
European Journal of Operational Research 275 (2019) 195–207 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Decision Support 

Functional-bandwidth kernel for Support Vector Machine with 

Functional Data: An alternating optimization algorithm 

R. Blanquero 

a , E. Carrizosa 

a , A. Jiménez-Cordero 

a , ∗, B. Martín-Barragán 

b 

a Departamento de Estadística e Investigación Operativa, and Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Facultad de Matemáticas. 

Universidad de Sevilla. C/ Tarfia s/n, 41012 Sevilla, Spain 
b Business School, 29 Buccleuch Place, University of Edinburgh, EH89JS, Edinburgh, UK 

a r t i c l e i n f o 

Article history: 

Received 8 May 2018 

Accepted 8 November 2018 

Available online 24 November 2018 

Keywords: 

Data mining 

Functional Data classification 

Parameter tuning 

SVM 

Functional bandwidth 

a b s t r a c t 

Functional Data Analysis (FDA) is devoted to the study of data which are functions. Support Vector Ma- 

chine (SVM) is a benchmark tool for classification, in particular, of functional data. SVM is frequently 

used with a kernel (e.g.: Gaussian) which involves a scalar bandwidth parameter. In this paper, we pro- 

pose to use kernels with functional bandwidths. In this way, accuracy may be improved, and the time 

intervals critical for classification are identified. Tuning the functional parameters of the new kernel is 

a challenging task expressed as a continuous optimization problem, solved by means of a heuristic. Our 

experiments with benchmark data sets show the advantages of using functional parameters and the ef- 

fectiveness of our approach. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Functional Data Analysis (FDA) has received considerable atten-

ion from researchers, ( Ferraty & Vieu, 2006; Ramsay & Silverman,

0 02, 20 05; Wang, Chiou, & Müller, 2016 ) and practitioners in

any different fields, such as spectrometry, meteorology, ( Martín-

arragán, Lillo, & Romo, 2014 ), client segmentation, ( Laukaitis &

a ̌ckauskas, 2005 ), speech recognition, ( Rossi & Villa, 2006 ), or

hysical, ( Muñoz & González, 2010; Tuddenham & Snyder, 1954 ),

nd chemical processes, ( Blanquero et al., 2016a; Blanquero, Carri-

osa, Jiménez-Cordero, & Rodríguez, 2016b ). 

FDA can be considered as a generalization of the standard

ultivariate analysis to address problems in which data have an

nfinite-dimensional nature. The direct application of classic meth-

ds of multivariate analysis on infinite-dimensional data may have

ramatic consequences in the obtained results. The curse of di-

ensionality is a clear example of this situation. Indeed, although

heoretically data are described as functions, in practice functional

ata are represented by high dimensional vectors, yielding prob-

ems in which the number of observations is lower than the num-

er of features and which cannot be handled by standard mul-

ivariate analysis tools. Furthermore, it is worthwhile to mention
∗ Corresponding author. 
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hat the methodologies used for multivariate vectors do not ex-

loit the functional behavior of the data since the high correlations

mong the different coordinates are not taken into account. 

In this work, we focus on a challenging problem in FDA: func-

ional binary classification, i.e., how to classify functional data into

wo predefined classes using the information provided by a train-

ng sample ( Baíllo, Cuevas, & Cuesta-Albertos, 2011; Biau, Bunea,

 Wegkamp, 2005; Cuevas, Febrero, & Fraiman, 2007; Ferraty &

ieu, 2006; Preda, Saporta, & Lévéder, 2007 ). Support Vector Ma-

hine (SVM) ( Carrizosa & Romero Morales, 2013; Cauwenberghs &

oggio, 2001; Cortes & Vapnik, 1995; Cristianini & Shawe-Taylor,

0 0 0; Lessmann & Voß, 20 09; Maldonado, Pérez, & Bravo, 2017;

aldonado, Weber, & Basak, 2011; Suykens & Vandewalle, 1999;

ang, Zheng, Yoon, & Ko, 2018 ) is one of the most used tools in

ultivariate classification, and it has also been widely applied for

unctional data. See Blanquero, Carrizosa, Jiménez-Cordero, and

artín-Barragán (2017) , Jiménez-Cordero and Maldonado (2018) ,

artín-Barragán et al. (2014) , Muñoz and González (2010) , Rossi

nd Villa (2006) , and Rossi and Villa (2008) among others. 

As stated before, solving functional data problems, and more

pecifically, the functional classification problem, implies the use of

pecific techniques that take advantage of the intrinsic functional

ature of the data. 

