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Abstract

This paper studies a variant of the unit-demand Capacitated Vehicle Routing
Problem, namely the Balanced Vehicle Routing Problem, where each route is
required to visit a maximum and a minimum number of customers. A poly-
hedral analysis for the problem is presented, including the dimension of the
associated polyhedron, description of several families of facet-inducing inequal-
ities and the relationship between these inequalities. The inequalities are used
in a branch-and-cut algorithm, which is shown to computationally outperform
the best approach known in the literature for the solution of this problem.
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1. Introduction

The Capacitated Vehicle Routing Problem (CVRP) is concerned with design-

ing routes for a fleet of capacitated vehicles to serve a number of customers. Each

customer is in a geographical location and demands a commodity that must be

transported by a vehicle from a specific location called the depot. Each vehicle

must start from and end at the depot, transporting the demands of a subset of

customers without violating the capacity limitations. Travel costs between any

pair of locations are known and symmetric, and might be related to the distance

between the two locations. The CVRP consists of determining a minimum cost

set of routes for the vehicles to serve the demand of each customer with exactly
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one visit. The capacity limitations in the CVRP relate to the maximum load

that the vehicle can carry upon leaving the depot; see e.g., [19] for different

CVRP formulations. For the variant of the problem where the demand of each

customer is equal to one (often called the unit-demand CVRP), the capacity

limitation can be interpreted as the maximum number of customers that can be

visited in each route.

Under the traditional objective of minimizing the travel cost, optimal solu-

tions may contain imbalanced routes, in the sense that some vehicles visit the

maximum allowed number of customers while others visit only a few customers.

One way to avoid this situation is to impose an additional limitation on the

minimum number of customers that should be served on each route. With such

a constraint, optimal solutions may result in routes serving similar numbers

of customers. We will refer to this extension as the Balanced Vehicle Routing

Problem (BVRP).

The BVRP has been studied by [11, 12] under the name of “vehicle routing

problem with lower bound on the number of customers per route”. The work in

[11] describes a branch-and-cut algorithm based on a class of so-called Reverse

Multi-Star (RMS) inequalities, which are obtained by projecting out the flow

variables from a single commodity flow formulation of the problem. The RMS

inequalities are related to the Multi-Star (MS) inequalities considered in [1]. A

multi-depot variant of the problem has been studied in [4], describing several

formulations and Benders decomposition algorithms.

Alternative approaches described in the literature for finding balanced routes

include the use of a multi-objective function, as opposed to enforcing additional

constraints in the formulation. Since our paper follows the latter approach to

solve the BVRP, we refer the interested reader to [15] for a survey on the former.

The main contribution of our paper is to provide the first investigation of the

BVRP polyhedron extending known results on the CVRP polytope. One of the

earliest works that conducts a polyhedral study for the cardinality-constrained

minimum spanning tree problem and the unit-demand CVRP is [1]. The au-

thors study a variety of MS inequalities, divided into “Large”, “Intermediate”

and “Small”. They present two additional sets of inequalities called Ladybug

and Partial MS inequalities, and conclude by analyzing the clique inequalities.

The number of routes in a solution is not fixed in their work. Further polyhedral

analysis for the unit-demand CVRP where the number of routes is fixed can be

found in [7], which presents results on the dimension of the associated poly-

hedron and facet-inducing properties of the trivial inequalities and the capacity
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constraints. Most of the proofs presented in [7] are based on what is known as

the “indirect method”, which consists of concluding the unique representation

of the inequality; see e.g. [14]. [9] extend the polyhedral analysis by studying

additional inequalities and extensions beyond the unit-demand case. They ex-

ploit the fact that the polyhedron of the Graphical Vehicle Routing Problem

(GVRP) is a full-dimensional and includes the CVRP polytope as a face. Most

of the analysis in that article are about inequalities of the GVRP polyhedron. A

generalization of these inequalities for the general-demand CVRP can be found

in [17, 18].

Our work aims to contribute to the efforts above and present a polyhedral

analysis of the BVRP, which includes the unit-demand CVRP as a special case

when the lower limit for the vehicle load is equal to one. We study the dimension

of the associated polyhedron and some facet-inducing properties. These results

are exploited in a branch-and-cut algorithm to solve the BVRP. Computational

experiments show that our implementation is able to solve much larger-scale

BVRP instances than previous approaches in the literature.

The rest of the paper is organized as follows. Section 2 provides a formal

description of the problem, introduces the notation, and presents a mathemat-

ical formulation. Section 3 studies the dimension of the BVRP polyhedron and

presents some of its facets. A branch-and-cut algorithm using the new inequalit-

ies, together with computational results, are detailed in Section 4. Conclusions

are given in Section 5.

2. Problem description

The BVRP is defined on an undirected graph G = (V,E) where V =

{1, . . . , n} is the set of vertices, each one representing a location, and E =

{(i, j)|i < j, i ∈ V, j ∈ V } is the set of edges. Each edge (i, j) ∈ E has a travel

cost cij , which is often a function of the distance between the locations. Node 1

represents the depot and the set V ′ = {2, . . . , n} represents the customers, each

of which has a unit demand. The minimum and maximum numbers of custom-

ers allowed to be served by each vehicle are denoted by Q and Q, respectively.

We assume that the number m of vehicle routes is fixed. We also assume that

the following conditions hold:

(c.1) Q ≤ n− 1− (m− 1)Q,

(c.2) Q ≥ n− 1− (m− 1)Q,
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(c.3) mQ ≤ n− 1 ≤ mQ.

Conditions (c.1) and (c.2) can be assumed without loss of generality since, in

the event that one of these two conditions is not satisfied, then the bound in

that condition can be improved by adjusting the right hand side value. Note

that it is not possible to violate (c.1) and (c.2) simultaneously, so only one of the

bounds could be improved. Condition (c.3) ensures that the problem is feasible,

i.e., the customers can be distributed over the m routes.

For simplicity, we assume that in what follows m ≥ 2, Q ≥ 3 and n > 5,

and we will also study separately some cases without these assumptions. When

S ⊆ V ′, the customer set V ′ \ S is denoted by S′. Given a function x on the

edges, we write x(E(S : T )) instead of
∑
i∈S,j∈T :i6=j xij for any S, T ⊆ V . We

also use x(δ(S)) = x(E(S : V \ S)) and x(γ(S)) = x(E(S : S)).

