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Abstract

This paper examines the Vehicle Routing Problem with Stochastic Demands
(VRPSD), in which the actual demand of customers can only be realized
upon arriving at the customer location. Under demand uncertainty, a
planned route may fail at a specific customer when the observed demand
exceeds the residual capacity. There are two ways to face such failure
events, a vehicle can either execute a return trip to the depot at the fail-
ure location and refill the capacity and complete the split service, or in
anticipation of potential failures perform a preventive return to the de-
pot whenever the residual capacity falls below a threshold; overall, these
return trips are called recourse actions. In the context of VRPSD, a re-
course policy which schedules various recourse actions based on the vis-
its planned beforehand on the route must be designed. An optimal re-
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course policy prescribes the cost-effective returns based on a set of opti-
mal customer-specific thresholds. We propose an exact solution method
to solve the multi-VRPSD under an optimal restocking policy. The Integer
L-shaped algorithm is adapted to solve the VRPSD in a branch-and-cut
framework. To enhance the efficiency of the presented algorithm, several
lower bounding schemes are developed to approximate the expected re-
course cost.

Keywords: Routing, Stochastic demands, Optimal policy, Restocking,
Partial routes, Integer L-shaped algorithm, Lower bounding functionals

1. Introduction

Following the seminal paper of Dantzig and Ramser [1], the Vehicle
Routing Problem (VRP) has been the subject of considerable research efforts
over the last decades, see Laporte [2]. The aim in VRP is to find a set of
routes serving a given set of customers at a minimal cost (the least travel
cost, minimum number of vehicles, etc.). The routes should start and end
at the depot, and are designed to be performed by a fleet of vehicles with
homogeneous capacity. In the deterministic version of VRP in which all
problem parameters are known precisely, each customer is only visited
once by one vehicle.

In real-life problems, however, various parameters of the VRP can be
uncertain. Uncertainty is more likely to appear in demands, travel and
service times, and customer presence. It is usually dealt with by using
probability distributions to describe the uncertain parameters, which are
then stochastic. The VRPs in which some parameters are stochastic are
called Stochastic VRPs (SVRPs). Although SVRPs have received much less
attention in comparison to the deterministic VRP, several efforts have been
devoted to investigate various versions of the SVRP; for a thorough ex-
position of the SVRP context, we refer the reader to Gendreau et al. [3],
Oyola et al. [4], and Oyola et al. [5]. One way to deal with stochastic
parameters in stochastic routing models is to use their deterministic ap-
proximated counterparts, in which the stochastic parameters are roughly
replaced by their forecasted equivalents. Such models can sometimes lead
to arbitrarily bad quality solutions at execution time when stochasticity re-
veals itself, see Louveaux [6]. Thus, there is a need to model SVRPs using
specialized optimization frameworks in which stochastic parameters are
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explicitly modeled through random variables.
In this paper, we are mainly interested in the Vehicle Routing Problem

with Stochastic Demands (VRPSD), where customer demands are only known
through probability distributions. In this context, it is common to assume
that the actual demand of each customer can only be observed upon arriv-
ing at its location. Because of that, a planned route may fail at a customer
when the demand exceeds the residual capacity on the vehicle. This occur-
rence is called a route failure. To prevent failures and complete the service
after a route failure has occurred, extra decisions, called recourse actions,
must be taken and associated travel costs, called recourse costs, need to be
incurred. The objective in the VRPSD is to minimize the total driven dis-
tance, which consists of routing (i.e., preliminary plans) costs and recourse
costs.

It is important to note that the general context of the VRPSD can be
tackled in variety of ways. One thus usually refers to modeling paradigms
to formalize the problem and the way in which it is solved. Dror et al.
[7] describe several of these paradigms for the VRPSD. One of them is the
so-called a priori optimization approach, which was extensively discussed
in Bertsimas et al. [8]; another is the reoptimization approach; further de-
tails can be found in Gendreau et al. [3]. These modeling paradigms either
separate or unify the process of making routing and recourse decisions,
where information, here, stochastic demands, are revealed at once or in a
stepwise manner, respectively. In the a priori optimization approach, one
decomposes the overall decision making process into two sets of mutu-
ally exclusive decisions as routing and recourse decisions, thus modeling
the VRPSD as a two-stage stochastic integer program with recourse (see,
Birge and Louveaux [9] for a comprehensive coverage of stochastic pro-
gramming). In this approach, the first stage consists of finding a set of a
priori routes while the demands are not known yet with certainty. Once
stochasticity reveals itself, the second stage consists of planning/obtaining
a set of recourse decisions in the execution of each a priori route. The a pri-
ori optimization approach is a particularly suitable paradigm to model the
VRPSD when the aim is to execute a route repeatedly over a long horizon.
In the reoptimization approach, after the demand of each customer has
been observed and served, the remaining portion of the vehicle route is
conceptually reoptimized-by choosing the first customer to visit next and
by deciding if a visit to the depot to replenish vehicle capacity should be
performed first; see Secomandi [10] and Secomandi and Margot [11] for
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applications in which route reoptimization is allowed.
As mentioned before, under the a priori optimization approach for the

VRPSD, a set of planned routes is determined in the first stage based on
probabilistic information. To tackle the second-stage, a recourse policy must
be designed. Such a policy corresponds to a set of predetermined rules to
derive recourse decisions based on the residual capacity of the vehicle as
well as the visits that are scheduled along the route. A recourse policy then
provides the driver with a full prescription to react to incoming situations.
Several recourse policies have been proposed. In the classical recourse
policy, the driver follows the planned route until the vehicle capacity is
depleted. Whenever the demand of a specific customer exceeds the resid-
ual capacity of the vehicle, the vehicle must execute a back-forth (BF) trip
to the depot to replenish the capacity in order to complete the service. If
the observed demand turns out to be equal to the residual capacity, the
vehicle performs a restocking trip to the depot and then continues to the
next customer. This classical policy was introduced by Dror and Trudeau
[12] and implemented by Gendreau et al. [13], Hjorring and Holt [14], La-
porte et al. [15], Rei et al. [16] and Jabali et al. [17]. As an alternative, one
could apply an optimal restocking policy in which, the driver also prescribes
preventive return (PR) trips to the depot in anticipation of potential fail-
ures whenever the residual capacity falls below a threshold value. In the
optimal restocking policy, the vehicle prescribes PR trips in addition to BF
trips such that the total expected cost is minimized, thus obtaining opti-
mal customer-specific thresholds. This policy was introduced by Yee and
Golden [18] and implemented by Yang et al. [19] and Bianchi et al. [20].

Employing the optimal restocking policy entails simultaneously opti-
mizing the vehicle routes and the customer-specific thresholds. As these
thresholds are an outcome of the optimization, the optimal restocking
policy does not directly allow a company to systematically control the
risk of encountering failures. Salavati-Khoshghalb et al. [21] and Salavati-
Khoshghalb et al. [22] proposed different recourse policies, which allow
a company to determine its customer-specific thresholds according to a
number of operational rules. Salavati-Khoshghalb et al. [21] proposed
three volume based policies, which use simplistic comparisons of the ve-
hicle’s residual capacity in order to decide when PR trips are performed,
e.g., executing a PR trip once the available vehicle capacity is below a pre-
set percentage of its total capacity. Salavati-Khoshghalb et al. [22] pro-
posed a hybrid recourse policy which is a more advanced form of a rule-
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based recourse policy. The hybrid recourse policy combines risk-based
and distance-based rules. For a given route, the authors define a risk
measure, which computes the risk of failure at the next customer. This
risk measure is then compared with two preset thresholds. Namely, the
minimum restocking threshold and a maximum proceeding threshold. In
the case where the risk measure is greater than the minimum restocking
threshold, the vehicle executes a PR trip, whereas if the risk measure is
less than the maximum proceeding threshold, the vehicle proceeds with
its planned route. In the cases where the risk measure falls between the
maximum proceeding threshold and the minimum restocking threshold,
a distance measure employed. This measure compares the cost of perform-
ing a PR trip at the current customer with the expected failure costs, result-
ing from BF trips, performed at all subsequent customers in the planned
route. If the cost of the former is lower than the latter a PR trip is per-
formed, otherwise the vehicle proceeds with its planned route.

