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Abstract

This paper presents an algorithm based on Benders decomposition to solve
the optimum communication spanning tree problem. The algorithm inte-
grates within a branch-and-cut framework a stronger reformulation of the
problem, combinatorial lower bounds, in-tree heuristics, fast separation al-
gorithms, and a tailored branching rule. Computational experiments show
solution time savings of up to three orders of magnitude compared to state-
of-the-art exact algorithms. In addition, our algorithm is able to prove opti-
mality for five unsolved instances in the literature and four from a new set
of larger instances.
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1. Introduction

Network optimization models are able to capture the system-wide inter-
actions of decisions inherent to transportation and communication systems.
They have thus become an important tool for designing and managing net-
works (Ahuja et al., 1993). While the most generic network design problem
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seeks the ideal trade-off between initial investment and operational costs,
there are often other efficiency criteria such as capacity and robustness that
need to be considered. Some examples are the design of minimum spanning
trees (Kruskal, 1956; Prim, 1957), Hamiltonian cycles (Tutte, 1946), surviv-
able networks (Kerivin and Mahjoub, 2005), and networks with connectivity
requirements (Magnanti and Raghavan, 2005).

The optimum communication spanning tree problem (OCT) is another
such example. Introduced by Hu (1974), the OCT seeks to find a tree span-
ning all N nodes of an underlying network with minimal operational cost
for communicating a set R of node-to-node requests. The use of optimum
communication spanning trees arises when communication requests between
node pairs are known in advance and the objective is to minimize the com-
munication costs after the network is built. When this is the sole efficiency
criterion, the optimal solution is the union of shortest paths between node
pairs which, except for particular distance structures, will contain more than
|N | − 1 links. Optimum communication spanning trees offer a balance be-
tween low operational costs on networks using a minimum number of links.

The OCT and the minimum spanning tree problem (MST) are closely re-
lated. Seen as general multicommodity network design problems, they have
the same set of feasible solutions with different objective functions. The
MST considers only fixed investment costs, while the OCT has only opera-
tional transportation costs. This discrepancy marks the difference between
a polynomial-time solvable problem, MST, and one that is NP-hard, OCT
(Hu, 1974).

The OCT appears as a subproblem in complex hub network design prob-
lems in which a tree-star topology is sought (Contreras et al., 2009, 2010b).
Thus, efficient solution procedures for the OCT may serve as subroutines
for solution procedures for more general network design problems. Outside
network optimization, a special case of the OCT where all communication
requirements are equal is used in computational biology to find optimal align-
ments of genetic sequences (Wu et al., 2000c; Fischetti et al., 2002).

There are two cases presented by Hu (1974) for which an optimal solu-
tion of the OCT can be obtained in polynomial running time. The first case
is when the distances between all node pairs are equal to one. Known as
the optimum requirement spanning tree problem, its optimal solution is the
Gomory-Hu cut tree over the network with edge capacities defined by the
communication requirements. This can be obtained in polynomial running
time by using the algorithm presented in Gomory and Hu (1961) over the
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network defined by requests R. The second case occurs when the commu-
nication requests between all node pairs are one and the distances satisfy a
stronger variant of the triangle inequality (Hu, 1974, see Theorem 3). Un-
der these assumptions, Hu (1974) shows that an optimal tree is a star and
presents a simple algorithm for obtaining it.

With the exception of these two cases, solving the OCT to optimality
in reasonable time is still an open problem. In fact, Papadimitriou and
Yannakakis (1991) showed that unless P = NP , no polynomial time approx-
imation scheme exists. Approximation algorithms for special cases of the
OCT have been proposed in Peleg and Reshef (1998), Wu et al. (2000a,b,c),
Wu (2002), Sharma (2006), and references therein. On the other hand, ef-
ficient heuristics have been proposed to obtain high quality solutions with-
in reasonable computational times as in Ahuja and Murty (1987), Palmer
(1994); Palmer and Kershenbaum (1995), Soak (2006), Rothlauf and Gold-
berg (2002); Rothlauf (2007, 2009), and Fischer and Merz (2007).

The first exact algorithm to solve the OCT was presented by Ahuja and
Murty (1987). They proposed a branch-and-bound procedure where linear
lower approximations (or lower planes) of the objective function are used to
obtain dual bounds at the nodes of the tree. These bounds are obtained by
solving a MST in which the lower planes are used to define the objective
function coefficients. This algorithm was able to optimally solve instances
with up to 40 nodes but only for sparse graphs containing no more than 10%
of the total number of potential arcs. Rothlauf (2007) presented an MILP
formulation for the general case of the OCT that is able to solve instances
with up to 12 nodes. Contreras et al. (2009) presented and analytically
compared flow-based, arc-based, and path-based formulations for the OCT.
The arc-based formulation turned out to be the most promising one when
used with a general purpose solver, producing optimal solutions for instances
with up to 25 nodes on complete graphs and requirement densities between
35% to 100% within reasonable computational times. Contreras et al. (2010a)
proposed a Lagrangian relaxation that exploits the structure of the problem
to obtain lower bounds via the solution of MSTs. The associated Lagrangian
dual problem does not have the integrality property and thus, can provide
better bounds than the linear programming (LP) relaxation of the arc-based
formulation given in Contreras et al. (2009). This Lagrangean relaxation
produced good lower and upper bounds for instances with up to 50 vertices.
Fernández et al. (2013) studied an improved flow-based formulation in which
solutions are represented as the intersection of several spanning trees, each
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rooted at a different vertex of the graph. They also considered the addition
of several classes of valid inequalities to improve the associated LP bounds.
Luna-Mota (2015) developed a rooted tree formulation containing only O(n2)
variables, a considerable reduction on the number of variables as compared
to the flow-based (O(n3)) or arc-based (O(n4)) formulations. This rooted
tree formulation provides on average slightly better LP bounds as compared
to the improved flow-based formulation of Fernández et al. (2013), but not
as tight as the ones associated with the arc-based formulation.

The most recent formulations and exact algorithm for solving the OCT
are given in Tilk and Irnich (2018). The authors introduced two Dantzig-
Wolfe (DW) reformulations, one equivalent to a path-based formulation of
Contreras et al. (2010a) and another obtained from the flow-based formula-
tion of Fernández et al. (2013). They proved that the latter DW reformula-
tion dominates the former and, in turn, all previously studied formulation-
s. They developed two sophisticated branch-and-cut-and-price algorithms
based on both DW reformulations to consistently obtain optimal solutions
for instances with up to 40 nodes and arc densities between 35% to 100%.
Although the latter formulation provides better LP bounds, the amount of
time required to solve the associated pricing problems, which correspond to
a series of fixed-cost network flow problems, does not compensate its im-
provement. Therefore, the best results are obtained with the former DW
reformulation, in which the pricing problems correspond to the solution of
a series of shortest path problems. To the best of our knowledge, this al-
gorithm is currently the state-of-the-art for solving the OCT. We use it for
comparison purposes in our computational experiments.