The BVRP can be mathematically formulated as the integer linear program:

Minimize
∑

(i,j)∈E

cijxij (2.1)

x(δ(i)) = 2 i ∈ V ′ (2.2)

x(δ(1)) = 2m (2.3)

x(δ(S)) ≥ 2

⌈
|S|
Q

⌉
S ⊂ V ′ (2.4)

x(δ(S)) ≥ 2x(E({1} : S)) S ⊂ V ′ : |S| < Q (2.5)

xij ∈ {0, 1} (i, j) ∈ E. (2.6)

The objective function (2.1) minimizes the travel cost. Degree equalities

(2.2) ensure that each customer is visited exactly once. Equation (2.3) forces to

design a route for each vehicle. Constraints (2.4) ensure that no route exceed

the maximum capacity Q. Constraints (2.5) avoid routes that are too small,

i.e., those that visit less than Q customers. These inequalities can be rewritten

as x(δ(S ∪ {1})) ≥ 2m, with the interpretation that if |S| < Q then all vehicles

are necessary to serve the customers in S′. Finally, constraints (2.6) force the

variables to be binary.
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3. Polyhedral Analysis

In this section, we first provide results on the dimension of the BVRP poly-

hedron, defined as

PBV RP = Convex.Hull{x ∈ R|E| | x satisfies (2.2)–(2.6)},

and then present a number of facet-defining inequalities.

Theorem 3.1. dim(PBV RP ) = |E| − n.

A detailed proof of Theorem 3.1 is presented in Appendix A. It is based on

a partition of V ′ into subsets Hi (i = 1, . . . ,m), each containing a number of

customers between Q and Q, and then exploit known results for the polytope

associated to the Travelling Salesman Problem (TSP). Note that each route is

a TSP solution. The first family of solutions used in the proof is denoted Φ1,

which contains BVRP solutions where all the nodes in Hi are visited by the

same route. The remaining families are shown by Φ2, . . . ,Φ6, which are defined

in such a way that they use the edges not used by the solutions in Φ1.

We use the so-called “direct method” which consists in enumerating |E| −
n+ 1 affinely-independent BVRP solutions.

3.1. Facets of the BVRP polytope

This section presents five classes of facet-defining inequalities for the BVRP

polyhedron.

3.1.1. Trivial inequalities

We study four sets of trivial inequalities represented by the four theorems

below.

Theorem 3.2. Inequalities x1i ≥ 0 for all i ∈ V ′ define facets of PBV RP if
m ≥ 2, Q ≥ 2, Q ≥ 3.

Proof: We use the families of solutions described in the proof of Theorem 3.1

with minor modifications to produce solutions without the edge (1, i). Since

Q ≥ 3, we can assume that the partition P of V ′ is done such that customer i is

in a subset Hi (containing at least 3 customers). To adapt the solutions in Φ1

we exploit the fact that x1i ≥ 0 is a facet-inducing inequality in the TSP; hence,

we obtain one solution less than in the proof of Theorem 3.8, all of them being

BVRP solutions without the edge (1, i). The solutions in Φ2, Φ3, Φ5 and Φ6

5



do not need modification by simply setting ui to be customer i, so no solution

includes (1, i). Setting u = i, the solutions in Φ4 do not include the edge (1, i).

�

Theorem 3.3. The inequalities xij ≥ 0 for all i, j ∈ V ′ define facets of PBV RP
if m ≥ 2 and Q ≥ 3.

Proof: We select the partition P such that i and j belong to different subsets,

say Hi and Hj , respectively.

All solutions in Φ1 satisfy xij = 0; thus, all of them can be used in this proof

too. To use the solutions in Φ2, select ui ∈ Hi \ {i} and vj ∈ Hj \ {j}; then

all the solutions do not use (i, j), except the one with u = i and v = j. To use

the solutions in Φ3, select u = i and vj = j. To use the solutions in Φ4, select

ui = i and v = j. To use the solutions in Φ5, select ui = i and vj = j. To use

the solutions in Φ6, select u = i and v = j. They are all affinely independent

and only one of them uses (i, j). �

Theorem 3.4. The inequalities x1i ≤ 1 for all i ∈ V ′ define facets of PBV RP
if m ≥ 2 and Q ≥ 3.

Proof: As in the proof of Theorem 3.2, the BVRP solutions in Φ1 can be

constructed so only one does not use (1, i). By selecting appropriately the fixed

vertices in Hi and Hj , the solutions of the other families use the edge (1, i). �

The inequalities in the previous theorem are the special case of inequalities

(2.5) where S = {i}.

Theorem 3.5. The inequalities xij ≤ 1 for all i, j ∈ V ′ define facets of PBV RP
if m ≥ 2, Q ≥ 3 and Q ≥ 5.

Proof: Consider the partition P such that customers i and j are in the same

subset, say Hk, with |Hk| ≥ 5. Then, in the resulting TSP on Hk ∪ {1} we

build one solution less than in the proof of Theorem 3.1 (because xij ≤ 1 is

facet-defining in the TSP). The solutions in the other families can be easily

modified in such a way that edge (i, j) is used in all the solutions. �.

The inequalities in the previous theorem are the special case of (2.4) where

S = {i, j}.

3.1.2. Capacity constraints

Inequalities (2.4) in the BVRP formulation are called Capacity Constraints.

The authors in [7] show that they are facet-inducing inequalities in the CVRP
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if there exists an integer α with 1 ≤ α ≤ K∗ − 2 and K∗ =
⌈
(n− 1)/Q

⌉
such

that |S| = αQ+ 1 and 3 ≤ K∗ ≤ Q ≤ n− 1− α(Q− 1)− 2.

The capacity constraints never induce facets for the CVRP polytope when

|S| = αQ because a solution satisfying (2.4) with equality also satisfies x(E(S :

S′)) = 0, and therefore the constraints associated with S would be dominated

by the same constraints associated with the set S without one customer.

