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Abstract

Selective Laser Melting (SLM) is an additive manufacturing process capable of producing
mixed batches of parts simultaneously within a single build. The build orientation of a part
in SLM is a key process parameter, affecting the build cost, time and quality, as well as batch
size. Choosing an optimal arrangement of multiple heterogeneous parts inside the SLM machine
also presents a challenging irregular bin packing problem. Since the two problems are inter-
dependent, this paper addresses the combined problem of finding an optimal build orientation
and two-dimensional irregular bin packing solution of a mixed batch of parts across identical
SLM machines. We address this problem specifically in the context of low-volume high-variety
(LVHV) production in the aerospace sector, using total build cost as the objective function. To
solve this problem, we present an Iterative Tabu Search Procedure (ITSP), which consists of
six distinct stages. We test each stage in the ITSP on 27 manually generated instances, based
on 68 unique geometries ranging in convexity and size, including six real-life components from
the aerospace industry. Two of the six stages, which are driven by support structure volume,
returned the highest improvement in cost. Overall, the results showed an average cost improve-
ment of 16.2% over the initial solution. The initial solution of the procedure was benchmarked
against a commercial software, showing comparable results.

Keywords: Selective Laser Melting (SLM), Additive Layer Manufacturing (ALM), 2D
Irregular Bin Packing Problem (2DIBPP), Tabu Search.

1. Introduction

This paper addresses the problem of arranging complex parts inside Selective Laser Melting
(SLM) machines. SLM belongs to a family of methods known as additive layer manufacturing
(ALM), which create parts additively (as opposed to subtractively) in a layer-upon-layer manner,
directly from a Computer-Aided Design (CAD) file. While originally, ALM methods were used
solely for Rapid Prototyping (RP), the quality of these methods has improved significantly over
the past two decades, making them suitable for the production of high quality functional parts.
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Our interest in SLM comes from its ability to produce highly complex and lightweight parts from
common industrial materials such as steel, titanium, nickel and aluminium alloys, making it an
attractive technology for aerospace, automotive and biomedical applications (Frazier, 2014; Guo
& Leu, 2013). The SLM process is shown schematically in Figure 1 and works in the following
steps:

1. A thin layer of powder, typically 20-50 microns, is spread over the build platform by a
recoater blade;

2. A moving laser selectively scans the build platform, locally fusing the powder particles to
create a layer of the part;

3. The build platform steps down and a new layer of fresh powder is distributed evenly across
the platform;

4. Steps 1-3 are repeated until the part is fully formed.
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Figure 1: The Selective Laser Melting (SLM) process. The build direction is defined by the z-axis.

Unlike most other manufacturing techniques, SLM creates parts directly from the powder
material without the need for tooling. Therefore, since SLM is not bound by traditional man-
ufacturability constrains (for instance, the need for tool access), it can achieve very complex
geometries that would be infeasible or too expensive to produce otherwise. Moreover, SLM
offers a more competitive unit cost for parts produced in small volumes, and can produce a
wide range of geometries in a single build (i.e. a mixed batch) at no extra cost; in contrast,
traditional manufacturing tools are often tailored to a specific product or family of parts and
production volumes must be sufficiently high to justify the cost of these tools (Hopkinson &
Dickens, 2003; Atzeni & Salmi, 2012).

1.1. Part Build Orientation

The three-dimensional (3D) rotational position of a part inside the SLM machine is known
as the build orientation, and has a significant impact on the build cost, build time, scrap
material and surface quality of that part. Since a part can be produced in many different build
orientations, choosing the best one presents an important multi-objective decision problem in
SLM process planning.

A common feature shared by several ALM methods, is the need for sacrificial support struc-
ture. In SLM, the purpose of this support structure is two-fold: firstly, the part must be
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stabilised and supported against the forces of gravity; secondly, the additional solid material
helps to conduct away heat and reduce the residual thermal stresses within the part, while
counteracting the distortive effects of these stresses. As a result, it is currently very difficult to
completely avoid the need for support structure in SLM (Jhabvala et al., 2011). However, it is
desirable to minimise the volume of necessary support structure as it incurs additional material
costs, prolongs the build time and requires post-build removal. It is common practice to place
support structures underneath all overhanging downward-facing surfaces exceeding a 45o angle
with respect to the vertical axis (Thomas, 2009; Järvinen et al., 2014; Calignano, 2014). Thus,
a common objective used to search for candidate build orientations is to minimise the total
area of such surfaces (Alexander et al., 1998; Canellidis et al., 2009). An alternative objective
is to minimise the projected volume of support structures as demonstrated Das et al. (2015)
and Schwerdt et al. (2000), which provides a more accurate reflection of the scrap material cost,
although the additional intersection checks incur a significant computational cost.

Other criteria for evaluating build orientations include surface roughness (Ahn et al., 2007),
build time and build cost (Lan et al., 1997; Byun & Lee, 2006). The main challenge comes from
the multi-objective nature of this problem, which not only increases the size and complexity
of the solution space, but also makes it difficult to define a suitable objective function to
encapsulate all of the above criteria. This is reflected by the lack of agreement in existing
literature on this topic, as different papers propose different objective functions. A number of
papers have formulated the objective function as a weighted sum of the criteria (Byun & Lee,
2006; Canellidis et al., 2009), while several others chose to optimise a single primary criterion,
using other criteria to break tie (Frank & Fadel, 1995; Alexander et al., 1998); a third approach
is to provide a Pareto front and leave it to the user to select a preferred non-dominated solution
(Padhye & Deb, 2011).

Furthermore, when placing a batch of mixed parts inside a SLM machine, the build ori-
entation of each part determines the number of parts that can fit inside the machine, as well
as the build cost and build time of the whole batch (Rickenbacher et al., 2013). Only Zhang
et al. (2015a) consider the build orientation of multiple parts at once, as well as grouping parts
into batches based on their similarities, but do not consider bin packing. Their method uses a
genetic algorithm (GA) to search for the closest solution matching a set of aspirational target
values provided by the user, for instance, a desired maximum height and projected area of parts.

1.2. Part Arrangement in ALM

Despite the absence of tooling costs, cost amortisation can still be achieved in SLM through
efficient machine utilisation, as demonstrated in the literature (Ruffo & Hague, 2007; Atzeni &
Salmi, 2012; Piili et al., 2015). The need for an optimal part arrangement to maximise machine
utilisation, presents what is known as a bin packing problem. A number of methods have been
proposed to solve this problem, both in 2D (Canellidis et al., 2006, 2013; Zhang et al., 2016) and
in 3D (Ikonen et al., 1997; Wodziak & Fadel, 1999; Gogate & Pande, 2008; Wu et al., 2014). In
all of these methods the parts are packed into a single bin, either by pre-selecting a sufficiently
small group of parts (Zhang et al., 2016), or by solving a Knapsack problem (Canellidis et al.,
2013), with the objective of packing as many parts as possible inside the available space. The
choice between 2D and 3D bin packing is mainly determined by the ALM method. In SLM,
the presence of high residual stresses and the need for support structure means that stacking
parts vertically is likely not only to increase the build cost and complexity of support structure,
but also lead to an increased risk of build failure and damage during the removal of parts
from the build plate (Zhang et al., 2016). This also applies to other ALM methods such as
Stereolithography. Therefore, SLM and Stereolithography machines are typically treated as 2D
bins. Conversely, 3D packing is acceptable in methods such as Selective Laser Sintering (SLS),
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since the residual stresses are much lower and parts can often be supported by the surrounding
powder without the need for additional solid supports (Leary et al., 2014).

Most of the literature related to this problem agrees on the important role played by part
build orientation, and a number of authors (Wodziak & Fadel, 1999; Canellidis et al., 2006;
Wu et al., 2014; Zhang et al., 2016) have tried to optimise the build orientation, albeit in a
separate step prior to bin packing. Conversely, Ikonen et al. (1997) allow 3D rotation of parts
to improve their bin packing solution for SLS, however, each part is limited to 24 predefined
build orientations, and typical build orientation objectives (e.g. build cost) are not considered.

1.3. Research Motivation

The geometric flexibility of SLM and its ability to produce parts in mixed batches, make
it particularly advantageous for high-variety low-volume (HVLV) production, for example, cus-
tomised components in the medical sector and spare parts in the aerospace sector Thomas
(2016). According to Ruffo & Hague (2007) the production of mixed batches is already common
practice employed by RP bureaus and specialised ALM service providers, who often produce
small quantities of parts of various sizes, functions and complexities for a number of different cus-
tomers. Demands of aircraft spare parts are particularly difficult to forecast (Ghobbar, 2004); in
practice, this often leads to overstocking, high inventory costs and risk of delays. Thus, a num-
ber of researchers (Khajavi et al., 2014; Holmström et al., 2010) suggest on-demand production
of spare parts via SLM as a better alternative.

We therefore consider the following scenario. The short-term (i.e. on the order of days and
weeks, rather than months and years) demands of different spare parts are lumped together
based on their required delivery times, material and assemblies, and produced in mixed batches
via SLM. These demands are assumed to be fixed once the internal orders are placed and
overproduction of parts is not allowed. This presents a challenging problem, which combines
the build orientation of multiple parts and bin packing of heterogeneous and irregular shapes.

