
A further study on two-agent parallel-batch

scheduling with release dates and

deteriorating jobs to minimize the makespan

Yuan Gaoa, Jinjiang Yuana,∗, C.T. Ngb, T.C.E. Chengb

aSchool of Mathematics and Statistics, Zhengzhou University,

Zhengzhou, Henan 450001, China

bDepartment of Logistics and Maritime Studies, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

Abstract We re-visit the two-agent scheduling on a parallel-batch machine to mini-

mize the makespan, where the jobs have release dates and linear deteriorating process-

ing times. The objective is to minimize the makespan of agent A with the makespan

of agent B being bounded. In the paper [Tang, L.X., Zhao, X.L., Liu, J.Y., & Le-

ung, J.Y.T. (2017) Competitive two-agent scheduling with deteriorating jobs on a single

parallel-batching machine. European Journal of Operational Research, 263, 401-411.],

the authors reported comprehensive research for this scheduling model. Especially, they

presented polynomial-time algorithms for the following four problems. In the first, the

batch capacity is unbounded and the two agents are compatible. In the second, the batch

capacity is bounded, the two agents are incompatible, the A-jobs have a fixed number

of normal processing times, and the B-jobs have a common release date. In the third

and forth, the batch capacity is bounded, the two agents are compatible, and the release

dates and normal processing times are either agreeable or reversely agreeable. But their

∗Corresponding author: Jinjiang Yuan. Email address: yuanjj@zzu.edu.cn

1

This is the Pre-Published Version.https://doi.org/10.1016/j.ejor.2018.07.040

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

discussions for the above four problems are logically confusing. In this paper we present

a more efficient polynomial-time algorithm for the first problem and show that the other

three problems are NP -hard. We also present a pseudo-polynomial-time algorithm for

the version where the batch capacity is bounded, the two agents are incompatible, and the

A-jobs and the B-jobs have their common release dates, respectively. We finally present a

strongly polynomial-time algorithm for the version where the batch capacity is unbounded

and the two agents are incompatible.

Keywords : parallel-batch; two agents; release dates; deterioration

1 Introduction

This paper is related to several well-studied scheduling models. For our purpose, we only

review the most pertinent studies.

Multi-agent scheduling was first introduced by Baker and Smith (2003), and Agnetis

et al. (2004). Especially, in two-agent scheduling, there are two agents A and B. Each

agent X = A,B has its own set of jobs J X = {JX1 , JX2 , . . . , JXnX
}. The jobs of agent

X are called the X-jobs. We assume that the A-jobs and the B-jobs are disjoint, i.e.,

J A ∩ J B = ∅. In a scheduling environment, agent X has a scheduling cost fX that

only depends on the scheduling of the X-jobs. The two agents compete for a common

processing resource to process their jobs. The problem has been widely studied in the

literature. The methodology and development of multi-agent scheduling can be found in

Leung et al. (2010), Perez-Gonzalez and Framinan (2014), Agnetis et al. (2014), Fan and

Cheng (2016), and Yuan (2016).

Parallel-batch scheduling was first introduced by Lee et al. (1992). In this scheduling

model, a parallel-batch processor is a production facility that can handle up to a batch of

c jobs simultaneously, where c is the batch capacity, and the processing time of a batch

is equal to the longest processing time of the jobs contained in the batch. All the jobs

contained in the same batch have a common starting time and a common completion

time. There are two variants of parallel-batch scheduling, namely the unbounded model,

in which c = ∞, and the bounded model, in which c < n. The unbounded model was

first studied in Brucker et al. (1998). In the literature a scheduling problem in the

2

parallel-batch machine setting is denoted by 1|p-batch, rj, c|f , where “p-batch” refers to

the parallel-batch machine, rj means that the jobs have release dates, c is the batch

capacity, and f is the scheduling cost to be minimized. For the two-agent scheduling on

a parallel-batch machine, we use

1|p-batch, rXj , c, CF/IF |fA : fB ≤ QB

to denote a problem, where CF means that the two agents are compatible, i.e., the

jobs from different agents can be assigned to a common batch, and IF means that the

two agents are incompatible, i.e., the jobs from different agents cannot be assigned to a

common batch. The goal of the problem is to find a feasible schedule that minimizes fA,

subject to the restriction that fB ≤ QB. Research on two-agent parallel-batch scheduling

can be found in Li and Yuan (2012), Fan et al. (2013), and Wang et al. (2017).

Scheduling with deteriorating jobs was first studied by Melnikov and Shafransky

(1979). Although there are many models in this research setting, we only consider the

linear deterioration version in which the processing time of a job Jj in a schedule is given

by pj = αj(a+ bt) with a ≥ 0, b > 0, and αj > 0, where αj is called the normal processing

time of job Jj and t is the starting time of job Jj in the schedule. In this scheduling

model, a useful observation is that, if a set of jobs J is consecutively processed (in an

arbitrary order) starting at time t, then the last job is completed at time

(t+
a

b
)
∏
Jj∈J

(1 + bαj)−
a

b
. (1)

Equation (1) has been repeatedly used in the literature and will also used in this paper.

Li et al. (2011) studied problem 1|p-batch, pj = αjt, rj, c|Cmax. Specifically, they pre-

sented an O(n log n)-time algorithm to solve problem 1|p-batch, pj = αjt, rj, c =∞|Cmax.

We show in Section 2 that their algorithm can be easily extended to solve problem

1|p-batch, pj = αj(a+ bt), rj, c =∞|Cmax in O(n log n) time.

In this paper we consider the two-agent scheduling on a single parallel-batch machine,

where the jobs have release dates and linear deteriorating processing times. The objective

is to find a feasible schedule that minimizes the makespan of one agent with the restriction

that the makespan of the other agent cannot exceed a given bound. In this scheduling

model, there are two agents A and B, the X-jobs (for X = A,B) are given by J X =

{JX1 , JX2 , . . . , JXnX
} with J A ∩ J B = ∅, each job JXj has a release date rXj > 0, and the

3

actual processing time of job JXj is given by pXj = αXj (a + bt), where αXj is the normal

processing time of job JXj for j = 1, 2, . . . , nX , a ≥ 0 and b > 0 are constants, and t

is the starting time of job JXj in a real schedule. A schedule is determined by a batch

sequence π = (B1, B2, . . . , Bm), which indicates that the n = nA+nB jobs in J A∪J B are

partitioned into m batches B1, B2, . . . , Bm and are processed in this order. If Bi ⊆ J X

for some i, we call Bi an X-batch or an X-pure batch. We use rBi
= max{rj : Jj ∈ Bi}

to denote the release date of batch Bi and αBi
= max{αj : Jj ∈ Bi} to denote the

normal processing time of batch Bi. Hence, if batch Bi starts at time t in schedule π,

then t ≥ rBi
and the actual processing time of batch Bi in π is αBi

(a + bt), so batch Bi

is completed at time t + αBi
(a + bt). For a given schedule π, we use CX

j (π) to denote

the completion time of job JXj in π. Then the makespan of agent X under π is given by

CX
max(π) = max{CX

j (π) : j = 1, 2, . . . , nX}. Following the notation in Tang et al. (2017),

we use IF and CF to represent incompatible agents and compatible agents, respectively.