In what follows we study the conditions under which the capacity constraints

are facet-inducing for PBV RP . First, we look at a special partition of the cus-

tomers which will be used in some of the ensuing proofs.

Lemma 3.6. Let Pu be the partition of the n − 1 customers into m subsets
maximizing the number of subsets with Q customers first, and maximizing the
number of subsets with Q customers second. This partition has a subset with

Q customers and another subset with Q customers. At most one subset in this

partition may have a number of customers larger than Q and smaller than Q.

Let αu, βu, λu non-negative integer numbers such that n− 1 = αuQ+βuQ+λu,

Q ≤ λu < Q and αu + βu = m− 1.

In general the capacity constraints are not facet-inducing of the PBV RP .

This can be illustrated with an example where n = 19, Q = 6, Q = 3 and

m = 5. Then αu = 1, βu = 3, λu = 3. Consider a set S with |S| = 11, thus

d|S|/Qe = 2. However if only two vehicles are used to visit the 11 customers in

S then the remaining three vehicles will need to visit the seven customers in S′,

which means that at least one vehicle will visit less than Q customers. Indeed,

the inequality x(δ(S)) ≥ 6 is valid in this case, and therefore the capacity

constraint (2.4) is dominated.

The capacity inequalities for the BVRP can be improved as follows:

x(δ(S)) ≥ R(S) S ⊂ V ′, (3.1)

where R(S) is calculated as follows:

R(S) = 2


⌈
|S|
Q

⌉
if |S| ≤ αuQ+ λu

αu + 1 +
⌈
|S|−αuQ−λu

Q

⌉
if |S| > αuQ+ λu,

(3.2)

and where the coefficient αu can be calculated as

αu =

⌊
(n− 1)−mQ

Q−Q

⌋
.
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Theorem 3.7. Inequalities (3.1) are valid for the BVRP.

Proof: When |S| > αuQ + λu then at least αu + 1 vehicles are necessary to

visit the customers in S. In addition there are |S| − (αuQ + λu) customers to

be visited by vehicles using the minimum capacity Q. �

In the case in which |S| > αuQ + λu, the lifted capacity inequalities (3.1)

can be rewritten as follows:

x(δ(S)) ≥ 2

(
m−

⌊
|S′|
Q

⌋)
. (3.3)

Note that b|S′|/Qc is a lower bound on the number of vehicles that can be used

to serve exclusively customers not in S. Then, the remaining vehicles of the

fleet must be used to serve customers in S.

Figure 1 represents the right-hand side value of the inequalities associated

with the previous example with n = 19, Q = 6, Q = 3 and m = 5. The red line

shows the value of the capacity constraint (2.4) and the green line shows R(S)

for the lifted constraints (3.1) in the case where |S| > αuQ+λu. The horizontal

axis represents |S| and the vertical axis shows the right-hand side value x(δ(S)).

Note that there is an interval (related to |S|) in which both values always match;

this region corresponds to αuQ < |S| ≤ αuQ+λu. To the left of this region, the

capacity constraint leads to an equivalent or better inequality than inequality

(3.1). To the right of this region inequality (3.1) is stronger than the capacity

constraint.

If |S| = αQ for an integer number α, then inequality (3.1) never induces

a facet of PBV RP . Indeed, let i ∈ S and consider the inequality (3.1) for

S∗ = S \ {i}, i.e. x(δ(S∗)) ≥ R(S∗). This inequality is equivalent to

x(δ(S))− x(δ({i})) + 2x(E({i} : S∗)) ≥ R(S∗),

also equivalent to x(δ(S)) ≥ R(S∗) + 2− 2x(E({i} : S∗)). Since R(S∗) = R(S)

and x(E({i} : S∗)) ≤ 1, inequality (3.1) for S∗ dominates inequality (3.1) for S.

Theorem 3.8. Inequalities (3.1) are facet-inducing for PBV RP if |S| < αuQ+
λu, |S| 6= αQ for any α ∈ N, and Q ≥ 5 (so we also need n ≥ 9).

The proof is presented in Appendix B. If the condition on S does not hold then

the inequality would be dominated by the capacity inequality (2.4) given by the

subset obtained by either adding or removing a customer in S.
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Figure 1: Comparison between the capacity constraint and the lifted capacity inequality in
an example with n = 19, Q = 6, Q = 3 and m = 5.

Theorem 3.9. Inequalities (3.3) are facet-inducing for PBV RP if |S| 6= cQ +

αuQ+ λu, where c ∈ N and Q ≥ 5 (so n ≥ 9).

Proof: It is analogous to Theorem 3.8, using the same partition and selecting

the vertices in S as before. By definition of the right-hand side value, it can be

obtained by solutions such that all the subsets Hi ⊂ S define one route, and the

route associated with a subset Hk (Hk ∩ S 6= ∅ and Hk \ S 6= ∅) has to satisfy

x(δ(Hk ∩ S)) = 2. To this end, the same families of solutions can be used. �

3.1.3. Lower Capacity constraints

In case that |S| ≥ Q, inequalities (2.5) can be generalized as follows:

x(δ(S)) ≥ 2

(
x(E({1} : S))−

⌊
|S|
Q

⌋)
. (3.4)

These inequalities are the undirected version of the Enhanced Rounded Multi-

Star (ERMS) inequalities presented in [11] for the asymmetric variant of the

problem.

Inequalities (3.4) can be lifted as follows:

Rl(S) = 2


⌊
|S|
Q

⌋
if |S| < βuQ+ λu,

m−
⌈
n−1−|S|

Q

⌉
if |S| > βuQ+ λu.

(3.5)
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In what follows we show the relationship between these inequalities and

the lifted capacity constraints (3.1) in Table 1 by exploiting the fact that the

degree of the depot is fixed. The first row of this table indicates that, under the

condition that |S| < αuQ+λu, the capacity constraints correspond to the lower

capacity constraints written for S′ = V ′ \ S. This is easy to check by observing

that

x(δ(S′)) = x(δ(S))− x(E({1} : S)) + x(E({1} : S′)),

and

x(E({1} : S)) + x(E({1} : S′)) = 2m.

Similarly, it can be proved that when |S| > αuQ+λu, the lifted capacity inequal-

ities correspond to the lower capacity inequalities written for S′. Consequently,

the lower capacity inequalities induce the same facets as the lifted capacity

constraints (3.1).