For SVM, ( Rossi & Villa, 2006 ) exploits the functional behavior

f the data by adapting the classical kernels to functional kernels

hrough the so-called transformation-based and projection-based

ernels. Nevertheless, the whole range of the data is weighted with

 single scalar bandwidth. 
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The functional nature of the data is taken into account in

Kästner, Hammer, Biehl, and Villmann (2012) , generalizing the

work done in the multivariate case in Hammer and Villmann

(2002) ; Sato and Yamada (1996) . Data are classified according to

a dissimilarity measure with a functional weight. Such a functional

weight is represented in terms of simple basis functions whose pa-

rameters are sought via stochastic gradient. 

To the best of our knowledge, no strategy has been presented

in the literature using a supervised tool, e.g., SVM, in which dif-

ferent ranges in the domain of the functions are optimally se-

lected by means of a functional weight in the kernel. Therefore,

one of the main contributions of this paper is to define a new

functional kernel. Such kernel has a functional bandwidth that op-

timally weighs the different values of the domain of the function.

Similar ideas have been used in references such as Bugeau and

Pérez (2007) , Chen, Wynne, Goulding, and Sandoz (20 0 0) , Duong,

Cowling, Koch, and Wand (2008) , and Sain (2002) for kernel den-

sity estimation, and in Cai, Fan, and Yao (20 0 0) and Wu, Chiang,

and Hoover (1998) for functional regression. 

We propose to embed the new functional kernel into an

SVM algorithm. Both the kernel and the SVM parameters are

tuned with a surrogate of the accuracy, namely, the correla-

tion between the actual class and the SVM score. See also

Berrendero, Cuevas, and Torrecilla (2016) , Székely, Rizzo, Bakirov

et al. (2007) , and Torrecilla Noguerales (2015) for more details

on the use of surrogate measures for the accuracy. Such param-

eter tuning yields a continuous optimization problem, allowing

us to use gradient methods, known to be more efficient than

the optimization methods available for piecewise constant per-

formance measures, such as the misclassification rate. Moreover,

the proposed method is enhanced by defining a hierarchy of

kernel bandwidths models of increasing complexity, inspired by

the nested model previously proposed for Multiple Kernel Learn-

ing in Carrizosa, Martín-Barragán, and Romero Morales (2014) .

Using this hierarchy provides wide flexibility since complex pa-

rameterizations of the functional bandwidth can be efficiently op-

timized from more simple ones. 

The remainder of the paper is structured as follows. In Section

Section 2 we present the SVM classification model for functional

data. Section 3 describes the optimization method used to tune

the bandwidth parameters. We focus on the alternating procedure

proposed to this purpose, and on the structure of the hierarchy of

kernels. Section 4 is devoted to the numerical experiments, show-

ing that our approach outperforms the method in which one single

scalar parameter bandwidth is chosen. Finally, some conclusions

and extensions are described in Section 5 . 

2. Functional bandwidth 

In this section, we formulate the SVM problem for functional

data classification. See Cristianini and Shawe-Taylor (20 0 0) for a

broader and more comprehensive presentation of SVM. We have

a sample s of observations; each observation i ∈ s has associated a

pair ( X i , Y i ), where each X i : [0 , T ] → R belongs to the set X of Rie-

mann integrable functions in the time interval [0, T ]. Furthermore,

 i ∈ {−1 , +1 } denotes the class label for the observation i . Our goal

is to find a classification rule to infer the class Y of a new func-

tional observation X ∈ X . 

The well-known technique SVM considers a kernel K : X × X →
R , ( Cristianini & Shawe-Taylor, 20 0 0; Rossi & Villa, 20 06, 20 08 ),

and builds, from a sample s , nonlinear classifiers by means of a

score ˆ Y (X ) of the form: 

ˆ 
 (X ) = 

∑ 

i ∈ s 
αi Y i K(X, X i ) , X ∈ X , (1)
ielding the following classification rule: a functional observation

 ∈ X is assigned to class +1 if and only if ˆ Y (X ) > β, where β is a

iven threshold value. Here the values αi , i ∈ s , are obtained as the

ptimal solution of the following optimization problem: 
 

 

 

 

 

max 
α

∑ 

i ∈ s 
αi − 1 

2 

∑ 

i, j∈ s 
αi α j Y i Y j K(X i , X j ) 

s.t. 
∑ 

i ∈ s 
αi Y i = 0 

αi ∈ [0 , C] , i ∈ s, 

(2)

or a scalar regularization parameter C to be tuned, usually by k -

old cross-validation with a grid search on a sufficiently large in-

erval. 