Then the scheduling problems studied in this paper can be denoted by

1|p-batch, pXj = αXj (a+ bt), rXj , c, CF/IF |CA
max : CB

max ≤ QB, (2)

which aims to find a feasible schedule that minimizes CA
max, subject to the restriction that

CB
max ≤ QB. In order to express a problem more efficiently in the following table, we just

state the choices of c and CF/IF , together with the notation rXj . For example, problem

(c =∞, CF, rXj) refers to a problem in (2) in which the batch capacity is unbounded, the

two agents are compatible, and the jobs have their respective release dates, while problem

(c < n, IF, rXj) refers to a problem in (2) in which the batch capacity is bounded, the two

agents are incompatible, and the jobs have their respective release dates. For the case

where rXj is omitted, all the jobs are released at a common time t0 ≥ 0.

The scheduling model in (2) was first studied by Tang et al. (2017), who considered

other regular scheduling costs such as fmax,
∑
Cj, and

∑
Uj. The work in Tang et al.

(2017) is innovative as they proposed a scheduling model of a real production problem for

the ingot soaking process of a primary rolling plant in the steel industry. We complement

their study by analyzing some open cases to complete the research on this scheduling

model related to makespan minimization. Table 1 summarizes the comprehensive research

in Tang et al. (2017) concerning makespan minimization with release dates.

Table 1: The related results in Tang et al. (2017).

4

Scheduling Problem Algorithm Reference in Tang et al. (2017)

c =∞, CF, rXj O(n3) Discussion of Algorithm 1

c < n, IF, rXj , (l, rB) O(n2l
Ac

l) Discussion of Algorithm DP6

c < n, CF, agr(rj, αj) O(n2c) Discussion of Algorithm 2

c < n, CF, revagr(rj, αj) O(n2c) Discussion of Algorithm 2

c =∞, IF, rXj O(nAnBn log(Q′U −Q′L)) Theorem 3.2.3

Note that the following notations are used in Table 1:

• Q′U is an upper bound on CA
max and Q′L is a lower bound on CA

max.

• (l, rB) denotes the restriction that the A-jobs have l distinct normal processing times

and the B-jobs have a common release date rB.

• agr(rj, αj) denotes that the release dates and normal processing times of the jobs are

agreeable, i.e., ri < rj implies that αi ≤ αj.

• revagr(rj, αj) denotes that the release dates and normal processing times of the jobs

are reversely agreeable, i.e., ri < rj implies that αi ≥ αj.

Among the plentiful results obtained by Tang et al. (2017) are polynomial-time solu-

tion algorithms for the following four problems.

Problem 1. 1|p-batch, pXj = αXj (a+ bt), rXj , c =∞, CF |CA
max : CB

max ≤ QB.

Problem 2. 1|p-batch, pXj = αXj (a + bt), rXj , c < n, IF |CA
max : CB

max ≤ QB with the

restriction that the A-jobs have l (a constant) distinct normal processing times and the

B-jobs have a common release date.

Problem 3. 1|p-batch, pXj = αXj (a+ bt), agr(rj, αj), c < n,CF |CA
max : CB

max ≤ QB.

Problem 4. 1|p-batch, pXj = αXj (a+ bt), revagr(rj, αj), c < n,CF |CA
max : CB

max ≤ QB.

Unfortunately, their discussions for the above four problems are logically confusing.

Then we re-visit these problems and make the following contributions.

• For Problem 1, we present an O(n2 log n)-time algorithm, which is more efficient

than their O(n3)-time algorithm.

• For Problems 2-4, we study the following related problem:

5

Problem 5. 1|p-batch, pXj = αXj (a + bt), rX , c < n|CA
max : CB

max ≤ QB, where rX means

that the X-jobs have a common release date rX , X = A,B.

We show that Problem 5 is NP -hard even when c = 1, nA = 1, and either the condition

agr(rj, αj) holds or the condition revagr(rj, αj) holds. Note that c = 1 implies that CF

and IF have no difference. As a consequence, Problems 2-4 are NP -hard. We further

present a pseudo-polynomial-time algorithm for Problem 5 under the IF assumption.

• Finally we study the following problem.

Problem 6. 1|p-batch, pXj = αXj (a+ bt), rXj , c =∞, IF |CA
max : CB

max ≤ QB.

For this problem, Tang et al. (2017) presented an O(nAnBn log(Q′U−Q′L))-time algorithm,

which is weakly polynomial. In this paper, we present an O(n3)-time algorithm, which is

strongly polynomial.

We organize the rest of the paper as follows: In Section 2 we present a fundamental

algorithm, which is repeatedly used in this paper. In Section 3 we study Problem 1. In

Section 4 we study Problem 5, together with discussions of the NP -hardness of Problems

2-4. In Section 5 we study Problem 6. We conclude the paper in the last section.

2 A fundamental algorithm

For problem 1|p-batch, pj = αjt, rj, c = ∞|Cmax, Li et al. (2011) presented a dynamic

programming algorithm to solve the problem in O(n log n) time. In the following we

borrow their method to solve problem

1|p-batch, pj = αj(a+ bt), rj, c =∞|Cmax. (3)

By the job-shifting argument, the following lemma can be easily verified.

Lemma 2.1. For the problem in (3), there exists an optimal batch sequence π = (B1, B2,
. . . , Bm) such that if two jobs Ji and Jj belong to distinct batches with Ji ∈ Bx, Jj ∈ By,
and x < y, then αi > αj.

If there exists two jobs Ji and Jj such that ri ≤ rj and αi ≤ αj, then we can put Ji in

the same batch as Jj without increasing the makespan. Thus, we can delete job Ji from

the job set. Therefore, by an O(n log n)-time reduction, we may assume that the jobs can

6

be re-indexed such that r1 < r2 < · · · < rn and α1 > α2 > · · · > αn. This assumption,

together with Lemma 2.1, leads to the following corollary.

Corollary 2.1. There exists an optimal batch sequence π = (B1, B2, . . . , Bm) for the
problem in (3) such that each batch Bx is in the form Bx = {Jj : l ≤ j ≤ u} for some
numbers l and u.

Now we present a dynamic programming algorithm to solve the problem in (3).

