of the third branching decision
(cf. Figure 4) remains. The items Ip2 = {2, 3, 4} affected by the third and fourth branching decision are aggregated yielding
(u2 + 1)(u3 + 1)(u4 + 1) = 8 arcs indicated in red.

2.4.3. Handling of Dual-Optimal Inequalities
When using (D)DOIs within a branch-and-price algorithm, it needs to be ensured that the (D)DOIs are

compatible with the branching decisions taken. Consider the following example.

Example 6. Consider again the RMP of Example 2 with patterns p1, . . . , p4 and demands q1 = 5, q2 =
2, q3 = 3, and q4 = 4. Additionally, the PI π2 ≥ π1 with associated primal variable x5 is added to the RMP
and the ≤-branching constraint (6a) with (I0, I1) = ({(2, 0)},∅) and �α({(2, 0)},∅)� = 2 has been imposed.
The resulting constraints are




0
1
1
1
0




x1 +




1
0
1
1
1




x2 +




2
0
1
0
1




x3 +




3
1
1
0
0




x4 +




1
−1
0
0
0




x5

≥
≥
≥
≥
≤




5
2
3
4
2




.

An optimal solution to the corresponding RMP is x∗
1 = x∗

2 = 2, x∗
3 = 0, x∗

4 = x∗
5 = 0.75. It can be transformed

into the pure patterns solution that uses pattern p1 1.25 times, pattern p2 2.75 times, and pattern p4 0.75
times. This solution violates the branching constraint because

∑

p∈P̂ ({(2,0)},∅)

x∗
p = x∗

2 + x∗
3 = 2.75 � �α({(2, 0)},∅)� = 2.

14

In essence, the issue with branching and the use of (D)DOIs in our case is the following: The branching
decisions translate into RMP-constraints that are formulated on a set of pattern columns P̂ (I0, I1). By
replacing items in certain pattern columns p ∈ P \ P̂ (I0, I1), (D)DOI-columns can then be used to implicitly
represent pattern columns p′ ∈ P̂ (I0, I1), and vice versa, without any impact on the left-hand side of the
corresponding RMP-constraint (6a) or (6b) so that a solution violating the branching decisions can result
from the RMP.

One strategy to remedy this defect is to eliminate the respective (D)DOIs from the RMP and prevent
their regeneration when using (D)DOIs in a dynamic approach, see Section 2.3. This strategy was also
followed by Alves and Valério de Carvalho (2008) for solving the multiple length CSP with a stabilized
column-generation approach. To the best of our knowledge, they were the first to use (D)DOIs within a
fully-fledged branch-and-price algorithm. They derive conditions for the validity of the (D)DOIs that they
use with respect to specific branching decisions present at a certain branch-and-bound node. All (D)DOIs
that do not meet these conditions are then removed. Note that they use a different branching scheme that
is compatible with their solution approach for the subproblem, so that their rules are not applicable in our
case.

Consider a branch-and-bound node n in our algorithm. The set of items affected by the corresponding
branching decisions is Ip. All (D)DOIs that are not related to any of the affected items, i.e., with ({h} ∪
S) ∩ Ip = ∅, are clearly valid at n. A straightforward way to ensure compatibility of the RMP solution
with the branching decisions is the elimination of all other (D)DOIs that are related to at least one affected
item, i.e., with ({h} ∪ S)∩ Ip �= ∅. We can, however, also derive some additional conditions for the validity
of (D)DOIs of the latter type. This enhancement is explained in the following.

Note first that given a branching decision on the patterns P̂ (I0, I1), in the ≤-branch (6a) it has to
be ensured that no pattern p′ ∈ P̂ (I0, I1) can be implicitly represented using (D)DOIs and patterns p ∈
P \ P̂ (I0, I1), while in the ≥-branch (6b) no patterns p′ ∈ P \ P̂ (I0, I1) are allowed to be implicitly
represented using (D)DOIs and patterns p ∈ P̂ (I0, I1). Then, for 01-VPP, where coefficients are binary
and the (D)DOIs we use are SIs, SIs that are related to at least one affected item are compatible in the
≤-branch if h /∈ proj1(I

0) and S ∩ proj1(I
1) = ∅ hold. It is easy to verify that with the compatible SIs

no patterns p′ ∈ P̂ (I0, I1) can be implicitly represented. In analogy, SIs are compatible in the ≥-branch if
S ∩ proj1(I

0) = ∅ and h /∈ proj1(I
1) hold.

For B-VPP and U-VPP, consider first only one of the affected items i ∈ Ip. A condition similar to
the above condition for the binary case is as follows: In the ≤-branch, if all bits of i are fixed to 0 WSIs
with h �= i are compatible with respect to item i, while if all bits of i are fixed to 1 WSIs with i /∈ S are
compatible with respect to item i. The analog conditions in the ≥-branch are i /∈ S if all bits of i are fixed
to 0 and h �= i if all bits of i are fixed to 1. Consider now the case that some of the mi bits of item i are fixed
to some value by the branching decisions and let m′

i < mi be the largest bit that is fixed. Then, WSIs with
i ∈ S and ti mod 2m

′
i+1 ≡ 0 are compatible with respect to item i. For a WSI to be compatible with the

branching decisions at n, it has to fulfill one of the above conditions for each of the items i ∈ ({h}∪S)∩ Ip.

2.4.4. Branching Strategy
For VPPs, the lower bound �zV PP

LP � is often the optimal number of patterns. In fact, this holds for
all instances that we solved. The main issue is therefore to find such an integer solution by reducing the
fractionality of the master solution. Hence, we conduct a depth-first search strategy and first explore the
branch with greater-or-equal constraint (6b).