We present a small example in order to illustrate the differences be-
tween the different recourse policies (optimal restocking, classical, rule-
based and hybrid). In Figure 1 the pair of numbers below each vertex
specifies the coordinate of the vertex in [0, 1000]2. The expected demand of
each customer is shown by a red integer on the right-hand-side of the ver-
tex. The capacity of the vehicle was set to 45. The support of the demand
probability distributions of customers v1, v2, v3, and v4 are {11,13,15,17,19},
{6,8,10,12,14}, {11,13,15,17,19} and {1,3,5,7,9}, respectively. A probability
of 0.2 was associated with each of the five possible values for each cus-
tomer. All four policies use the route 0 − v4 − v3 − v1 − v2 − 0. The rule-
based policy is based on the second policy proposed Salavati-Khoshghalb
et al. [21], which outperformed the other two. According to this policy,
when leaving a customer on a planned route a PR trip is performed if the
residual capacity of the vehicle is less than η times the expected demand of
the subsequent customer on the route. This policy with η = 1 was used in
the example. As for the hybrid policy the minimum restocking threshold
was set to 0.65 and a maximum proceeding threshold was set to 0.35.

In Table 1 we summarize the results of the example for the four policies.
For the optimal restocking policy and the rule-based policy we present the
customer thresholds. We note that while the routing cost (i.e., the first
stage cost) is the same for all four policies, the expected recourse costs
(i.e., the second stage cost) differ from one policy to another. In particular,
the classical policy incurs the highest expected recourse cost, and the rule
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based policy has a higher expected recourse cost than that of the optimal
restocking policy. Finally, we note that in this examples the hybrid pol-
icy, albeit employing a mixed policy structure, yields the same expected
recourse cost as the optimal restocking policy.

DEPOT

15v1

10v2

15v3

5v4

354, 715

661, 112

576, 641

522, 272

528, 524

Figure 1: Small example with four customers randomly scattered in [0, 1000]2.

Table 1: Comparison of four recourse policies on the instance of Figure 1

Policy Total cost Routing cost Recourse cost θ1 θ2 θ3 θ4

Classical 2881.8 2584.0 297.8

Hybrid 2700.6 2584.0 116.6

Optimal 2700.6 2584.0 116.6 12 0 17 15

Rule-based 2760.6 2584.0 176.6 10 0 15 15

To tackle the VRPSD modeled under the a priori paradigm, several ex-
act, heuristic, and metaheuristic algorithms have been proposed; see for
more details Gendreau et al. [3]. Two exact solution techniques have been
used in this context. The Integer L-shaped algorithm and the column gen-
eration approach. The Integer L-shaped algorithm was adapted for the
VRPSD by Gendreau et al. [13], Hjorring and Holt [14], Laporte et al. [15],
and Jabali et al. [17]. The column generation approach was applied to the
VRPSD by Christiansen and Lysgaard [23], as well as by Gauvin et al. [24].
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All of these papers implemented the classical recourse policy. More re-
cently, Salavati-Khoshghalb et al. [21] and Salavati-Khoshghalb et al. [22]
have extended the Integer L-shaped algorithm to consider PR trips for
rule-based policies. However, there are few research studies devoted to
present and examine the optimal restocking policy. Yee and Golden [18]
defined the optimal restocking recourse strategy, under which a set of op-
timal threshold-based recourse decisions including BF and PR trips can
be obtained for given planned routes. Such an optimal restocking policy
has been integrated in heuristic and metaheuristic solution procedures to
solve the VRPSD by Yang et al. [19] and Bianchi et al. [20]. Generally, these
heuristic procedures result in overall sub-optimal pair of routing and re-
course decisions.

Recently, Louveaux and Salazar-González [25] have integrated the op-
timal restocking policy in the a priori optimization solution approach to
model the VRPSD. They propose an implementation of the L-shaped method
to solve exactly the resulting problem. It should be noted that, while this
paper provides bounding procedures applicable to instances in which cus-
tomer demand distributions are not identical, much of the work focuses on
the case where all customers have identical demand distributions and all
their computational results cover only this case.

The purpose of this paper is to propose an exact algorithm to solve the
VRPSD under an optimal restocking recourse policy, thus yielding solu-
tions that are optimal both with respect to routing decisions and restock-
ing ones. The proposed algorithm is an adaptation of the L-shaped method
that uses various bound improvement procedures to achieve an effective
performance. Furthermore, our approach allows for the consideration of
different demand distributions for the customers in a computationally ef-
fective way, as long as they are discrete and with finite support, as shown
by the numerical results that we report.

The remainder of this paper is organized as follows. Section §2 lays
out the VRPSD model under the a priori approach with an optimal re-
stocking policy. We devote Section §3 to propose an exact method, for
solving the VRPSD under an optimal restocking policy, enhanced by vari-
ous lower bounding schemes. Section §4 presents the results of a compu-
tational study to examine the performance of the proposed exact method.
Section §5 proposes some conclusions and future research directions.
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2. Optimal Restocking Recourse Policy Under the A Priori Approach

In Section §2.1, we first present the Vehicle Routing Problem with Stochas-
tic Demands (VRPSD) modeled under the a priori optimization approach.
To model the recourse problem, we recall the optimal restocking policy
resulting in a set of optimal recourse decisions in §2.2.

2.1. VRPSD Formulation Under an A Priori Approach
This section revisits the VRPSD formulation presented by Gendreau

et al. [13] and Laporte et al. [15]. Let G = (V , E) be a complete undirected
graph, where V = {v1, v2, . . . , vn} is the set of vertices and E = {(vi, vj)|vi,
vj ∈ V , i < j} is the set of edges. Vertex v1 is the depot, where a fleet of m
vehicles each having capacity Q is initially located. Each vertex vi (i = 2,
. . . , n) represents a customer whose stochastic demand ξi follows a dis-
crete probability distribution with a finite support, defined as the ordered
set {ξ1

i , ξ2
i , . . . , ξ l

i , . . . , ξsi

i }, where ξsi

i ≤ Q. We denote by pl
i , the probability

of observing the lth demand level, i.e., P[ξi = ξ l
i ] = pl

i . The traveling cost
along an arc (vi, vj) ∈ E is denoted by cij, where the cost matrix C = (cij)
is symmetric and satisfies the triangle inequality.

To formulate the VRPSD, we first recall the a priori optimization ap-
proach by Bertsimas et al. [8]. As previously mentioned, the first stage
consists of making classical VRP routing decisions with probabilistic in-
formation about the stochastic demands. The decision variable xij (i < j)
denotes the number of times edge (vi, vj) is traversed in the first-stage.

Given the notation devised previously in Gendreau et al. [13] and La-
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porte et al. [15], the a priori model for the VRPSD is formulated as follows:

minimize
x ∑

i<j
cijxij +Q(x) (1)

subject to
n

∑
j=2

x1j = 2m, (2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (3)

∑
vi,vj∈S

xij ≤ |S| −
⌈∑vi∈S E(ξi)

Q

⌉
, (S ⊂ V \ {v1}; 2 ≤ |S| ≤ n − 2)

(4)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (6)

x = (xij), integer (7)

In this formulation, constraints (2) ensure that exactly m vehicle routes
that start and end at the depot are established; constraints (3) ensure that
each customer is connected to two other vertices; constraints (4) stand si-
multaneously as subtour elimination constraints and capacity constraints,
which remove both subtours, and infeasible routes with an excessive ex-
pected demand. Then, the first-stage traveling costs are incurred in the
objective function (1) as ∑i<j cijxij.