We also consider the presence of identical parts in the same batch. If two identical parts
are built in two different build orientations, each part can be expected to exhibit different
surface qualities, dimensional accuracy and mechanical properties (Ahn et al., 2007; Chlebus
et al., 2011). Aircraft parts must go through a time-consuming and expensive certification
process and meet stringent airworthiness requirements (Saha et al., 2013). If a change in the
manufacturing route leads to different part properties, that part must be re-certified. Thus,
even if the additional manufacturing variability is deemed acceptable by the user, the cost of
certifying a part for each different build orientation is likely to outweigh any benefits. For this
reason, we constrain the problem so that identical geometries can only be placed in the same
build orientations.

Additionally, the following gaps have been identified in existing literature related to this
problem:

• Because the build orientation is a multi-objective problem, there is currently a lack of
agreement on what is the most suitable objective function. Existing multi-objective func-
tions often require the user to provide appropriate weight coefficients or target values,
which is a difficult task in practice.

• Existing bin packing approaches are limited to a single bin, and most restrict the movement
and rotation of parts.

• Most importantly, no works have addressed the combined problem of build orientation
and bin packing; these are done either in two separate stages or without considering the
effects of build orientation on the quality and cost of parts. Thus, the problem of build
orientation and bin packing in SLM is yet to be solved simultaneously.
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To address these gaps, we propose build cost as the objective function, while using secondary
parameters, such as build height, support structure volume and packing efficiency to drive our
heuristic. Our view is that any parameter affected by build orientation can in fact be translated
into a cost element; for instance, support structure volume can be treated as a scrap material
cost; build height is a direct driver of build time and build cost; while insufficient quality
and dimensional accuracy can be considered as an additional post-processing or scrap cost.
Furthermore, product cost is the core driver of any business and industries are unlikely to
adopt SLM over traditional manufacturing techniques unless it is cost-competitive. Thus, a
cost-driven process planning tool can be used not only to optimise the SLM process parameters
but to quickly compare it against other manufacturing routes.

2. Problem Description

Let G = {1, . . . , N} be a set of N unique 3D geometries, which are to be placed into identical
SLM machines. The width, length and height of the build envelope within each machine are
denoted by W , L and H, respectively, and it is assumed that enough machines are available
to accommodate all provided geometries. It is also assumed that each geometry g ∈ G has a
demand qg, to account for non-unique geometries. In this paper, vertical stacking of parts in
the SLM machines is forbidden (for reasons discussed in Section 1.2), therefore, the problem
can be decomposed into the following two sub-problems.

Firstly, a favourable build orientation must be selected for each geometry g ∈ G, following
which, a 2D polygon of g is projected onto the horizontal plane. Throughout the rest of this
paper we refer to this 2D projection as a ’piece’, denoted by pg. The quality of each build
orientation is determined by the geometry height, total support structure volume and area of
the resulting piece. The geometry height may not exceed H, while the area of pg may not
exceed W ∗ L. The output of this stage is a set of unique pieces P = {p1, . . . , pN}, where each
piece corresponds to a geometry g and demand qg. This means that g can only have one build
orientation at a time, satisfying the ’certification condition’ outlined in Section 1.3.

v′5 v′1

v′2

v′3

v′4

v5 v1

v2

v3

v4

do

(a) Example of a projected polygon (dotted line), in-
flated by a constant offset do to create the final piece
(solid line).

2do

NBZ1

NBZ4

NBZ2

NBZ3

(b) Example of packed inflated pieces shown in blue
and no-build zones (NBZ) shown in red.

Figure 2: Additional SLM constraints in the 2D bin packing problem
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Secondly, a 2D irregular bin packing problem (2DIBPP) must be solved for a total of
∑N

1 qg
pieces, by assigning and packing all pieces in P in their corresponding demands into a minimum
number of identical bins of width W and length L. To avoid part damage during the SLM
process and to facilitate post-build removal of parts, a small gap must be maintained between
the parts when they are placed on the build plate. This condition can be met by inflating the
pieces by a fixed offset, do, as shown in Figure 2a. As indicated in Figure 2b, inflating all pieces
by do produces a minimum gap of 2do between parts. Figure 2b also shows four no-build zones,
which represent four bolts used to fix the build plate, as is done in most typical SLM machines
(although the exact configuration depends on the machine manufacturer).

A solution to the problem would be given by a set of bins B = {b1, . . . , bM}, where M is the
total number of bins. Each bin is denoted by bi(Pi, Oi, Xi, Yi), where Pi ⊆ P . During the search
for a packing solution the pieces are allowed to rotate continuously about the vertical axis,
hence, Oi = {o1, . . . , on} defines the 2D orientation of each piece. Finally, Xi = {x1, . . . , xn}
and Yi = {y1, . . . , yn} define the x and y coordinates of the reference point of each piece,
respectively. The reference point of a piece is the bottom left corner of its enclosing rectangle,
corresponding to its 2D orientation. Every piece in P must be placed completely inside the bins
and may not overlap with any other pieces or the no-build zones, as shown in Figure 2b.

The objective is to find a solution with M bins which yields the minimum overall build
cost, as shown in Equation 1. A number of cost models have been proposed for SLM (Ruffo &
Hague, 2007; Baumers et al., 2016; Hopkinson & Dickens, 2003; Rickenbacher et al., 2013). In
this paper we use the model proposed by Ruffo & Hague (2007) due to its simplicity and its
focus on low to medium production volumes. This model uses a popular model structure that
splits the build cost into two main components: indirect cost, which includes administrative,
software and shop floor space costs; and direct cost, which includes resources directly consumed
by the process, in this case, the material. This model is adapted in Equation 2, showing the
build cost ci for bin bi.

min.
M∑
i=1

ci (1)

ci = C1ti + C2ρ

ni∑
k=1

(vk + sk) (2)

where C1 and C2 are coefficients corresponding to indirect cost (£/h) and material cost (£/kg),
respectively; ti is the build time (h) of bin bi; and ρ is the material density (kg mm−1). The
number of pieces in bi is denoted by ni, where each piece k has a geometry volume vk (mm3),
and support structure volume sk (mm3).

The build time of SLM can be modelled as a function of many different parameters, such as
part dimensions, layer thickness, hatching and laser settings (Rickenbacher et al., 2013; Zhang
et al., 2015b). In this paper we use a simple linear regression model, shown in Equation 3, to
approximate the build time as a function of total part volume, total support structure volume
and build height, which is the height of the tallest geometry in the bin.

ti = r1 + r2hi + r3

ni∑
k=1

vk + r4

ni∑
k=1

sk (3)

where r1 is the regression model constant (h); hi is the build height of bin bi; r2 is the build
height coefficient (h mm−1); and r3 and r4 are the total part volume and support structure
volume coefficients (h mm−3), respectively. The details of this model can be found in Appendix
A.
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3. Iterative Tabu Search Procedure (ITSP)

From Equations 1-3, we can observe that the total build cost for a batch of parts is driven by
the number of bins, the build height, and the total support structure volume of each bin (since
part volume is constant). Due to the complexity of the combined problem of build orientation
and 2D packing, we develop a new heuristic approach to solve it. This approach is called the
Iterative Tabu Search Procedure (ITSP) and consists of six distinct stages, where each stage
addresses one of the above cost drivers. The key steps in the procedure are summarised in Figure
3, where G denotes a set of geometries B denotes a set of bins in the solution and P denotes a
set of pieces, where each piece p has a corresponding area, height and support structure volume
denoted by ap, hp and sp, respectively. Pieces which have been improved by the Tabu search
are denoted with an asterisk (e.g. p∗).

Start
For each g ∈ G,

generate p(ap, hp, sp)
For each p in
P , minimise ap

Pack all pieces in P ∗

Sort B by utilisation,
take pieces Pi from bin bi

Sort all p in Pi by
non-increasing hp

Take tallest
piece p1 in Pi,
minimise hp

Update piece p1 ← p∗1,
repack Pi into bi

Sort B by utilisation,
take pieces Pi from bin bi

Sort all p in Pi by
non-increasing sp

For each pk in
Pi, minimise sp

Update piece pk ← p∗k,
repack Pi into bi

Sort B by build cost,
take Pij from bi and bj

Sort all p in Pij by
non-increasing hp

Take tallest
piece p1 in Pij ,

minimise hp

Update piece p1 ← p∗1,
repack Pij into bi and bj

Sort B by build cost,
take Pij from bi and bj

Sort all p in Pij by
non-increasing sp

For each pk in
Pij , minimise sp

Update piece pk ← p∗k,
repack Pij into bi and bj

Take PR from
random bin bR

Select random
piece pr from PR

Minimise cost
of PR \ {pr}

Update (PR \ {pr})∗
and repack into bR

Open new
empty bin bM+1

bM+1 full? Pack pr into bM+1

Return best solution

G P P ∗

B = {b1, . . . , bM}

Pi Pi p∗1

updated B

Pi Pi p∗k

updated B

Pij Pij p∗1

updated B

Pij Pij p∗k

updated B

Yes

PR

pr

PR \ {pr} (PR \ {pr})∗

No

updated bR and bM+1

Tabu Search

(Section 5)
2DIBPP Algorithm

Martinez-Sykora et al. (2017)

Stage 1: Initial Solution with Minimum Bins

Stage 2: Single Bin Build Height Reduction (SHR) (Section 3.1)

Stage 3: Single Bin Support Structure Volume Reduction (SSVR) (Section 3.2)

Stage 4: Pairwise Bin Build Height Reduction (PHR) (Section 3.3)

Stage 5: Pairwise Bin Support Structure Volume Reduction (PSVR) (Section 3.4)

Stage 6: Bin Addition and Random Reassignment (BARR) (Section 3.5)

Figure 3: Schematic overview of the six stages in the ITSP. In each stage, key steps are shown in blue boxes,
while the steps which use Tabu search and 2D bin packing are highlighted by a grey background.