For 01-VPP, we adopt Ryan-Foster branching forcing to pack items together with I0 = ∅ and I1 =
{(i1, 0), (i2, 0) : i1, i2 ∈ I} (cf. Example 2). The branching priority is to select the most fractional cor-
responding α(I0, I1) value. For B-VPP, our priority is first to keep the subtrees balanced choosing the
cardinality |I0| + |I1| as low as possible, second forcing to pack items (and not to not-pack items), i.e.,
prohibit I0 = {(i, 0) : i ∈ I} and I1 = ∅, and third to take the most fractional α(I0, I1) value. For U-VPP,
it may happen that patterns p with a coefficient aip > qi are part of a solution. In this case, we first forbid
these patterns creating a single branch. Afterwards, the branching priority of B-VPP is adopted.

15

3. Computational Results

The branch-and-price algorithms were implemented in C++ and compiled into 64-bit single-thread code
with MS Visual Studio 2013. The experiments were conducted on a standard PC with an Intel(R) Core(TM)
i7-5930k clocked at 3.5 GHz and 64 GB of RAM, by allowing a single thread for each run. CPLEX 12.6.2
was used to solve the RMP in the column-generation algorithms and as a primal MIP-based heuristic solver
called after the solution of each branch-and-bound node using the so far generated columns. In the latter
case, computation times are limited to a maximum of 5 seconds per call. CPLEX’s default values were kept
for all parameters.

3.1. Instances
In order to compare our algorithms with the leading exact approaches (Brandao and Pedroso, 2016; Hu

et al., 2017) from the literature, we base the computational experiments on the same set of instances which
are those of Caprara and Toth (2001) who generated 2-dimensional VPPs. Their instances are grouped into
ten classes with 40 instances each, according to the weights generation scheme. The ten classes are further
divided into four subclasses each with ten instances of identical size: In the first nine classes, the instances
have 25, 50, 100 and 200 items, respectively. In the tenth class, the instances have 24, 51, 99 and 201 items,
respectively. In total, Caprara and Toth (2001) generated 400 benchmark instances.

In addition, Brandao and Pedroso (2016) combined each subclass with ten 2-dimensional instances into
a single 20-dimensional instance, yielding another 40 instances. These instances have not been considered
in the article of Hu et al. (2017).

For all 440 instances, the demand of each item is almost always one. Neither Hu et al. (2017) nor Brandao
and Pedroso (2016) aggregated the (very few) items with identical weights. Therefore, we also solve these
instances only with the 01-VPP model. Results on these binary VPPs are presented in Section 3.3.

Because the demand of the instances is almost always one, we generated new instances with larger
demands to compare the three models 01-VPP, B-VPP, and U-VPP. The item sizes of the new instances are
the same as already used by Caprara and Toth (2001) and Brandao and Pedroso (2016), respectively, but
the demand of the items is larger: We generated the larger demand using a discrete, uniformly distributed
random variable between 1 and 100. Section 3.4 discusses our results for these instances. The new instances
are available on http://logistik.bwl.uni-mainz.de/benchmarks.php.

3.2. Computational Setup
The initial RMP is constructed as follows. First, we add patterns for single items, i.e., unit vectors and

columns with only one non-negative coefficient api = ui (where ui = u01
i or = uB

i or = uU
i depending on

the VPP formulation). Second, additional patterns are constructed with the help of the well-known first-fit
(FF) and best-fit (BF) heuristics (Johnson, 1973). Both FF and BF are once run with the items sorted
decreasingly by their 1-norm. Moreover, another 99 runs of FF and BF are performed in which the items
are sorted randomly.

To measure the impact of (D)DOIs, all instances were solved with and without adding (D)DOIs. Pretests
have shown that the mixed approach described in Section 2.3 of adding some (D)DOIs to the initial RMP
and adding the most violated (D)DOIs later on dynamically on average dominates the other strategies.
Since the VPP instances typically do not allow SI and WSI with |S| > 2, our DOI selection and separation
strategy is straightforward: For the initialization of the first RMP, two different kinds of static (D)DOIs
are added. On the one hand, for each item i the PI πi ≥ πj with j = argmink∈I{||wi −wk||1 : wi ≥ wk}
is added. These (D)DOIs are the multi-dimensional extension of cuts of type 1 and ranking constraints,
respectively (Valério de Carvalho, 2005; Ben Amor et al., 2006). On the other hand, all SIs with |S| = 2
are added. There could exist O (m3) such inequalities but for the instances of the benchmark, the number
is rather small. These (D)DOIs are the multi-dimensional extension of cuts of type 2 (Valério de Carvalho,
2005). Dynamic DOIs are only added while solving the root node. Separation of violated (D)DOIs is done
with a straightforward enumeration procedure considering all PIs by inspection. The DOIs remain in the
RMP except when becoming invalid due to some active branching decisions, see Section 2.4.3.

16

http://logistik.bwl.uni-mainz.de/benchmarks.php

3.3. Results for Binary Vector Packing Problems
In this section, we report results of our branch-and-price algorithms when applied to the 01-VPP. Ac-

cording to Section 2.2, we compare two versions of dynamic-programming labeling for the solution of the
column-generation subproblems, one is a monodirectional labeling using a weak but fast dominance rule
and the other is a more sophisticated bidirectional labeling using the strong dominance rule. As the latter
leads to less labels but a more time-consuming dominance algorithm, it is not clear a priori which of the
two labeling approaches is superior. Moreover, we conduct experiments with non-stabilized and stabilized
branch-and-price algorithms. This gives rise to four variants of branch-and-price.