The main goal of this paper is to contribute to the exact solution of
the OCT. In particular, we introduce a Benders reformulation for the OC-
T based on an arc-based formulation. This reformulation is strengthened
with subtour elimination constraints that avoid the separation of (weaker)
Benders feasibility cuts. We embed our Benders reformulation into a branch-
and-cut algorithm and employ several algorithmic features to accelerate its
convergence. These include: (i) efficient separation algorithms that use a
simple but very effective dynamic core-point selection mechanism to sepa-
rate non-dominated optimality cuts, (ii) the incorporation of combinatorial
lower bounds that are tight for some particular cases and are used as a possi-
ble termination criterion in the enumeration of the search tree, (iii) a tailored
branching rule for faster exploration of the enumeration tree, and (iv) in-tree
rounding and local search heuristics to efficiently explore partitions of the
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solution space. Our algorithm’s computational performance improves signif-
icantly that of the state-of-the-art exact algorithm of Tilk and Irnich (2018)
as well as the built-in Benders implementations of CPLEX for the OCT. It
provides solution time savings of up to two orders of magnitude which allow
us to prove optimality for five unsolved instances in the literature as well as
new larger instances. Our algorithm expands the limits of solvability for the
OCT from 40 to 60 node instances. We note that the arc-based formulation
contains about 1.28 million variables and constraints for a 40-node instance
whereas for a 60-node instance the number substantially increases to 6.48
million, That is, our algorithm is capable of consistently solving instances
of MIPs for the OCT which are at least five times larger than any instance
previously solved to proven optimality.

The remainder of the paper is organized as follows. Section 2 presents the
formal definition of the OCT and the formulation from which we obtain our
Benders reformulation. Section 3 describes the Benders decomposition we
apply to the reformulation. Section 4 contains the algorithmic enhancements
to our Benders decomposition method and is followed by Section 5 which
presents the results of our computational experiments and its comparison to
the state-of-the-art solution methods. We present our conclusions in Section
6.

2. Problem Definition

The OCT is defined on a connected, undirected graph G = (N,E) where
N is the set of nodes and E is the set of edges. In addition, functions
d : E 7→ R+ and r : N × N 7→ R+ associate each edge with a distance and
every node pair with a request quantity, respectively. The OCT seeks to find
a spanning tree T with least total communication cost.

We define CT (i, j) as the length of the unique path in T between a pair of
nodes i, j ∈ N . The communication cost of a request from node pair i, j ∈ N
is calculated as rijCT (i, j). The total communication cost is the sum over all
node pairs. In our study, we assume the distance function is symmetric, i.e.
dij = dji and that the underlying network is complete.

Given these assumptions, we can define Wij = Wji = rij + rji as the
total request quantity between node pair i, j ∈ N with i < j and R =
{(i, j) ∈ N × N |i < j and Wij > 0} as the set of node pairs with strictly
positive communication requirements. This reduces the cardinality of the set
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of requests by a half and leads to the following definition of the OCT

min
T∈Ω(G)

∑
(i,j)∈R

WijCT (i, j),

where Ω(G) is the set of all spanning trees of G.
In this work we consider an arc-based formulation that uses decision vari-

ables indicating the arcs used in the paths connecting pairs of nodes. For
the OCT, such a formulation provides strong LP relaxation bounds at the
expense of using a large number of variables and constraints, which limits the
size of the instances that can be solved using a general purpose solver. The
flow-based formulation is obtained by aggregating by origins some subsets of
variables of the arc-based formulation. As a consequence, its LP relaxation
is weaker than that of the arc-based formulation. Even with the addition of
valid inequalities to the flow-based formulation as in Fernández et al. (2013),
there is no noticeable improvement in its performance. We refer to Luna-
Mota (2015) for details on alternative formulations for the OCT.

We define A as the set of directed arcs corresponding to edge set E, i.e. for
each (i, j) ∈ E there are corresponding arcs (i, j), (j, i) ∈ A. The arc-based
formulation is comprised of binary variables yij, for each edge (i, j) ∈ E, that
represent whether the edge is part of the spanning tree solution or not, and
continuous variables xrij, for each arc (i, j) ∈ A and request r = (or, dr) ∈ R.
These continuous variables indicate the portion of communication request r ∈
R routed on arc (i, j) ∈ A. Using these variables, the arc-based formulation,
POCT , is:

minimize
∑
r∈R

∑
(i,j)∈E

W rdij(x
r
ij + xrji) (1)

subject to
∑
j∈N :

(j,i)∈A

xrji −
∑
j∈N :

(i,j)∈A

xrij =


−1 if i = or
1 if i = dr
0 otherwise

∀i ∈ N, r ∈ R (2)

xrij + xrji ≤ yij ∀(i, j) ∈ E, r ∈ R (3)∑
ij∈E

yij = |N | − 1 (4)

xrij ≥ 0 ∀(i, j) ∈ A, r ∈ R (5)

yij ∈ {0, 1} ∀(i, j) ∈ E. (6)
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The objective function (1) calculates the total communication cost while
flow conservation constraints (2) ensure that all requests are routed. Con-
straint set (3) ensures that flow is only sent on edges that form part of the
spanning tree while (4) enforces that exactly |N | − 1 edges form part of the
resulting network. Finally (5) and (6) are the non-negativity and binary def-
initions of x and y, respectively. POCT contains O(n4) variables and O(n4)
constraints. As we will see in Section 5, solving this formulation with CPLEX
is impractical for instances of over 30 nodes.

3. Benders Decomposition for the OCT

Benders decomposition (Benders, 1962) reformulates a mixed integer lin-
ear program to one with significantly fewer variables and an exponential
number of constraints, which can be separated efficiently via the solution to
an LP subproblem, known as the dual subproblem (DSP). This can be ac-
complished by projecting the original formulation into the discrete variable
space, resulting in the reformulation known as the Benders master problem
(MP). As a result, the contribution of the continuous variables in the origi-
nal formulation is estimated by two sets of constraints known as feasibility
and optimality cuts indexed by the sets of the extreme rays and the extreme
points of DSP, respectively.