Note that when |S| = αQ for any α ∈ N and |S| ≤ βuQ+λu, then inequalities

(3.1) with (3.5) instead of R(S) would be dominated. Let S be a subset of

customers such that |S| = αQ, and let S∗ = S \ {i} for some customer i ∈ S.

Since Rl(S) = Rl(S∗)− 2, and using

x(δ(S)) = x(δ(S∗)) + x(δ({i}))− 2x(E({i} : S∗)),

the inequality with (3.5) for S∗ gives

x(δ(S)) ≥ Rl(S) + 2− 2x(E({i} : S∗)),

which clearly dominates x(δ(S)) ≥ R(S). Similarly, it can be checked that the

inequalities with (3.5) never induce facets of PBV RP when |S| = αQ, α ∈ N and

|S| ≥ βuQ+ λu .

3.1.4. Multi-Star (MS) inequalities

The Multi-Star (MS) inequalities for the CVRP are defined as follows. Let

S ⊂ V ′ be a subset of customers and let N ⊆ S′ where S′ = V ′ \ S. Then, the

MS inequality has the structure x(δ(S)) ≥ ρ + σx(E(S : N)) where ρ and σ

are constants depending on N and S. In this paper we only address the case in

which N = S′.

An analysis of the cases in which the MS inequalities are facet-inducing for

the minimum spanning tree and minimum spanning forest polytopes can be

found in [1]. The authors define three different types of MS inequalities by
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taking into account different conditions on the subset N . A wide variety of MS

constraints is presented in [1].

Using N ′ = V ′ \N , the MS inequalities can be written as:

x(δ(N)) ≥ 2

(
|N |+ x(E(N : N ′))

Q

)
N ⊂ V ′. (3.6)

Since the right hand side is divided by Q and the number of routes with Q

customers is limited by αu, inequalities (3.6) can be lifted as follows:

x(δ(N)) ≥ RMS(N) N ⊂ V ′, (3.7)

where

RMS(N) = 2


|N |+x(E(N :N ′))

Q
if |N | ≤ αuQ+ λu

m− |N
′|−x(E(N :N ′))

Q if |N | > αuQ+ λu.

3.1.5. Enhanced Reverse Multistar (ERMS) inequalities

The Enhanced Reverse Multi-Star (ERMS) inequalities were introduced in

[11]. For the asymmetric BVRP, these inequalities take the following form:

Qx(E({1} : S)) + x(E(S′ : S)) ≤ (Q− 1)x(E(S : S′)) + |S| S ⊂ V ′.

Using (2.3), these inequalities are equivalent to

x(δ(S)) ≥ 2

(
m− |S

′| − x(E(S : S′))

Q

)
S ⊂ V ′. (3.8)

These inequalities correspond to (3.7) when |S| > αuQ + λu. Therefore, the

ERMS inequalities dominate the MS inequalities when |N | > αuQ+ λu.

Inequalities (3.8) can be improved by exploiting the fact that the number

of routes that one can build with exactly Q customers is limited, and is related

to m and Q. Consider an example with n = 22, m = 5, Q = 5 and Q = 3. If

we consider a subset S with |S| = 4 it is easy to check that in all the solutions

satisfying x(δ(S)) = 2, the solution which maximizes x(E(S : S′)) uses only one

edge of E(S : S′). Therefore, since |S′| = 17, the resulting left hand side would

be negative, so it could be improved considerably.

The partition Pu allows computing the number of routes that can visit Q

customers. If |S′| > βuQ + λu (or equivalently |S| < αuQ) these inequalities

12



can be improved as follows:

x(δ(S)) ≥ 2

(
m− βu − 1−

|S′| − βuQ− λu − x(E(S : S′))

Q

)
S ⊂ V ′.

These inequalities coincide with inequalities (3.7) when |S| ≤ αuQ+λu. There-

fore, the MS inequalities dominate the ERMS inequalities when |S| ≤ αuQ+λu.

Table 2 shows the relationship between the lifted MS inequalities and the lifted

ERMS inequalities.

3.2. Comb inequalities

The comb inequalities were first introduced by [8] for the TSP and further

generalized in [14]. Extensions of the comb inequalities were later described

for the CVRP [see 16, 2, 20], location-routing problems [see, e.g., 6] and the

two level single truck and trailer problem [see, e.g., 5]. We first present comb

inequalities for the sake of completeness, and then present conditions under

which they define facets for PBV RP .

The comb inequalities are defined by a set H ⊂ V ′ of customers, called the

handle, and t ≥ 3 sets of customers, called teeth, such that:

1. t is odd,

2. H ∩ Tj 6= ∅ and Tj \H 6= ∅ for each j = 1, . . . , t,

3. Ti ∩ Tj = ∅ for each i, j ∈ {1, . . . , t}.

The comb inequalities are as follows:

x(δ(H)) +

t∑
i=1

x(δ(Ti)) ≥ 3t+ 1. (3.9)

Theorem 3.10. Inequalities (3.9) induce facets of PBV RP if |H|+
∑t
i=1 |Ti| ≤

Q.

Proof: The comb inequalities are facet-inducing inequalities for the TSP [14].

The proof of this theorem is similar to that of Theorem 3.1. All the customers

in H,T1, . . . , Tt can be visited by one route, and therefore the TSP on the union

of these subsets can be used to build the solutions in Φ1. The solutions built

on the rest of families of solutions remain the same. �

The comb inequalities can be extended by taking into account the number of

customers in the subsets. In the case that |H|+
∑t
i=1 |Ti| > Q then inequalities

13



(3.9) can be improved as follows ([20]). If
∑t
i=1R(Ti ∩H) +R(Ti \H) +R(Tj)

is odd, where R(S) is defined in (3.2), then:

x(δ(H)) +

t∑
i=1

x(δ(Ti)) ≥
t∑
i=1

R(Ti ∩H) +R(Ti \H) +R(Tj) + 1. (3.10)

In [20] the authors relaxed conditions 1 and 2 of the definition of combs.