In the first stage of the ITSP we generate the initial solution and try to fit all geometries
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into a minimum number of bins. This is achieved in the following steps. Firstly, an initial set of
2D pieces P is generated for the input set of geometries G. A Tabu search (outlined in Section
5) is performed on each piece p ∈ P , to find an improved piece p∗ with the minimum piece
area a∗. Finally, a 2DIBPP is solved for the resulting set P ∗, producing a solution with the
smallest set of bins B. The remaining five stages attempt to improve the cost of each bin in B,
as follows:

• Stage 2, to which we refer to as Single Bin Build Height Reduction (SHR), reduces the
build height of partially full bins, without disrupting the piece assignment.

• Stage 3, Single Bin Support Structure Volume Reduction (SSVR), reduces the support
structure volume of each pieces inside each partially full bin, without disrupting the piece
assignment.

• Stage 4, Pairwise Bin Build Height Reduction (PHR), reduces the build height of bins in
pairs, allowing pieces to move between the bins.

• Stage 5, Pairwise Bin Support Structure Volume Reduction (PSVR), reduces the support
structure volume of bins in pairs, allowing pieces to move between the bins.

• Stage 6, Bin Addition and Random Reassignment (BARR), opens a new empty bin and
moves pieces selected randomly from the current solution into the new bin. The remaining
pieces in the disrupted bins are re-oriented and repacked to reduce the cost of those bins.

The above stages are outlined in detail in Sections 3.1,3.2,3.3,3.4 and 3.5, respectively. In
each stage, we employ the Tabu search outlined in Section 5 to search for build orientations.
The process of generating build orientations is described in Section 4. To solve the 2DIBPP,
we use the algorithm proposed by Martinez-Sykora et al. (2017). The algorithm consists of
the following key steps: firstly, pieces are assigned to bins based on a naive 1D bin packing
solution; secondly, a Mixed Integer Programming (MIP) model is computed in order to place
the 2D pieces inside each bin. Because of the naive bin assignment the packing often fails, so
a third and final step in the algorithm is to mend the assignment of pieces to each bin, until a
feasible solution is found. This process is repeated until all remaining pieces have been packed
successfully.

3.1. Single Bin Build Height Reduction (SHR)

A typical initial solution can be expected to contain at least one ’weak’ partially full bin,
as demonstrated in Figure 4b. Unlike in many traditional cutting and packing (C&P) problem
applications, such as the ceramic tile and sheet metal industries, minimising the utilised space
inside b2 does not offer any benefit in the context of SLM, since the wasted machine space
cannot be recycled after the build. Instead, the build orientation of the two pieces in b2 can
be changed in a way that reduces the build cost of the bin, as shown in Figure 5. Modifying
the build orientation of the two pieces will change their shape and likely increase their area,
however, the chances of successfully repacking these two pieces into a single bin are high given
the very low bin utilisation. The SHR stage exploits this scenario.

As shown in Figure 3, the set of bins B = {b1, . . . , bM} given by the initial solution is sorted
by non-increasing utilisation, denoted by U , and only strong bins (e.g. with U < 85%) are
considered. For each bin bi, the set of pieces Pi = {1, 2, . . . , n} is sorted by non-increasing
height. The tallest piece p1 is selected and a Tabu search is performed to minimise the height
of p1. Let p∗1 denote the new piece returned by the Tabu search. If the height of p∗1 is lower
than the height of p1, we update p1 ← p∗1 in the set P and pass it to the 2DIBPP algorithm to
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Figure 4: Initial solution produced by the first stage in the ITSP, with average bin height of 116.5 mm.
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Figure 5: Improved solution produced by SHR, with average bin height reduced to 103.5 mm.

be repacked into its original bin. The updated 2DIBPP solution is only accepted if the number
of bins is not increased.

Depending on the demand qg of the current piece, there may be several identical copies of
piece p1 in the solution. For this reason, Pi contains only unique pieces, and has a correspond-
ing set of quantities Qi = {q1, q2, . . . , qn}, where q is the number of duplicate pieces p in bi.
Thus, any duplicates of p1 inside bin bi, can be updated easily by replacing p1 with p∗1 in Pi.
Furthermore, an additional check is performed on all bins in B \bi, where each bin that contains
a duplicate of p1 must also be updated and repacked.

If all bins containing p1 are repacked successfully, the solution is updated and the process
repeats, until no further height reduction can be achieved in bi. If the SHR stage fails to achieve
a height improvement, either during the Tabu search or during repacking, the stage will move
on to the next bin in B. The stage terminates when all bins in B with U < 85% have been
explored.

Finally, if we assume that both pieces in Figure 4b have the same height, then reducing
the height of one piece does not yield a cost improvement (and may even increase cost) as the
overall build height of b2 remains the same; an appreciable cost improvement can only be gained
once the height of both pieces is reduced. For this reason, a slight temporary increase in cost
(e.g. ≤ 1%) is permitted during the SHR stage, as long as the build height of the current bin
continues to decrease. If no further height reductions are feasible in the current bin and the
cost has not been improved, the current solution reverts back to the best solution in the search.

3.2. Single Bin Support Structure Volume Reduction (SSVR)

SSVR follows a very similar procedure to SHR; the only differences being the fitness used
in the Tabu search, where height is replaced with support volume structure, and the iteration
of pieces in Pi. Because the build height of bi is determined by the tallest part in Pi, we sort
Pi by non-decreasing height after each update and only take the first piece p1 at each iteration.
In contrast, the support structure volume of each piece can be reduced independently of other
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pieces. Hence, we sort Pi only once, in order of non-decreasing support structure volume, and
iterate through each piece pk, until k = n, where n is the length of Pi. Similarly to SHR, to
fully explore the current solution neighbourhood, the SSVR stage allows a slight cost increase
in the current solution if the support structure volume is reduced, but reverts back to the best
solution if no cost improvement is achieved before moving on to the next bin.

3.3. Pairwise Bin Build Height Reduction (PHR)

In addition to changing the build orientations of pieces, we can also improve the bin as-
signment. For this reason the following two stages, PHR and PSVR, address bins in pairs. As
before, the former addresses the height and the latter addresses the support structure volume of
pieces. Unlike SHR and SSVR, PHR and PSVR address every possible pair of bins regardless
of their utilisation. By pairing strong bins with weaker ones and by allowing the pieces to move
between them, we hope to further utilise empty spaces within the weak bins and increase the
freedom of movement inside strong bins.

As shown in Figure 3, the first step in PHR sorts the current set of bins B by non-increasing
build cost. The second step takes a set of pieces Pij = Pi ∪ Pj from a pair of bins bi and bj in
B, where i < j. In the third step we order Pij by non-increasing height and the fourth step
performs a Tabu search to minimise the height of the tallest piece p1. If the Tabu search is
successful, the new piece p∗1 is accepted, so that p1 ← p∗1 in Pij , and the final step in PHR solves
a 2DIBPP for Pij . As in other stages, if any bin b ∈ B \ bi, bj contains a duplicate of p1, the list
of pieces in that bin must also be updated and repacked. If any of the bin repacking steps are
unsuccessful, the solution is rejected.

Finally, if Pij is successfully packed into a maximum of two bins b∗i and b∗j , where the
combined cost of b∗i and b∗j is lower than the cost of bi and bj , the new solution is accepted
and B is updated. Following this, Pij is sorted by non-increasing height again and the process
repeats until no further cost improvement can be made to bi and bj ; at which point PHR
repeats the above steps for the next pair of bins. PHR terminates when all pairs in B have
been permuted.

3.4. Pairwise Bin Support Structure Volume Reduction (PSVR)

PSVR closely mirrors the steps in PHR, substituting support structure volume for height
as the Tabu search objective. The main difference between these two stages is that PSVR sorts
Pij by non-increasing support structure volume, once for every pair of bins, then performs a
Tabu search to minimise the support structure volume of every piece pk ∈ Pij , as opposed to
only the tallest piece p1 as done in PHR. The reason for this is explained in Section 3.2. After
every successful Tabu search, the updated Pij is repacked into a maximum of two bins, and
each bin b ∈ B \ bi, bj which contains the new piece is updated and repacked. If the repacked
solution is both feasible and lower in cost than the current solution, this solution is accepted as
the current solution and B is updated. The process is repeated for each pair of bins in B and
terminates when all pairs have been permuted.

3.5. Bin Addition and Random Reassignment (BARR)

Each of the four stages described above tries to reduce the cost of the solution without
increasing the overall number of bins. In this final stage of the ITSP, we explore the possibility
of reducing the overall cost of the solution at the expense of adding an extra bin.

Following the improvement of individual bins in SHR and SSVR, and the bin assignment
improvement in PHR and PSVR, it is going to be increasingly difficult for the procedure to
find further feasible movements in the solution. Thus, by adding a new empty bin bM+1 and
reassigning pieces from the original bins in B to bM+1, we create free space in the disrupted
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bins which can be utilised to further improve the build orientations of remaining pieces. In this
stage it is unclear which piece is likely to yield the biggest improvement in the overall cost. For
this reason, in each iteration we select a random piece for reassignment and apply the Tabu
search to all remaining pieces in the current bin before repacking. We also select bins randomly
to further explore the solution space.