Comparison with Other Exact Algorithms. We compare our algorithms against the branch-and-price of Hu
et al. (2017) and the graph compression and arc-flow model based approach of Brandao and Pedroso (2016).
While Hu et al. (2017) restrict computation times to a maximum of 600 seconds per instance, Brandao and
Pedroso (2016) did not impose any time limit. To improve comparability of results, we let our branch-and-
price algorithms run for a maximum of 600 as well as 3600 seconds.

The results are summarized in Tables 2 and 3, where the first table reports average results for the
400 instances with 2-dimensional items/bins and the second table reports instance-wise results for the 40
instances of dimension 20. Note that Hu et al. (2017) did not consider the latter instances. Hence, we do
not report results for a time limit of 600 seconds in Table 3. The table entries have the following meanings:

Class: class of instances; weights generated using different distributions;
Items: number of items in the instance;

opt: number of instances (out of 10) solved to proven optimality within 1 hour (3600 seconds);
opt10: same for a time limit of 10 minutes (600 seconds);

T : computation time in seconds for a single instance;
TLP : computation time in seconds for solving the linear relaxation of the master program for a

single instance;
T̄ : average computation time in seconds over 10 instances; unsolved instances are taken into

account with the time limit of 1 hour (3600 seconds);
T̄10: same for a time limit of 10 minutes (600 seconds);
LB: lower bound obtained by linear relaxation or Lagrangian lower bound if master program is

terminated prematurely.

For all approaches, the instances of the classes 2, 3, and 8 are well solvable and computation times
always remain below 15 seconds. The approach of Brandao and Pedroso is the only one that solves all 88
instances of the classes 1 and 10 (80 of dimension D = 2 and 8 of dimension D = 20). Instances of the
classes 6 and 7 seem to be hard for the branch-and-price algorithm of Hu et al. as they solve only 58 of the
80 2-dimensional instances. In contrast, all 88 instances of classes 6 and 7 are solved with the algorithm of
Brandao and Pedroso as well as all of our branch-and-price algorithms.

The classes 4, 5, and 9 comprise the most difficult instances for all approaches. The algorithm of Brandao
and Pedroso can only cope with smaller-sized instances with 25 items of classes 4 and 5. However, it solves
all 30+3 = 33 instances of class 9 with 25, 50, and 100 items. On the latter instances of class 9, the
branch-and-price of Hu et al. solves only the 20 instances with 25 and 50 items and our best variant (with
stabilization and monodirectional labeling) solves 30+4 = 34 instances.

Comparing all algorithms on the basis of a reduced computation time of 600 seconds, the approaches
of Hu et al. and Brandao and Pedroso show a comparable performance solving 321 and 320 instances
(of dimension 2). Our four branch-and-price algorithms deliver within the same time between 334 and
351 optimal solutions. With the longer computation time of 3600 seconds the algorithm of Brandao and
Pedroso gives 320+33 = 353 optimal solutions, while our four branch-and-price algorithms provide between
346+32=378 and 368+34=392 optimal solutions. Overall, the four algorithms together provide optima for
370+34=404 of the 440 instances. Together with the results of Hu et al. and Brandao and Pedroso, 24+6=30
instances of the benchmark remain open.

17

T
ab

le
2:

R
es

ul
ts

an
d

co
m

pa
ri

so
n

fo
r

2-
di

m
en

si
on

al
01

-V
P

P

M
on

od
ir

ec
ti

on
al

w
it

h
w

ea
k

do
m

in
an

ce
B

id
ir

ec
ti

on
al

w
it

h
st

ro
ng

do
m

in
an

ce

C
la

ss
H

u
et

al
.

B
ra

nd
ao

/P
.

St
ab

ili
ze

d
N

on
-S

ta
bi

liz
ed

St
ab

ili
ze

d
N

on
-S

ta
bi

liz
ed

It
em

s
op

t 1
0

T̄
1
0

op
t

T̄
op

t 1
0

op
t

T̄
op

t 1
0

op
t

T̄
op

t 1
0

op
t

T̄
op

t 1
0

op
t

T̄

1
25

10
1.

5
10

0.
1

10
10

0.
3

10
10

0.
3

10
10

0.
1

10
10

0.
1

50
9

89
.6

10
1.

6
10

10
8.

8
10

10
8.

9
10

10
1.

2
10

10
1.

5
10

0
3

52
9.

0
10

67
.0

7
10

41
8.

2
5

10
55

4.
4

10
10

14
0.

1
10

10
18

2.
0

20
0

0
60

0.
0

10
76

01
.4

0
2

32
89

.7
0

0
36

00
.0

0
3

28
46

.3
0

3
35

07
.7

2
25

10
0.

7
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
50

10
1.

0
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

0
10

2.
8

10
0.

2
10

10
<

0.
1

10
10

0.
1

10
10

<
0.

1
10

10
0.

1
20

0
10

11
.0

10
6.

9
10

10
0.

1
10

10
0.

1
10

10
0.

1
10

10
0.

1

3
25

10
0.

5
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
50

10
1.

0
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

0
10

2.
5

10
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
20

0
10

8.
1

10
0.

2
10

10
0.

1
10

10
0.

1
10

10
0.

1
10

10
0.

1

4
25

10
7.

9
10

22
.0

10
10

13
.6

10
10

13
.4

10
10

0.
6

10
10

0.
5

50
10

10
.9

−
−

10
10

48
.2

10
10

49
.0

10
10

7.
0

10
10

6.
2

10
0

6
41

9.
8

−
−

8
9

66
0.

4
3

3
26

02
.4

4
10

68
7.