To apply Benders decomposition to the OCT, we begin by fixing the
variables yij = ȳij of POCT leading to the following primal subproblem (PSP):

minimize
∑
r∈R

∑
(i,j)∈E

W rdij(x
r
ij + xrji)

subject to
∑
j∈N :

(j,i)∈A

xrji −
∑
j∈N :

(i,j)∈A

xrij =


−1 if i = or
1 if i = dr
0 otherwise

∀i ∈ N,∀r ∈ R (7)

xrij + xrji ≤ ȳij ∀(i, j) ∈ E, r ∈ R (8)

xrij ≥ 0 ∀(i, j) ∈ A, r ∈ R. (9)

Note that PSP can be split into |R| independent shortest path problems
PSPr, one for each request. Let λ and µ denote the dual variables of con-
straints (7) and (8), respectively. From strong duality, each PSPr can be

7



substituted by its LP dual, denoted as DSPr, of the form:

maximize (λrdr − λ
r
or)−

∑
(i,j)∈A

µrij ȳij

subject to λrj − λri − µrij ≤ W rdij ∀(i, j) ∈ E
λri − λrj − µrij ≤ W rdij ∀(i, j) ∈ E
µrij ≥ 0 ∀(i, j) ∈ E
λri ∈ R ∀i ∈ N.

As previously mentioned, the set of extreme rays of DSPr, obtained when
it is unbounded, indexes the feasibility cuts of MP while the set of extreme
points, obtained from the optimal solution of DSPr, indexes the optimality
cuts. The MP is of the form:

minimize
∑
r∈R

zr

subject to zr ≥ λrdr − λ
r
or −

∑
(i,j)∈E

µrijyij ∀r ∈ R, (λ, µ)r ∈ Θr (10)

0 ≥ λ̄rdr − λ̄
r
or −

∑
(i,j)∈E

µ̄rijyij ∀r ∈ R, (λ̄, µ̄)r ∈ Φr (11)

∑
(i,j)∈E

yij = |N | − 1

y ∈ {0, 1}|E|,

where Θr and Φr represent the set of extreme points and extreme rays of
DSPr, respectively. Constraints (10) are Benders optimality cuts that es-
timate the communication cost of each request. Constraints (11) on the
other hand, ensure that the MP solution contains a path from each ori-
gin/destination request.

Note that MP exploits the decomposability of the subproblems by adding
one artificial variable for each commodity unlike the classical Benders refor-
mulation which only uses one variable to aggregate this information. This
leads to a better approximation of the transportation costs at each iteration
which has been empirically shown to improve solution times (Magnanti et al.,
1986; Contreras et al., 2011; Zetina et al., 2017).
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4. An Exact Algorithm for the OCT

Benders decomposition has been successfully used to solve a variety of
problems in network design (Geoffrion and Graves, 1974; Magnanti et al.,
1986; Randazzo and Luna, 2001; Costa, 2005; Botton et al., 2013), schedul-
ing (Muckstadt and Wilson, 1968), facility location (Magnanti and Wong,
1981; de Camargo et al., 2009; Contreras et al., 2011), and transportation
(Cordeau et al., 2000, 2001a,b; Papadakos, 2009). Each of these use algorith-
mic enhancements and exploit the problem specific structure to successfully
apply this method. The OCT is no exception and requires several additional
enhancements, which are described in this section.

Since not all feasibility and optimality cuts are needed to solve MP, the s-
tandard Benders decomposition algorithm (Benders, 1962) proposes relaxing
these constraints and solving the relaxed integer MP to optimality provid-
ing a dual bound. The obtained solution is then substituted into DSP to
obtain violated Benders feasibility or optimality cuts and a primal bound.
The cuts are then added to MP and solved again. This iterative process is
repeated until the gap between the dual and primal bound is within a desired
threshold.

One of the major drawbacks of this standard algorithm is that an inte-
ger MP needs to be solved at each iteration and there is no simple way to
reoptimize when adding new constraints from one iteration to the next. To
overcome this difficulty, recent implementations of Benders decomposition
consider the solution of the Benders reformulation with a branch-and-cut al-
gorithm, in which Benders cuts are separated not only at integer points but
also at fractional points at the nodes of a single enumeration tree (see, for
instance Fischetti et al., 2017; Zetina et al., 2017; Ortiz-Astorquiza et al.,
2018). We use this approach to develop an exact algorithm for the OCT.

In addition, we use the following strategies to speedup the convergence of
our branch-and-cut algorithm: i) we use subtour elimination constraints and
combinatorial bounds to strengthen the formulation, ii) we employ a heuristic
at the nodes of the enumeration tree to efficiently explore the solution space,
iii) we exploit the structure of the OCT to efficiently generate non-dominated
Benders cuts in the primal space, iv) we use a tailored branching rule for
faster exploration, and v) we fine-tune the branch-and-cut parameters. The
following sections provide details on each of the applied enhancements.
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4.1. Feasibility cuts, cutset inequalities, and subtour elimination constraints

Although the extreme rays of DSP needed to define feasibility cuts for the
master problem are readily obtained from any general purpose MIP solver,
it may be preferable that these be substituted by a better tailored set of
constraints that are obtained via efficient combinatorial algorithms. In this
light, we analyze two families of constraints that suit this purpose: cutset
inequalities and subtour elimination constraints.

Cutset inequalities are ubiquitous in the network design literature as a
tool for enforcing connectivity in a network. Their conceptual simplicity and
effectiveness has contributed to their widespread use for many network design
problems. These inequalities are of the form∑

(i,j)∈δ(S)

yij ≥ 1, (12)

where S ⊂ N and δ(S) = {(i, j) ∈ E|i ∈ S, j ∈ N\S}. Violated cutsets
can be easily found by solving maximum flow/minimum cut problems with
efficient combinatorial algorithms such as that of Edmonds and Karp (1972).

In the context of Benders decomposition, it is well-known that cutset
inequalities are sufficient to guarantee the feasibility of Benders primal sub-
problems for the uncapacitated multicommodity network design problems
(Magnanti et al., 1986; Costa et al., 2009; Ortiz-Astorquiza et al., 2018; Zeti-
na et al., 2017). Given that the OCT is a special case of the uncapacitated
multicommodity network design, cutset inequalities can also be used in lieu
of Benders feasibility cuts for our problem.

On the other hand, exploiting the fact that solutions to the OCT must be
spanning trees, subtour elimination constraints (SECs) are also viable candi-
dates as a substitute for Benders feasibility cuts. SECs used in formulations
for spanning trees are known to provide stronger LP relaxations than those
that use cutset inequalities (Magnanti and Wolsey, 1995). Interestingly, for
integer solutions, SECs are equivalent to cutset inequalities and are thus sep-
arated using the same algorithms, however, instead of having the form (12),
they are written as ∑

(i,j)∈E(S)

yij ≤ |S| − 1, (13)

where E(S) represents all edges whose end points both lie within S ⊂ N .
This equivalence does not hold for fractional solutions where SECs have been
shown to be stronger than cutset inequalities.
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Given these characteristics and the fact that they can be used to substi-
tute Benders feasibility cuts, we use SECs in our Benders master problem
to ensure feasibility of the primal subproblems. Our computational experi-
ments show that using SECs leads to a tighter LP relaxation for MP than
that obtained from POCT . In fact, the LP bounds of this strengthened Ben-
ders reformulation coincide with those obtained from the Lagrangian dual
problem of Contreras et al. (2010a). However, as the computational experi-
ments of Section 5 show, they are still weaker than the LP bounds obtained
with the strong DW reformulation of Tilk and Irnich (2018).