Thus, let bR denote a random bin selected from B and pr denote a random piece from the
set of pieces PR. To avoid re-visiting previously attempted pieces, pr is stored in a ’Tabu’ list
(which is unrelated to the actual Tabu search). If pr is placed into bM+1 successfully, the overall
cost of the remaining set of pieces in bR is minimised using the Tabu search. This is done
iteratively for each piece in PR \ {pr}, using the change in cost to drive the search. For clarity,
the details of this search are explained separately in Section 5.

If the Tabu search is successful, the next step is to repack the updated pieces into bR. If
the packing is unsuccessful, the piece with the smallest reduction in cost is reverted back to
its original build orientation and the repacking is attempted again. This process is repeated
until all pieces are successfully packed or until all pieces have been reverted to their original
state. In the latter case, the solution yields no cost improvement and is therefore rejected. The
procedure terminates either when a maximum number of no-improvement iterations is reached
or when bM+1 is full – whichever occurs first.

4. Generating Build Orientations

Each geometry in G is provided in the form of a Stereolithography (STL) file, which is the
industry-standard file format used to interface between 3D geometry data and AM machines.
The STL file represents only the surface of the 3D geometry, defined by a set of triangular facets.
Each facet is defined by a set of three vertices and a unit normal vector (pointing outward from
the solid geometry). Each vertex and unit vector is defined in 3D Cartesian coordinates.

Hence, let a geometry g be defined by set of facets F , and a set of vertices V . Let each facet
f ∈ F be defined as f(v1, v2, v3, n̂), where v1,v2 and v3 are three unique neighbouring vertices
in V and n̂ is the unit normal vector of f . Using this definition it is easy to find the height of
g, by sorting the vertices in V by non-increasing z-coordinate and taking the difference of zmax
and zmin.

To generate a piece pg, a 2D polygon is created in the following way. The set of vertices V
is projected onto the horizontal x− y-plane, such that v3D(x, y, z)← v2D(x, y), and a Delaunay
triangulation is generated for the list of resulting 2D points. Each edge in the resulting mesh
can either be defined as an internal edge, if it is shared by two triangles, or an outer edge, if the
edge belongs to only one triangle. The convex polygon is defined by the set of unique vertices
which belong to these outer edges. To produce a concave hull we use a ’digging’ procedure
similar to that of Duckham et al. (2008), where each large outer edge (e.g. length exceeding
20 mm) is removed from the polygon and the two exposed inner edges are added in its place.

Finally, the support structure volume must be estimated. This is done by calculating the
area underneath any facet that exceeds the 45o overhang limit, as explained in Section 1.1. To
find the angle of facet f we can use the dot product of its normal vector n̂ with the global
z-axis. To estimate the support structure volume accurately, intersection of support structure
with the geometry must be considered, as shown in Figure 6.

To check for support structure intersection, a series of facet-ray intersection checks are
performed for each supported facet f – similar to the method used by Schwerdt et al. (2000).
The ray is projected along the < 0, 0,−1 > direction from f , and the check is performed for each
upward-facing facet which lies beneath f . This intersection check is the most computationally
expensive part of generating build orientations, with time complexity O(nm), where n is the
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Figure 6: Schematic 2D example of support structure (red) for an arbitrary geometry (blue). Support structure
is projected underneath each overhanging facet in F which exceeds 45o with respect to the z axis, as indicated
by α15 for f15.

number of supported facets and m is the number of facets which lie beneath each supported
facet.

When generating build orientations, two types of approaches have been proposed in liter-
ature: continuous rotation (Canellidis et al., 2006; Padhye & Deb, 2011) and discrete (Zhang
et al., 2016; Byun & Lee, 2006). One common discrete method, is to generate a 3D convex poly-
gon of the geometry and consider each facet of the polygon as a potential base of the geometry
(i.e. each facet corresponds to a candidate build orientation). Another way is to isolate specific
design features or surfaces of the part, and generate the most favourable build orientation for
each surface or feature. The former method is quite restrictive and poses the risk of missing
optimal build orientations; while the latter is difficult to generalise across a large number of
different parts. For this reason we allow continuous rotation in the build orientation search.
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Figure 7: An example of the build orientation rotation procedure for a turbine blade. Each build orientation is
generated by applying step (a), followed by step (b) to the geometry. Body-centric coordinates are denoted by
xb, yb and zb; global coordinates (xg, yg, zg) are shown for reference.

It is possible to define any build orientation by two consecutive rotations, using the orthog-
onal body-centric axes of g. Each build orientation is therefore denoted by o(θ, φ), where θ and
φ are two angles of rotation, as shown in Figure 7, where 0o ≤ θ ≤ 180o and 0o ≤ φ < 360o.
Body-centric axes have been used to minimise the occurrence of duplicate build orientations.
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It should be noted at this point, that all values of φ will result in equivalent build orientations
when θ = 0o, 180o. If one of these build orientations happens to be a local minimum the Tabu
search is likely to get stuck. To deal with this issue such build orientations are denoted by
o(0o,∗ ) and o(180o,∗ ) in the Tabu list, respectively, where ∗ represents any arbitrary value of φ.

The downside of continuous rotation is the vast solution space and the danger of an ineffi-
cient search, which may exceed the computational time budget before it can find a good build
orientation. To tackle this, we limit movements to steps of one degree, since movements below
this limit are likely to cause negligible changes to the Tabu search objective values. Additionally,
we experiment with different step sizes in the Tabu search, as described in Section 6.

5. Tabu Search

As outlined above, the ITSP uses Tabu search to find build orientation with different ob-
jectives, depending on the stage in the procedure:

• The first stage minimises piece area;

• SHR and PHR minimise piece height;

• SSVR and PSVR minimise support structure volume;

• BARR maximises the cost reduction in the bin.

Algorithm 1 shows the Tabu search procedure used for minimising the area ap of piece p.
The same procedure is used to minimise piece height hp and support structure volume sp, by
substituting hp or sp for ap, respectively. The termination condition of the algorithm is the
maximum number of consecutive no-improvement iterations, denoted by N , and the size of the
Tabu list, denoted by l. The neighbourhood construction at each iteration follows a simple
greedy procedure, as shown in Figure 8. The shape of the neighbourhood is defined by the
four lateral directions of movement, i.e. θ ± d and φ ± d, as well as all possible combinations
of these movements, resulting in a total of eight neighbouring solutions at every iteration; this
structure was chosen to ensure fast iterations in the Tabu search. The size of the neighbourhood
is controlled by the step size, denoted by d.

ocφ (deg)

θ (deg)

on on on

onon

on on on

d

d

d

d

Figure 8: Local search neighbourhood structure, where oc denotes the current build orientation, on denotes the
neighbours and d denotes the step size; θ and φ are two rotation angles.
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Input: oin, d, l, N
Result: ob
oc ← oin;
ob ← oc;
n← ∅;
TabuList← ∅;
while n < N do

Construct neighbourhood for oc using d step size;
Sort neighbours by non-decreasing piece area;
Return best neighbour on1 ;
if TabuList.Size > l then

Remove oldest entry in TabuList;
end
Add oc to TabuList;
Set oc ← on1 ;
if ab > ac then

n← ∅;
ob ← oc;

end
else

n← n+ 1;
end

end
Algorithm 1: Tabu search procedure, where oin, oc and ob denote the initial, current and
best build orientation, respectively; and ab and ac denote the areas of the best and current
pieces, respectively.

To reduce the overall cost of bin bi, the Tabu search must consider the set of bin pieces Pi
collectively. Prior to the search, the pieces in Pi are sorted by non-increasing height. Starting
from the tallest piece, the algorithm consecutively searches for a build orientation for each piece
in Pi, using the cost difference at each iteration to drive the search. To obtain the change in
bin cost, we use Equation 4, which follows from the objective function described in Section 2.

4c = C1 ∗ 4h+ C2 ∗ 4s (4)

where 4h is the change in build height and 4s is the change in support structure volume,
and Cw1 and Cw2 are their respective cost coefficients. Negative values of 4c indicate a cost
improvement, while positive values indicate a cost increase.

The change in support structure volume is simply the difference between two Tabu search
iterations of the same piece, in other words 4s = si+1 − si, where i is the iteration counter.
In the case of 4h, the difference must be taken between the tallest piece in P at iteration i,
and the tallest piece at iteration i + 1. Thus, all pieces in P must be updated and sorted by
non-increasing height after each iteration of the Tabu search. Additionally, in this version of the
Tabu search, we constrain the area increase for each piece. The maximum percentage increase
is denoted by Amax. The updated pseudo-code is shown in Algorithm 2.

14



Input: oin, d, l, N,Amax, P
Result: ob
oc ← oin;
ob ← oc;
TabuList← ∅;
n← ∅;
Sort pieces in P by non-increasing height;
Set current bin height hb to height of p1 in P ;
Set initial area a1 to area of piece oin;
while n < N do

if TabuList.Size > l then
Remove oldest entry in TabuList;

end
Add oc to TabuList;
Construct neighbourhood for oc using d step size;
foreach on in Neighbourhood do

Set Pn ← P ;
Replace current piece oc in Pn with piece on;
Sort Pn by non-increasing height;
Set hn to height of p1 in Pn;
Set sn to s of piece on;
Set sc to s of piece oc;
Set 4h← hn − hb;
Set 4s← sn − sc;
Set 4c for on;

end
Sort solutions in neighbourhood by non-decreasing 4c;
Return best neighbour on1 with minimum 4c;
Set oc ← on1 ;
if ac−a1

a1
≤ Amax then

if 4c < 0 then
n← ∅;
ob ← oc;
Update current piece oc in P and sort by non-increasing height;
Set hb to height of p1 in P ;

end
else

n← n+ 1;
end

end
else

Terminate search;
end

end
Algorithm 2: Tabu search used in the BARR stage. Initial, best and current build orien-
tations are denoted by oin, ob and oc, respectively, while neighbour build orientations are
denoted by on. P denotes the set of pieces inside the current bin; h denotes piece height
and s denotes piece support structure volume. The neighbourhood step size and length of
the Tabu list are denoted by d and l, respectively.