Let us now suppose that an a priori routing solution x in model (1)-
(7) is given. In the presence of demand stochasticity, however, an a priori
route may fail at a specific customer at which the observed demand ex-
ceeds the residual capacity of the vehicle. Then, a recourse or corrective
decision must be taken to either regain (i.e., in a reactive fashion) or pre-
serve (i.e., in a proactive fashion) routing feasibility. In the context of the
VRPSD, the recourse decisions are in the form of return trips to depot, but
these trips entail extra costs. Then, the expected cost of the recourse ac-
tions that are taken given the routing solution x under a given policy is
represented by Q(x) in the objective function (1).

Dror and Trudeau [12] have shown that, for route-based recourse poli-
cies, Q(x) can be decomposed by route. They also showed that the ex-
pected cost of recourse actions for a route depends on its orientation, i.e.,
in which direction it is executed. Thus, the expected recourse cost for rout-
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ing solution x can be computed as (8), where Qr,δ denotes the expected
recourse cost of the rth a priori route in the orientation δ = 1, 2.

Q(x) =
m

∑
r=1

min{Qr,1,Qr,2}. (8)

Computing Qr,δ for δ = 1, 2 under an optimal restocking policy, thus ob-
taining a set of optimal recourse decisions for the rth a priori route, is the
subject of the next subsection.

2.2. The Optimal Restocking Policy
In this section we recall the optimal restocking policy, devised by Yee

and Golden [18] for the VRPSD. Let us first consider an a priori route ex-
pressed as vector v⃗ = (v1 = vi1 , vi2 , . . . , vit , vit+1 = v1). An optimal re-
stocking policy is a sequential decision rule that determines whether the
vehicle after serving a specific customer with an arbitrary residual capac-
ity onboard proceeds according to the planned route or performs a PR trip
first. More precisely, let us assume that after serving the ij

th customer of
the route, the residual capacity of the vehicle is equal to q units. If the ve-
hicle proceeds to the following customer (i.e., ij+1), then it must attempt
to satisfy the stochastic demand ξij+1 . When q ≥ ξij+1 service is completed
with a nonnegative residual capacity of q − ξij+1 , and one must again de-
cide whether the vehicle should proceed or replenish the vehicle capacity
first. If q < ξij+1 , then a route failure occurs and the vehicle must perform a
BF trip (at the cost of 2c1,ij+1) before completing the service of customer ij+1
with a residual capacity equal to Q + q − ξij+1 . It should be noted that we
also consider a fixed cost b for each route failure as Yang et al. [19]; this pe-
nalizes the disruption at a customer location caused by the second vehicle
visit. On the other hand, the vehicle can replenish its capacity by perform-
ing a PR trip in order to avoid potential route failures, before starting the
service at the ij+1

th customer. After replenishing the vehicle capacity at the
cost of c1,ij + c1,ij+1 − cij,ij+1 , the vehicle can fulfill all demand observations
of customer ij+1 since Q ≥ ξij+1 , and then will decide whether to serve
the following customer ij+2 with a residual capacity equal to Q − ξij+1 , or
perform a PR trip.

Let Fij(q) be the optimal onward recourse cost-to-go after serving the

ij
th, and remaining with a residual capacity of q. Then, the optimal ex-
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pected recourse cost of the a priori route v⃗ can be expressed by using the
following Bellman equation,

Fij(q) = min



Hij,ij+1(q) : ∑
k:ξk

ij+1
≤q

Fij+1(q − ξk
ij+1

)pk
ij+1

+

∑
k:ξk

ij+1
>q

[b + 2c1,ij+1 + Fij+1(Q + q − ξk
ij+1

)]pk
ij+1

,

H′
ij,ij+1

(q) : c1,ij + c1,ij+1 − cij,ij+1 +
si

∑
k=1

Fij+1(Q − ξk
ij+1

)pk
ij+1

(9)
where, Hij,ij+1(q) and H′

ij,ij+1
(q) express the total costs associated to the

proceeding and restocking decisions after serving the ij
th customer, re-

spectively. This computation differs from the formula given by Yang et al.
[19], since it only considers the recourse cost and not the total cost of the
route. Using equation (9), we have Fit+1(.) = 0 since after serving the last
customer the expected recourse cost is equal to zero. We note that Fij(q)
is an optimal policy only if Fij+1(.), Fij+2(.), . . . , Fit(.) are already optimally

given. Furthermore, let θ⃗∗ = (θ∗i1 , θ∗i2 , . . . , θ∗ij
, . . . , θ∗it) be the optimal restock-

ing policy threshold vector. Since Fij(q) is monotonically non-increasing
with respect to q, θ∗ij

= min{q|Hij,ij+1(q) ≤ H′
ij,ij+1

(q)} (for further details
see, e.g., Yee and Golden [18] and Yang et al. [19]). Based on θ∗ij

computed

by the latter equation, the optimal decision at the ij
th customer is either

replenishing the vehicle capacity for q < θ∗ij
or proceeding to the next cus-

tomer whenever q ≥ θ∗ij
.

Given equation (9) and assuming that the rth vehicle performs the a
priori route, its expected recourse cost can then be computed for the first
orientation (i.e., δ = 1) as follows,

Qr,1 = Fi1(Q). (10)

To compute the expected recourse cost of the route for the second orienta-
tion (i.e., Qr,2), we reapply function (10) to the reverse of the a priori route
v⃗.
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3. An Integer L-shaped Algorithm to Solve the VRPSD under an Opti-
mal Restocking Policy

In this section, we adapt the Integer L-shaped algorithm to exactly
solve the VRPSD under an optimal restocking recourse policy. The Integer
L-shaped algorithm is proposed by Laporte and Louveaux [26] to tackle
two-stage stochastic integer program with recourse. It stands as a general
branch-and-cut (B&C) procedure in which, feasibility cuts and branching
are employed to obtain integer first-stage solutions. A feasible integer so-
lution with an excessive expected recourse cost is removed by adding op-
timality cuts. The optimality cuts which are originally developed by La-
porte and Louveaux [26], adjust a lower bound for Q(x) at each feasible
integer solution using its combinatorial structure locally. However, the In-
teger L-shaped algorithm solely relying on optimality cuts may turn to an
implicit enumeration procedure of feasible integer solutions. Therefore,
there is a need to provide lower bounding procedures enhancing the B&C
procedure.

Such lower bound improving procedures were first proposed by Hjor-
ring and Holt [14] (for the VRPSD with classical recourse) via the con-
cept of partial routes, which are feasible fractional solutions with certain
structures. These new valid inequalities called lower bounding functional
(LBF) cuts improve lower bounds for several integer feasible solutions.
However, some restrictive assumptions are made: 1) all customers de-
mands are discrete, independent and uniformly distributed and 2) a max-
imum of one failure can occur within the fractional structure. The con-
cept of partial routes was then developed by Laporte et al. [15] for multi-
VRPSD, where customer demands follow continuous distributions. Jabali
et al. [17] generalize the concept of partial routes proposed by Hjorring
and Holt [14] through defining various structures, thus improving global
lower bound for many fractional feasible solutions.