4.2. Combinatorial lower bounds

In the case of mixed integer programs with a minimization objective, the
LP of any formulation provides a valid lower bound on the optimal solution
value. In an enumerative framework such as branch-and-bound, the smallest
solution value of all explored nodes provides a global lower bound. Global
lower bounds are used to estimate the optimality gap during the execution
and at the end of any exact algorithm, but may also be useful in a prepro-
cessing step to evaluate a priori the difficulty of a given instance. We next
present two global combinatorial lower bounds for the OCT, which were first
proposed in Fernández et al. (2013) (see also, Luna-Mota, 2015). To the best
of our knowledge, these bounds have never been exploited in an algorithmic
context for the OCT. They not only give an assessment of the difficulty of
the problem, but at times obtain the optimal solution value of the mixed
integer program.

The first combinatorial lower bound is valid for complete graphs with
Euclidean distances that satisfy the triangle inequality. We observe that for
this case, at most |N | − 1 requests will be served on their shortest path
DG(i, j), i.e. by a direct link from origin to destination. Therefore, at least
|R| − |N | − 1 requests will have to use a path that is at least as long as the
second shortest path D2

G(i, j). Let z represent the total communication cost
of all requests on the spanning tree, therefore we have

z ≥ min
T∈Ω(G)

{
∑

(i,j)∈T

W ijDG(i, j) +
∑

(i,j)/∈T

W ijD2
G(i, j)} (14)

⇐⇒ z ≥
∑

(i,j)∈E

W ijD2
G(i, j) +MST (d∗), (15)

where d∗ij = W ij(DG(i, j) − D2
G(i, j)) and MST(d∗) represents the optimal

solution value of the minimum spanning tree over the network with distance
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function d∗. Note that MST(d∗) accounts for the |N |−1 edges with the largest
difference between DG(i, j) and D2

G(i, j) provided they form a spanning tree.
This combinatorial bound is easily obtained in two steps. The first is

to calculate the shortest distance for each request (i, j) ∈ R on the original
graph minus the edge joining these directly. The second is to obtain the
minimum spanning tree on a topologically equivalent graph with modified
distance function d∗ using Kruskal’s or Prim’s algorithm.

The second combinatorial lower bound does not require any assumptions
on the distance function. It is calculated using the minimum spanning tree of
the distance function d, MST(d), and the minimum communication tree with
respect to the request R, MCT, to construct the lexicographically minimal
sequences of edge lengths and edge flows which when combined appropriately
provide a lower bound on the solution of the OCT.

Let f1 ≤ f2 ≤ ... ≤ f|N |−1 be the flows that traverse the edges of MCT and
d1 ≤ d2 ≤ ... ≤ d|N |−1 be the lengths of the edges of MST(d), both sorted in
increasing order. In addition, let f ∗1 ≤ f ∗2 ≤ ... ≤ f ∗|N |−1 and d∗1 ≤ d∗2 ≤ ... ≤
d∗|N |−1 be the equivalent edge flows and edge lengths sequences, respectively,
of the optimum communication spanning tree. The edge length sequence of
MST(d) is the lexicographically minimal length sequence among all spanning
trees of G, while the edge flow sequence of MCT is also lexicographically
minimal among all equivalent flow sequences of spanning trees of G.

Since, these sequences are lexicographically minimal among all equivalent
spanning trees, they are also lexicographically minimal with respect to the
optimal OCT, i.e. fi ≤ f ∗i ∀i ∈ 1..|N | − 1 and di ≤ d∗i ∀i ∈ 1..|N | − 1. Thus,
if S|N |−1 denotes the set of all permutations of the indices {1, 2, ..., |N | − 1}
then

z ≥ min
σ∈S|N|−1

{
|N |−1∑
i=1

difσ(i)} (16)

⇐⇒ z ≥
|N |−1∑
i=1

dif|N |−i, (17)

where the equivalence between (16) and (17) comes from the rearrangement
inequality (Bulajich Manfrino et al., 2009).

Both combinatorial bounds (15) and (17) can be obtained at low compu-
tational cost and provide insights on the difficulty of the underlying instance.
For some instances, these combinatorial bounds are tight and play a signif-
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icant role in the proof of optimality. These instances will be highlighted in
Section 5.

4.3. In-tree Heuristics

Obtaining high quality solutions early in the branch-and-bound search
often leads to smaller enumeration trees by providing an improved criterion
for pruning and a guide for potential variables to branch on. If obtained
before beginning the enumeration tree, these solutions can be used for vari-
able elimination tests that reduce the problem size. For the OCT, we exploit
the fact that our search is limited to spanning trees to construct heuristic
solutions at all nodes in the enumeration tree. If the LP solution at a node is
fractional, our heuristic constructs first an initial feasible solution by solving
a MST in which the negative of the yij values are used to define the setup
costs of the edges. Otherwise, the integer solution obtained at the node is
a spanning tree since the heuristic procedure is called after the separation
routines are executed. We then use a fast local search heuristic that uses
a 1-edge-exchange neighbourhood (Ahuja and Murty, 1987) to improve this
initial solution. An important feature of our heuristic is that both construc-
tive and local improvement phases consider the variables that have been fixed
so far by the branching process of the enumeration tree. This decreases the
problem size and leads to an effective exploration of the solution space by
exploiting the partitions generated by the enumeration tree. To the best
of our knowledge, none of the existing heuristics for the OCT exploit such
feature.

Formally stated, let Y 1(ρ) and Y 0(ρ) denote the set of variables y that
have been set to 1 and 0, respectively, at node ρ of the enumeration tree. In
addition, let ȳ(ρ) denote the solution of the LP relaxation at node ρ. We con-
struct an initial solution by finding a minimum spanning tree with weights
−ȳ(ρ) such that all edges in Y 1(ρ) form part of the tree and edges in Y 0(ρ)
are not considered. This spanning tree is obtained by using Prim’s algorithm
for minimum spanning trees. Upon obtaining this initial candidate, we try
to improve it by exploring a 1-edge-exchange neighbourhood. While a näıve
algorithm may require O(n5) operations to evaluate the elements of the 1-
edge-exchange neighborhood of an arbitrary tree, Ahuja and Murty (1987)
present an algorithm that exploits the natural structure of the problem to
explore this neighbourhood in O(n3) operations. For the sake of complete-
ness, we next present a brief overview of the procedure and refer the reader
to Ahuja and Murty (1987) for a detailed description.
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The local search starts by pre-computing the distance matrix of T , DT =
[dTij], and the communication cost of T (z) in O(n2) total time. After this
global pre-processing step, the algorithm iterates over the |N | − 1 edges of
T applying the following process for each e ∈ E. Let δT (S) denote the cut
associated with T\{e}. For every i ∈ N , the amount of communication that
vertex i needs to send from S to N\S or vice-versa is calculated as

W eT
i =


∑

j∈N\S
W ij if i ∈ S∑

j∈S
W ij if i ∈ N\S,

and the total communication cost is

ξeTi =


∑

j∈N\S
W ijdTij if i ∈ S∑

j∈S
W ijdTij if i ∈ N\S.