Algorithm DP1. Define F (k) as the minimum makespan Cmax of a partial schedule of

the jobs J1, J2, . . . , Jk. By Corollary 2.1, in an optimal schedule of the jobs J1, J2, . . . , Jk

assuming F (k), the last batch can be chosen as {Ji+1, Ji+2, . . . , Jk} for some index i. The

initial condition is F (0) = 0 and the recursive formula for F (k) is given by

F (k) = min
0≤i≤k−1

{max{F (i), rk} · (1 + bαi+1) + aαi+1}. (4)

The optimal value of the problem in (3) is F (n). A straightforward implementation of the

algorithm requires O(k) time to compute F (k), given F (i), 0 ≤ i ≤ k − 1, so algorithm

DP1 runs in O(n2) time.

Similar to the discussion in Li et al. (2011), we can also adopt the technique provided

by Poon and Zhang (2004) to reduce the running time of DP1 to O(n log n) in the following

way.

First, we set F (0) = 0. Generally, if F (0), F (1), . . . , F (k − 1) with 1 ≤ k ≤ n are

given, we can easily calculate the value F (k). Note that

0 = F (0) ≤ F (1) ≤ · · · ≤ F (n). (5)

Since F (k) > rk, from (5), there is a unique index mk such that F (mk) ≤ rk < F (mk+1).

This implies that

max{F (i), rk} =

 rk, if i ≤ mk,

F (i), otherwise.

Thus, the recursive relation in (4) can be re-written as

F (k) = min

 rk(1 + bαmk+1) + aαmk+1,

F (i)(1 + bαi+1) + aαi+1, mk + 1 ≤ i ≤ k − 1.
(6)

7

Next, let Ak = {F (i)(1 + bαi+1) + aαi+1 : mk + 1 ≤ i ≤ k − 1}, which is the main part

for calculating F (k) in (6). To obtain Ak+1 from Ak, we compute mk+1 (by a sequential

search for rk+1 on the sequence F (mk + 1), F (mk + 2), . . . , F (n)), deleting the elements

in Ak\Ak+1 = {F (i)(1 + bαi+1) + aαi+1 : mk + 1 ≤ i ≤ mk+1}, and insert the element

F (k)(1 + bαk+1) + aαk+1. Third, we store Ak as a heap and keep an array P of pointers

so that P [i] points to the element F (i)(1 + bαi+1) + aαi+1 in the heap when it is inserted.

Note that finding the minimum value in Ak takes a constant time and each value of the

form F (k)(1 + bαk+1) + aαk+1 is inserted into and deleted from the heap at most once.

Thus, our algorithm requires O(n log n) time in total. Then we have the following result.

Theorem 2.1. The problem in (3) can be solved in O(n log n) time.

3 The first problem

In Section 3.2.1.1 of Tang et al. (2017), the authors studied Problem 6, i.e.,

1|p-batch, pXj = αXj (a+ bt), rXj , c =∞, IF |CA
max : CB

max ≤ QB,

and provided the following lemma.

Lemma 3.2.1 in Tang et al. (2017). For Problem 6, there is an optimal batch schedule

π = (B1, B2, . . . , Bm) such that if two jobs Ji and Jj belong to the same agent and distinct

batches with Ji ∈ Bx, Jj ∈ By and x < y, then αi > αj.

In Section 3.2.1.2 of Tang et al. (2017), the authors studied Problem 1, i.e.,

1|p-batch, pXj = αXj (a+ bt), rXj , c =∞, CF |CA
max : CB

max ≤ QB.

It is not hard to see that the result in their Lemma 3.2.1 is still valid for Problem 1. But

their following statement is unreasonable. As in the first paragraph of Section 3.2.1.2 in

Tang et al. (2017), the author wrote the statement:

In view of Lemma 3.2.1, we may assume that the jobs have been indexed such that

r1 < · · · < rn and α1 > · · · > αn. (7)

8

After this statement, the authors established the following properties for Problem 1.

Lemma 3.2.4 in Tang et al. (2017). For Problem 1, there is an optimal schedule in
the form (π1, π2, π3) that has the following properties:

(1) the partial schedule π2 contains only all the B-pure batches, π3 contains part of A-pure
batches (if any), and π1 contains the remaining batches;

(2) all the jobs (batches) in the partial schedules π1 and π2 are scheduled in decreasing

order of their normal processing times, all the jobs (batches) in the partial schedules π1

and π3 are also scheduled in decreasing order of their normal processing times.

Finally, based on Lemma 3.2.1 (in fact, the above statement) and Lemma 3.2.4, the

authors presented an O(n3) algorithm (their Algorithm 1) for Problem 1.

Since two jobs belonging to distinct agents cannot be absorbed by each other, the

statement in (7) does not hold in general. From the context of Tang et al. (2017), it

seems that they studied Problem 1 under the assumption that the jobs are indexed in

such a way that r1 < · · · < rn and α1 > · · · > αn. In this case, property (2) in their

Lemma 3.2.4 is inaccurate and the implementation of their Algorithm 1 is confusing. So

we present in the following a new algorithm for Problem 1.

Consider an instance {J1, J2, . . . , Jn} of Problem 1 as follows:

1|p-batch, pXj = αXj (a+ bt), rXj , c =∞, CF |CA
max : CB

max ≤ QB.

If there exist two jobs Ji and Jj belonging to the same agent such that ri ≤ rj and

αi ≤ αj, from the fact that c =∞, we can always put Ji in the same batch as Jj without

increasing the makespan of each agent. This implies that we can delete job Ji from the

job set in our discussion. Therefore, we may assume that, for every two jobs Ji and Jj

belonging to the same agent, we have that ri 6= rj and αi 6= αj, and moreover, ri < rj

implies that αi > αj. As a result, we can re-index the jobs of each agent X such that

rX1 < rX2 < · · · < rXnX
and αX1 > αX2 > · · · > αXnX

for X = A,B.

Note that the result of Lemma 3.2.1 in Tang et al. (2017) for incompatible agents are

also valid for compatible agents and can be re-stated in the following form.

Lemma 3.1. For Problem 1, there is an optimal batch schedule π = (B1, B2, . . . , Bm)

9

such that if two jobs Ji and Jj belong to the same agent and distinct batches with Ji ∈ Bx,
Jj ∈ By, and x < y, then αi > αj.

The problem in (3), i.e., 1|p-batch, pj = αj(a+bt), rj, c =∞|Cmax, is important for our

discussion. Relating to this problem, we consider the following three auxiliary problems.

Problem Aux(kA, kB): This is the single-agent scheduling problem in (3) for the job set

{JA1 , . . . , JAkA , J
B
1 , . . . , J

B
kB
}, where 0 ≤ kA ≤ nA and 0 ≤ kB ≤ nB. We use C(kA, kB) to

denote the optimal value of Problem Aux(kA, kB) and π(kA, kB) to denote an arbitrary

optimal schedule.

Problem AuxA(k+A): This is the single-agent scheduling problem in (3) for the job set

{JAkA+1, . . . , J
A
nA
}, where 0 ≤ kA ≤ nA − 1, with the restriction that no jobs start earlier

than C(kA, nB). We use CA(k+A) to denote the optimal value of Problem AuxA(k+A) and

use πA(k+A) to denote an arbitrary optimal schedule.