In this section we apply LBF cuts of Jabali et al. [17] to the case of op-
timal restocking policy when customers demand are defined through ar-
bitrary discrete distributions. The LBF cuts of Jabali et al. [17] are only
applied to the case where customer demands are Normal distributions. To
do so, we provide several approximation schemes to compute valid lower
bounds for the expected recourse cost of partial routes under an optimal
restocking policy. In subsection §3.1, we first revisit the Integer L-shaped
algorithm. Then, in subsection §3.2 we present a lower bounding scheme
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to approximate Q(x), where x contains partial routes of Jabali et al. [17].
In subsection §3.3, we provide a general lower bound L where L ≤ Q(x)
and x satisfies (2)-(7).

3.1. The Integer L-Shaped Algorithm
In this section we describe the Integer L-shaped employed to optimally

solve the VRPSD in a general B&C procedure. In this B&C procedure
a master problem, called current problem (CP) is established by relaxing
capacity and subtour elimination constraints as well as the integrality re-
quirements. The expected recourse function Q(x) is replaced by the con-
tinuous variable Θ and is initially bounded from below by a general lower
bound L using (14). The first current problem CP0 can be presented by
(11), (2), (3),(5), (6), and (14). At an arbitrary iteration ν, CPν is shown in
the following model,

CPν : min
x,Θ

∑
i<j

cijxij + Θ (11)

subject to (2), (3), (5), (6),

∑
vi ,vj∈Sk

xij ≤ |Sk| −
⌈∑vi∈Sk E(ξi)

Q

⌉
∀k ∈ STν−1, Sk ⊂ V \ {v1}, 2 ≤ |Sk| ≤ n − 2,

(12)

L + (Θq
p − L)

(
∑

h∈PRq
Wh

p (x)− |PRq|+ 1

)
≤ Θ ∀q ∈ PSν−1, p ∈ {α, β, γ},

(13)

L ≤ Θ (14)

∑
1≤i≤j
x f

ij=1

xij ≤ ∑
1≤i≤j

x f
ij − 1 ∀ f ∈ OCν−1, (15)

where, constraints (12), (13), and (15) respectively are subtour elimination
and capacity constraints, LBF cuts, and optimality cuts. At each iteration
ν, an optimal solution (xν, Θν) is obtained by solving CPν. Violated ca-
pacity and subtour elimination constraints (12) are added to CPν until no
more violated cuts are detected. We denote by {k′} the index set associ-
ated to the subsets of vertices violating (12) at iteration ν. We also denote
by STν−1 the set of index sets of the vertices violating (12) in the first ν − 1
iterations. Then, at iteration ν we set STν = STν−1 ∪ {k′}. The separa-
tion procedure is performed by the CVRP package of [27]. When no vio-
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lated constraint (12) is detected, the lower bounding cuts (13) are added to
strength the overall bounding scheme. An exact separation procedure de-
veloped by Jabali et al. [17] detects partial solutions within xν. We denote
by {q′} the index set associated to partial solutions identified in iteration
ν. We also denote by PSν−1 the set of index sets of the partial solutions
detected to add (13) in the first ν − 1 iterations. Then, at iteration ν we
set PSν = PSν−1 ∪ {q′}. Each partial solution contains a set of partial
routes, here at iteration ν denoted by h′ including various structures α, β,
and γ proposed by Jabali et al. [17] (see subsection §3.2 for further details).
For each partial route h the functional Wh

p (x) ensures that the constraint is
active on relevant portions of the solution space and, is redundant other-
wise (see subsection §3.2 for further details). The expected recourse cost
associated to each structure p ∈ {α, β, γ} is computed as Θq′

p using the
procedure presented in subsection §3.2. We also denote by PRν−1 the set
of partial routes detected in the first ν − 1 iterations. Then, at iteration
ν we set PRν = PRν−1 ∪ {h′}. The branching scheme obtains integral-
ity requirements whenever needed. At integer feasible solutions, Q(xν)
is computed to update the upper bound,. In the case of Θν < Q(xν), an
optimality cut (15) is added to CPν. We denote by { f ′} the index set of
xν when an optimality cut is added. We also denote by OCν−1 the set of
index sets of vertices associated to the optimality cuts detected in the first
ν − 1 iterations. Then, at iteration ν we set OCν = OCν−1 ∪ { f ′}.

3.2. Approximating an Optimal Restocking Policy
Here, we present the bounding procedures to approximate the expected

recourse cost of partial solutions. At an arbitrary iteration ν, we assume
that partial solutions within xν are detected, here denoted by q, using the
exact procedure proposed by Jabali et al. [17]. We note that Θq

p in (13) is
set as the sum of the lower bounds of the various partial routes (or routes)
included in q and can be computed by Θq

p = ∑
h∈PRq

Θqh
p . We then drop the

index q in Θqh
p and present it by Θh

p.
Generally, a partial route stems from a fractional solution and consists

of an alternation of chains and unstructured components. The vertices of a
chain are connected in the support graph at iteration ν (denoted by Ḡν);
where there is an edge (vi, vj) in Ḡν if xν

ij = 1. The vertex set of a chain is
called chain vertex set (CVS). The vertex set of each unstructured compo-
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nents is called unstructured vertex set (UVS). Each UVS lies between two
chains and is connected to them at unique articulation vertices. Figure 2
shows an example of three possible partial routes.

In the α-route topology the first and last chains are viewed as CVSs,
while the intermediate component (containing potentially multiple chains
and UVSs) is considered as a single-UVS. This topology corresponds to
the one proposed by Hjorring and Holt [14]. In the β-route topology the
actual alternation of CVSs and UVSs is captured. In the γ-route topol-
ogy each chain is viewed as a UVS and articulation vertices are viewed as
single-CVSs. The separation procedure proposed by Jabali et al. [17] de-
tects all chains and CVSs, which implicitly implies that a β-route topology
is detected. Once this topology is detected an appropriate α-route and an
appropriate γ-route may be derived.

Formally let κ denote the number of chains and κ − 1 be the number
of UVSs in partial route. Let St

h = {vt
h1

, . . . , vt
hl
} be the tth chain in partial

route h ∈ PRν, where vt
hz

is the zth vertex in St
h, and hl is the number of

vertices in St
h. Therefore,

∑
(vi,vj)∈St

h

xν
ij = |St

h| − 1, ∀t = 1, . . . , κ. (16)

Let Ut
h be the tth UVS in partial route h. Then,

∑
vi,vj∈Ut

h

xν
ij = |Ut

h| − 1, ∀t = 1, . . . , κ − 1. (17)

A UVS is preceded by a chain and proceeded by another. Therefore,

∑
vj∈Ut

h

xν
ht

l ,j
= 1, ∀t ≤ κ − 1, (18)

and
∑

vj∈Ut−1
h

xν
ht

1,j = 1, ∀t ≥ 2 (19)

For completeness we recall the definition of the functional Wh
p (x), as
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introduced by Jabali et al. [17]:

Wh
p (x) =

κ

∑
t=1

∑
(vi,vj)∈St

h
vi ̸=v1

3xij + ∑
(v1,vj)∈S1

h

x1j + ∑
(v1,vj)∈Sκ

h

x1j +
κ−1

∑
t=1

∑
vi,vj∈Ut

h

3xij (20)

+
κ−1

∑
t=1

∑
vj∈Ut

h
vt

hl
̸=v1

3xht
l j +

κ

∑
t=2

∑
vj∈Ut−1

h
vt

h1
̸=v1

3xht
1 j + ∑

vj∈U1
h

v1
hl
=v1

xh1
l j + ∑

vj∈Ub−1
h

vκ
h1
=v1

vκ−1
h1

̸=v1

xhκ
1 j

− (3|Rh| − 5).