Condition 1 is modified to ensure that
∑t
i=1R(Ti ∩ H) + R(Ti \ H) + R(Tj)

should be odd, and condition 2 allows some intersection between each pair of

teeth in either the handle or out of the handle, but not in both. If the value

R(Ti∩H)+R(Ti\H)+R(Tj) is even then the right hand side cannot be increased

by one, and the inequalities are a linear combination of capacity constraints.

4. Branch-and-Cut Algorithm and Computational Analysis

This section first describes a branch-and-cut algorithm that uses the inequal-

ities studied in the previous sections, and then presents computational results

on solving the BVRP using benchmark instances from the literature.

4.1. Branch-and-Cut algorithm

The branch-and-cut algorithm was implemented in C++ using Visual Studio

2012 and CPLEX 12.5 on a personal computer with core i7 2600 processor and

4 GB memory. We use the strong branching strategy in CPLEX to explore the

branch-and-bound tree.

The branch-and-cut algorithm operates on the basis of solving (2.1), (2.2),

(2.3) and 0 ≤ xij ≤ 1 for all 1 ≤ i < j ≤ n. This linear program is denoted

by Lr. At each node of the branch-and-bound tree, separation algorithms are

invoked to find any violated inequalities from the following set of families, which

are then added dynamically in a cutting-plane fashion:

• Capacity constraints (3.1) described in Section 3.1.2. The improved ver-

sion of these inequalities are the lower capacity constraints. In the light of

the equivalence between the capacity and the lower capacity constraints

(see Table 1 in Section 3.1.3), by separating the improved capacity con-

straints, one also separates the lower capacity constraints.

• MS Inequalities (3.7). The improved version of these inequalities are the

RMS inequalities, which have been obtained by analyzing the reverse

14



multistar inequalities. Note that the RHS of inequalities (3.7) depend

on |N |, and there is one case that coincides with the RMS inequalities as

shown in Table 2. It therefore suffices to separate (3.7) alone.

• Comb inequalities (3.9) and (3.10).

The separation of these inequalities is done using the following procedure.

Let x∗ be an optimal solution of the linear program Lr at a given node of the

branch-and-bound tree, possibly augmented with inequalities added in previous

nodes, where the solution may be fractional or integer. We now describe exact

and heuristic algorithms to find violated inequalities, collectively named as a

separation procedure. These routines are applied sequentially, with each being

invoked only if the preceding routine did not return a violated inequality. In

each iteration of the cutting-plane phase, the number of cuts of each type to

be included in the LP is limited to 100. The limit was not achieved in our

computational experiments, but we find it useful when solving larger instances

so the size of Lr does not increase too much.

In what follows we present the routines in the order applied within the

cutting-plane phase.

1. First, let G∗ be the weighted graph G where the capacity of edge (i, j) is

x∗ij , and shrink all edges (i, j) with x∗ij = 1. The aim is to find subsets

of vertices as candidates for generating violated lower capacity or upper

capacity constraints.

2. We use a tabu search algorithm based on [3] for separating both the roun-

ded capacity inequalities (3.1) and the MS inequalities. In the initializa-

tion phase, we generate an initial subset S ⊂ V ′, starting from a single

customer, where a new customer v∗ = argmaxv∈V ′\S{x∗(E(S : {v}))} is

added to S at each iteration. In an interchange phase, we either add to

S or remove from S a customer depending on whether both the resulting

lifted capacity constraint and the MS inequality are closer to be violated

for the modified subset.

3. We use the min-cut algorithm in [10] to separate the subtour elimination

constraints. They are the capacity constraints (3.1) when |S| ≤ Q.

4. We use the exact procedure in [12] to separate the multistar inequalities,

with an explicit focus on identifying RMS inequalities. Initially, a graph

G′ is constructed by adding a new dummy vertex (say 0) to graph G,

which is connected to all the customers V \ {1} using dummy edges. The
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capacity of any edge (1, j) for j ∈ V \ {0, 1} is set to (Q − 1)x∗1j . The

capacity of any edge (i, j) for i, j ∈ V \ {0, 1} is set to (Q− 2)x∗1j . Finally,

the capacity of any edge (i, 0) for i ∈ V \{0, 1} is set to 1−x∗i1. Then, if the

capacity of the optimal cut separating vertex 1 and 0 in G′ is smaller than

(Q− 1)x∗({1} : V \ {1}) then the optimal cut yields a set S that violates

a MS inequality. The optimal cut is calculated by solving a max-flow

problem in the undirected network G′.

5. We use the heuristic procedures in [20]1 to separate the comb inequalities

(3.9) and (3.10)

6. Finally, we use the procedure in [13]2 to separate the comb inequalities

(3.9).

4.2. Computational results

Two sets of computational experiments are conducted. The first set uses

the symmetric instances for the BVRP described and tested in [11], generated

from the instance eilA1013, each with 100 customers but assuming different

values for Q, Q and m. As these instances have the number of vehicles (m)

fixed, we use the degree equation (2.3) in the formulation. We set a solution

time limit of two hours when solving each instance. Table 3 shows the results

of this experiment, in comparison with the results obtained in [11] for the same

instances. The results presented in [11] were run on a slightly slower computer,

Intel(R) Core(TM)2 CPU 6700 at 2.66 GHz desktop computer with 2 GB RAM,

using CPLEX 12.1. The first three columns of this table show Q, Q and m. The

remaining columns are the best lower bound (LB) and upper bound (UB) on

the objective function value obtained at the end of the time limit, the total time

spent (Tt), the total time required by the separation procedures (Ts), the number

of explored nodes in the tree (Nodes), and the lower bound obtained at the root

node (LB0), the total number of cuts of each type generated by the separation

procedures, corresponding to columns #CC (capacity constraints ((3.1))), #MS

(multistar (3.7)) and #COMBS (combs (3.10)), respectively. The table also

reports the number of these inequalities found at the root node, denoted by

#CC0, #MS0 and #COMBS0, respectively. The notation ‘2h’ indicates that

the corresponding instance was not solved to optimality within two hours.