Finally, the total communication requirement that must traverse δT (S)
is W eT =

∑
i∈V W

eT
i . Having done all these calculations as a preprocessing

step, for a given edge e = (e1, e2) ∈ E, ∀i ∈ S, ∀j ∈ N\S, and current routing
cost z, we can evaluate the communication cost of replacing e for (i, j) in
constant time as z−(ξeTe1 +W eT dTe +ξeTe2 )+(ξeTi +W eT dTij+ξ

eT
j ). Therefore, we

are able to explore all solutions in the 1-exchange neighbourhood of a given
tree T in O(n3) time and keep that with the lowest communication cost.

4.4. Pareto-optimal cuts

Recent implementations of Benders decomposition use strengthened vari-
ants of Benders optimality cuts. These are obtained either by using com-
binatorial arguments for lifting coefficients as in Magnanti et al. (1986), in-
and-out strategies as in Ben-Ameur and Neto (2007) and Fischetti et al.
(2017), or Pareto-optimal cuts as proposed by Magnanti and Wong (1981)
and Papadakos (2008). These modified Benders cuts play a crucial rule in
the convergence speed of the standard iterative Benders algorithm and the
strength of the LP estimation in the case of our branch-and-cut algorithm.

Magnanti and Wong (1981) define cut dominance as follows. Given two
cuts defined by dual solutions u and u′ of the form z ≥ f(u) + yg(u) and
z ≥ f(u′) + yg(u′), respectively, the cut defined by u dominates that defined
by u′ if and only if f(u)+yg(u) ≥ f(u′)+yg(u′) with strict inequality holding
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for some feasible y of MP . If a cut defined by u is not dominated by any
other optimality cut, then this cut is said to be a Pareto-optimal Benders
cut.

For the OCT, we first note that our subproblem is equivalent to that
obtained when applying Benders decomposition to the multicommodity un-
capacitated fixed-charge network design problem (MUFND) where requests
are considered as commodities. Zetina et al. (2017) apply Benders decompo-
sition to MUFND using Pareto-optimal cuts obtained by solving minimum
cost flow problems as in Magnanti et al. (1986). We adopt this strategy for
our subproblem to obtain Pareto-optimal cuts. In particular, we solve the
following parametric minimum cost flow problem (MCFr) to obtain Pareto-
optimal cuts:

minimize
∑

(i,j)∈A

crijx
r
ij −DSPr(ȳ)x0 (18)

subject to
∑
j∈N :

(j,i)∈A

xrji −
∑
j∈N :

(i,j)∈A

xrij =


−(1 + x0) if i = or

1 + x0 if i = dr
0 otherwise

∀i ∈ N (19)

xrij + xrji ≤ y0
ij + x0ȳij ∀(i, j) ∈ E (20)

xrij, x
r
ji ≥ 0 ∀(i, j) ∈ E,

where y0 is a core point as defined by Magnanti and Wong (1981) and x0 ∈ R.
The problem can be interpreted as that in which a rebate of DSPr(ȳ) is

given for each additional unit of the request routed on the network with de-
mand and capacities defined by (19) and (20), respectively (Magnanti et al.,
1986). Magnanti et al. (1986) show that any fixed value x0 ≥

∑
(i,j)∈A y

0
ij is

optimal for MCFr, therefore leaving only a minimum cost flow problem to
be solved for each request r ∈ R. As a result of fixing x0, it is no longer
necessary to solve DSPr(ȳ) since it is now multiplied by a constant in MCFr.
This observation allows us to save computational time by solving MCFr di-
rectly as the separation problem rather than solving it as a complementary
problem for Pareto-optimal Benders cuts. The corresponding dual variables
of (19) and (20) are used to define the Pareto-optimal Benders cuts of the
form (10).

After testing several static and dynamic alternative strategies for the s-
election of core points, we observed that the one performing best was that
where the selection of core points was done dynamically based on the incum-
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bent solution. Our corepoint y0 is defined as follows:

y0
ij =

{
1 if (i, j) ∈ Tbest

0.3 otherwise,

where Tbest is the current incumbent solution. It is evident that this core
point is always feasible for the primal subproblem since there will exist a
path for each origin/destination pair given that it contains Tbest which is a
spanning tree.

4.5. Branching rule

Branching plays an important role in branch-and-bound algorithms. Poor
branching choices lead to larger enumeration trees and longer solution times
(Mitra, 1973). Three prevailing branching strategies are maximum infea-
sibility, pseudocost, and strong branching. The latter has been shown to
produce significantly smaller enumeration trees at the expense of solving in-
exactly several LP problems before branching. Pseudocost branching on the
other hand uses statistics accumulated while exploring the enumeration tree.
Since there is not much information at the beginning, this strategy is vulner-
able to making poor choices at the beginning. Maximum infeasibility simply
branches on the variable with the most fractional value and is known to be no
better than randomly selecting a variable to branch on. Finally, Achterberg
et al. (2005) propose a hybrid of strong branching and pseudocost branching
that addresses the drawbacks of both approaches. Computational experi-
ments show this is a promising branching strategy for general mixed integer
programs.

An important difference between a Benders reformulation and the generic
mixed integer programs on which these strategies were tested is that at any
point in time during Benders decomposition, there is not a complete descrip-
tion of the underlying problem, i.e. only a partial formulation is available.
This poses an issue in particular regarding the use of strong branching where
LP relaxations of the nodes are used to estimate the impact of candidate
variables for branching. On the other hand, the reduced size of the LP prob-
lems in our branch-and-cut requires less computational time to evaluate the
potential impact of branching candidates.

We propose a hybridized strategy that exploits the problem specific struc-
ture and uses strong branching as its alternative when the former does not
render a clear candidate. Our primary branching rule considers the fact that
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our solution is a tree and seeks to construct one using the variables currently
fixed at value one.