Many types of kernels for data in R 

d are proposed in the litera-

ure, e.g., the linear kernel, the polynomial kernel, or the Gaussian

RBF) kernel, given by: 

(X i , X j ) = exp 

( 

−
d ∑ 

t=1 

(X it − X jt ) 
2 ω 

) 

, X i , X j ∈ R 

d (3)

here ω is a scalar bandwidth to be tuned, ( Carrizosa et al.,

014; Carrizosa & Romero Morales, 2013; Cristianini & Shawe-

aylor, 20 0 0; Hofmann, Schölkopf, & Smola, 2008; Keerthi & Lin,

003 ). In this paper, for simplicity, we only focus on the Gaussian

ernel, one of the most used and effective kernels, which will be

sed in what follows. 

The expression (3) of the Gaussian kernel for data in R 

d has

een generalized to a Gaussian kernel for functional data, e.g.,

adri, Duflos, Preux, Canu, and Davy (2010) and Wang and Yao

2015) . Nevertheless, in these papers, the associated bandwidth is

lways considered to be a scalar value. In our proposal we ex-

end the fixed scalar bandwidth parameter ω in an RBF kernel to a

unctional bandwidth, ω( t ), that varies along the range of the func-

ional data, (4) : 

(X i , X j ) = exp 

(
−

∫ T 

0 

(X i (t) − X j (t)) 2 ω(t) dt 

)
(4)

hroughout this paper, we assume that ω in (4) is a non-negative

iemann integrable function in [0, T ], and thus K is well-defined. 

It is worth mentioning that the simplest extension from the

ernel with vector data (3) to the kernel with functional data

4) would be to consider ω( t ) as a constant function, as in Kadri

t al. (2010) and Wang and Yao (2015) . Nevertheless, the main con-

ribution of this paper is to consider such bandwidth as a function

hich adapts to the structure and shape of the data and may lead

o better insight and classification rates. More specifically, making

 depend on t allows us to identify those subintervals in [0, T ]

hich are critical for classification, namely, those for which ω( t )

akes highest values. 

xample 2.1. As an illustration, let us study the regions data set

 Martín-Barragán et al., 2014 ), in which the daily temperature has

een measured along a year in each of 35 Canadian weather sta-

ions. Two groups can be distinguished: Atlantic climate (label -1),

ith 15 records, versus the rest of climates (label 1), with 20

ecords. Our objective is to discriminate between both classes.

ig. 1 depicts the 15 curves in the interval [1, 365] corresponding

o the Atlantic climate, in solid black line, and the 20 curves corre-

ponding to the rest of climates, in dashed red line, with the data

easured every single day. This is, by nature, a Functional Data

lassification problem. However, it may be considered as a clas-

ic classification problem with 15 + 20 records in R 

d , d = 365 (the

umber of time instants at which the temperature has been actu-

lly recorded), and thus one can apply the classic SVM in the form

3) for some ω to be tuned. Observe that this model is the same

s model (4) with 

(t) = ω, ∀ t ∈ [0 , T ] with T = 365 , (5)
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Fig. 1. regions data set. 

Table 1 

Confusion matrix with ω as in (5) . 

Label −1 Label 1 

Label −1 51.42% 5.71% 

Label 1 11.42% 31.42% 

Table 2 

Confusion matrix with ω as in (6) . 

Label −1 Label 1 

Label −1 54.28% 2.85% 

Label 1 8.57% 34.28% 
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nd the integral evaluated numerically in the grid of time instants

here the temperature is measured. Using SVM with a constant

( t ) as in (5) leads to a classifier with the out-of-sample confusion

atrix shown in Table 1 . 

Now, let us consider the very same RBF model with a functional

andwidth ω( t ) of the form 

(t) = 

{
ω 1 , i f 0 ≤ t ≤ τ1 

ω 2 , i f τ1 < t ≤ 365 , 
(6) 

here ω 1 , ω 2 , τ 1 are parameters to be tuned using the techniques

escribed in this paper. In other words, with the bandwidth in

6) we split the interval [0, T ] into two pieces, giving different

eights to each time interval. The SVM classifier obtained this way

eads to the out-of-sample confusion matrix in Table 2 . 