We now describe an approximation technique to compute Θh
p in order

to add LBF cuts (13). In (13), Θh
p presents a valid lower bound for the

expected recourse cost of partial route h with an arbitrary structure p ∈ {α,
β, γ}. In what follows, we only derive Θν

α. The approximating technique
can then be applied to compute Θh

β and Θh
γ because β and γ topologies can

be viewed as successions of the α topology.
Let h ∈ PRν be a partial route with the α topology. Partial route h with

α topology consists of two chains S1
h = {v1

h1
, . . . , v1

|S1
h|
} and S2

h = {v2
h1

, . . . ,

v2
|S2

h|
} and one unstructured set U1

h as h = (v1 = v1
h1

, . . . , v1
|S1

h|
, U1

h , v2
h1

, . . . ,

v2
|S2

h|
= v1), where U1

h = {vu1 , vu2 , . . . , vul}; v1
|S1

h|
and v2

h1
are articulation

vertices which connect chains S1
h and S2

h to U1
h , respectively.

For the sake of simplicity, we redefine the partial route h, in similar
terms as a route, as follows

h = (v1 = vi1 , . . . , vij−l , {vu1 , vu2 , . . . , vul}, vij+1 , . . . , vit+1 = v1),

where the articulation vertices v1
|S1

h|
and v2

h1
are denoted by vij−l and vij+1 ,

respectively. We define an artificial route h̃ associated to the partial route
h as follows,

h̃ = (v1 = vi1 , . . . , vij−l , ij−l+1 , ij−l+2 , . . . , ij , vij+1 , . . . , vit+1 = v1), (21)
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v1
h1

v1
hl

v2
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(a) a-routes
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h1

v1
hl
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h1

v2
hl

(b) b-routes

(c) g-routes
Figure 3 Partial route topologies.

4.3. Bounding the Recourse Cost

Considering a specific partial solution q that includes a partial route h 2 PRq, in the present sec-

tion, we describe the computation of Qqh
p , which is the lower bound associated to h when topology

p 2 {a, b, g} is applied to generate an LBF cut (13). Moreover, the bound Qq
p, which is included in

(13), is fixed to the sum of the lower bounds associated with the different partial routes associated

with q, i.e., Qq
p = Â

h2PRq
Qqh

p . In the following, to alleviate the notation, we will drop the index q

and simply refer to the lower bound Qh
p (i.e., a partial route is always associated with a partial

solution). Furthermore, we focus on deriving value Qh
a (i.e., the specific topology p = a). This is

motivated by the fact that the computation of Qh
a can be easily generalized to evaluate both Qh

b

and Qh
g, considering that topologies b and g can be viewed as containing successive a-route struc-

tures. We next present the strategy to compute Qh
a under the first two policies (i.e., p1 and p2),

which can be done in a unified way. We then conclude the present subsection by detailing the

specificities of evaluating Qh
a when the third policy is applied (i.e., p3).

Figure 2: Three partial route topologies (adapted from Salavati-Khoshghalb et al. [21] )

where each ordering of l unsequenced customers in U1
h can be assigned

to the positions ij−l+1 , . . . , ij . In what follows, we refer to ij as the ij
th

position in the artificial route h̃. Then, we develop a bounding procedure
for the artificial route h̃.

Approximation:
To compute a valid lower bound for the expected recourse cost, we need
to provide some additional notations. Let s = (ia, q) denote the state of
the system (i.e., the vehicle) after serving the ia

th customer of the a priori
route v⃗ = (v1 = vi1 , vi2 , . . . , vij−l , . . . , via , via+1 , . . . , vij+1 , . . . , vit , vit+1 = v1)

with q units of the residual capacity onboard, as in the Bellman equation
(9). When performing the a priori route v⃗ (or more generally for two suc-
cessive customers in a chain), the system will make a transition from state
s = (ia, q) to some state s′ = (ia+1, q′). Furthermore, one can easily de-
termine all possible values of q′ and use them to compute Fia(q). When
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dealing with artificial route h̃, things are not as easy, since the customers
between vij−l and vij+1 are not known exactly. In that portion of the arti-
ficial route, we must associate pseudo states which are associated not with
specific customers, but rather to positions in the route. Thus, we let s = ( ia ,
q) represent the state of the system after serving the (still unknown) cus-
tomer in the ia

th position of the artificial route.
In the following, we present a successive approximation scheme that

computes a valid lower bound for the optimal cost-to-go value function
for pseudo state s, denoted by F̃ia(s = ( ia , q)). Based on the Bellman’s
principle of optimality, we also suppose that the optimal (or, a valid lower
bound) cost-to-go value function F̃ia+1(s

′ = ( ia+1 , q′)) has been determined

beforehand, for all s′ = ( ia+1 , q′). Let us now define the auxiliary value

F̂ia(s = ( ia , q), s′ = (vu1 , q′)), which corresponds to a conditional lower
bound on the optimal cost-to-go value function, if we assume that cus-
tomer vu1 ∈ U1

h occupies the ia+1
th position (i.e., ia+1 := vu1 in s′). We

can then write

F̂ia(s = ( ia , q), s′ = (vu1 , q′)) =

= min



∑
k:ξk

u1≤q

F̃ia+1(s
′ = (vu1 , q′ := q − ξk

u1
))pk

u1
+

∑
k:ξk

u1>q

[b + 2c1,u1 + F̃ia+1(s
′ = (vu1 , q′ := Q + q − ξk

u1
))]pk

u1
,

c1,ia + c1,u1 − cik,u1 +

su1

∑
k=1

F̃ia+1(s
′ = (vu1 , q′ := Q − ξk

u1
))pk

u1
.

(22)
To compute F̂ia(s = ( ik , q), s′ = (vu1 , q′)) in (22), the PR trip travel

cost is replaced by a lower bound minimum
vue∈U1

h :vue ̸=vu1

{c1,ue + c1,u1 − cue,u1}. To

determine an unconditional lower bound on F̃ia(s = ( ia , q)), we simply take
the minimum of the conditional lower bounds, i.e., we set

F̃ia(s = ( ia , q)) = min
vue∈U1

h

F̂ia(s = ( ia , q), s′ = (vue , q′)). (23)

There are two boundary cases which differ from the situation presented
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above. The first case arises when we start the approximation scheme,
where s = ( ij , q) and s′ = (vij+1 , q′). In this case, we can compute directly
the unconditional lower bound on the optimal cost-to-go value function.
The PR trip cost can be obtained by minimum

vue∈U1
h

{c1,ue + c1,ij+1 − cue,ij+1}. The

second case arises in the last step of overall scheme, where s = (vij−l , q)

and s′ = ( ij−l+1 , q′). In this case, the PR trip costs for each vu1 in F̂ij−l(s =

(vij−l , q), s′ = ( ij−l+1 := vu1 , q′)) can be computed as c1,u1 + c1,ij−l − cij−l ,u1 .

The latter boundary case will result in an unconditional bound F̃ij−l(s =

(ij−l, q)).
It should be noted that the the optimal cost-to-go functions Fij+1(.),

Fij+2(.), . . . , Fit(.) can be exactly computed by the Bellman equation (9).
Then, the bounding procedure described above provides an unconditional
lower bound on F̃ij−l(s = (ij−l, q)) ∀q. Next, the unconditional lower

bound F̃ij−l(s = (ij−l, q)) can be applied in (9) to successively compute un-

conditional lower bounds F̃ij−l−1(.), F̃ij−l−2(.), . . . , F̃i1(.). We set F̃i1(Q) as the
valid lower bound for the expected recourse cost of artificial route h̃ in the
first direction and denote it by F̃1

i1
(Q). By reversing h̃ and applying the

bounding procedure we will obtain a valid lower bound for the second
direction, denoted by F̃2

i1
(Q). We then set

Θh
α = min{F̃1

i1(Q), F̃2
i1(Q)} (24)

where, Θh
α is a valid lower bound for the expected recourse cost of par-

tial route h, detected in the partial solutions q within optimal first-stage
solution xν at iteration ν. Moreover, we note that partial routes with β
and γ topologies consist of several partial routes with α topology and we
can apply the same procedure to compute Θh

β and Θh
γ. Finally, we set

Θq
p = ∑

h∈PRq
Θh

p for p ∈ {α, β, γ} to be used in LBF cuts (13).