6. Implementation

The ITSP is coded in C# using the Visual Studio 2012 development environment. To solve
the Mixed Integer Problem for the 2DIBPP we use Gurobi version 6.5.2. The code is parallelised
on four i7-3820 cores, with 2.70 GHz maximum frequency.

To ensure good performance of the ITSP, a number of parameters needed to be tuned.
Firstly, a utilisation of 0.85 was considered to be the threshold between strong and weak bins.
Secondly, the acceptance condition for each new build orientation was set to a minimum reduc-
tion of 1 mm when improving build height (i.e. 50 layers), and minimum reduction of 100 mm3
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for support structure volume (i.e. just under a gram of scrap material). Movements below these
thresholds were not considered worthwhile since they would yield negligible cost improvements.
In the SHR and SSVR stages, we allow some cost-increasing solutions, in the hopes of finding
a better solution by delaying convergence. We limit the maximum allowable cost increase of
such solutions to 1%. Finally, we constrain the maximum piece area increase in the Tabu search
during the BARR stage to 30%. This value was selected after constraint values of 15% and 20%
proved to be too stringent in the preliminary results.

The Tabu search parameters are perhaps the most crucial in determining the success of this
procedure. Namely, these are the size of the Tabu list; the step size in each local neighbourhood;
the maximum area constraint where applicable; and the number of no-improvement iterations
before termination.

6.1. Tabu Search Parameters

The idea behind the simplistic neighbourhood structure of the Tabu search (Figure 8) is to
find a ’good enough’ build orientation quickly, rather than attempting a more prolonged search
for a better build orientation, which may ultimately lead to an infeasible bin solution. The same
reasoning was used in selecting the step size and termination condition of the Tabu search.

We tested the following three strategies: Decreasing Step (DS), Random Step (RS) and
Fixed Step (FS). At each iteration of the Tabu search, RS sets the step size to a random integer
value between 1o and 30o, while FS keeps the step size fixed at 5o throughout the search. The
DS strategy starts with an initial step of 15o, which is then multiplied by a reduction factor
of 0.85 at each iteration. In all cases the search is terminated after eight iterations without
improvement and the Tabu list stores 10 most recent build orientations.

Test Pieces
Objective Improvement (%) No. of Iterations Solution Time (s)

DS RS FS DS RS FS DS RS FS

Aero housing 1 11.8 11.8 12.7 12 20 12 72 93 74
Aero housing 2 27.4 28.4 14.4 26 25 12 57 27 27
Alcoa bracket 41.2 52.4 48.1 11 24 32 37 61 107
Bearing block 52.9 51.2 51.5 32 14 12 24 15 10
Combustor plate 1 45.6 41.2 41.8 13 19 15 23 60 25
Combustor plate 2 85.8 84.4 84.4 11 13 11 312 326 340
Control arm 56.8 58.9 62.8 11 17 12 5 7 6
Engine block 0.9 0 1.3 16 8 9 4 2 2
GE bracket 26.5 21.6 20.0 25 16 26 378 458 441
Gear 0 0 0 8 8 8 0.4 0.6 0.4
Impeller 71.0 69.0 69.2 14 11 19 4, 989 7, 900 6, 325
RC Jet bracket 34.7 32.7 31.6 18 19 28 1, 996 3, 325 3, 112
RC Jet NGV ring 53.6 52.6 49.0 10 10 12 92 193 69
Seal segment 70.6 76.7 72.3 10 37 12 69 148 84
Sector 82.5 80.0 79.5 10 11 19 11 48 19
Swivel hinge 0 0 0 8 8 8 2 2 2
Turbine blade 40.7 40.8 40.2 12 20 19 245 607 367
Turbine wheel (Baumers) 0 0 0.6 8 8 10 23 41 31
Turbine wheel (turbocharger) 67.5 66.3 28.7 26 15 14 264 456 173
ULA bracket 50.2 39.7 13.4 20 18 25 105 105 116

Average 41.0 40.4 36.1 15.5 17.2 15.7 576 901 759

Table 1: Results for DS, RS and FS tested on 20 pieces.

The rationale behind the DS strategy is to quickly cover the solution space with a relatively
large initial step and compare a number of potential local minima, before converging on the
best local minimum with a decaying step size. The step size is kept constant for the first
three iterations before applying the reduction factor. This prevents the search from converging
prematurely if the initial solution happens to fall in a local minimum.

The values are selected based on empirical observations; 15o is a sufficiently large step to
explore a significant area of the solution space without missing out too many solutions, while
the selected reduction factor, which converges at 1o by the 18th iteration, yields an appropriate
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Figure 9: DS, RS and FS ranked by objective improvement (a) and number of iterations to final solution (b).

reduction gradient, given the average solution is reached after 16 iterations, as shown in Table
1.

The three strategies were tested on 20 different pieces with the objective of reducing the
area of each piece. Table 1 presents the results using three measures of performance: objective
improvement, which is the difference in piece area between the initial and best solutions; number
of iterations before termination; and the total solution time for each piece. Both DS and RS
outperform FS in terms of objective improvement, while FS and DS outperform RS in terms of
iterations and solution time.

In general, DS outperforms both RS and FS for the majority of tested pieces. This is demon-
strated by the two graphs shown in Figure 9. For each tested piece, the three strategies were
ranked as ’Largest Improvement’ (LI), ’Medium Improvement’ (MI) and ’Smallest Improvement’
(SI) based on the objective improvement, as shown in Figure 9a; and similarly ranked based
on the number of iterations to final solution, as shown in Figure 9b. Two out of the 20 tested
pieces (’Gear’ and ’Swivel hinge’) were ranked as ’Draw’ (D), as all three strategies yielded no
improvement and terminated after eight iterations. Based on these results, we employ the DS
strategy in the Tabu search throughout the ITSP.

6.2. Test Data

In our tests the bin width W and length L are both set to 245 mm, while the bin height
H is 275 mm. The no-build zones are approximated by four identical 20 mm squares in each
corner of the bin, and each piece was enlarged by an even offset of 2.5 mm, to ensure a minimum
separation of 5 mm between all pieces. In the build cost model we use an indirect cost rate of
26.64£/h (taken from Baumers et al. (2016)) and base the material cost calculation on Cobalt-
Chromium powder, a high-performance alloy commonly used in gas turbine applications, with
a density of 8.3 g cm−3 and cost rate of 237.95£/kg3. In the build time model, we use the
regression model shown in Appendix A with input coefficients, r1, r2, r3 and r4, set to 0.5 h,
1.16× 10−1 h mm−1, 2.04× 10−4 h mm−3 and 8.33× 10−5 h mm−3, respectively.

To test the ITSP, a total of 27 instances have been generated manually using the geometries
listed in Appendix B. Out of 68 geometries, 24 were taken from literature, 41 were taken from
GrabCAD, an online open-source community for sharing 3D geometry files, and three geometries
were provided by Rolls-Royce plc. Additionally, three of the components taken from GrabCAD
were specifically designed for SLM and were produced by three real-case design challenges
sponsored by Alcoa, General Electric (GE) and United Launch Alliance (ULA), respectively.
The generated instances are shown in Table 2.
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Instance N D Avrg. Vol. (mm3) Vol. Std. Dev. (mm3) Avrg. VR Avrg. SA (mm2) Avrg. MLR Avrg. no. of Facets

SI1 10 0 37,078 32,232 21,870 0.19 0.22 46,893
SI2 10 0 60,412 81,256 22,665 0.24 0.28 27,198
MI1 25 0 35,551 35,232 21,372 0.19 0.22 55,921
MI2 25 0 42,980 56,650 24,099 0.20 0.27 42,290
LI1 40 0 32,687 49,707 21,257 0.21 0.23 56,657
LI2 40 0 38,652 48,822 20,992 0.20 0.25 51,622
LAV1 25 0 4,791 3,912 7,413 0.22 0.13 39,344
LAV2 25 5 4,794 3,819 7,686 0.22 0.12 41,084
LAV3 25 12 4,500 4,064 7,658 0.24 0.13 51,138
MAV1 25 0 20,290 8,205 15,822 0.22 0.24 56,218
MAV2 25 5 19,938 8,275 15,517 0.23 0.24 57,756
MMV3 25 12 20,475 6,932 15,528 0.21 0.23 56,311
HAV1 25 0 70,152 50,441 36,265 0.18 0.32 101,244
HAV2 25 5 70,709 49,632 36,877 0.18 0.29 97,053
HAV3 25 12 70,412 49,159 36,331 0.18 0.29 71,158
LSDV 25 3 17,283 6,073 15,735 0.21 0.23 35,338
MSDV 25 3 29,718 21,747 20,692 0.18 0.22 96,728
HSDV 25 4 47,536 65,326 20,718 0.25 0.20 54,903
LVR 25 4 27,746 26,368 28,078 0.07 0.28 71,167
MVR 25 4 39,306 34,097 20,413 0.16 0.23 115,934
HVR 25 4 57,222 90,786 16,928 0.29 0.20 51,093
LMLR 25 4 7,922 9,679 5,624 0.31 0.09 32,722
MMLR 25 4 34,837 27,383 20,585 0.14 0.22 104,884
HMLR 25 4 48,226 55,593 30,169 0.13 0.33 124,617
LSA 25 3 6,786 8,707 4,250 0.31 0.14 19,561
MSA 25 4 19,487 15,310 15,107 0.15 0.23 50,277
HSA 25 3 63,952 53,593 39,780 0.12 0.31 82,144

Table 2: ITSP test instances. N is the total number of geometries and D is the number of duplicate geometries.
SA is the surface area, VR is the volume ratio and MLR is the maximum length ratio.