1
2

5
24

64
.3

20
0

0
60

0.
0

−
−

0
0

36
00

.0
0

0
36

00
.0

0
0

36
00

.0
0

0
36

00
.0

5
25

10
20

.3
10

10
.6

10
10

16
.5

10
10

20
.1

10
10

0.
3

10
10

0.
4

50
10

31
.4

−
−

10
10

60
.9

10
10

64
.7

10
10

34
.5

10
10

39
.9

10
0

10
93

.9
−

−
10

10
36

7.
6

10
10

42
2.

3
0

0
36

00
.0

0
0

36
00

.0
20

0
7

34
6.

0
−

−
0

7
24

68
.8

0
6

28
79

.4
0

0
36

00
.0

0
0

36
00

.0

18

(T
ab

le
2

co
nt

’d
)

M
on

od
ir

ec
ti

on
al

w
it

h
w

ea
k

do
m

in
an

ce
B

id
ir

ec
ti

on
al

w
it

h
st

ro
ng

do
m

in
an

ce

C
la

ss
H

u
et

al
.

B
ra

nd
ao

/P
.

St
ab

ili
ze

d
N

on
-S

ta
bi

liz
ed

St
ab

ili
ze

d
N

on
-S

ta
bi

liz
ed

It
em

s
op

t 1
0

T̄
1
0

op
t

T̄
op

t 1
0

op
t

T̄
op

t 1
0

op
t

T̄
op

t 1
0

op
t

T̄
op

t 1
0

op
t

T̄

6
25

10
0.

1
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
50

10
0.

5
10

0.
1

10
10

0.
2

10
10

0.
1

10
10

0.
1

10
10

0.
1

10
0

6
30

8.
5

10
0.

3
10

10
1.

4
10

10
1.

3
10

10
0.

9
10

10
0.

9
20

0
0

60
0.

0
10

4.
8

10
10

16
.5

10
10

20
.2

10
10

10
.3

10
10

21
.3

7
25

10
0.

1
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
50

10
10

.2
10

0.
1

10
10

0.
2

10
10

0.
2

10
10

0.
1

10
10

0.
1

10
0

10
64

.8
10

1.
7

10
10

1.
9

10
10

2.
0

10
10

1.
4

10
10

1.
7

20
0

2
48

1.
6

10
14

.0
10

10
29

.2
10

10
33

.4
10

10
31

.7
10

10
49

.5

8
25

10
<

0.
1

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

50
10

0.
1

10
<

0.
1

10
10

<
0.

1
10

10
0.

1
10

10
<

0.
1

10
10

0.
1

10
0

10
0.

2
10

0.
1

10
10

0.
1

10
10

0.
1

10
10

0.
1

10
10

0.
1

20
0

10
0.

7
10

0.
2

10
10

0.
3

10
10

0.
2

10
10

0.
2

10
10

0.
2

9
25

10
1.

1
10

0.
1

10
10

0.
2

10
10

0.
2

10
10

0.
1

10
10

0.
1

50
10

9.
9

10
0.

7
10

10
7.

5
10

10
7.

6
10

10
2.

3
10

10
2.

2
10

0
0

60
0.

0
10

28
.1

10
10

34
2.

5
9

10
40

2.
8

6
10

81
6.

4
6

10
10

13
.1

20
0

0
60

0.
0

−
−

0
0

36
00

.0
0

0
36

00
.0

0
0

36
00

.0
0

0
36

00
.0

10
24

10
<

0.
1

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

10
10

<
0.

1
10

10
<

0.
1

51
10

0.
2

10
0.

1
10

10
0.

1
10

10
0.

2
10

10
0.

1
10

10
0.

1
99

10
0.

5
10

0.
7

10
10

2.
4

10
10

3.
0

10
10

2.
2

10
10

2.
6

20
1

8
22

2.
4

10
15

5.
4

6
10

64
7.

4
7

8
11

06
.7

8
10

31
3.

2
6

8
13

70
.8

T
ot

al 60
0

s
32

1
14

2.
0

32
0

12
7.

9
35

1
10

9.
6

34
4

11
9.

4
33

8
11

4.
7

33
4

12
1.

0
36

00
s

32
0

72
7.

9
36

8
39

0.
1

35
7

47
4.

8
35

3
48

2.
4

34
6

57
6.

6
>

36
00

s
33

0

19

Table 3: Results for 20-dimensional 01-VPP
Monodirectional with weak dominance Bidirectional with strong dominance

Class Brandao/P. Stabilized Non-Stabilized Stabilized Non-Stabilized

Items T TLP T TLP T TLP T TLP T LB

1 25 0.1 0.1 0.1 0.1 0.1 <0.1 <0.1 0.1 0.1 8
50 0.8 0.6 1.1 0.5 0.6 0.7 0.8 1.4 1.5 15

100 36.3 39.2 39.9 32.8 53.1 463.3 467.4 357.5 358.0 29
200 1374.2 1685.6 2944.4 1650.3 3600.0 3600.0 3600.0 3600.0 3600.0 57

2 25 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 23
50 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 48

100 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 98
200 <0.1 0.1 0.1 <0.1 <0.1 0.1 0.1 <0.1 <0.1 193

3 25 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 23
50 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 48

100 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 98
200 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.1 193

4 25 50.3 109.9 109.9 112.1 112.1 24.9 24.9 25.5 25.5 4
50 − 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 7

100 − 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0
200 − 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0

5 25 73.2 1958.4 1958.4 1996.7 1996.7 15.5 15.5 15.4 15.4 2
50 − 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0

100 − 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0
200 − 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0

6 25 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 13
50 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 26

100 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 52
200 0.2 0.1 0.2 0.1 0.7 0.1 0.2 0.1 0.7 102