3.3. General Lower Bound
In this subsection, we propose a procedure to obtain a general lower

bound L to be used in constraints (13) and (14). As defined by Laporte and
Louveaux [26], the expected recourse cost associated to the feasible solu-
tion xL with minimum expected recourse cost corresponds to a general

19



lower bound. Laporte and Louveaux [28] were the first authors to present
a general lower bound for the VRPSD under the classical recourse. The
quality of the general lower bound presented in Laporte and Louveaux
[28] is further improved by Laporte et al. [15]. Suppose that v⃗1, v⃗2, . . . , v⃗m

are the vehicle routes contained in xL. Using the notation of Laporte and
Louveaux [26],

L = Q(xL) ≤ min
x

{Q(x)|(2)− (6)} =
m

∑
k=1

min{Qk,1(⃗vk),Qk,2(⃗vk)}. (25)

For computing L in (25), we assume that: the vehicle route denoted by v⃗12

is obtained by concatenating v⃗2 after v⃗1; vl1 and v f 2 present the last cus-

tomer in v⃗1, and the first customer in v⃗2, respectively; Fv⃗1
v1
(Q) and Fv⃗2

v1
(Q)

are the expected recourse costs associated to v⃗1 and v⃗2, respectively; F̄v⃗12
vl1

(.)

and Fv⃗12
vl1

(.) are the expected recourse costs from the depot to vl1 and ex-
pected cost-to-go from vl1 to the depot going through v⃗2, respectively; and
pq

vl1
is the probability of having q units of residual capacity after serving

customer vl1 .
The expected recourse cost of v⃗12 in the first direction can be computed

as follows,
Fv⃗12

v1
(Q) = ∑

q

{
F̄v⃗12

vl1
(q) + Fv⃗12

vl1
(q)
}

pq
vl1

. (26)

By definition, we have

Fv⃗12

vl1
(q) = min



∑
k:ξk

v
f 2 ≤q

Fv⃗12

v f 2
(q − ξk

v f 2
)pk

v f 2
+

∑
k:ξk

v
f 2 >q

[b + 2c1,v f 2 + Fv⃗12

v f 2
(Q + q − ξk

v f 2
)]pk

v f 2
,

c1,vl1
+ c1,v f 2 − cvl1 ,v f 2 +

sv
f 2

∑
k=1

Fv⃗12

v f 2
(Q − ξk

v f 2
)pk

v f 2
.

(27)

We also have Fv⃗12

vl1
(q) ≤ c1,vl1

+ c1,v f 2 − cvl1 ,v f 2 +

sv
f 2

∑
k=1

Fv⃗12

v f 2
(Q− ξk

v f 2
)pk

v f 2
which
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coupled with (26) results in

Fv⃗12

v1
(Q) ≤ ∑

q

{
F̄v⃗12

vl1
(q)+ c1,vl1

+ c1,v f 2 − cvl1 ,v f 2 +

sv
f 2

∑
k=1

Fv⃗12

v f 2
(Q− ξk

v f 2
)pk

v f 2

}
pq

vl1
.

(28)
Assuming that v⃗12 is equivalent to the concatenation of v⃗1 and v⃗2, the rela-
tion (28) can further yield

Fv⃗12

v1
(Q) ≤ c1,vl1

+ c1,v f 2 − cvl1
+ Fv⃗1

v1
(Q) + Fv⃗2

v1
(Q),

where, the first term in (28) is equivalent to Fv⃗1
v1
(Q) in the backward fashion

and the last term in (28) is equivalent to Fv⃗2
v1
(Q) in the forward fashion.

We perform the same procedure to concatenate the remaining routes
v⃗3,. . . , v⃗m to v⃗12 and conclude that:

Fv⃗1...m

v1
(Q) ≤

m−1

∑
k=1

ck
PR +

m

∑
k=1

Fv⃗k

v1
(Q) (29)

where v⃗1...m is obtained by the successive concatenation of all routes and
ck

PR denotes the kth least PR trip cost.
The desired L can be obtained by bounding ∑m

k=1 Fv⃗k
v1
(Q). However,

the vehicle routes v⃗1, v⃗2, . . . , v⃗m, as well as v⃗1...m are not known, but we
can use the fact that the route v⃗1...m in the left-hand-side of (29) consists of
all customers. To calculate a general lower bound L∗ ≤ L, we can approx-
imate the left-hand-side of (29) by constructing a large unstructured set
UL = V \ {v1}. Then, one can reduce the problem of finding a valid lower
bound for UL to computing the minimum expected recourse cost F̃ l̃z

v1(Q)

of artificial routes l̃z for z = 2, . . . , n, which are obtained by only fixing the
last customer before returning to the depot vz, i.e.,

l̃z = (v1 = vi1 , i2 , i3 , . . . , it−1 , vz, vit+1 = v1). (30)

This is done exactly as in §3.2. Finally, a general lower bound L∗ can be
computed as

L∗ = min
z:2,...,n

F̃ l̃z
v1
(Q)−

m−1

∑
k=1

ck
PR. (31)
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4. Numerical Results

In this section, we evaluate the quality of the proposed Integer L-shaped
algorithm by conducting computational experiments of instances. Over-
all, we present the numerical result for three sets of instances.
Symmetric Instances: In the first set of instances (which is made up of
the instances of Salavati-Khoshghalb et al. [21]), customer locations and
demands are randomly generated. We generated instances consisting of a
set of n vertices as {v1, . . . , vn}, in which v1 represents the depot and n − 1
customers and all vertices are randomly scattered in [0, 100]2 according to
a continuous uniform distribution. In the first set, each customer is ran-
domly (i.e., with equal probability) assigned to one of the three demand
ranges [1, 5], [6, 10], [11, 15] and then five realizations in each range are ob-
served accordingly to the probabilities {0.1, 0.2, 0.4, 0.2, 0.1}.
Asymmetric Instances: In the second set of instances, customer locations
are the same as symmetric instances. Each customer is randomly (i.e.,
with equal probability) assigned to one of the five demand ranges [1, 5],
[6, 10], [11, 15], [4, 7], and [9, 12]. Each of the first three demand ranges has
five possible demand values, the occurrence of each which (in ascending
order) is expressed with the following probabilities {0.1, 0.2, 0.4, 0.2, 0.1}.
Each of the last two demand ranges has four possible demand values, the
occurrence of each which (in ascending order) is expressed with the fol-
lowing probabilities {0.4, 0.3, 0.2, 0.1}.