1Available at http://www.hha.dk/~lys/CVRPSEP.htm
2Available at http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
3Available at http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
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The results reported in Table 3 show that all instances with 100 custom-

ers are solved to optimality by our branch-and-cut algorithm. They include

the four instances that were not solved to optimality in [11] within two hours

of computation time, but which were solved by our algorithm in less than 10

minutes. The difference in performance of the two algorithms can be attrib-

uted to the lifted lower and upper bound capacity constraints used within the

cutting plane phase. The general trend on this set of instances is that those

with tighter bounds (i.e., Q close to Q) are more difficult to solve. It is worth

highlighting that both the lower-bound and upper-bound capacity constraints

(3.1) are separated first and usually have a more significant impact on the LB

in comparison to the comb inequalities (3.10). The number of MS inequalities

(3.7) used is quite low and generally do not have as big an impact on LB as

they are separated after the lower bound and upper bound capacity constraints

(3.1).

The second set of experiments are aimed at looking at the effect of intro-

ducing various inequalities into the branch-and-cut algorithm, namely capacity

inequalities (3.1) (denoted by CC), multistar inequalities (3.7) (denoted by MS)

and comb inequalities (3.10) (denoted by COMBS). We use the combinations

CC+MS, CC+COMBS and CC+MS+COMBS to obtain three variants of the

branch-and-cut algorithm. We use the same instances shown in Table 3 as

well as additional larger BVRP instances generated from the CVRP instance

M-n151-k12 with 150 customers. The results for the 100-customer and 150-

customer instances are presented in Table 4 and Table 5, respectively. For

convenience, we indicate the lowest computational time needed to solve each

instance in bold.

Table 4 shows that all the instances with 100 customers were solved to

optimality by the three variants of the algorithm. In this case, the variant

CC+COMBS proved to be the most effective, requiring the lowest average com-

putational time to solve the instances to optimality and the smallest number of

nodes evaluated within the exploration of the branch-and-cut tree. The variant

CC+MS+COMBS exhibits a similar behavior, but is slightly worse than the

variant CC+COMBS with respect to the same instances. The variant CC+MS

showed the worst behavior out of the three, particularly on the number of nodes

evaluated, implying roughly a four-fold increase in the number of nodes over the

other two variants. As far as the root lower bounds are concerned, CC+COMBS

and CC+MS+COMBS show a similar performance, which is better than that

of CC+MS.
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The three variants of the algorithm exhibit a slightly different behaviour for

the instances with 150 customers, shown in Table 5. In this case, all instances

were solved to optimality by the three variants of the algorithm, with the single

exception that the variant CC+MS did not converge to an optimal solution

for instance with n = 151, Q = 42, Q = 36 and m = 4 within the two-

hour time limit. As in Table 4, the variant of the algorithm with capacity

inequalities and combs inequalities enabled (i.e., CC+COMBS) shows the most

effective compared to the other two variants in relation to the average solution

time, whereas CC+MS+COMBS performed the best in terms of the number of

nodes explored in the branch-and-bound tree. Interestingly, the average solution

time required by CC+MS+COMBS is not significantly different than that of

CC+COMBS, and in some of the instances, such as (Q = 76, Q = 74, m = 2),

(Q = 42, Q = 32, m = 4) and (Q = 30, Q = 22, m = 6), the effect of

the MS inequalities seems to be quite significant in reducing the computational

time needed. In fact, the longest time needed to solve any of the 150-customer

instances in the variant CC+MS+COMBS is lower than that of CC+COMBS,

suggesting that the former algorithm is more robust. This result shows the

relevance and effectiveness of separating the improved version of both the lower

and upper bound capacity constraints first.

The results obtained on the set of instances with seven vehicles suggest that

the problem is easier to solve if the interval (Q, Q) is either fairly loose or

very tight, whereas in all other cases the complexity of the problem increases

significantly.

The two sets of results shown in Tables 4 and 5 suggest that all the in-

equalities considered in the paper are shown to be useful when dealing with

larger-scale instances, whereas it might suffice to only use CC+COMBS for

smaller-size instances.

5. Conclusions

This paper presented polyhedral results and an exact algorithm for a unit-

demand vehicle routing problem with lower and upper bounds on the number of

customers that can be visited in each route. The computational results showed

that the proposed algorithm outperformed a previously described algorithm on

instances with up to 100 customers, and was able to solve instances with up

to 150 customers for the first time in the literature. The computational tests
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suggested that all the inequalities described in the paper contribute positively

to the performance of the branch-and-cut algorithm.
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[4] T. Bektaş. Formulations and Benders decomposition algorithms for mul-

tidepot salesmen problems with load balancing. European Journal of Op-

erational Research, 216(1):83–93, 2012.

[5] J. Belenguer, E. Benavent, A. Martinez, C. Prins, C. Prodhon, and J. Vil-

legas. A branch-and-cut algorithm for the single truck and trailer routing

problem with satellite depots. Transportation Science, doi:10.1287/trsc.

2014.0571., 2015.

[6] J. Belenguer, E. Benavent, C. Prins, C. Prodhon, and R. Wolfler-Calvo.

A branch-and-cut method for the capacitated location-routing problem.

Computers & Operations Research, 38(6):931–941, 2011.

[7] V. Campos, A. Corberan, and E. Mota. Polyhedral results for a vehicle

routing problem. European Journal of Operational Research, 52:75–85,

1991.

20
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Appendix A. Proof of Theorem 3.1

Proof: Consider a partition P of the customers V ′ into m disjoint subsets

Hi (with i = 1, . . . ,m) such that Q ≤ |Hi| ≤ Q. Consider a sequence of

the customers in each subset Hi, and a route visiting these customers in that

sequence. Let ni = |Hi| for each i = 1, . . . ,m, x′ be the feasible BVRP solution

defined by the m routes, and r = |E| − n = n(n− 3)/2.

Observe that dim(PBV RP ) ≤ r since each vertex has an associated degree

equality (2.2)–(2.3), which are linearly independent. We now apply the “direct

method” (see [14]) which consists in enumerating r + 1 affinely independent

solutions. The solution x′ is a first one, and we now need r others. To this end

we describe here six families of BVRP solutions, denoted Φ1, . . . ,Φ6.