Let ȳ(ρ) and Y 1(ρ) be the current fractional master problem solution
and the components whose value is one at node ρ, respectively. Note that∑

ij∈Y 1(ρ) ȳij < N−1, otherwise ȳ would be an integer solution. Let S(Y 1(ρ))i
denote the nodes in connected components i ∈ I(Y 1(ρ)) of Y 1(ρ). Our
branching rule selects edge (i, j) ∈ δ(S(Y 1(ρ))i, S(Y 1(ρ))j), i 6= j ∈ I(Y 1(ρ))
that leads to the component with the highest number of nodes. If more than
one candidate satisfying this condition exists, we select the one preferred
according to strong branching.

4.6. Fine-tuning the branch-and-cut algorithm

Implementing Benders decomposition within one enumeration tree re-
quires a careful fine-tuning of the branch-and-cut parameters. For our study,
we consider the following.

• Warm-start: We first calculate the combinatorial bounds (15) and
(17) to assess the difficulty of the instance. If the desired optimality gap
of 0.01% is not yet achieved, we begin solving the LP relaxation of the
Benders reformulation. We use the distances dij and communication
requirements W r as setup costs for the selected edges to obtain the
minimum spanning tree and the optimum requirement spanning tree
solutions, respectively, and add the corresponding Pareto-optimal cuts
to warm start the LP solution process.

• LP relaxation stopping criteria: As mentioned in Section 4.1, the
LP relaxation of our Benders reformulation is tighter than that of the
arc-based formulation due to the addition of constraints (13). We thus
aim to stop the cutting plane algorithm used to solve the LP relax-
ation when a lower bound close to the optimal LP solution of this
strengthened Benders reformulation is obtained. To achieve this, at
every iteration we add Benders cuts for fractional solutions until the
lower bound has improved at least once and at least three consecutive
iterations have passed without improvement. Preliminary experiments
showed that this strategy has a significant impact on the size of the
enumeration tree, as the LP solution provides an initial global lower
bound for the enumeration tree that will increase as the tree grows and
new child nodes are created and explored.
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• Filtering cuts: To avoid keeping unnecessary information and to re-
duce the size of the LPs solved at the nodes of the enumeration tree,
we filter optimality cuts generated when solving the LP relaxation at
the root node and keep only 30% of them, namely those with the least
slack at the last LP solution. These cuts are used to declare the ini-
tial integer Benders master problem in our branch-and-cut algorithm.
They are particularly useful to infer improved lower bounds, general
valid inequalities and bound strengthening.

• Cut separation and heuristic frequency: Despite initializing the
solution of the integer Benders reformulation with a good description
of the underlying polytope, there still exists a risk of not properly
estimating the LP bound of child nodes in the enumeration tree. On
the other hand, adding too many cuts, leads to excessively large LPs
that must be solved at other nodes. To circumvent this, we control the
cutting frequency by only separating constraints (13) and optimality
cuts at fractional nodes whose depth in the enumeration tree is divisible
by five and by only adding violated inequalities as local cuts (instead of
global cuts) using a minimum violation threshold of 1E−3. In addition,
at each candidate node, the separation procedure is applied at most
three times. In the case of integer nodes, the separation of both classes
of cuts is performed as many times as needed using a minimum violation
threshold of 1E−6. Finally, the in-tree heuristic is executed at each node
of the enumeration tree.

5. Computational Experiments

We have performed extensive computational experiments to evaluate the
efficiency of our proposed algorithmic framework and the effect of the im-
plemented enhancements. Our analyses focus on the performance of the
combinatorial lower bounds, the strength of our Benders MP and the effi-
ciency of our proposed branch-and-cut algorithm, which is compared to the
state-of-the-art algorithm of Tilk and Irnich (2018) and to a general-purpose
solver that solves both the arc-based formulation directly and also applies a
built-in Benders decomposition to this formulation.

We use the benchmark Berry, Palmer and Raidl instances (Palmer, 1994;
Palmer and Kershenbaum, 1995; Rothlauf, 2009). These instances consist of
complete graphs with requests between each origin/destination pair. We also
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use the instances of Contreras et al. (2010b) consisting of complete graphs
that range from 10 to 50 nodes with solicited requests of approximately
fifty percent of origin/destination pairs. Finally, we have generated 20 new
instances on complete graphs ranging from 60 to 100 nodes also with requests
of approximately fifty percent of origin/destination pairs.

All algorithms were coded in C using the callable library for CPLEX
12.7.1. The separation and addition of SECs and Benders optimality cuts
has been implemented via lazycallbacks and usercutcallbacks. For a fair
comparison, all use of CPLEX was limited to one thread and the traditional
MIP search strategy. Experiments were executed on an Intel Xeon E5 2687W
V3 processor at 3.10 GHz under Linux environment.

5.1. Combinatorial bounds

The combinatorial bounds proposed in Section 4.2 are all calculated in
less than a second of CPU time and give an indication of the difficulty of
the instances. Given that the Raidl instances do not satisfy the triangle
inequality, we focus on the Berry and Palmer instances. Table 1 shows the
objective value of the optimum integer solution (Optimum), the LP bound of
the arc-based formulation, the MCT-MST bound, the second shortest path
bound (D2), and the % deviation of the best combinatorial bound from the
integer optimum (% best dev).

Table 1: Combinatorial bound performance

Name |N | Optimum LP MCT-MST D2 % best dev

Berry 6 534.00 528.00 374.00 488.00 8.61
35 16,915.00 16,915.00 16,167.00 16,915.00 0.00

35u 16,167.00 14,010.67 16,167.00 13,106.00 0.00
Palmer 6 693,180.00 693,180.00 656,877.00 633,874.00 5.24

12 3,428,509.00 3,305,964.48 2,824,224.00 2,827,752.00 17.52
24 1,086,656.00 1,086,656.00 901,510.00 1,086,656.00 0.00

We note that the bounds are tight for three of the five instances. The
second shortest path is the best performing for all except for Berry 35u where
MCT-MST not only outperforms the second shortest path, but is also better
than the LP relaxation. For the Raidl instances, the MCT-MST has an
average deviation from the optimum value of 57.24%, giving testimony to
the difficulty of these instances.
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5.2. Linear programming relaxations

As mentioned in Section 4.1, the substitution of Benders feasibility cuts
for subtour elimination constraints (SECs) has the additional advantage of
providing a tighter LP relaxation than the arc-based formulation. Moreover,
due to the structure of the Benders master problem and efficient separation
algorithms for SECs, this substitution comes at no added computational cost.
Table 2 shows the LP bound of the arc-based formulation (LP arc-based), the
LP bound at our root node (LP MP), and the LP gap calculated as LP Gap
= (Opt−max{LP arc-based,LP MP})/Opt where Opt denotes the optimal
solution value.