Comparing Tables 1 and 2 we can see that the traditional SVM

ields an accuracy of 82.84%. On the other hand, our SVM with the

ery same RBF kernel but using a functional parameter of the form

6) yields an accuracy of 88.56%, instead. 
Regarding the interpretability of the results, Figs. 2 and 3 show

he boxplots of the values of the bandwidth ω as in (5) , and the

alues of ω 1 , ω 2 and τ 1 , as in (6) . The single-bandwidth approach

ives the same importance to all the months of the year with the

ajority of the bandwidth values between 50 and 150. In contrast,

ur functional-bandwidth methodology with two different pieces

roposed to divide the whole year into two parts, before and after

ummer (months of June and July), see Fig. 3 . Moreover, according

o the values of ω 1 and ω 2 , in order to get good classification pre-

ictions, we should focus on the second half year and give more

mportance to the second part, i.e., the autumn and first months

f winter, which coincides to the time instants when the tempera-

ure begins to decrease. 

The previous illustrative example demonstrates that even a sim-

le functional bandwidth such as (6) may yield improvements

n accuracy. Such improvement is a consequence of the adequate

hoice of the parameter τ 1 , which combined with good values of

 1 and ω 2 allow us to identify the suitable intervals for classifica-

ion. The functional bandwidth parameter ω( t ) gives more flexibil-

ty, which should result in greater precision. For instance, it may be

hosen in the class of piecewise constant non-negative functions in

0, T ] with H pieces, i.e., one can naturally assume that ω( t ) has the

orm (7) 

(t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

ω 1 , i f 0 ≤ t ≤ τ1 

ω 2 , i f τ1 < t ≤ τ2 

· · ·
ω h , i f τh −1 < t ≤ τh 

· · ·
ω H , i f τH−1 < t ≤ T 

(7) 
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Fig. 2. (a) and (b) Show the bandwidth values for the regions data set when ω has the form of (5) and (6) , respectively. 

Fig. 3. Time instant results for the regions data set with ω as in (6) . 
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where ω 1 , . . . , ω H ≥ 0 and 0 ≤ τ1 ≤ · · · ≤ τH−1 ≤ T are parameters

to be tuned. Instead of piecewise constant functions, one could

consider ω( t ) belonging to the class of polynomials of degree H

which are non-negative in [0, T ], the class of piecewise polyno-

mial functions non-negative in [0, T ], or the non-negative splines,

( De Boor, 1978; Friedman, Hastie, & Tibshirani, 2001b ). 

The use of functional parameters in the kernel may lead to

significant improvements in the accuracy, as demonstrated in our

numerical experiments. The price to pay for obtaining such gains

in the accuracy is the fact that tuning the functional parame-
 t  
ers calls for using more sophisticated optimization procedures. In

ection 3 we detail how the underlying optimization problem for

uning ω( t ) is solved. 

. Optimal selection of the functional bandwidth 

In this Section, a detailed study of the mathematical formu-

ation of the (functional) parameter tuning in SVM classification

s presented. Section 3.1 explains how to formulate the optimiza-

ion problem involved and how to solve it. In Section 3.2 a nested
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t  
euristic to address the tuning problem more efficiently is de-

cribed. In this way, we exploit the fact that the bandwidths con-

idered are elements of a nested family of kernels. Section 3.3 de-

ails how to choose the number of pieces, H , of the functional

andwidth. 

.1. Problem formulation and optimization 

Parameter tuning in the classification of functional data with

VM implies the optimal choice of two very different elements:

he scalar regularization parameter C in (2) , and the kernel K in

4) through ω( t ). The problem of finding the best function ω( t ) in

4) , is not tractable as a rule in its full generality. Hence, we re-

trict our attention to certain classes of functions parameterized

y a vector θ belonging to a certain set �, i.e., ω is expressed as

( t , θ ), and the choice of the function ω is equivalent to choosing

he parameters θ . 

xample 3.1. For the bandwidth given in (7) , one

ould have that θ = (ω 1 , . . . , ω H , τ1 , . . . , τH−1 ) , and

= { (ω 1 , . . . , ω H , τ1 , . . . , τH−1 ) : ω h ≥ 0 , ∀ h, τh ∈ [0 , T ] , 

 = 1 , . . . , H − 1 , τ1 ≤ · · · , ≤ τH−1 } . For convenience, we consider

0 = 0 and τH = T . 

In principle, in order to find the optimal values of the parame-

ers, C , and θ , a strategy based on a grid search on both parameters

ould be applied. Given a set of predefined pairs of values ( C , θ ),

ne first solves (2) to obtain the coefficients α of the score func-

ion (1) , and then the corresponding accuracy associated to that

air is computed. However, this approach may become too time

onsuming, and thus a more sophisticated heuristic is proposed in

hese lines. We propose to follow the standard grid approach to

ptimize C . Nevertheless, when seeking the parameters θ and α
e propose to solve a bilevel problem where some measure of the

uality of θ is maximized for the α provided by the SVM classifier,

.e., for the α solving (2) . 