Problem AuxB(k+B): This is the single-agent scheduling problem in (3) for the job set

{JBkB+1, . . . , J
B
nB
}, where 0 ≤ kB ≤ nB − 1, with the restriction that no jobs start earlier

than C(nA, kB). We use CB(k+B) to denote the optimal value of Problem AuxB(k+B) and

use πB(k+B) to denote an arbitrary optimal schedule.

Lemma 3.2. For Problem 1 with a feasible instance, one of the following n + 1 sched-
ules is optimal: (i) π(nA, nB); (ii) (π(kA, nB), πA(k+A)), 0 ≤ kA ≤ nA − 1; and (iii)
(π(nA, kB), πB(k+B)), 0 ≤ kB ≤ nB − 1.

Proof. Let π = (B1, B2, . . . , Bm) be an optimal schedule for Problem 1 with the property
stated in Lemma 3.1. We consider the following three distinct cases.

Case 1: CA
max(π) = CB

max(π). Then both JAnA
and JBnB

are included in the last batch
Bm of π. Let π∗ = π(nA, nB). Then max{CA

max(π
∗), CB

max(π
∗)} = Cmax(π

∗) ≤ Cmax(π) =
CA

max(π) = CB
max(π). This means that π∗ = π(nA, nB) is also optimal for Problem 1.

Case 2: CA
max(π) > CB

max(π). Then the last batch of π consists of some jobs of agent
A. From Lemma 3.1, there is a job index kA < nA and a batch index y < m such
that JBnB

∈ By and By+1 ∪ By+2 ∪ · · · ∪ Bm = {JAkA+1, J
A
kA+2, . . . , J

A
nA
}. Let π′ be the

sub-schedule of B1, B2, . . . , By in π and let π′′ be the sub-schedule of By+1, By+2, . . . , Bm

in π. Then π = (π′, π′′), CB
max(π) = Cmax(π

′), and CA
max(π) = Cmax(π) = Cmax(π

′′).
Now let π∗ = (π(kA, nB), πA(k+A)) be the schedule for Problem 1 that is obtained from

10

π = (π′, π′′) by replacing π′ and π′′ with π(kA, nB) and πA(k+A), respectively. For Problem
Aux(kA, nB), π(kA, nB) is an optimal schedule and π′ is a feasible schedule. Then

CB
max(π

∗) ≤ C(kA, nB) ≤ Cmax(π
′) = CB

max(π). (8)

The inequality in (8) also implies that π′′ (which starts no earlier than Cmax(π
′)) is a

feasible schedule for Problem AuxA(k+A). From optimality, we further have

CA
max(π

∗) = CA(k+A) ≤ Cmax(π
′′) = CA

max(π). (9)

From (8) and (9), we have that CA
max(π

∗) ≤ CA
max(π) and CB

max(π
∗) ≤ CB

max(π). Conse-
quently, π∗ = (π(kA, nB), πA(k+A)) is also optimal for Problem 1.

Case 3: CB
max(π) > CA

max(π). This case is essentially the same as Case 2. By replacing
the roles of A and B, we can show that (π(nA, kB), πB(k+B)) is optimal for Problem 1 for
some job index kB with 0 ≤ kB ≤ nB − 1. The lemma follows.

By Theorem 2.1, the problem in (3) for a set of n jobs is solvable in O(n log n) time.

Then each of the n+ 1 schedules in Lemma 3.2 can be obtained in O(n log n) time. Thus,

we can first generate the n+1 schedules in O(n2 log n) time and then pick the best feasible

schedule for Problem 1. This leads to the following result.

Theorem 3.1. Problem 1 is solvable in O(n2 log n) time.

4 Study on Problem 5 and extensions

4.1 NP -hardness proof

The NP -hardness of the single-agent problem 1|p-batch, pj = αjt, rj, c < n|Cmax was

established in Li et al. (2011). This implies that the two-agent problem

1|p-batch, pXj = αXj (a+ bt), rXj , c < n|CA
max : CB

max ≤ QB (10)

is also NP -hard for both incompatible agents and compatible agents. Tang et al. (2017)

presented polynomial-time algorithms for Problems 2-4, all of which are sub-problems of

the problem in (10). However, their treatments of Problems 2-4 are logically confusing.

We now show that Problem 5, i.e.,

1|p-batch, pXj = αXj (a+ bt), rX , c < n|CA
max : CB

max ≤ QB,

is NP -hard, which implies that Problems 2-4 are NP -hard, too.

11

Theorem 4.1. Problem 5 is NP -hard even when c = 1 and nA = 1. Moreover, the
problem is also NP -hard under each one of the following restrictions:

(i) The release dates and normal processing times of the jobs are agreeable, i.e., ri < rj
implies that αi ≤ αj.

(ii) The release dates and normal processing times of the jobs are reversely agreeable,
i.e., ri < rj implies that αi ≥ αj.

Proof. We use the Subset-Product Problem for the reduction. For this problem, Garey
and Johnson (1979) erroneously reported its strong NP -completeness. The binary NP -
completeness of the problem was established in Ng et al. (2010).

Subset-Product Problem: Given t + 1 positive integers {a1, a2, . . . , at, H} such that∏t
i=1 ai = H2 and ai ≥ 2 for i = 1, 2, . . . , t, does there exist a subset N1 of the index set

N = {1, 2, . . . , t} such that
∏

i∈N1
ai = H?

For a given instance (a1, a2, . . . , at;H) of the Subset-Product Problem, we construct a
job instance of the decision version of Problem 5 as follows:

• a = 0, b = 1, c = 1, nA = 1, and nB = t.

• Job JA1 has a release date rA1 = H and a normal processing time αA1 = h − 1, where
2 ≤ h ≤ H.

• Jobs JB1 , J
B
2 , . . . , J

B
t have release dates rBi = 1 and normal processing times αBi = ai−1

for i = 1, 2, . . . , t.

• The decision asks whether there is a feasible schedule π such that CA
max(π) ≤ hH and

CB
max(π) ≤ hH2.

The above construction can be performed in polynomial time. In the following we
show that the Subset-Product Problem instance has a solution if and only if the above
constructed job instance has a feasible schedule π such that CA

max(π) ≤ hH and CB
max(π) ≤

hH2.

Necessity Proof: Suppose that the Subset-Product Problem instance has a solution.
Then there exists a subset N1 of the index set N = {1, 2, . . . , t} such that

∏
i∈N1

ai = H.
Let N2 = N\N1. Set J B

Ni
= {JBj : j ∈ Ni} for i = 1, 2. Then we construct a schedule

π = (J B
N1
≺ JA1 ≺ J B

N2
) in the following way.