The first six instances in Table 2 vary the number of pieces – where ’SI’, ’MI’ and ’LI’
are used to denote small, medium and large instances, respectively. Geometries were selected
randomly from the table shown in Appendix B to generate two instances of each size: SI1
and SI2 containing 10 geometries; MI1 and MI2 containing 25 geometries; and LI1 and LI2
containing 40 geometries. To limit computational expense, the remaining instances are fixed
at a size of 25 geometries; this is also deemed a reasonable value for a low volume on-demand
production scenario.

Next, we generate instances containing geometries of low (LAV1), medium (MAV1) and high
(HAV1) average volume. Based on the available 68 test geometries, these instances are designed
to approximately correspond to 4,500 mm3 for LAV1, 20,000 mm3 for MAV1 and 70,000 mm3

for HAV1. We also consider the presence of duplicate geometries at this point, and generate two
more instances of each type, with 20% (LAV2, MAV2, HAV2) and 50% (LAV3, MAV3, HAV3)
of the total geometries being replaced with duplicates, respectively, while keeping all other
variables at approximately the same values. Realistically, a few duplicates can be expected in a
typical batch of parts, hence, this value is set to 12-16% of the total geometries for all remaining
instances.

In addition to the size of pieces, the distribution of piece size has an equally direct effect
on the success of the packing solution. For this reason, instances with low (LSDV), medium
(MSDV) and high (HSDV) standard deviation of volume are also presented in Table 2.

The LSA, MSA and HSA instances correspond to low, medium and high average surface
area of geometries, respectively, which has been suggested to have a correlation with the build
time of SLM (Rickenbacher et al., 2013; Zhang et al., 2015b).

Finally, we consider the concavity and compactness of geometries, which can determine how
well the pieces might fit together inside the bin, as well as how much support structure may be
required. To quantify these two properties, we introduce two additional parameters, namely,
maximum length ratio (MLR) and volume ratio (VR). To measure MLR, we find the longest
vector that fits inside the geometry and divide its magnitude by the longest vector which fits

18



inside the machine build envelope (i.e. a diagonal line between the front-bottom-left corner and
the back-top-right corner of the 245mm x 245mm x 275mm bin). The VR is a ratio of the
geometry volume divided by the volume of its bounding box. Instances of low, medium and
large values were generated for both MLR and VR resulting in LMLR, MMLR and HMLR and
LVR, MVR and HVR, respectively.

7. Computational Results

7.1. Analysis of ITSP Strategies

To analyse the effectiveness of the ITSP we compare the cost improvement for each of the
five stages in the procedure relative to the initial solution. For clarity, the cost improvement,
denoted by CI, is defined by Equation 5 for the overall ITSP, and Equation 6 for each stage in
the procedure.

CI = Si −
Smin
Si

(5)

where Si is the cost of the initial solution and Smin is the cost of the best solution at the end
of the ITSP.

CI = S∗
i −

S∗
min

Si
(6)

where Si is the cost of the initial solution in the ITSP; S∗
i is the cost at the beginning of each

stage; and S∗
min is the cost of the best solution found during that stage. It should be noted

that a negative value of CI indicates an increase in the overall solution cost (i.e. negative
improvement), and vice versa. Table 3 shows the average, best and worst CI produced by each
stage and the overall ITSP, for the 27 tested instances; while Figure 10 shows the distribution
of CI for each stage. As indicated by Table 3, SHR yielded mixed results, producing the
single largest improvement (25.1% for the LSA instance) out of all the stages, but failing to
reduce the cost for more than half of the tested instances, two of which resulted in a slight
cost increase of 0.2%. On the other hand, SSVR produced the best results on average, followed
closely by PSVR, as can be seen in Figure 10. The PHR and BARR stages yielded the least
cost improvement, averaging 0.4% and 1.5%, respectively, and resulted in no improvement for
majority of instances.

Average CI (%) Best CI (%) Worst CI (%) Average T (s)

SHR 2.6 25.1 -0.2 994
SSVR 6.7 22.6 0.2 7,758
PHR 0.4 4.0 0.0 668
PSVR 4.9 22.1 0.0 10,910
BARR 1.5 8.9 0.0 5,750
ITSP 16.0 31.0 4.0 29,092

Table 3: Summary of computational results showing average, best and worst cost improvement and average
solution time for each stage in the procedure, as well as the overall ITSP. Cost improvement and solution time
are denoted by CI and T , respectively.

There are a number of possible reasons why SHR and PHR performed worse than SSVR
and PSVR. Firstly, this could be a natural outcome of the objective function, which is driven
by support structure volume both through build time and material cost, while the build height
parameter only influences the former. Consequently, the weight of support structure is likely to
be higher than the weight of build height in the cost function, and since these two objectives
are often conflicting, reducing build height may result in a higher overall cost, as in the case
of the worst solution in Table 3. This is further supported by Figure 11, which compares the
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Figure 10: Histogram of cost improvement shown for each stage in the ITSP. Cost improvement is denoted by
CI (%).

average variation in height (hR), support structure volume (sR), bin utilisation (uR), and cost
(cR) during each stage in the ITSP. We observe a much flatter curve for hR relative to sR, with
the cost reduction trend closely following that of sR. In fact the hR gradient shows a slight
increase during SSVR and PSVR, indicating that cost improvements were gained by reducing
support structure at the expense of build height.

It should also be noted that, to make the problem computationally feasible, we use a sim-
plified model of support structure volume, which is likely to produce an overestimate. This is
because we assume a fully dense support structure underneath all surfaces exceeding the self-
supporting overhang limit; in reality, designers aim to minimise scrap by creating intelligent
supports (e.g. lattice structures) tailored to the part. This discrepancy could be accounted
for by scaling the support structure volume calculated by our model by some lattice density
fraction, but to calculate its value some preliminary experimentation and model training would
be required.
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Figure 11: A comparison of the change in total support structure volume sR, average build height of bins hR,
average bin utilisation uR and total build cost cR through the different stages of the ITSP, where IS stands for
’Initial Solution’. The values of sR, hR, uR and cR are calculated as a percentage difference between the initial
solution and the best solution at the end of each stage, averaged across all test instances.

Another reason is that the SHR and PHR stages fail more often than SSVR and PSVR.
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This is partly due to the inverse correlation between the height and base area of the geometries;
for example, when a tall prism with a small cross-section is moved from an upright position to
resting on its side, the height of the piece decreases while piece area is increased. On the other
hand, the relationship between support structure volume and piece area is weaker, since support
structure is more dependent on the complexity and overhanging surface area of the geometry,
than its aspect ratio. Furthermore, since build height can only be reduced by repositioning the
tallest piece in the bin, SHR and PHR are only guaranteed as many iterations as there are bins
(or pairs of bins) in the solution. Since most test instances in this paper were packed into a
maximum of four bins, the SHR often failed after only four iterations, or less. In contrast, the
SVR and PSVR stages iterate through every piece in the solution, regardless of the previous
iteration – thus having greater chances of success. The upside of this is that both SHR and
PHR terminated relatively quickly compared to SSVR and PSVR, as shown in Table 3.

Finally, the cost reduction yielded by SHR and PHR, is not dependent on the height of
the tallest piece, but rather on the height difference between the two tallest pieces; this is in
contrast to SSVR and PSVR, where pieces are independent of each other. This explains why
SHR occasionally produces significant cost improvements for instances such as LSA, shown in
Figure 12, which consists of mostly small geometries and a few larger rod-shaped geometries,
while failing to produce a large enough height decrease in most other instances.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(a) 1st iteration. U = 0.14, H =
177.8mm.
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(b) 4th iteration. U = 0.25, H =
82.3mm.
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(c) 7th iteration. U = 0.41, H =
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Figure 12: Solution steps for the LSA instance; (a) shows the initial solution, (b) shows an intermediate SHR
solution and (c) show the final best solution produced by SHR. U and H denote bin utilisation (based on
uninflated pieces) and build height, respectively.

Similarly, the poor results produced by PHR could be explained by a large increase in piece
area after the Tabu search, and consequent failure of the 2DIBPP algorithm to find a feasible
solution; Figure 11 shows that only a moderate increase in bin utilisation was achieved after
PHR, compared to the subsequent PSVR stage.

As described in Section 3.3, PHR addresses bins in pairs in order to further utilise empty
bin space in the solution. However, a successful iteration only guarantees a reduction in the
height of the taller of the two bins; the height of the second bin is determined arbitrarily by the
bin assignment during repacking. Thus, the PHR stage may be improved by considering the
build height of the second bin as a constraint in the 1D bin packing model and the assignment
mending strategy in the 2DIBPP algorithm. Alternatively, potential bin assignments could be
ranked based on the standard deviation of height, encouraging pieces of similar height to be
placed in the same bin, as proposed by Zhang et al. (2015a).