7 25 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 13
50 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 26

100 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 52
200 0.2 0.1 0.6 0.1 0.1 0.1 0.7 0.1 0.1 102

8 25 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 21
50 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 37

100 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 63
200 0.1 <0.1 0.6 <0.1 0.6 <0.1 0.7 <0.1 0.6 104

9 25 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 8
50 0.4 0.1 0.4 0.2 0.3 0.1 0.4 0.2 0.5 16

100 12.8 6.2 7.2 5.5 6.4 19.7 20.5 28.5 29.3 31
200 − 880.8 3571.9 812.3 2997.0 3600.0 3600.0 3600.0 3600.0 58

10 24 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 10
51 0.1 0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 21
99 0.9 4.1 4.6 4.5 4.9 11.9 12.3 14.4 14.8 39

201 14.5 243.3 245.8 274.7 277.2 2310.1 2312.3 2474.8 2476.1 77

Total 669.1 663.2 762.1 628.0 734.7 791.2 791.4 793.0 793.1
opt 33 34 32 32 32

20

Comparison of the Four Variants of Branch-and-Price. Tables 2 and 3 clearly indicate that the stabilization
of the column-generation process using (D)DOIs is always beneficial: (average) computation times with sta-
bilization are always below those of the corresponding variant without stabilization with very few exceptions.
In these exceptional cases, the additional time for the approach with stabilization is always below 1 second.
On the positive side, the speedup obtained with stabilization can reach a factor of more than 4, see, e.g.,
class 4 instances with 100 items in dimension 2. It is also obvious that in dimension 20 the acceleration
caused by stabilization is significantly smaller than in dimension 2. This can be explained by the fact that
there exist fewer valid (D)DOIs, e.g., pair inequalities (PI), in dimension 20 than in dimension 2. As a
consequence of all these observations, we restrict the remainder of the comparison to the two variants that
use stabilization, i.e., monodirectional with stabilization vs. bidirectional with stabilization.

There is no clear winner between the monodirectional and the bidirectional labeling approach, as can be
seen, e.g., from class 1 with up to 100 items where the bidirectional approach is faster compared to class 5
with 100 and 200 items where the monodirectional approach outperforms the bidirectional one. Focussing
on instances with 25 (or 24) items only, one can see that the bidirectional approach is always superior to
the monodirectional approach. This may be explained by the fact that in these instances, the bidirectional
approach guarantees that there are never more than 212 = 4096 and 213 = 8192 forward and backward
labels, respectively, to consider when reaching the half-way point where the merge of forward and backward
labels is performed. Typically, as only a few items fit into a single bin, the number of labels is much smaller
than this worst-case estimation so that combinatorial explosion is effectively suppressed. For instances with
more items (≥ 50), the number of undominated labels in the bidirectional approach grows quickly. Here,
the execution of the more complex dominance algorithm becomes predominant. Even using the multi-
dimensional divide-and-conquer algorithm of Bentley (1980) for the dominance, which has an attractive
worst-case complexity of O (n log(n)2) in the number n of labels for D = 2 (compared to quadratic with a
straightforward pairwise dominance test), does not help here: The reduction in the number of labels through
the dominance is eaten up by the time-consuming dominance algorithm. The general recommendation is
therefore to use monodirectional labeling with the fast hash-table based weaker dominance Rule 1 for solving
SPPRC subproblems whenever the number of items is larger.

Finally, we give some comments on the linear relaxation results that we obtained with our strongest
branch-and-price variant, i.e, the one with stabilization and monodirectional labeling. For the unsolved 2-
dimensional instances, there are only nine instances for which the column-generation process was terminated
before solving the root node (instances 1.200.04, 4.200.03, 4.200.04, 5.200.03, 5.200.04, 9.200.03,
9.200.04, 9.200.08, and 9.200.09; using the short notation Class.Items.Instance). For all of these
instances, however, a Lagrangian lower bound has been computed. All lower bounds are reported on our
website http://logistik.bwl.uni-mainz.de/benchmarks.php.

For the 20-dimensional instances, Lagrangian lower bounds are reported in Table 3 in column LB. Among
the six unsolved instances, a lower bound is only available for the instance 4.50 (notation Class.Items).

3.4. Results for Vector Packing Problems with Larger Demands
We now compare the three models 01-VPP, B-VPP, and U-VPP and their solution with different branch-

and-price algorithms. Table 4 summarizes the results in a very condensed way, numbers are aggregated over
all instances of dimension 2 and all instances of dimension 20, respectively. The meaning of the row entries
is analog to the column entries described at the beginning of this section. In addition, the rows labeled with
N̄ bb give the average number of branch-and-bound nodes solved by the respective algorithm.

Table 4 shows that, for larger demands, the branch-and-price algorithms that are based on formulations
B-VPP and U-VPP behave very similarly, and they clearly outperform the algorithms based on the binary
formulation 01-VPP. This is not only true for the presented averages but for every single instance in the
benchmark. The inferiority of the algorithms based on formulation 01-VPP can be attributed to two
characteristics: First, for a larger demand, the 01-VPP model has

∑
i∈I qi constraints making the RMP

a really huge IP with dense columns. Hence, RMP reoptimization is really time-consuming, cf. entries
T̄LP in Table 4. Second, the 01-VPP-based approaches suffer for the inherent symmetry when it comes to
branching, see entries N bb in the last row of Table 4. As a consequence, we discuss and present more detailed
results only for our branch-and-price algorithms based on formulation B-VPP in the following.

21

http://logistik.bwl.uni-mainz.de/benchmarks.php

Table 4: Results for VPP instances with larger demands.