– The B-jobs in J B
N1

are processed consecutively from time rB = 1. Since
∏

i∈N1
ai =

H, the completion time of the last job in J B
N1

is given by C(J B
N1

) = 1 ·
∏

i∈N1
(αBi + 1) =

1 ·
∏

i∈N1
ai = H. Thus, the B-jobs in J B

N1
are scheduled in the time interval [1, H] in π.

– The A-job JA1 is processed from time rA1 = H. Then the completion time of JA1 is
given by CA

1 (π) = SA1 (π) · (αA1 + 1) = hH. Thus, CA
max(π) = hH.

– Finally, theB-jobs in J B
N2

are processed consecutively from time hH. Since
∏

i∈N2
ai =

H, the completion time of the last job in JN2 is given by C(J B
N2

) = hH ·
∏

i∈N2
(αBi + 1) =

hH ·
∏

i∈N2
ai = hH2. It follows that CB

max(π) = hH2.

12

Figure 3 displays the structure of schedule π. The above discussion implies that π is
our required feasible schedule.

JB
N1

JA
1

JB
N2

0 1 H hH hH2

Figure 3. The schedule π

Sufficiency Proof: Suppose that π is a feasible schedule of the above job instance such
that CA

max(π) ≤ hH and CB
max(π) ≤ hH2. We prove that the Subset-Product Problem

instance has a solution in the following. Note that c = 1.

Let τ be the starting time of job JA1 in π. Then τ ≥ rA1 = H and hτ = τ · (αA1 + 1) =
CA

max(π) ≤ hH. This just implies that τ = H. Consequently, job JA1 is scheduled in the
time interval [H, hH] in π.

From the fact that the B-jobs have a common release date rB = 1 and CB
max(π) ≤ hH2,

we deduce that the B-jobs are processed between 1 and hH2. We use J B
N1

to denote the
set of the B-jobs processed in the time interval [1, H] and J B

N2
to denote the set of the

B-jobs processed in the time interval [hH, hH2], where N1 and N2 form a partition of the
index set {1, 2, . . . , t}. Then

C(J B
N1

) =
∏
i∈N1

ai ≤ H

and
C(J B

N2
) = hH ·

∏
i∈N2

ai ≤ hH2.

It follows that
∏

i∈N1
ai ≤ H and

∏
i∈N2

ai ≤ H. Since
∏

i∈N1
ai ·

∏
i∈N2

ai = H2, we have
that

∏
i∈N1

ai =
∏

i∈N2
ai = H. This implies that the Subset-Product Problem instance

has a solution.

Since c = 1 in our job instance, the above discussion implies that Problem 5 is NP -
hard for both compatible agents and incompatible agents.

Note that our job instance satisfies the conditions that

rB1 = rB2 = · · · = rBt = 1 < rA1 = H

and
αBi = ai − 1 ≤ H − 1 for i = 1, 2, . . . , t.

When h = H, we have that αBi = ai− 1 ≤ αA1 = H − 1 for i = 1, 2, . . . , t. In this case, all
the job release dates and normal processing times are agreeable. When h = 2, we have
that αBi = ai − 1 ≥ αA1 = h − 1 = 1 for i = 1, 2, . . . , t. In this case, all the job release
dates and normal processing times are reversely agreeable. It follows that Problem 5 is
also NP -hard under each one of the restrictions (i) and (ii). The result follows.

13

As a consequence of Theorem 4.1, we have

Corollary 4.1. Problems 2-4 are NP -hard.

4.2 Problem 5 under the IF assumption

We now consider Problem 5 under the IF assumption, i.e.,

1|p-batch, pXj = αXj (a+ bt), rX , c < n, IF |CA
max : CB

max ≤ QB. (11)

To present a pseudo-polynomial-time algorithm, we assume that all the parameters a, b,

αXj , and rX are non-negative integers. As in Tang et al. (2017), we use the following

Full Batch Longest Normal Processing Time (FBLNPT) rule to form the batches in our

discussion.

FBLNPT: Sort the jobs in the non-increasing order of their normal processing times and

form full batches by always assigning the first c unassigned jobs into a full batch. Finally,

the remaining fewer than c jobs, if any, are assigned to a non-full batch.

It is easy to verify that, for the single-agent problem with a common release date r0,

i.e.,

1|p-batch, pj = αj(a+ bt), r0, c < n|Cmax, (12)

the schedule in which the batches are generated by the FBLNPT rule, starting at time r0

and processed consecutively, is an optimal schedule.

Lemma 4.1. For a feasible instance of the problem in (11), there exists an optimal
schedule satisfying the following conditions:

(i) the batches of each agent X = A,B are generated by the FBLNPT rule;

(ii) if rA ≤ rB, the batches of agent B are processed consecutively; and

(iii) if rB ≤ rA, the batches of agent A are processed consecutively.

Proof. Since the jobs of agent X = A,B have a common release date rX , by using the
job-swapping argument and job-shifting argument, we can show that the batches of agent
X can be generated by the FBLNPT rule in an optimal schedule for the problem in (11).
This proves result (i).

14

Now let π = (B1, B2, . . . , Bm) be an optimal schedule with satisfying result (i). Sup-
pose first that rA ≤ rB. Let Bi be the first batch in π that starts no earlier than rB

and let τ be the starting time of Bi. For X = A,B, let BX be the set of X-batches in
{Bi, Bi+1, . . . , Bm}. Note that BB consists of all the B-batches since the jobs of agent B
are released at time rB, so they cannot be scheduled earlier than rB. We define π′ as a
new schedule that is obtained from π by re-scheduling the batches in {Bi, Bi+1, . . . , Bm}
in the following way.

– If Bm is a B-batch, then starting at time τ , first schedule the batches in BA consec-
utively, followed by scheduling the batches in BB consecutively.

– If Bm is an A-batch, then starting at time τ , first schedule the batches in BB con-
secutively, followed by scheduling the batches in BA consecutively.

It is not hard to verify that CA
max(π

′) ≤ CA
max(π) and CB

max(π
′) ≤ CB

max(π). Then π′

is also an optimal schedule satisfying result (i). Since the batches in BB (i.e., all the
B-batches) are processed consecutively in π′, it follows that π′ also satisfies result (ii).

When rA ≥ rB, by exchanging the roles of A and B, a same argument leads to an
optimal schedule π′′ that satisfies results (i) and (iii). The lemma follows.

From Lemma 4.1(i), we may suppose that all the batches of each agent have been

obtained by using the FBLNPT rule, which takes O(n log n) time. By regarding each

batch as a single job, we reduce the problem in (11) to its sub-version with c = 1, which

is the traditional single-machine two-agent scheduling problem, denoted as

1|pXj = αXj (a+ bt), rX |CA
max : CB

max ≤ QB. (13)

When only the B-jobs are considered, by processing all the B-jobs consecutively starting

at time rB, the makespan is given by (rB + a
b
)
∏nB

k=1(1 + bαBk) − a
b
. Hence, to guarantee

feasibility of the problem in (13), by using the expression in (1), we assume in the following

that

QB ≥ (rB +
a

b
)

nB∏
k=1

(1 + bαBk)− a

b
. (14)

We consider the following three distinct cases.