BARR is quite different to the other four stages in the ITSP. The purpose of this final stage
in the procedure is to jump to an unexplored area in the solution space by adding an extra bin to
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the more-or-less converged solution at the end of PSVR. For 18 test cases no cost improvement
was found and the number of bins remained the same, while in the other ten instances a cost
reduction of up to 8.9% was gained by adding an extra bin, increasing the average number of
bins from 2.2 to 2.6, as shown in Table 4. At this point it could be argued that in cases where
BARR produced only a negligible cost improvement (e.g. < 1%) the solution should be reverted
to the best found solution at the end of PSVR, as the very small cost improvement does not
justify the use of an additional bin. The best improvement (8.9%) produced by BARR was for
the MMLR instance, which is shown in Figure 13 and Figure 14.
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Figure 13: Solution for MMLR instance at the end of PSVR.
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Figure 14: Solution for MMLR instance at the end of BARR.

It should be noted that additional activities associated with the number of bins, such as
machine set-up and part extraction, are not explicitly considered in the cost model of this
paper, as they are difficult to measure and predict consistently. Such activities may have an
impact on the effectiveness of the BARR stage, although it could be argued that this impact is
negligible given the relatively high build times of current SLM machines. Moreover, the impact
of bin-related costs would be further reduced for larger instances, as they would be absorbed
across more bins.

7.2. Benchmarking

Due to the novelty of the problem, the ITSP procedure cannot be reproduced exactly by any
currently existing method or software. Thus, we are only able to benchmark the initial solution
of the ITSP, for which we use Magics version 20.03, a commercial software that provides support
for process planning in ALM. The benchmark results were produced in the following two steps,
keeping manual intervention to a minimum. Firstly, the build orientation of each geometry was
optimised for minimum projected 2D area (i.e. piece area); secondly, all parts were placed into

22



the minimum number of bins while keeping the build orientations fixed. As in the ITSP, a
minimum distance of 5mm was maintained between all packed parts.

Initial ITSP Final ITSP Magics
DI (%) DF (%)

C (£) T (h) M C (£) T (h) M C (£) T (h) M

SI1 4,893.5 124.4 1 4,142.8 109.5 1 6,203.6 154.4 1 -21.1 -33.2
SI2 6,310.8 167.7 1 6,056.5 166.7 2 7,302.1 187.4 1 -13.6 -17.1
MI1 13,994.0 345.3 2 12,759.2 325.2 3 13,969.6 348.0 2 0.2 -8.7
MI2 15,434.2 386.6 2 13,718.7 357.0 2 14,407.6 366.6 2 7.1 -4.8
LI1 19,548.3 493.9 3 18,182.3 470.7 4 18,863.6 476.4 3 3.6 -3.6
LI2 21,481.3 541.9 3 19,092.2 493.6 3 22,005.2 554.5 3 -2.4 -13.2
LAV1 2,668.6 65.4 1 1,955.3 50.8 1 2,543.0 63.0 1 4.9 -23.1
LAV2 2,529.1 61.8 1 1,951.3 51.3 2 2,645.6 64.2 1 -4.4 -26.2
LAV3 2,798.1 71.4 2 2,116.6 56.5 2 3,090.3 73.5 1 -9.5 -31.5
MAV1 9,051.6 227.8 2 6,716.8 179.6 2 8,340.7 207.6 2 8.5 -19.5
MAV2 8,657.4 220.2 2 6,322.1 167.2 2 7,833.6 194.1 1 10.5 -19.3
MAV3 6,621.9 178.6 2 5,826.5 158.8 2 7,564.9 196.6 2 -12.5 -23.0
HAV1 25,595.6 648.0 4 22,293.0 587.7 5 24,289.6 614.2 3 5.4 -8.2
HAV2 25,561.2 643.9 4 22,922.1 590.9 4 25,209.6 633.3 3 1.4 -9.1
HAV3 25,525.3 639.1 4 22,382.9 577.8 4 22,908.0 577.7 3 11.4 -2.3
LSDV 7,303.2 186.1 2 5,501.0 147.9 2 7,234.9 177.7 1 0.9 -24.0
MSDV 10,474.9 267.3 2 9,468.3 249.2 3 10,134.1 260.7 2 3.4 -6.6
HSDV 16,730.5 419.6 2 14,794.0 387.3 3 16,647.6 420.4 2 0.5 -11.1
LVR 14,615.6 360.7 3 10,579.9 287.0 4 13,020.0 322.0 3 12.3 -18.7
MVR 13,376.5 338.4 2 11,479.7 304.2 3 12,190.7 315.1 2 9.7 -5.8
HVR 18,827.2 472.4 2 17,188.2 435.9 2 17,690.7 446.7 2 6.4 -2.8
LMLR 2,415.9 63.1 1 1,975.3 53.8 1 2,462.7 64.1 1 -1.9 -19.8
MMLR 13,039.3 320.2 2 10,927.3 284.6 3 11,735.6 295.0 2 11.1 -6.9
HMLR 17,551.5 443.0 3 16,412.9 420.5 4 16,609.6 418.4 3 5.7 -1.2
LSA 2,559.0 70.4 1 1,766.6 48.5 1 2,418.2 67.6 1 5.8 -26.9
MSA 7,746.6 195.7 2 5,971.2 159.2 2 7,426.6 189.8 2 4.3 -19.6
HSA 25,095.8 628.3 4 22,642.9 577.1 4 24,390.3 603.0 3 2.9 -7.2

Average 12,607.7 317.8 2.2 10,931.3 285.1 2.6 12,190.3 307.1 2.0 1.9 -14.6

Table 4: Comparison of ITSP initial and final solutions with Magics results. C denotes solution cost, M denotes
the number of bins, H denotes average build height and SV denotes the total support structure volume.

Table 4 provides a comparison of Magics and ITSP results for the 27 test instances. It can
be seen that the average initial cost of ITSP was marginally higher than the Magics benchmark,
while the final ITSP solution outperformed the benchmark by an average of 14.5%. The differ-
ence between the benchmark and initial ITSP solution can be attributed to two factors; firstly,
the support structure volume is higher than the benchmark by an average of 14%; secondly,
seven of the 27 test cases produced one more bin than the benchmark, resulting in the average
difference of 0.2 bins seen in Table 4.

(a) Initial ITSP solution (Bin 1). (b) Initial ITSP solution (Bin 2). (c) Benchmark solution.

Figure 15: Comparisons of the benchmark and initial ITSP solution for the MAV2 instance. Pieces where the
Tabu search performed worse than the benchmark are numbered in red.

Because Magics is a closed source software, we cannot provide a direct comparison of its
bin packing and build orientation search methods to ours. However, we can make several
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suggestions and observations. As can be seen in Figure 15, the Tabu search was not able to find
the minimum area solution for every piece, as in some cases it got stuck in a local minimum
early on. Furthermore, in order to solve the problem in reasonable time, the Tabu search was
allowed a maximum run time of 5 min per piece; as a result it was occasionally terminated early,
usually in the case of large complex geometries (e.g. ≥ 500, 000 STL facets), such as piece 5
in Figure 15a. This explains why some ITSP initial solutions had more bins, and accounts for
some of the difference in support structure volume.

It should be noted that, since there is no strong correlation between the support structure
volume and piece area, the poor Tabu search solutions can sometimes work in favour of the
ITSP, as in the case of SI1 and SI2, where the ITSP incidentally outperformed the benchmark
due to lower support structure, while the number of bins remained the same due to the small
size of the instances.

Moreover, two build orientations with the same optimal piece area and height, can result in
different volume of support structure, as shown in Figure 16. Although support structure and
height are already used to break tie in the piece area Tabu search, the current heuristic is most
likely to converge on whichever position is closest to the initial build orientation. The above
shortcomings can be improved with further tuning of the Tabu search parameters, or by an
alternative heuristic which samples the solution space in a more distributed way, for example,
a Genetic Algorithm (GA).

(a) Build orientation 1 (b) Build orientation 2

Figure 16: An example of two build orientations , which result in the same height, 60 mm, and piece area,
6699 mm2, with support structure volume of 246,134 mm3 and 105,645 mm3 for (a) and (b), respectively.

The ITSP was also significantly slower, taking 10,979 seconds on average to process all STL
files and produce an initial solution, compared to an estimated average solution time of 1,951
seconds for Magics, which also includes the loading of STL files and manual steps necessary
to run the software. The overall solution time of the ITSP is also quite long, averaging 7.8 h.
As described in Section 4, the intersection checking performed in the support structure volume
calculation, is by far the most time-consuming and computationally expensive aspect of the
Tabu search, accounting for more than 80% of the time taken to generate each build orientation.
Thus, improving the efficiency of this method or replacing it with an alternative, for example, a
machine learning approach based on support structures designed by an expert user or Magics,
could significantly improve the solution time of the ITSP (although other challenges would have
to be considered, such as acquiring sufficient training data).
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8. Conclusions and Future Research

In this paper we have addressed the combined build orientation and irregular bin packing
problem in the context of SLM. This work was motivated by the HVLV production scenario
which arises across different industries, such as aerospace and medical, and to which SLM is
particularly suited since it is able to produce parts in mixed batches. Since our focus is on the
aerospace sector, we have considered certification constraints in our procedure and tested it on
a number of realistic aero-components provided by companies such as Rolls-Royce plc., General
Electric and Alcoa. We developed a procedure consisting of six different stages and used total
build cost as the objective. In each stage we used a Tabu search to solve the build orientation
problem and a two-stage procedure to solve the 2DIBPP. The latter was solved by assigning
pieces to potential bins, then solving the resulting 2D packing problem for each bin. Each stage
explored a different area of the solution space by varying the bin assignment of pieces and by
addressing a different aspect of the cost function in the Tabu search; namely, the build height,
support structure volume and the number of bins in the solution.