We start creating a first family Φ1 with BVRP solutions based on x′ where

the routes used in Hi are modified iteratively to guarantee that the generated

solutions are affinely independent. Consider any fixed i = 1, . . . ,m, and let us

consider the subgraph of G induced by Hi ∪ {1}. The dimension of the TSP

polytope associated to this subgraph is known to be the number of edges minus

the number of vertices of this subgraph, which is (ni + 1)ni/2 − (ni + 1) =

(ni − 1)ni/2− 1. Thus, using the routes in x′ to visit the customers in V ′ \Hi,

there are (ni − 1)ni/2 affinely independent BVRP solutions, one of them being

x′. Figure A.2 shows the subset Hi where the edges shown in dashed lines may

vary to produce the solutions. Including x′ and enumerating over all i, we have

1 +
∑m
i=1((ni − 1)ni/2− 1) solutions in Φ1.

The BVRP solutions in family Φ2 are obtained by using edges whose en-

dpoints belong to different subsets of the partition P. Consider any fixed

pair (i, j) with i, j = 1, . . . ,m and i < j. Let ui ∈ Hi and vj ∈ Hj . We

now build (ni − 1)(nj − 1) BVRP solutions using each edge (u, v) in the set

E(Hi \ {ui} : Hj \ {uj}). We exclude ui and vj to have the edge (ui, vj) in

all the solutions in Φ2. Figure A.3 shows a generic solution in the family. All

the customers in V ′ \ (Hi ∪Hj) are visited exactly as in x′. The customers in

Hi∪Hj can be visited with the following two routes. The first route starts from

the depot, then visits vj , then ui, and then visits all the customers in Hi\{u, ui},
closing the route at the depot. The second route starts from the depot, then

visits u, then v, and then visits all the customers in Hj \ {v, vj} before return-

ing to the depot. The numbers of customers in these routes are |Hi| and |Hj |,
respectively; thus, they are valid BVRP solutions. In addition, they are affinely

independent when considering also x′ and the solutions in Φ1. Finally, enumer-
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Hi

Figure A.2: Solution in Φ1 obtained by considering the TSP in Hi ∪ {1}.

Hi

Hj

u

v

ui

vj

Figure A.3: Solution in Φ2 using one edge between in E(Hi \ {ui} : Hj \ {vj}).

ating over all pairs (i, j) with i < j, we have
∑

1≤i<j≤m(ni − 1)(nj − 1) BVRP

solutions in Φ2.

To build Φ3, let us fix again a pair (i, j) with i, j = 1, . . . ,m and i < j. Fix

any ui ∈ Hi, vj ∈ Hj , u ∈ Hi \ {ui} and consider each v ∈ Hj \ {vj}. We now

built a BVRP solution with four edges between Hi and Hj as in Figure A.4. In

that solution, again, all the customers in V ′ \ (Hi∪Hj) are visited exactly as in

x′. The customers in Hi ∪Hj are instead visited with the following two routes.

The first route starts from the depot, then visits vj , then ui, then v, and finally

ni − 3 additional customers in Hi starting from u and ending at the depot.

The second route visits the remaining nj customers. The edges (ui, v) ensures

that these solutions are affinely independent respect to the previous families of

solutions. By enumerating over v ∈ Hj \ {vj} we have nj − 1 BVRP solutions,

and by also enumerating over the pairs (i, j) we have
∑

1≤i<j≤m(nj − 1) in Φ3,

all affinely independent.

Similarly we construct the family Φ4 with (ni − 1) BVRP solutions for each
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Hi

Hj

u

v

ui

vj

Figure A.4: Solution in Φ3 using one edge in E({ui} : Hj \ {vj}).

Hi

Hjv

u
ui

vj

Figure A.5: Solution in Φ4 using one edge in E(Hi \ {ui} : {vj}).

pair (i, j) with i, j = 1, . . . ,m and i < j. Fix any ui ∈ Hi, vj ∈ Hj , v ∈ Hj\{vj}
and consider each u ∈ Hi \ {ui}. We build one solution containing four edges

between Hi and Hi as in Figure A.5. In that solution, again, all the customers in

V ′ \(Hi∪Hj) are visited exactly as in x′. The customers in Hi∪Hj are instead

visited with the following two routes. The first route starts from the depot, then

visits ui, then vj , then u, and finally ni − 3 additional customers in Hi, ending

at the depot. The second route visits the remaining nj customers starting

from v, then the unvisited vertex in Hi, and then the unvisited vertices in Hj ,

ending at the depot. The edges (u, vj) ensures that these solutions are affinely

independent respect to the previous families of solutions. By enumerating over

u ∈ Hi \ {ui} we have ni − 1 solutions, and by also enumerating over (i, j) we

have
∑

1≤i<j≤m(ni − 1) solutions in Φ4.

Family Φ5 contains one solution for each pair (i, j) with i, j = 1, . . . ,m and

i < j. Note that any solution in families Φ1, Φ2, Φ3 and Φ4 satisfies the following
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Hi

Hj

ui

vjv

u

Figure A.6: Solution in Φ5.

H1

Hiv

u

Figure A.7: Solution in Φ6 using three edges in E({1} : H1).

equality:

x(E(Hi\{ui} : Hj\{vj})) = x(E(Hi\{ui} : {vj}))+x(E({ui} : Hj\{vj}))+xuivj .

(A.1)

To construct a solution violating this equation, we simply swap two customers

u ∈ Hi \ {ui} and v ∈ Hj \ {vj} between the routes in x′ as shown in Figure

A.6.

Finally, we now construct m− 1 solutions in family Φ6 as follows. Observe

that the previous solutions satisfy x(E(Hi : {1})) = 2 for each i = 1, . . . ,m.

Now, for each i = 2, . . . ,m let us create a BVRP solution by merging the

subsets H1 and Hi, and building two routes visiting these customers with three

customers in H1 directly connected to the depot, thus x(E(Hi : {1})) < 2 for

the generated BVRP solution; see Figure A.7.
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Summarizing, we have created the following number of BVRP inequalities:

1+

m∑
i=1

(
(ni − 1)ni

2
−1

)
+

∑
1≤i<j≤m

(
(ni−1)(nj−1)+(ni−1)+(nj−1)+1

)
+m−1 =

= 1−m+
1

2

 m∑
i=1

n2i −
m∑
i=1

ni + 2
∑

1≤i<j≤m

ninj

+m− 1 =

=
1

2

(( m∑
i=1

ni
)2 − m∑

i=1

ni

)
=

(n− 1)2 − (n− 1)

2
= r + 1,

and all of them are affinely independent. �

Appendix B. Proof of Theorem 3.8

We use the same notation as in Appendix A. The aim is to build r BVRP

solutions satisfying (3.1) with equality. These solutions are constructed with

slight modifications of the solutions built in Appendix A.