Case 1. rA = rB. In this case, we define two schedules π = (πA, πB) and σ = (σB, σA),

where

– πA is the partial schedule of π that processes all the A-jobs consecutively starting

at time rA = rB,

15

– πB is the partial schedule of π that processes all the B-jobs consecutively starting

at time CA
max(πA),

– σB is the partial schedule of σ that processes all the B-jobs consecutively starting

at time rA = rB,

– σA is the partial schedule of σ that processes all the A-jobs consecutively starting

at time CB
max(σB).

From Lemma 4.1, one of π and σ is an optimal schedule for the problem in (13). Since

π and σ can be generated in O(n) time, the problem in (13) is solvable in O(n) time in

this case.

Case 2. rA < rB. In this case, we first construct a schedule π in which all the A-jobs are

scheduled consecutively from time rA and all the B-jobs are scheduled consecutively from

time max{CA
max, r

B}. If CB
max(π) ≤ QB, then π is clearly an optimal schedule. Hence, we

assume in the following that CB
max(π) > QB. This means that the last job in an optimal

schedule must be an A-job.

According to Lemma 4.1, together with its proof, there is an optimal schedule in which

the jobs are scheduled in the order

(J A
1 ≺ J B ≺ J A

2), (15)

where J A
1 and J A

2 form a partition of J A such that J A
1 is the set of A-jobs starting at

the time interval [rA, rB), and J A
2 is the set of the A-jobs starting after rB. It is easy

to see that in an optimal schedule of the form in (15), we can further require that, for

i = 1, 2, the jobs in J A
i are processed in non-increasing order of their normal processing

times. Note that in an optimal schedule of the form in (15), the starting time of the

first B-job, denoted as s, is less than rB + αAmax(a + b · rB) since at most one job in

J A
1 is completed after rB, where αAmax = max{αAi : i = 1, 2, . . . , nA}. This means that

rB ≤ s < rB +αAmax(a+ b · rB). We enumerate all the possible choices of s. For each given

s, we find an optimal schedule of the form in (15) and pick the best one as the solution

for the problem in (13).

We now re-index all the A-jobs such that αA1 ≥ αA2 ≥ · · · ≥ αAnA
. Fix a positive integer

s with rB ≤ s < rB +αAmax(a+ b · rB). For each pair (i, t) of integers with 0 ≤ i ≤ nA and

16

rA ≤ t ≤ s, let fs(i, t) be the minimum makespan of a partial schedule that contains the

jobs JA1 , J
A
2 , . . . , J

A
i , JB1 , J

B
2 , . . . , J

B
nB

and has the processing structure (J A
1 ≺ J B ≺ J A

2)

in (15), where J A
1 and J A

2 form a partition of {JA1 , JA2 , . . . , JAi }, the last job in J A
1 starts

before rB and is completed at time t, and the processing of the jobs in J B starts at time

s. This implies that s ≥ max{t, rB}.

In an optimal schedule assuming fs(i, t), Ji is either the last job of J A
1 or the last

job of J A
2 . Then we have the following dynamic programming algorithm for calculating

fs(i, t) with fixed s.

• The initialization is

fs(0, t) =

 (s+ a
b
)
∏nB

k=1(1 + bαBk)− a
b
, if s ≥ rB and t = rA,

∞, otherwise.

• The recursive relation is

fs(i, t) = min{fs(i− 1, t∗), (1 + bαAi)fs(i− 1, t) + aαAi },

where t∗ =
t−aαA

i

(1+bαA
i)

, which means that if JAi starts at time t∗, then it is completed at time

t = (1 + bαAi)t∗ + aαAi .

• The optimal value of the problem in (13) is given by

min{fs(nA, t) : rB ≤ s < M, t ≤ s, fs(0, r
A) ≤ QB},

where M = rB + αAmax(a + b · rB). The corresponding optimal schedule can be found by

backtracking.

Note that there are a total of O(nAM
2) states and each recursion runs in a constant

time. So the time complexity of the above dynamic programming algorithm is O(nAM
2).

Case 3. rA > rB. According to Lemma 4.1, there is an optimal schedule in which the

jobs are scheduled in the order

(J B
1 ≺ J A ≺ J B

2), (16)

where J B
1 and J B

2 form a partition of J B. We further distinguish the following two

distinct cases.

17

(1) J B
2 = ∅. We construct a schedule π in which all the B-jobs are scheduled

consecutively from time rB and all the A-jobs are scheduled consecutively from time

max{CB
max, r

A}. Obviously, π is an optimal schedule for the problem in (13).

(2) J B
2 6= ∅. In this case, by exchanging the roles of A and B, the argument for Case

2 is still valid. We only highlight the major differences here.

Fix a positive integer s with rA ≤ s < rA + αBmax(a + b · rA). For each pair (i, t)

of integers with 0 ≤ i ≤ nB and rB ≤ t ≤ s, let fs(i, t) be the minimum makespan

of a partial schedule that contains the jobs JB1 , J
B
2 , . . . , J

B
i , JA1 , J

A
2 , . . . , J

A
nA

and has the

processing structure (J B
1 ≺ J A ≺ J B

2) in (16), where J B
1 and J B

2 form a partition of

{JB1 , JB2 , . . . , JBi }, the last job in J B
1 starts before rA and is completed at time t, and the

processing of the jobs in J A starts at time s. This implies that s ≥ max{t, rA}. Then we

have the following dynamic programming algorithm for calculating fs(i, t) with fixed s.

• The initialization is

fs(0, t) =

 (s+ a
b
)
∏nA

k=1(1 + bαAk)− a
b
, if s ≥ rA and t = rB,

∞, otherwise.

• The recursive relation is

fs(i, t) = min{fs(i− 1, t∗), (1 + bαBi)fs(i− 1, t) + aαBi },

where t∗ =
t−aαB

i

(1+bαB
i)

.

• The optimal value of the problem in (13) is given by

min{fs(0, rB) : rA ≤ s < M, there exists t ≤ s such that fs(nB, t) ≤ QB},

where M = rA + αBmax(a + b · rA). Note that the time complexity of the above dynamic

programming algorithm is O(nBM
2).

From the above analysis, we have the following result.

Theorem 4.2. Problem 1|p-batch, pXj = αXj (a + bt), rX , c < n, IF |CA
max : CB

max ≤ QB is
solvable in O(nM2) time, where M = max{rB + αAmax(a+ b · rB), rA + αBmax(a+ b · rA)}.