Dimension 01-VPP B-VPP U-VPP

Stabilization Monodir. Bidir. Monodir. Bidir. Monodir. Bidir.

2 Stab. opt 107 109 298 293 299 293
T̄LP 1200.3 1234.9 394.2 674.1 393.7 677.7
T̄ 2658.9 2654.0 1013.1 1048.6 1020.5 1046.1
N̄bb 40.2 41.8 37.5 37.9 37.6 36.7

Non-Stab. opt 106 107 282 285 281 285
T̄LP 1776.2 1658.4 402.9 674.3 401.5 674.9
T̄ 2676.0 2668.4 1158.0 1135.9 1160.4 1136.0
N̄bb 37.6 40.4 55.4 51.4 55.6 51.4

20 Stab. opt 21 25 29 30 29 30
T̄LP 1055.5 1108.6 901.9 1019.8 900.4 1021.0
T̄ 1664.8 1664.8 1027.8 1051.1 1026.0 1043.2
N̄bb 20.1 19.7 2.7 1.8 2.8 1.8

Non-Stab. opt 21 25 30 29 30 29
T̄LP 1302.2 1293.2 925.6 1015.1 925.9 1014.9
T̄ 1664.5 1664.6 962.0 1111.5 964.3 1111.2
N̄bb 18.8 18.2 3.2 1.8 3.2 1.8

Comparing the four variants of branch-and-price using model B-VPP, i.e., results presented in the middle
block of Table 4, we see a similar behaviour as already observed for 01-VPP: Stabilization of the column-
generation process is clearly beneficial and there is no clear winner between monodirectional and bidirectional
labeling for solving the MKP subproblems using the SPPRC model.

Finally, Table 5 does not provide surprising new insights. The general behaviour is similar to the 01-
VPP case. Regarding the comparison of the monodirectional and bidirectional approaches, the results for
the classes 4 and 5 with 25 and 50 items in dimension 2 differ from those presented in Table 2. In the B-VPP
case, the bidirectional labeling is not longer superior. The reason is that in the B-MKP subproblem and
the associated SPPRC digraph, the number of arcs per stage is uB

i +1. For example, this number of arcs is
on average 8 for class 4 and 16 for class 5. Already for instances with 25 items, the bidirectional labeling is
no longer able to effectively limit the number of labels generated up to the half-way point. The dominance
algorithm based on the stronger Rule 2 becomes too slow.

In total, the four branch-and-price algorithms solve 306 + 30 = 336 of the 400+40=440 instances with
larger demands to proven optimality.

4. Conclusions

In this paper, we proposed branch-and-price algorithms for the solution of different formulations of the
VPP. To the best of our knowledge, this is the first branch-and-price approach that also tackles non-binary
formulations of the VPP, namely the B-VPP and U-VPP variants. To test the impact of using these
formulations, we introduced new benchmark instances with demands � 1 that were generated based on the
standard benchmark sets for the VPP from the literature (Caprara and Toth, 2001; Brandao and Pedroso,
2016). Moreover, the presented approach constitutes the first branch-and-price for VPPs with more than
two dimensions.

Our column-generation subproblems are variants of the multidimensional knapsack problem, either bi-
nary, bounded, or unbounded for 01-VPP, B-VPP, or U-VPP, respectively. In order to obtain a generic
approach, the subproblems were formulated as SPPRCs. Two different labeling algorithms (one monodi-
rectional, one bidirectional) with different dominance rules were derived for their solution. Additional dual
inequalities (not necessarily (deep) dual optimal) are added to stabilize the column-generation process. This
is the first time that such dual inequalities are used in a branch-and-price for the VPP. For specific families of

22

Table 5: Results for B-VPP instances with larger demands
2-dimensional 20-dimensional

Class Monodir./weak dom. Bidir./strong dom. Monodir./weak dom. Bidir./strong dom.

Items opt T̄LP T̄ N̄ bb opt T̄LP T̄ N̄ bb TLP T N bb TLP T N bb

1 25 10 1.9 2.0 1.0 10 0.9 1.0 1.0 5.5 6.1 1 5.3 5.8 1
50 10 21.5 22.9 1.0 10 4.4 5.5 1.0 23.4 24.3 1 22.6 23.4 1

100 1 293.7 3258.2 381.4 1 140.9 3330.1 483.3 399.3 672.9 23 1773.4 2685.4 41
200 0 1645.2 3600.0 72.8 0 1660.2 3600.0 172.5 3600.0 3600.0 0 3600.0 3600.0 0

2 25 10 0.1 1.0 1.0 10 0.1 1.0 1.0 0.2 0.5 1 0.2 0.5 1
50 10 0.3 62.9 1.1 10 0.3 70.8 1.1 0.4 2.4 1 0.4 2.4 1

100 10 0.6 407.0 1.6 10 0.7 419.9 1.6 0.9 0.9 1 1.0 1.0 1
200 10 1.4 468.3 13.2 10 1.4 465.9 13.2 2.2 2.2 1 2.0 2.0 1

3 25 10 0.1 0.3 1.0 10 0.1 0.3 1.0 0.2 0.5 1 0.2 0.5 1
50 10 0.3 0.9 1.0 10 0.3 0.9 1.0 0.5 2.6 1 0.5 2.5 1

100 10 0.7 2.5 1.0 10 0.7 2.5 1.0 1.0 1.0 1 0.9 0.9 1
200 10 1.4 130.1 3.1 10 1.4 128.4 3.1 1.9 1.9 1 2.0 2.0 1