In what follows, all settings are considered in both symmetric and
asymmetric instances. The traveling cost cij is set as the Euclidean dis-
tance between each pair vi and vj and rounded to the nearest integer. The

filling coefficient f̄ is equal to ∑n
i=2 E(ξi)

mQ . Four filling coefficients f̄ = 0.90,
0.92, 0.94, and 0.96 are considered. The capacity of each vehicle is directly
inferred from f̄ . We consider 11 combinations of (n, m) for each of the
four filling coefficients, as detailed in Table 2. We generated 10 instances
for each entry of the table. Thus, our generated test bed contains 440 in-
stances, overall 880 runs for symmetric and asymmetric instances.
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Table 2: Combinations of parameters to generate instances.

n m f̄

20 2 0.90, 0.92, 0.94, 0.96
30 2 0.90, 0.92, 0.94, 0.96
40 2, 3, 4 0.90, 0.92, 0.94, 0.96
50 2, 3, 4 0.90, 0.92, 0.94, 0.96
60 2, 3, 4 0.90, 0.92, 0.94, 0.96

In our computational result, a fixed cost denoted by b = ∑
i=2,...,n

ci1/(n−
1) is incurred when experiencing route failures. We recall that b primarily
penalizes disruption at a customer location caused by the second vehicle
visit.
The Instances Generated by Louveaux and Salazar-González [25]: The
instances of Louveaux and Salazar-González [25] are selected from bench-
mark instances E031-09h, E051-05e, E076-07s, and E101-08e, see http:

//neo.lcc.uma.es/vrp/vrp-instances/. However, the expected demand
of all customers is set to µ = 5. Parameter K denotes the number of possi-
ble demand realizations for each customer, for each instance a single value
of K is applied to all customers. Namely, K = 3 or K = 9. Then, for all j ∈
V \ {v1} and k = 1, . . . , K, stochastic demands are generated by ξk

j = µ −
⌊K/2⌋+ k − 1. The probability of each demand realization ξk

j is then com-

puted by pk
j = k/⌈K/2⌉2 for k < ⌈K/2⌉2 and pk

j = (K − k + 1)/⌈K/2⌉2

otherwise. The number of vehicles denoted by m is set to 2 and 3. The ve-
hicle capacity is obtained by Q = max{⌈(nµ)/(m f̄ )⌉; ⌈n/m⌉µ} in which
the filling rates f̄ = 0.90, 0.95 are considered for m = 2 and in the case
of m = 3 the filling rates f̄ = 0.85, 0.90. Also, Louveaux and Salazar-
González [25] considered a fixed cost of ∆ = 0, 10, 100 for the loading/unloading
cost is considered for both BF and PR trips. In our recourse function,
we denote by b a fixed cost as the customer dissatisfaction in the failure
events.

The Integer L-shaped algorithm and the bounding scheme are coded in
C++ using ILOG CPLEX 12.6. The subtour elimination and capacity con-
straints (4) are identified using the CVRPSEP package of Lysgaard et al.
[27]. The general branch-and-cut framework as the Integer L-shaped al-
gorithm is implemented using the OOBB package developed by Gendron
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et al. [29]. Computational experiments were conducted on a cluster of 27
machines, each having two Intel(R) Xeon(R) X5675 3.07 GHz processors
with 12 cores and 96 GB of RAM running Linux. An integer feasible so-
lution with a relative optimality gap less than 0.01% is assumed optimal.
Also, a maximum CPU run time of 10 hours is imposed on all runs. If the
maximum allotted time is reached, we then report the best integer solution
obtained.

In subsection 4.1, the performance of the Integer L-shaped algorithm
as an exact solution method is evaluated in terms of various quality mea-
sures. We further compare the results of our optimal restocking policy by
pricing the optimal solutions under the classical policy. In subsection 4.2,
we report the results obtained by the proposed algorithm on the special-
ized instances generated by Louveaux and Salazar-González [25], in which
all customer demands follow identical distributions.

4.1. Quality of the Integer L-Shaped Algorithm
We now present the computational result, expressing the performance

of the proposed exact algorithm in Tables 3 and 5 for symmetric and asym-
metric instances. The conducted experiments are aggregated according to
the pair (n, m) and the filling coefficient f̄ . Tables 3 and 5 report the follow-
ing information: 1) the “Solved” columns present the number of instances
(out of ten for each aggregated category) that were solved to optimality by
the algorithm; 2) the “≤ 1%” columns present the number of instances (out
of ten for each aggregated category) that were solved with an optimality
gap ≤ 1%; 3) the “Run(sec)” columns refer to the average running times in
seconds that were needed by the algorithm to solve those instances to opti-
mality; 4) the “Gap” columns present the average optimality gap obtained
by the algorithm over all instances solved (i.e., both those solve optimally
and those for which only a feasible solution was obtained).

By analyzing the computational results in Tables 3 and 5, we observe
similar trends that were reported by Gendreau et al. [13], Laporte et al.
[15], and Jabali et al. [17] for the classical recourse policy. These trends
indicate that an increase in the filling rate and/or the number of vehicles
results in a reduction of the optimally solved instances, an increase in the
running time to solve instances optimally, and an increase in the optimal-
ity gap, which shows overall an increase in the overall complexity of the
VRPSD instances. Moreover, when compared to the filling rate, the num-
ber of vehicles seems to have a more substantial impact on the complexity
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Table 7: Average savings vs rule-based recourse policy with ηξ̄ for η = 1

n m f̄ Sav3 f̄ Sav3 f̄ Sav3 f̄ Sav3

20 2 0.90 0.056% 0.92 0.034% 0.94 0.083% 0.96 0.153%
30 2 0.90 0.015% 0.92 0.007% 0.94 0.042% 0.96 0.100%
40 2 0.90 0.004% 0.92 0.005% 0.94 0.033% 0.96 0.088%
40 3 0.90 0.016% 0.92 0.009% 0.94 0.018% 0.96 0.068%
40 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
50 2 0.90 0.006% 0.92 0.011% 0.94 0.019% 0.96 0.075%
50 3 0.90 0.010% 0.92 0.011% 0.94 0.015% 0.96 0.089%
50 4 0.90 0.000% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.007% 0.92 0.011% 0.94 0.015% 0.96 0.057%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.033%
60 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%

Average 0.015% 0.013% 0.034% 0.096%

Table 8: Average savings vs hybrid recourse policy for θ-θ̄ : 0.35 − 0.65

n m f̄ Sav4 f̄ Sav4 f̄ Sav4 f̄ Sav4

20 2 0.90 0.119% 0.92 0.165% 0.94 0.809% 0.96 1.259%
30 2 0.90 0.041% 0.92 0.007% 0.94 0.153% 0.96 3.076%
40 2 0.90 0.004% 0.92 0.141% 0.94 0.499% 0.96 0.397%
40 3 0.90 0.016% 0.92 0.076% 0.94 0.501% 0.96 0.954%
40 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
50 2 0.90 0.032% 0.92 0.074% 0.94 0.296% 0.96 0.854%
50 3 0.90 0.010% 0.92 0.011% 0.94 0.734% 0.96 0.741%
50 4 0.90 0.052% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.027% 0.92 0.057% 0.94 0.030% 0.96 0.679%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.000%
60 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%

Average 0.039% 0.086% 0.378% 1.296%

of the instances. As reported in Tables 3 and 5, the Integer L-shaped algo-
rithm implemented in this paper optimally solves 227 out 440 symmetric
instances and 242 out of the 440 asymmetric instances; which correspond
to 51.6% and 55.0% of the generated instances. The overall average op-
timality gaps are 0.83% and 0.80%, respectively. Moreover, the proposed
algorithm solves 285 and 297 instances with an optimality gap ≤ 1% of the
symmetric and asymmetric instances, respectively.

In order to qualify the magnitude of savings obtained by perform-
ing the optimal restocking policy, we execute the optimal solutions un-
der the classical recourse policy. Tables 4 and 6 illustrate the comparisons
of two recourse policies with respect to the total cost denoted by “Sav1”=
Qclass.(x∗opt)−Qopt(x∗opt)

cx∗opt+Qclass.(x∗opt)
× 100 and the expected recourse cost as “Sav2”=

Qclass.(x∗opt)−Qopt(x∗opt)

Qclass.(x∗opt)
×

100, in which x∗opt is obtained by optimally solving a VRPSD instance un-
der optimal restocking policy. The solution x∗opt has a first stage cost of
cx∗opt and an expected recourse cost of Qopt(x∗opt). Furthermore, Qclass.(x∗opt)
is the expected recourse cost of optimal routing decision x∗opt. It should be
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noted that the classical recourse policy consists of following the planned
route and performing BF and restocking trips at failures and exact stock-
outs, respectively. The weighted average savings in terms of “Sav1” are
0.65% and 0.61% for the symmetric and asymmetric instances, respec-
tively. In terms of “Sav2”, the weighted average savings are 49.46% and
48.70%, respectively.