18

5 A new algorithm for Problem 6

We present in this section a strongly polynomial-time algorithm to solve Problem 6, i.e.,

1|p-batch, pXj = αXj (a+ bt), rXj , c =∞, IF |CA
max : CB

max ≤ QB.

Related to our research is the following two-agent scheduling problem

1|p-batch, pXj = αXj (a+ bt), rXj , c =∞, IF |Cmax, (17)

in which the jobs from distinct agents cannot be assigned to a common batch and the

goal is to find a feasible schedule that minimizes the makespan of all the jobs, i.e., Cmax =

max{CA
max, C

B
max}.

Consider an instance {J1, J2, . . . , Jn} of Problem 6 and the problem in (17). If there

exist two jobs Ji and Jj belonging to the same agent such that ri ≤ rj and αi ≤ αj, from

the fact that c =∞, we can always put Ji in the same batch as Jj without increasing the

makespan of each agent. This implies that we can delete job Ji from the job set in our

discussion. Therefore, we may assume that, for every two jobs Ji and Jj belonging to the

same agent, we have that ri 6= rj and αi 6= αj, and moreover, ri < rj implies that αi > αj.

As a result, we can re-index the jobs of each agent X such that rX1 < rX2 < · · · < rXnX
and

αX1 > αX2 > · · · > αXnX
for X = A,B.

Noting that the result of Lemma 3.2.1 in Tang et al. (2017) for Problem 6 is also valid

for the problem in (17), we re-state it in the following lemma.

Lemma 5.1. For Problem 6 and the problem in (17), there is an optimal batch schedule
π = (B1, B2, . . . , Bm) in which if two jobs Ji and Jj belong to the same agent and distinct
batches with Ji ∈ Bx, Jj ∈ By, and x < y, then αi > αj.

As in Section 3.2, we consider the following auxiliary problem.

Problem Aux∗(kA, kB): This is the two-agent scheduling problem in (17) for the job set

{JA1 , . . . , JAkA , J
B
1 , . . . , J

B
kB
}, where 0 ≤ kA ≤ nA and 0 ≤ kB ≤ nB. We use C∗(kA, kB) to

denote the optimal value of Problem Aux∗(kA, kB) and π∗(kA, kB) to denote an arbitrary

optimal schedule possessing the property stated in Lemma 5.1.

19

From Lemma 5.1, given (kA, kB) with 1 ≤ kA ≤ nA and 1 ≤ kB ≤ nB, the last batch

of π∗(kA, kB) is either J A(lA, kA) for some lA ∈ {0, 1, . . . , kA − 1} or J B(lB, kB) for some

lB ∈ {0, 1, . . . , kB − 1}, where

J X(lX , kX) = {JXlX+1, J
X
lX+2, . . . , J

X
kX
}, X = A,B.

If the last batch is J A(lA, kA), then it starts at time max{C∗(lA, kB), rAkA} and is completed

at time max{C∗(lA, kB), rAkA}(1+ b ·αAlA+1)+a ·αAlA+1. If the last batch is J B(lB, kB), then

it starts at time max{C∗(kA, lB), rBkB} and is completed at time max{C∗(kA, lB), rBkB}(1 +

b · αBlB+1) + a · αBlB+1.

The above discussion implies that all the values C∗(kA, kB) with 0 ≤ kA ≤ nA and

0 ≤ kB ≤ nB can be calculated by the following dynamic programming algorithm.

• The initialization is C∗(0, 0) = 0.

• The recursive relation is

C∗(kA, kB) = min

 min{τAlA(kA, kB) : 0 ≤ lA ≤ kA − 1}, if kA ≥ 1,

min{τBlB(kA, kB) : 0 ≤ lB ≤ kB − 1}, if kB ≥ 1,

where

τAlA(kA, kB) = max{C∗(lA, kB), rAkA}(1 + b · αAlA+1) + a · αAlA+1

and

τBlB(kA, kB) = max{C∗(kA, lB), rBkB}(1 + b · αBlB+1) + a · αBlB+1.

Finally, the optimal schedule π∗(kA, kB) can be obtained by backtracking.

Note that there are a total of O(nAnB) states and each recursion runs in O(n) time.

Then the time complexity of the above dynamic programming algorithm is O(nAnBn).

We also notice that the optimal value of the problem in (17) is C∗(nA, nB). Then we have

the following result.

Lemma 5.2. Problem Aux∗(kA, kB) with 0 ≤ kA ≤ nA and 0 ≤ kB ≤ nB, including the
problem in (17), is solvable in O(nAnBn) time.

Let us return to Problem 6 now. As for the analysis of Problem 1, we also need the

following two auxiliary problems.

20

Problem Aux∗A(k+A): This is the single-agent scheduling problem in (3) for the job set

{JAkA+1, . . . , J
A
nA
}, where 0 ≤ kA ≤ nA − 1, with the restriction that no jobs start earlier

than C∗(kA, nB). We use C∗A(k+A) to denote the optimal value of Problem Aux∗A(k+A)

and π∗A(k+A) to denote an arbitrary optimal schedule.

Problem Aux∗B(k+B): This is the single-agent scheduling problem in (3) for the job set

{JBkB+1, . . . , J
B
nB
}, where 0 ≤ kB ≤ nB − 1, with the restriction that no jobs start earlier

than C∗(nA, kB). We use C∗B(k+B) to denote the optimal value of Problem Aux∗B(k+B)

and π∗B(k+B) to denote an arbitrary optimal schedule.

Lemma 5.3. For Problem 6 with a feasible instance, one of the following n schedules
is optimal: (i) (π∗(kA, nB), π∗A(k+A)), 0 ≤ kA ≤ nA − 1 and (ii) (π∗(nA, kB), π∗B(k+B)),
0 ≤ kB ≤ nB − 1.

Proof. Let π = (B1, B2, . . . , Bm) be an optimal schedule for Problem 6 possessing the
property stated in Lemma 5.1. Then the last batch Bm is either an A-batch or a B-batch.

If Bm is an A-batch, from Lemma 5.1, there is a job index kA < nA and a batch index
y < m such that JBnB

∈ By and By+1 ∪By+2 ∪ · · · ∪Bm = {JAkA+1, J
A
kA+2, . . . , J

A
nA
}. Let π′

be a sub-schedule of B1, B2, . . . , By in π and π′′ be a sub-schedule of By+1, By+2, . . . , Bm

in π. Then π = (π′, π′′), CB
max(π) = Cmax(π

′), and CA
max(π) = Cmax(π) = Cmax(π

′′).
Now let π∗ = (π∗(kA, nB), π∗A(k+A)) be the schedule for Problem 6 that is obtained from
π = (π′, π′′) by replacing π′ and π′′ with π∗(kA, nB) and π∗A(k+A), respectively. For
Problem Aux∗(kA, nB), π∗(kA, nB) is an optimal schedule and π′ is a feasible schedule. For
Problem Aux∗A(k+A), π∗A(k+A) is an optimal schedule and π′′ is a feasible schedule. Hence,
CA

max(π
∗) ≤ CA

max(π) and CB
max(π

∗) ≤ CB
max(π). Consequently, π∗ = (π∗(kA, nB), π∗A(k+A))

is also optimal for Problem 6.