4 25 10 60.1 141.8 13.6 10 103.0 104.4 1.0 376.0 379.5 1 2632.6 2946.5 4
50 2 113.0 2913.1 246.9 2 391.7 2929.9 258.3 3600.0 3600.0 0 3600.0 3600.0 0

100 0 883.6 3600.0 56.9 0 3600.0 3600.0 0.0 3600.0 3600.0 0 3600.0 3600.0 0
200 0 3475.8 3600.0 1.2 0 3600.0 3600.0 0.0 3600.0 3600.0 0 3600.0 3600.0 0

5 25 7 180.7 1202.0 51.1 1 3258.0 3263.1 0.2 3600.0 3600.0 0 3600.0 3600.0 0
50 0 172.7 3600.0 82.6 0 3600.0 3600.0 0.0 3600.0 3600.0 0 3600.0 3600.0 0

100 0 2208.6 3600.0 12.7 0 3600.0 3600.0 0.0 3600.0 3600.0 0 3600.0 3600.0 0
200 0 3600.0 3600.0 0.0 0 3600.0 3600.0 0.0 3600.0 3600.0 0 3600.0 3600.0 0

6 25 10 0.7 1.9 1.0 10 0.7 2.0 1.0 0.1 0.1 1 0.1 0.1 1
50 10 11.5 13.8 1.0 10 11.7 14.2 1.0 0.3 0.3 1 0.3 0.3 1

100 10 46.1 220.4 1.9 10 45.6 47.2 1.2 0.6 0.6 1 0.7 0.7 1
200 9 486.4 495.5 2.4 10 120.2 135.1 3.4 1.3 1.3 1 1.3 1.3 1

7 25 10 0.4 1.3 1.0 10 0.4 1.3 1.0 0.1 0.1 1 0.1 0.1 1
50 10 12.3 13.9 1.0 10 11.4 13.0 1.0 0.3 0.3 1 0.3 0.3 1

100 10 21.9 22.5 1.0 10 21.9 22.6 1.0 0.7 0.7 1 0.7 0.7 1
200 10 88.4 92.3 1.3 10 90.8 100.1 2.6 1.4 1.4 1 1.4 1.4 1

8 25 10 0.1 0.6 1.0 10 0.1 0.6 1.0 0.2 0.2 1 0.2 0.2 1
50 10 0.2 3.3 1.0 10 0.2 3.5 1.0 0.4 0.4 1 0.4 0.4 1

100 10 0.2 651.7 1.2 10 0.2 634.7 1.2 0.8 0.8 1 0.7 0.7 1
200 8 0.6 1071.1 17.7 8 0.6 1065.8 17.7 1.4 1.4 1 1.5 1.5 1

9 25 10 1.7 1.8 1.0 10 0.9 1.0 1.0 0.9 0.9 1 0.8 0.9 1
50 10 22.7 23.2 1.0 10 5.0 5.4 1.0 0.4 266.4 2 0.3 5.3 1

100 6 358.0 1908.9 219.1 6 920.0 1795.8 128.8 112.2 3600.0 44 192.0 198.9 1
200 0 1588.5 3600.0 76.5 0 2064.2 3600.0 134.2 3600.0 3600.0 0 3600.0 3600.0 0

10 24 10 1.6 2.6 1.0 10 1.1 2.2 1.0 0.1 2.0 1 0.1 2.0 1
51 10 17.5 20.3 1.1 10 16.5 20.3 1.2 0.3 1.7 1 0.3 2.1 1
99 10 20.2 21.5 1.0 10 16.3 18.0 1.2 135.3 139.7 1 149.1 153.1 1

201 5 428.9 2144.0 223.3 5 70.8 2138.2 275.0 2606.2 3600.0 13 3600.0 3600.0 0

Total 298 394.2 1016.5 37.5 293 674.1 1048.6 37.9 901.9 1027.8 2.7 1019.8 1051.1 1.8

23

dual inequalities we showed that they are (deep) dual optimal inequalities for some of the formulations. The
dual inequalities are used in a combined static/dynamic fashion, where the dynamic generation of violated
dual inequalities is a by-product of solving the SPPRC representation of the subproblem with our label-
ing methods. Even more, our solution approach for the subproblem is also compatible with our branching
scheme (the branching scheme of Vanderbeck, 1999, which is equal to the Ryan-Foster rule in the 01-VPP
case) meaning that branching decisions can be implemented into it without deteriorating the resolution
process. In order to use the dual inequalities also in the branch-and-bound tree, different rules for their
validity with respect to the branching decisions taken had to be derived.

In an extensive computational study, we demonstrated that our branch-and-price algorithms are com-
petitive with respect to the state of the art. For the 2-dimensional benchmark set, our strongest algorithm
provides 368 provably optimal solutions compared to the 330 and 321 optima found by Brandao and Pedroso
(2016) and Hu et al. (2017), respectively. Of the 20-dimensional instances, we can solve 34 instances vs. 33
optima computed by Brandao and Pedroso (2016). With all branch-and-price variants, we solve to proven
optimality 404 out of the 440 standard benchmark instances. Together with the results of Brandao and
Pedroso (2016) and Hu et al. (2017), 30 instances remain open.

Finally, our computational results indicate the usefulness of all the different algorithmic parts: (i) the
stabilized algorithms are clearly superior to their non-stabilized counterparts, (ii) neither of the labeling
algorithms for the subproblems completely dominates the other, and (iii) for instances with larger demands
one has to resort to the non-binary formulations B-VPP and U-VPP, since the 01-VPP is too large and
suffers from severe symmetry issues.

Acknowledgment

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant no. IR 122/6-1.