Also, in order to qualify the magnitude of savings obtained by per-
forming the optimal restocking policy we compare it with two other poli-
cies from the literature. The first is the rule-based policy proposed by
Salavati-Khoshghalb et al. [21], which entails that a PR trip is performed if
the residual capacity of the vehicle is less than ηξ̄, where ξ̄ is the expected
demand of the subsequent customer on the route. Salavati-Khoshghalb
et al. [21] achieved the best results by setting η to one. We therefore com-
pare the optimal policy with these results. The second policy is the hy-
brid policy proposed by Salavati-Khoshghalb et al. [22], where the best
results were obtained by setting the maximum proceeding threshold, de-
noted by θ, to 0.35, and the minimum restocking threshold, denoted by θ̄ to
0.65. We therefore compare the optimal policy with these results. Tables 7
and 8 express the comparisons with respect to the total cost as “Sav3”=
Qrule(x∗rule)−Qopt(x∗opt)

cx∗rule+Qrule(x∗rule)
× 100 and “Sav4”=

Qhybrid(x∗hybrid)−Qopt(x∗opt)

cx∗hybrid+Qhybrid(x∗hybrid)
× 100, respec-

tively. In Sav3 and Sav4, x∗opt, x∗rule, and x∗hybrid are the optimal routing
decisions obtained by solving the VRPSD instances under the optimal re-
stocking policy, the best rule-based and the hybrid recourse policies, re-
spectively. As presented in Tables 7 and 8, the best rule-based policy dis-
plays less deviation from the optimal restocking policy. The latter obser-
vation provides insights in the structure of the optimal restocking policy,
which further imply that this policy can be approximated more efficiently
in terms of the quality (here the total costs) of the optimal routing solution
by rule-based policies designed by Salavati-Khoshghalb et al. [21].

In order to compare the solution structures between the various poli-
cies, we used the Hamming distance. We recall that the Hamming distance
with respect to a reference solution x̄ is computed as follows:

∆(x, x̄) = ∑
(vi,vj)∈T̄

(1 − xij) + ∑
(vi,vj)∈E\T̄

xij (32)

where, T̄ = {(vi, vj) ∈ E|x̄ij = 1}.
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Table 9: Average Hamming distance between the optimal recourse solutions and the
rule-based recourse policy with ηξ̄ for η = 1

n m f̄ solved Hamm.
Dist. f̄ solved Hamm.

Dist. f̄ solved Hamm.
Dist. f̄ solved Hamm.

Dist.

20 2 0.90 10 42 0.92 10 42 0.94 10 41 0.96 10 41
30 2 0.90 10 29 0.92 8 30 0.94 10 29 0.96 7 25
40 2 0.90 10 22 0.92 10 22 0.94 10 22 0.96 6 21
40 3 0.90 5 50 0.92 7 49 0.94 4 47 0.96 2 49
40 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0
50 2 0.90 10 18 0.92 8 18 0.94 10 16 0.96 4 17
50 3 0.90 4 41 0.92 4 36 0.94 3 41 0.96 1 42
50 4 0.90 2 70 0.92 1 70 0.94 0 0 0.96 0 0
60 2 0.90 10 12 0.92 9 15 0.94 7 15 0.96 6 14
60 3 0.90 3 30 0.92 1 30 0.94 1 31 0.96 0 0
60 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0

Table 10: Average Hamming distance between the optimal recourse solutions and the
hybrid policy with θ-θ̄ : 0.35 − 0.65)

n m f̄ solved Hamm.
Dist. f̄ solved Hamm.

Dist. f̄ solved Hamm.
Dist. f̄ solved Hamm.

Dist.

20 2 0.90 10 41 0.92 10 39 0.94 10 40 0.96 10 39
30 2 0.90 10 29 0.92 8 29 0.94 10 26 0.96 7 26
40 2 0.90 10 22 0.92 10 20 0.94 10 18 0.96 6 17
40 3 0.90 5 50 0.92 7 49 0.94 4 47 0.96 2 29
40 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0
50 2 0.90 10 18 0.92 8 19 0.94 10 15 0.96 4 16
50 3 0.90 4 41 0.92 4 38 0.94 3 34 0.96 1 40
50 4 0.90 2 66 0.92 1 70 0.94 0 0 0.96 0 0
60 2 0.90 10 12 0.92 9 16 0.94 7 16 0.96 6 12
60 3 0.90 3 29 0.92 1 31 0.94 1 31 0.96 0 0
60 4 0.90 0 0 0.92 0 0 0.94 0 0 0.96 0 0

In Table 9 we report the average Hamming distance where x̄ = x∗opt
and x = x∗rule. In Table 10 we report the average Hamming distance where
x̄ = x∗opt and x = x∗hybrid. In both these tables we only consider instances
that were solved to optimality by all three policies. Furthermore, since the
stochastic solution is effectively a directed solution, all computations in
tables 9 and 10 are based on the directed solutions. As observed in Tables
7 and 8 the cost differences between solutions of the three policy were
relatively low. However, Tables 9 and 10 show that indeed on average the
solution structures of the rule based policy and the hybrid policy may be
substantially different from those of the optimal policy.

4.2. The instances Generated by Louveaux and Salazar-González [25]
We have compared the solutions that we obtain with those of Louveaux

and Salazar-González [25] for the instances that both methods are able to
solve. This comparison confirmed that our method provides valid results.
Regarding computational times, Louveaux and Salazar-González’s imple-
mentation seems to be more effective than ours: if one accounts for differ-
ences between the machine that they have used and ours, their code runs
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faster and it is able to solve to optimality more instances than our algo-
rithm for a given CPU time allowance. This result is not surprising given
the fact that their approach uses specialized procedures for instances with
identical demand distributions, which is not the case of our method.

Furthermore, it is observed from Tables 11-13 that the LBF cuts devel-
oped in this paper can significantly reduce the number of branch-and-cut
nodes explored by the Integer L-shaped algorithm. The number of B&C
nodes explored in the proposed method in this paper is much smaller than
in Louveaux and Salazar-González’s implementation.

5. Conclusions

In this paper, we developed an exact solution methodology to solve
the VRPSD under an optimal restocking policy. To do so, the Integer L-
shaped algorithm was adapted. To enhance the efficiency of the Integer
L-shaped algorithm, various lower bounding schemes were developed.
The key element for successfully employing such bounding procedures is
to provide effective lower approximation of the expected recourse cost of
partial routes. In addition, a general lower bound enhancing the Integer
L-shaped algorithm was also developed.

Using the exact method proposed in this paper, we were able to opti-
mally solve problems with up to 60 customers and a fleet of four vehicles.
It should be noted that the proposed exact method is the first to solve the
VRPSD under an optimal restocking policy when considering instances
where customer demands follow arbitrary discrete distributions. The nu-
merical results presented in this paper show that the resulting routes from
the optimal restocking policy yield a appreciable amount of savings when
compared to executing the classical policy on the same routes.

Further research in this area could focus on the exploration of the po-
tential of applying column generation and branch and price to the con-
sidered problem. It would also be interesting to investigate how more
collaborative recourse policies (where several vehicles coordinate to react
to high demand situations) could be applied to the VRPSD.
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zá

le
z

[2
5]

w
it

h
∆
=

0.

In
st

an
ce

O
ur

re
su

lt
Lo

uv
ea

ux
an

d
Sa

la
za

r-
G

on
zá
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