Similarly, if Bm is a B-batch, we can show that (π∗(nA, kB), π∗B(k+B)) is optimal for
Problem 6 for some job index kB with 0 ≤ kB ≤ nB − 1. The lemma follows.

To solve Problem 6, from Lemma 5.2, we can first generate the n schedules π∗(kA, nB)

with 0 ≤ kA ≤ nA − 1 and π∗(nA, kB) with 0 ≤ kB ≤ nB − 1 in O(nAnBn) time. Next,

from Theorem 2.1, the problem in (3) for a set of n jobs is solvable in O(n log n) time.

Then the n schedules π∗A(k+A) with 0 ≤ kA ≤ nA − 1 and π∗B(k+B) with 0 ≤ kB ≤ nB − 1

can be obtained in O(n2 log n) time. Consequently, the n schedules in Lemma 5.3 can be

obtained in O(n3) time, from which we pick the best feasible one for solving Problem 6.

This leads to the following result.

21

Theorem 5.1. Problem 6 is solvable in O(n3) time.

6 Conclusion

We re-visit the problem of two-agent scheduling on a parallel-batch machine to minimize

the makespan, where the jobs have release dates and time-dependent proportional-linear

deteriorating processing times. We correct four invalid results in the literature and present

some new results. We summarize in Table 2 the known algorithms and complexity of the

two-agent scheduling problem in (2), i.e.,

1|p-batch, pXj = αXj (a+ bt), rXj , c, CF/IF |CA
max : CB

max ≤ QB.

Table 2: The latest results for the problem in (2).

Scheduling Problem Algorithm/Complexity Reference

c =∞, CF, rXj O(n2 log n) Theorem 3.1

c < n, IF/CF, rX , nA = 1 NP -hard Theorem 4.1

c < n, IF/CF, agr(rj, αj) NP -hard Theorem 4.1

c < n, IF/CF, revagr(rj, αj) NP -hard Theorem 4.1

c < n, IF, rX O(nM2) Theorem 4.2

c =∞, IF, rXj O(n3) Theorem 5.1

For further research, it is worth studying the Pareto-optimization versions of Problems

1 and 6, i.e., 1|p-batch, pXj = αXj (a + bt), rXj , c = ∞, CF/IF |#(CA
max, C

B
max). As for the

NP-hard problems 1|p-batch, pXj = αXj (a + bt), rXj , c < n, IF/CF |CA
max : CB

max ≤ QB,

heuristics with good performances are expected, and the algorithms in Tang et al. (2017)

can act as possible choices. In addition, we believe that a more refined research can lead

to a pseudo-polynomial-time algorithm for the (c < n, CF, rX) case of the problem , i.e.,

1|p-batch, pXj = αXj (a+ bt), rX , c < n,CF |CA
max : CB

max ≤ QB.

Acknowledgments

The authors would like to thank the associate editor and three anonymous referees for their

constructive comments and helpful suggestions. This research was supported by NSFC

22

(11671368), NSFC (11771406), and NSFC (11571323). It was also supported in part by

the Research Grants Council of Hong Kong under grant number PolyU 152207/17E.

References

Agnetis, A., Billaut, J.C., Gawiejnowicz, S., Pacciarelli, D., & Soukhal, A. (2014) Mul-

tiagent Scheduling: Models and Algorithms. Berlin Heidelberg: Springer.

Agnetis, A., Mirchandani, P.B., Pacciarelli, D., & Pacifici, A. (2004) Scheduling problems

with two competing agents. Operations Research, 52, 229-242.

Baker, K.R. & Smith, J.C. (2003) A multiple-criterion model for machine scheduling.

Journal of Scheduling, 6, 7-16.

Brucker, P., Gladky, A., Hoogeveen, J.A., Kovalyov, M.Y., Potts, C.N., Tautenhahn, T.,

& van de Velde, S.L. (1998) Scheduling a batching machine. Journal of Scheduling,

1, 31-54.

Fan, B.Q. & Cheng, T.C.E. (2016) Two-agent scheduling in a flowshop. European Jour-

nal of Operational Research, 252, 376-384.

Fan, B.Q., Cheng, T.C.E., Li, S.S., & Feng, Q. (2013) Bounded parallel-batching schedul-

ing with two competing agents. Journal of Scheduling, 16, 261-271.

Garey, M.R. & Johnson, D.S. (1979) Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, New York.

Leung, J.Y.T., Pinedo, M.L., & Wan, G. (2010) Competitive two agent scheduling and

its applications. Operations Research, 58, 458-469.

Lee, C.Y., Uzsoy, R., & Martin-Vega, L.A. (1992) Efficient algorithms for scheduling

semiconductor burn-in operations. Operations Research, 40, 764-775.

Li, S.S., Ng, C.T., Cheng, T.C.E., & Yuan, J.J. (2011) Parallel-batch scheduling of

deteriorating jobs with release dates to minimize the makespan. European Journal

of Operational Research, 210, 482-488.

23

Li, S.S. & Yuan, J.J. (2012) Unbounded parallel-batching scheduling with two competi-

tive agents. Journal of Scheduling, 15, 629-640.

Melnikov, O.I. & Shafransky, Y.M. (1979) Parametric problem of scheduling theory.

Kibernetika (in Russian), 3, 55-57.

Ng, C.T., Barketau, M.S., Cheng, T.C.E., & Kovalyov, M.Y. (2010) “Product Parti-

tion” and related problems of scheduling and systems reliability: Computational

complexity and approximation. European Journal of Operational Research, 207,

601-604.

Perez-Gonzalez, P. & Framinan, J.M. (2014) A common framework and taxonomy for

multicriteria scheduling problem with interfering and competing jobs: Multi-agent

scheduling problems. European Journal of Operational Research, 235, 1-16.

Poon, C.K. & Zhang, P.X. (2004) Minimizing makespan in batch machine scheduling.

Algorithmica, 39, 155-174.

Tang, L.X., Zhao, X.L., Liu, J.Y., & Leung, J.Y.T. (2017) Competitive two-agent

scheduling with deteriorating jobs on a single parallel-batching machine. European

Journal of Operational Research, 263, 401-411.

Wang, J.Q., Fan, G.Q., Zhang, Y.Q., Zhang, C.W., & Leung, J.Y.T. (2017) Two-agent

scheduling on a single parallel-batching machine with equal processing time and

non-identical job sizes. European Journal of Operational Research, 258, 478-490.

Yuan, J.J. (2016) Complexities of some problems on multi-agent scheduling on a single

machine. Journal of the Operations Research Society of China, 4, 379-384.

24