References

Alves, C. and Valério de Carvalho, J. (2008). A stabilized branch-and-price-and-cut algorithm for the multiple length cutting
stock problem. Computers & Operations Research, 35(4), 1315–1328.

Alves, C., Valério de Carvalho, J., Clautiaux, F., and Rietz, J. (2014). Multidimensional dual-feasible functions and fast lower
bounds for the vector packing problem. European Journal of Operational Research, 233(1), 43–63.

Ben Amor, H. and Valério de Carvalho, J. (2005). Cutting stock problems. In Desaulniers et al. (2005), chapter 5, pages
131–161.

Ben Amor, H., Desrosiers, J., and Valério de Carvalho, J. M. (2006). Dual-optimal inequalities for stabilized column generation.
Operations Research, 54(3), 454–463.

Bentley, J. (1980). Multidimensional divide-and-conquer. Communications of the ACM, 23(4), 214–229.
Brandao, F. and Pedroso, J. P. (2016). Bin packing and related problems: general arc-flow formulation with graph compression.

Computers & Operations Research, 69, 56–67.
Buljubašić, M. and Vasquez, M. (2016). Consistent neighborhood search for one-dimensional bin packing and two-dimensional

vector packing. Computers & Operations Research, 76, 12–21.
Caprara, A. and Toth, P. (2001). Lower bounds and algorithms for the 2-dimensional vector packing problem. Discrete Applied

Mathematics, 111(3), 231–262.
Caprara, A., Dell’Amico, M., Díaz-Díaz, J. C., Iori, M., and Rizzi, R. (2014). Friendly bin packing instances without integer

round-up property. Mathematical Programming, 150(1), 5–17.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to Algorithms. MIT Press, 3rd edition.
Delorme, M., Iori, M., and Martello, S. (2016). Bin packing and cutting stock problems: Mathematical models and exact

algorithms. European Journal of Operational Research, 255(1), 1–20.
Desaulniers, G., Desrosiers, J., and Solomon, M., editors (2005). Column Generation. Springer, New York, NY.
Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44(2), 145–159.
Gilmore, P. and Gomory, R. (1961). A linear programming approach to the cutting-stock problem. Operations Research, 9,

849–859.
Gschwind, T. and Irnich, S. (2016). Dual inequalities for stabilized column generation revisited. INFORMS Journal on

Computing, 28(1), 175–194.
Hu, Q., Zhu, W., Qin, H., and Lim, A. (2017). A branch-and-price algorithm for the two-dimensional vector packing problem

with piecewise linear cost function. European Journal of Operational Research, 260(1), 70–80.
Huang, E. and Korf, R. E. (2012). Optimal rectangle packing: An absolute placement approach. Journal of Artificial Intelligence

Research, 46, 47–87.

24

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In Desaulniers et al. (2005), chapter 2,
pages 33–65.

Johnson, D. S. (1973). Near-Optimal Bin Packing Algorithms. Ph.D. thesis, Massachusetts Institute of Technology.
Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack Problems. Springer, Berlin.
Lübbecke, M. and Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6), 1007–1023.
Martello, S., Pisinger, D., and Vigo, D. (2000). The three-dimensional bin packing problem. Operations Research, 48(2),

256–267.
Monaci, M. and Toth, P. (2006). A Set-Covering-Based heuristic approach for Bin-Packing problems. INFORMS Journal on

Computing, 18(1), 71–85.
Panigrahy, R., Talwar, K., Uyeda, L., and Wieder, U. (2011). Heuristics for vector bin packing. Technical report, Microsoft

Research.
Rietz, J. (2003). Untersuchungen zu MIRUP für Vektorpackprobleme. Dissertation, Faculty of Mathematics und Computer

Science, Technischen Universität Bergakademie Freiberg, Germany.
Righini, G. and Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest

path problem with resource constraints. Discrete Optimization, 3(3), 255–273.
Ryan, D. and Foster, B. (1981). An integer programming approach to scheduling. In A. Wren, editor, Computer Scheduling of

Public Transport: Urban Passenger Vehicle and Crew Scheduling, chapter 17, pages 269–280. Elsevier, North-Holland.
Scheithauer, G. and Terno, J. (1995). The modified integer round-up property of the one-dimensional cutting stock problem.

European Journal of Operational Research, 84, 562–571.
Spieksma, F. C. (1994). A branch-and-bound algorithm for the two-dimensional vector packing problem. Computers &

operations research, 21(1), 19–25.
Tilk, C., Rothenbächer, A.-K., Gschwind, T., and Irnich, S. (2017). Asymmetry matters: Dynamic half-way points in bidi-

rectional labeling for solving shortest path problems with resource constraints faster. European Journal of Operational
Research, 261(2), 530–539.

Valério de Carvalho, J. M. (1999). Exact solution of bin-packing problems using column generation and branch-and-bound.
Annals of Operations Research, 86, 629–659.

Valério de Carvalho, J. M. (2005). Using extra dual cuts to accelerate column generation. INFORMS Journal on Computing,
17(2), 175–182.

Vanderbeck, F. (1999). Computational study of a column generation algorithm for bin packing and cutting stock problems.
Mathematical Programming, 86(3), 565–594.

25

	Introduction
	Unified Branch-and-Price
	SPPRC Formulation for MKP Subproblems
	Subproblem Solution via Dynamic-Programming Labeling
	Dual Inequalities
	Branching Schemes
	Subproblem Transformation and Branching Rule
	SPPRC Graph Adaption
	Handling of Dual-Optimal Inequalities
	Branching Strategy
	Computational Results
	Instances
	Computational Setup
	Results for Binary Vector Packing Problems
	Results for Vector Packing Problems with Larger Demands
	Conclusions