Table 2: Linear programming relaxations

Name |N | LP arc-based LP MP % LP Gap

Berry 6 528.00 528.00 1.12
35 16,915.00 16,915.00 0.00
35u 14,010.67 14,187.16 0.00

Palmer 6 693,180.00 693,180.00 0.00
12 3,305,964.48 3,301,299.23 3.57
24 1,086,656.00 1,086,656.00 0.00

Raidl 10 53,643.00 53,643.00 0.06
20 155,006.30 155,006.30 1.63
50 747,476.27 747,338.44 7.36
75 1,500,604.65 1,507,453.31 n.a.
100 2,166,764.50 1,839,134.00 n.a.

Contreras 10a 70,954.00 70,954.00 0.28
10b 38,059.00 38,059.00 0.00
10c 29,113.00 29,113.00 0.00
10d 38,892.00 38,892.00 0.78
20a 85,810.50 85,810.50 4.09
20b 94,935.67 94,932.95 1.45
20c 98,785.17 98,900.50 3.52
20d 87,154.33 87,154.33 0.34
30a 222,590.50 222,590.50 2.48
30b 244,704.00 244,704.00 1.96
30c 203,723.06 203,722.32 2.55
30d 213,357.20 213,357.20 2.65
40a 346,642.67 346,635.06 1.11
40b 278,745.50 279,536.91 4.28
40c 273,956.38 273,929.71 4.61
40d 314,754.83 314,754.83 9.48
50a 438,462.13 439,016.62 4.33
50b 468,673.84 468,900.11 7.54
50c 363,830.01 363,788.29 8.35
50d 461,613.32 461,554.18 7.53

We first note that while the Palmer and Berry instances have a tight LP
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bound, the same no longer holds for the Raidl and Contreras sets. In fact, we
note that as the size of the instances increases, the average LP gap increases
with the highest being 9.48% for Contreras 40d. As will be seen later, this
large LP gap causes this particular instance to remain as the only unsolvable
40-node instance for the other exact algorithms. This supports the indication
posed in the previous section about the difficulty of these instances.

Second, we note that the six bold-faced instances in Table 2 have a
stronger LP bound with our Benders MP using subtour elimination con-
straints than with the arc-based formulation. However, as previously men-
tioned, this formulation is still weaker than the DW reformulation of the
flow-based formulation presented in Tilk and Irnich (2018) which remains
the strongest formulation known to date.

5.3. Solution times

This section summarizes the results of the experiments done to assess
the computational efficiency of our proposed algorithm. We compare our
algorithm’s performance with that of the state-of-the-art MIP solver CPLEX
12.7.1 solving the arc-based formulation as a generic MIP (CPX MIP) and
by applying its built-in Benders decomposition procedure (CPX Benders).
We also compare our results with those reported in Tilk and Irnich (2018).

Results are presented in three parts. The first refers to the results on
the Berry, Palmer, and Raidl instance classes while the second part summa-
rizes the performance on the instances presented in Contreras et al. (2010a).
The final part of our experiment was performed on a new set of larger size
instances generated with the code used in Contreras et al. (2010a). The inter-
ested reader is referred to that paper for further details on how the instances
have been generated. With the exception of Tilk and Irnich (2018) whose
results are taken directly form their paper, all experiments are given a time
limit of twenty-four hours.

Table 3 shows the optimal solution values, the number of nodes explored,
and the times in seconds/final optimality gap in case of time out for our
Benders algorithm, CPLEX’s branch-and-cut, and CPLEX’s built-in Ben-
ders decomposition. In addition, we report the number of optimality cuts
and subtour elimination constraints added in our Benders implementation.
The 75 and 100-node Raidl instances timed out for both algorithms having
an optimality gap of 10.58% and 45.1% with our algorithm and CPLEX’s
branch-and-cut, respectively.
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Table 3: Solution times- Classic Instances
B&C Benders CPX MIP CPX Benders

Name |N | Opt Nodes Opt Cuts SECs time (s) Nodes time (s)/ gap Nodes time (s)/ gap
Berry 6 534 0 63 1 0.01 0 0.01 0 0.03

35 16,915 0 159 0 0.02 0 0.60 0 4.47
35u 16,167 0 159 0 0.02 72,100 1d /11.75% 320,602 1d/ 28.74%

Palmer 6 693,180 0 69 0 - 0 0.01 0 0.02
12 3,428,509 33 866 3 0.45 29 3.64 40 1.35
24 1,086,656 0 69 0 - 0 0.08 0 0.61

Raidl 10 53,674 0 165 0 0.01 0 0.08 0 0.26
20 157,570 5 1026 6 0.23 3 7.36 28 7.67
50 806,864 15451 26234 16 3,171.95 178 1d/ 21.46% 37,010 1d/ 7.61%

As shown in Table 3, the Raidl 50-node instance was solved to proven
optimality in less than one hour of computing time. To the best of our
knowledge, it is the first time that an exact algorithm solves this instance to
proven optimality. On the other hand, after twenty-four hours of computing
time, CPLEX reports a 21.46% and 7.61% optimality gap for its branch-and-
cut and built-in Benders decomposition, respectively.

We also highlight that we are also able to solve the Berry 35u instance to
proven optimality. This comes as a result of the global lower bound calculated
by our MCT-MST procedure which proved the optimality of our optimum
requirement spanning tree solution. Like the Raidl 50 instance, we are not
aware of any other exact algorithm able to solve to proven optimality the
Berry 35u instance. CPLEX’s algorithms also report significant optimality
gaps after a day of computing time: 11.75% and 28.74% for its branch-and-
cut and built-in Benders decomposition, respectively.

Table 4 details the results of the experiments for the instances in Con-
treras et al. (2010a). We present the same information as in Table 3 along
with the computing times reported in Tilk and Irnich (2018) for their best
performing column-and-row generation algorithm. We realize that a different
version of the CPLEX software is used. However, we report them as a bench-
mark for instances that are currently solvable by ad hoc exact algorithms.

Our branch-and-cut algorithm outperforms all other approaches by a sig-
nificant margin. It is up to three orders of magnitude faster at proving
optimality than the others. Moreover, for the first time it proves optimality
for the four remaining 40 and 50-node instances of Contreras et al. (2010a).