To test the ITSP on a wide range of cases, we used a total of 68 geometries, some of
which were taken from literature addressing similar problems, and generated 27 different test
instances, varying the number, size and geometric properties of parts. The two most successful
stages in the ITSP, SSVR and PSVR, were driven by reducing support structure volume in the
Tabu search, and produced average cost improvements of 6.7% and 4.9%, respectively; while
the build height-driven stages, SHR and PHR, produced average cost improvements of 2.6%
and 0.4%, respectively. The BARR stage produced non-trivial improvements of 2.4-8.9% for
seven of the 27 test cases. On average, the initial bin utilisation was increased by over 40% at
the end of the ITSP (after a slight reduction in the BARR stage) indicating that the proposed
procedure was quite successful in effectively utilising machine space. The relative success of
the BARR stage suggests that increasing the number of bins can improve the cost, even for
relatively small instances, provided that the additional machine space is utilised to improve the
build orientation of parts. Additionally, using more bins allows the parts to be built in parallel;
this presents an interesting trade-off between build cost, time and the number of machines,
which could be addressed as part of future work.

The initial solution of the ITSP produced a marginally higher average cost and number of
bins, as well as a considerably longer solution time when compared to a commercial benchmark;
thus, we propose a number of possible future improvements to the ITSP in Section 7. Despite
its long running time, the final ITSP solution yielded a cost improvement over the benchmark
in all 27 test cases, with an average of 14.5% and ranging up to 33.2%. Furthermore, since build
orientation search is a multi-objective problem, our procedure has a significant advantage in
that it does not require the user to select or guess an appropriate weight for different parameters
in the objective function.

The work presented in this paper has opened up a number of new areas for further research.
For instance, post-processing costs, such as surface polishing, and considerations of part dimen-
sional accuracy and build failure due to residual stresses could be included into the objective
function. The effects of the 2D orientation of pieces on the build quality of parts could also be
explored.
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Appendix A. Build Time Model

The data used to create the build time regression model are given in Table A.5. All six
batches contained only identical parts and were built on an EOS M270 machine, using Cobalt
Chromium MP1 powder and a constant layer thickness of 20 µm.

N VP (mm3) VS (mm3) H (mm) TR (h) TP (h) TS (h)

Batch 1 81 67,149 0 12.4 1.6 0 1.6
Batch 2 3 99,186 145,566 34.1 23.2 20.9 4.2
Batch 3 2 80,776 394,722 39.0 18.5 33.7 4.6
Batch 4 3 595,647 0 53.0 119.9 0 6.5
Batch 5 6 63,654 173,358 28.8 14.4 8.6 4.5
Batch 6 1 167,188 119,909 131.0 34.9 13.2 15.6

Table A.5: Regression model input data. N denotes the number of parts in the batch; TR denotes total re-coating
time; TP denotes total part exposure time; TS denotes total support structure exposure time; VP and VS denote
total part volume and support structure volume, respectively; and H denotes batch build height.

A simple linear regression model of build time was produced in Microsoft Excel 2013, using
part volume v, support structure volume s and build height h as model inputs. The model is
summarised in Table A.6. The original value of r1 provided by the model was −12.17 h; this was
changed to 0.5 h to provide a more realistic model constant (especially since the data does not
include factors such as preheating, cooling etc.) and to discourage the ITSP from increasing the
number of bins in the solution (unless such an increase offers a significant cost improvement).
The model maximum error of -32.5% and RMSE of 5.48 h are quite high, as to be expected
for such a small set of training data. However, given the reasonable fit shown in Figure A.17,
we consider it sufficient for the purpose of testing our methodology. This model can easily be
replaced by the user with a more sophisticated one in the future.

Parameter Value Unit

r1 0.5 h
r2 1.16× 10−1 h mm−1

r3 2.04× 10−4 h mm−3

r4 8.33× 10−5 h mm−3

R2 0.98
ME -32.5 %
RMSE 5.48 h

Table A.6: Regression model coefficients and statistical measures, where ME and RMSE are the maximum and
root mean square errors, respectively. r1 denotes the constant coefficient, r2 denotes the build height coefficient,
r3 denotes the part volume coefficient and r4 denotes the support structure volume coefficient.
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Figure A.17: Measured vs. predicted total build time for the six test batches.
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Appendix B. Test Geometries

Group & Source Geometry Name Volume (mm3) Surface Area (mm2) Volume Ratio (VR) Max Length Ratio (MLR) No. of Facets

Araújo et al. (2015) Bearing block 96,646 28,939 0.19 0.32 12,846
Belt link 16,595 8,057 0.55 0.15 16,148
End cap 1,766 2,217 0.23 0.09 26,892
Turbine 20,618 11,625 0.25 0.13 107,806
Venturi tube 960 1,042 0.40 0.07 59,294

Canellidis et al. (2006, 2009) Caliper 51,601 23,483 0.17 0.21 43,154
Card slot cover 11,759 14,710 0.09 0.23 12,498
Cover 19,162 17,478 0.25 0.26 12,300
Distributor 7,149 13,189 0.10 0.14 4,028
Engine block 38,595 28,112 0.18 0.21 4,924
Flip-top 2,073 4,427 0.07 0.15 6,552
Gear 540 659 0.39 0.04 1,420
Handle 28,250 29,844 0.08 0.27 9,698
Impeller 80,661 40,349 0.17 0.28 474,222
Insect trap 5,631 16,474 0.07 0.17 50,910
Jawbone 73,270 22,190 0.08 0.31 100,948
Phone cover 53,704 57,385 0.08 0.45 30,004
Pipe support 2,296 2,959 0.24 0.09 620
Sector 90,050 52,234 0.10 0.50 14,574
Swivel hinge 10,952 7,647 0.22 0.15 4,860
Washing machine arm (centre section) 28,552 29,441 0.14 0.30 17,718
Washing machine arm (left section) 20,550 20,624 0.17 0.30 10,394
Washing machine arm (right section) 20,551 20,624 0.17 0.30 10,370

Gearbox Assembly Cover plate 27,134 13,880 0.38 0.28 19,972
(GrabCAD) GB housing 282,507 69,052 0.28 0.42 66,658

Offset shaft 31,520 8,798 0.78 0.42 6,596
Plate lug 78,908 20,952 0.28 0.23 19,294
Worm gear 37,698 14,996 0.39 0.15 16,262
Worm gear shaft 23,995 7,243 0.26 0.34 5,502

RC Jet Assembly Tube 19,870 16,184 0.14 0.25 247,318
(GrabCAD) Axle 18,750 6,078 0.44 0.39 1,296

Bearing 1,920 1,489 0.57 0.05 2,516
Bracket 6,900 14,739 0.02 0.39 308,318
Compressor bearing 2,770 2,504 0.32 0.07 34,424
Compressor housing 48,970 30,367 0.11 0.27 77,780
RC compressor wheel 8,760 11,461 0.13 0.13 15,640
Diffuser 34,770 31,326 0.09 0.25 554,636
Exhaust inner cone 3,280 9,492 0.05 0.11 44,816
Exhaust nozzle 8,240 28,327 0.02 0.21 71,812
Front bolt 880 710 0.47 0.04 1,852
Front casing 11,960 40,358 0.02 0.27 127,916
Jet Turbine bearing 305 435 0.42 0.03 1,374
NGV ring 10,520 17,836 0.08 0.17 60,350
Rear bolt 477 504 0.56 0.03 1,012
Rear casing 57,230 82,533 0.04 0.35 170,028
Spark plug 569 487 0.33 0.05 1,750
Spring 767 2,131 0.16 0.06 192,536
Starter 56,830 9,866 0.20 0.23 620,764
Turbine casing 4,633 4,792 0.23 0.19 9,328
RC turbine wheel 15,560 14,763 0.06 0.24 9,386

Turbocharger Assembly Clamp 9,780 7,977 0.15 0.19 8,218
(GrabCAD) Compressor flow 69,234 43,022 0.15 0.31 22,236

TC compressor wheel 8,761 11,464 0.13 0.13 23,316
TC housing 121,353 33,752 0.23 0.24 9,336
Socket & cap screw 20,529 5,668 0.46 0.13 3,100
Turbine flow 81,678 55,912 0.11 0.34 16,548
TC turbine wheel 15,664 14,769 0.06 0.24 12,578

Rolls Royce Combustor section 1 46,455 44,154 0.06 0.43 20,648
Combustor section 2 64,000 48,494 0.15 0.53 8,186
Seal segment 14,544 25,798 0.14 0.25 51,376

Aero-Parts Aero-bearing bracket 40,806 20,037 0.12 0.30 32,686
(GrabCAD) Control arm 90,512 33,471 0.13 0.42 7,654

Fuel injector 8,077 7,644 0.13 0.16 39,272
GE bracket 76,857 78,004 0.06 0.44 84,468
Housing1 40,840 26,450 0.13 0.21 48,586
Housing2 65,620 31,605 0.14 0.24 25,702
Space bracket 30,540 13,682 0.14 0.25 75,982
Turbine blade 13,216 10,478 0.11 0.22 31,230

Table B.7: Test geometries and their properties.
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