Let us consider the partition Pu in Lemma 3.6 such that the customers in

S are assigned to subsets Hi containing Q customers and, if |S| > αuQ then

the other customers in S (which are |S| −αuQ) are assigned to the subset with

λu customers. No customer in S belongs to any subset considered in βu (by

condition c.1). Therefore we have

The first family of solutions are obtained similarly to Φ1 in Theorem 3.1.

We build one route for each subset in Pu where the route built from subset Hk

satisfies x(δ(S ∩H∗)) = 2. Then, we use the same procedure as in Appendix A

for all the subsets Hi with i ∈ {1, . . . ,m}\{k}. In subset Hk we use the fact that

x(δ(S ∩Hk)) ≥ 2 is a subtour-elimination inequality in the TSP, which is facet

inducing if there are more than six vertices. Since the depot is considered when

building the routes, and using condition c.3, we have (nk+1)(nk−2)/2 solutions

affinely independents satisfying x(δ(S ∩ Hk)) = 2. (one solution less than all

the other subsets). Therefore, our first family has
∑m
i=1((ni + 1)(ni − 2))/2

solutions, which is one solution less than in Appendix A.

We now construct
∑

1≤i<j≤m ninj affinely independent solutions using edges

whose endpoints belongs to different subsets, that is, edges in E(Hi : Hj) with

i < j. Let us fix arbitrary vertices ui ∈ Hi, vj ∈ Hj , u ∈ Hi \ {ui} and

v ∈ Hj \ {vj}. We construct families of solutions Φ2, Φ3, Φ4 and Φ5 similar to
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the ones in Appendix A, but with slight modifications according to the following

cases:

Case (a): Hi ⊂ S and Hj ⊂ S. The ninj solutions can be obtained using

exactly the same families Φ2, Φ3, Φ4 and Φ5 as defined in Appendix A.

Case (b): Hk and Hi ⊂ S. In that case, in order to get a solution satisfying

(3.1) with equality we need exactly two paths to visit all the customers

in S∗ = Hi ∪ (S ∩ Hk) such that x(δ(S∗)) = 4 (which means x(δ(S)) =

2d|S|/Qe). We assume that ui, vk ∈ S. To build the solution obtained in

Φ2 we distinguish two cases illustrated in Figure B.8:

If v ∈ Hk \S we build the routes as in Figure 8(a). The first path with ni

customers, and which visits the customers in Hk \ S, then uses the edge

(u, v) and then visits ni−|Hk \S| customers in Hi\{ui}. The second path

uses edge (ui, vj) and then, starting from ui (resp. vj), we build a path

which visits all the remaining customers in Hi (resp. Hk), connecting

the last customer of the path with the depot. Note that this construction

satisfies:

• The two routes are feasible.

• The solution obtained by visiting the rest of customers in the different

subsets by routes using as in solution x′ satisfies x(δ(S)) = 2d|S|/Qe.

• The solution is affinely independent to the previous solutions since a

new edge is used.

• The solution satisfies equation (A.1).

If v ∈ Hk ∪ S we build the routes as is shown in Figure 8(b). The first

route visits {vk} ∪Hi \ {u}. The second route visits {u} ∪Hk \ {vk}. It

is easy to check that the previous properties hold.

Solutions in Φ3 are obtained as shown in Figure B.9. The aim of these

solutions is that all of these solutions uses edge (ui, v). Again we differen-

tiate two cases (v ∈ Hk ∩ S and v ∈ Hk \ S) and the solutions are drawn

in Figures 9(a) and 9(b), respectively. Note that all these solutions can

be built satisfying the previous properties. Solutions in Φ4 and Φ5 are

depicted in Figures B.10 and B.11, respectively.

Case (c): Hk and Hi ∩ S = ∅. The solutions are built similarly, but now the

solutions must satisfy x(δ(Hk ∩ S)) = 2. In that case we assume that

uk ∈ Hk \ {S}.
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Figure B.8: Solutions in Φ2.
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Figure B.9: Solutions in Φ3.

30



Hi

Hk

uui

vk

S

Figure B.10: Solutions in Φ4.
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Figure B.11: Solution in Φ5.

Figure B.12 shows the solution in Φ2. Again, we distinguish two cases:

v ∈ Hk ∩ S and v ∈ Hk \ S. The solutions are depicted in Figures 12(a)

and 12(b), respectively. In both cases we use two fixed edges (1, vk) and

(vk, ui). The difference is that in Figure 12(b) there is an edge connecting

customer u to a customer in S.

Solutions corresponding to family Φ3 are depicted in Figure B.13. The

two cases, v ∈ Hk ∩ S and v ∈ Hk \ S, are shown in Figures 13(a) and

13(b) respectively. Solutions in Φ4 and Φ5 are shown in Figures B.14 and

Figure B.15, respectively.

Case (d): Hi ∩ S = ∅ and Hj ∩ S = ∅. The ninj solutions can be obtained

using exactly the same families Φ2, Φ3, Φ4 and Φ5 in Appendix A.

Case (e): Hi ⊂ S = ∅ and Hj ∩ S = ∅. This case implies to change the

partition for each edge (u, v) with u ∈ Hi and v ∈ Hj . We swap customer

u with one customer on Hk ∩ S and then we build a solution using edge

(u, v) as depicted in Figure B.11. Then, we can build one solution affinely

independent from the previous solutions for each edge (u, v).

Finally, it is easy to adapt the m− 1 solutions in Φ6 in Appendix A. �
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Figure B.12: Solutions in Φ2.
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Figure B.13: Solutions in Φ3.
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Figure B.14: Solution in Φ4.
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Figure B.15: Solution in Φ5.
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