Apart from the substantial time savings, we point out that for most in-
stances solved by all algorithms, our Benders implementation explores a re-
duced number of nodes when compared to both CPLEX’s branch-and-cut
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Table 4: Solution times- Contreras instances
B&C Benders CPX MIP CPX Benders Tilk & Irnich

|N | Opt Nodes Opt Cuts SECs time (s) Nodes time (s)/ gap Nodes time (s)/ gap time (s)/ gap
10a 71,156 3 129 2 0.02 0 0.07 0 0.09 0.06
10b 38,059 0 115 6 0.01 0 0.01 0 0.11 0.03
10c 29,113 0 77 0 0.01 0 0.01 0 0.09 0.03
10d 39,197 5 98 0 0.01 1 0.05 0 0.11 0.08
20a 89,474 29 628 10 0.24 30 3.66 253 2.13 3.30
20b 96,333 27 618 0 0.15 9 2.48 10 1.87 2.44
20c 102,505 23 763 8 0.23 18 6.14 125 4.11 2.30
20d 87,452 5 519 4 0.11 0 1.15 0 2.39 0.29
30a 228,247 29 2,248 9 1.89 34 87.37 665 28.67 24.75
30b 249,607 21 2,069 12 1.67 36 129.72 576 33.42 30.57
30c 209,062 41 2,057 13 2.00 73 246.43 483 21.52 22.94
30d 219,170 65 1,692 6 1.32 115 193.61 1,244 28.96 31.52
40a 350,542 13 2,983 11 3.33 43 521.28 1,347 115.03 43.43
40b 292,047 39 4,602 17 7.18 733 7,884.46 106,320 3,427.14 2,511.97
40c 287,198 47 4,138 8 6.75 1,853 12,086.39 152,827 5,461.60 3,339.61
40d 347,715 1,183 7,995 2 194.32 5,509 1d/ 4.12% 946,191 1d/ 3.27% 2h/ 3.54%
50a 458,881 741 9,243 23 129.24 642 1d/ 2.31% 470,509 84,341.88 6,311.23
50b 507,142 2,291 13,756 18 605.81 1,396 1d/ 6.10% 298,157 1d/ 4.32% 2h/ 3.16%
50c 396,966 115 8,948 13 42.04 900 1d/ 8.11% 247,503 1d/ 5.24% 2h/ 4.67%
50d 499,184 22,685 17,637 14 3,221.28 882 1d/ 6.98% 390,775 1d/ 4.25% 2h/ 4.81%

and built-in Benders decomposition. A clear example is that of instance
Contreras 40c, where our Benders algorithm explores only 47 nodes in the
enumeration tree while CPLEX’s branch-and-cut and built-in Benders de-
composition explore over 1,800 and 152,000 nodes, respectively. We attribute
this mainly to two factors. First is the strength of our Benders optimality
cuts (the majority of the cuts added) which in turn provide an accurate es-
timate of the underlying LPs. The second is our customized branching rule
which provides a good criterion for creating child nodes.

In addition, we point out that CPLEX’s built-in Benders decomposition
provides a significant speed-up compared to its standard MIP branch-and-
cut algorithm. Time savings of up to an order of magnitude can be seen
for 30 and 40 node instances, making it competitive with the state-of-the-
art algorithm presented by Tilk and Irnich (2018). This speed-up can be
attributed mostly to its ability to quickly explore nodes in the enumeration
tree due to the smaller dimension of the underlying LPs. A clear example
is the Contreras 40b instance in which CPX MIP explores less than one
thousand nodes in over two hours while CPX Benders explores over one
hundred thousand nodes in less than half the time. However, this alone is
not enough to match our Benders algorithm since we’re able to explore nodes
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just as fast while requiring significantly less to prove optimality.

Table 5: Solution times- new instances
B&C Benders CPX Benders

|N | Opt/Best % gap Nodes Opt Cuts SECs Time (s) % gap Nodes
60a 558,837 - 14,853 15,455 39 1,415.69 4.80 104,300
60b 646,174 - 19,579 14,034 20 422.99 4.60 88,023
60c 665,518 - 17,031 34,571 44 15,938.51 7.00 94,975
60d 503,685 - 11,779 9,759 12 20,388.01 9.00 86,696
70a 692,837 6.49 17,792 10,460 24 86,400 17.88 48,729
70b 849,031 4.74 13,107 13,498 27 86,400 14.72 31,967
70c 829,570 6.97 15,364 13,478 93 86,400 18.21 32,128
70d 631,192 2.28 10,978 13,142 17 86,400 14.62 55,513
80a 825,605 7.24 5,199 27,850 64 86,400 90.15 29,212
80b 951,069 7.06 12,157 15,137 31 86,400 11.69 21,200
80c 883,122 1.27 6,671 19,929 25 86,400 89.30 26,485
80d 855,935 7.04 6,842 17,973 13 86,400 46.40 21,850
90a 1,065,823 11.02 5,576 27,024 45 86,400 90.82 14,824
90b 1,107,918 8.36 6,414 22,070 24 86,400 91.42 10,620
90c 1,107,435 10.15 7,838 22,786 31 86,400 90.59 13,246
90d 1,080,571 13.04 4,628 26,260 132 86,400 89.64 13,090
100a 1,222,478 7.20 4,548 29,767 31 86,400 91.10 8,000
100b 1,564,725 9.54 0 18,338 143 86,400 91.95 4,969
100c 1,255,077 9.92 6,821 26,801 66 86,400 91.07 8,273
100d 1,233,536 10.72 6,501 25,559 47 86,400 89.98 10,013

To test the limits of our algorithm, we have generated 20 instances of be-
tween 60 and 100 nodes. Table 5 reports the optimal or best-known solution
value along with data as in Table 4 for our and CPLEX’s implementation
of Benders decomposition. We note that our algorithm is able to solve all
60-node instances and obtains reasonable percentage gaps for the remaining
instances while CPLEX’s Benders decomposition is unable to solve any in-
stance within twenty-four hours of CPU time and presents final optimality
gaps of up to 90%.

The fact that CPLEX’s built-in Benders decomposition is unable to solve
any of these larger instances gives testament that our implementation goes far
beyond simply applying Benders decomposition to the OCT. The efficiency of
our algorithm comes from the adequate combination of the several algorith-
mic enhancements implemented. Key ingredients such as: core point selec-
tion, efficient separation algorithms, in-tree heuristics, a customized branch-
ing rule, and fine-tuning the branch-and-cut parameters make the difference
between the performance of our algorithm and that of CPLEX’s built-in
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Benders decomposition.

6. Conclusion

We have provided a novel exact algorithm for the OCT that is 100 times
faster and is able to solve larger instances than the state-of-the-art. The
proposed algorithm uses a novel Benders reformulation for the OCT and
exploits problem specific structure to obtain Pareto-optimal Benders cuts
efficiently, guarantee feasibility, select branching variables and obtain high
quality solutions during the enumeration process. Finally, a new testbed of
larger instances has been presented to be used for benchmarking in future
research. Our results support the use of a Benders-based branch-and-cut
for network design emphasizing on the importance of combining the right
algorithmic enhancements. An interesting path for future research would
be to strengthen the quality of the lower bounds obtained at the nodes of
the enumeration tree by: (i) exploring the use of the combinatorial bounds,
evaluating them at some nodes of the enumeration tree while considering the
fixed edges to further improve the quality of the bounds, and (ii) using lifting
procedures for Benders optimality cuts that use similar logical arguments as
the ones used in the combinatorial cuts.
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