Many criteria can be chosen to guide the choice of parame-

er θ . One may, for instance, minimize the misclassification rate,

hich is the default approach for tuning the parameter C . How-

ver, the misclassification rate has a discrete nature that would

revent us from using continuous optimization techniques, and,

n particular, from gradient-based methods. Instead, we propose to

aximize the Pearson correlation, R , between the class label Y i of

he functional data X i and the score, ˆ Y (X i , θ, α) in (1) , where all

he variables, including the time instants, are treated as continu-

us variables. Other references in the literature, such as Blanquero

t al. (2017) and Jiménez-Cordero and Maldonado (2018) , have

reviously used with excellent results the Pearson correlation co-

fficient. Despite the fact that, when using the Pearson correla-

ion coefficient as a surrogate of accuracy, a linear relationship

etween the binary label, Y ∈ {−1 , 1 } , and the real-valued score,
ˆ 
 ∈ R , is implicitly assumed, this coefficient is very fast to com-

ute, and even more important, it also allows us to use gradient-

ased methodologies since its optimization amounts to solving a

ontinuous optimization problem. 

It is very well known that building a classifier and evaluat-

ng its performance over the same data set leads to overfitting.

n such a case, the model fits the data set too well but performs

oorly in unseen data. On top of that, the classifier can depend on

arameters that must be tuned, usually done by performing a grid

earch in a suitable range of values. The usual way to avoid overfit-

ing in this general situation is to split the data set, perhaps within

 k -fold cross-validation framework, in three parts, the so-called

raining, validation, and test samples. For a given choice of the pa-

ameters, the first two ones are used to build the model and esti-

ate its performance, respectively; once the best parameters have

een chosen, the final model is tested on the last sample. In our
ase, we take this idea further by creating four independent sam-

les, due to the structure of our resolution method. First, the data

et is divided into k folds. Second, k − 1 folds are again split into

hree samples named s 1 , s 2 , and s 3 , while the remaining fold is

enoted by s 4 . Samples s 1 and s 2 play the role of training samples,

hereas s 3 and s 4 form the validation and testing sets, respectively,

s will be detailed next. 

The first independent sample s 1 is employed for the resolution

f Problem (2) , that is the classic SVM formulation, to obtain a

lassification rule by means of α, for fixed parameters θ and C .

he second independent sample s 2 is used to measure the quality

f parameters θ , i.e., it is used to calculate R ((Y i , ̂  Y (X i , θ, α)) i ∈ s 2 ) ,
he correlation between the class labels and the scores. To find the

egularization parameter C , we measure the accuracy in the sam-

le s 3 for all the different possible values of C in the grid, and we

eep the C providing the largest accuracy. Finally, the accuracy in

he independent sample s 4 is measured. 

After all these considerations, for fixed C , the bilevel problem

an be expressed as: 
 

 

 

max 
θ,α

R ((Y i , ̂  Y (X i , θ, α)) i ∈ s 2 ) 

s.t. α solves (2) in s 1 
θ ∈ �

(8) 

ote that we have emphasized the dependence of the score ˆ Y on

and α by including them in the notation. In the cases where the

alues of the parameters in θ , or the classification coefficients α
re clear enough, we will omit them for the sake of simplicity. 

Problem (8) is a nonlinear bilevel optimization problem, which

an be handled with off-the-shelf strategies, as those described in

olson, Marcotte, and Savard (2007) . These techniques are, how-

ver, rather expensive. Recall that (8) is only a surrogate of our real

roblem. Hence, instead of the above-mentioned standard method-

logies, we next propose an alternating approach for which only a

ew iterations will be carried out. Firstly, in the first step of our

lternating approach, for fixed parameters θ and C , a classification

ule is obtained by means of α solving Problem (2) , that is, the

lassic SVM formulation. Problem (2) is a concave quadratic max-

mization problem, which can be solved by standard local search

ptimizers or specific routines, as in Ferris and Munson (2004) ;

ichtárik and Takáč (2016) . Secondly, in the second step, for fixed

and C , θ is chosen by solving: 

ax 
θ∈ �

R ((Y i , ̂  Y (X i , θ )) i ∈ s 2 ) (9)

roblem (9) is a continuous optimization problem which is solved

y using standard local search techniques within a multi-start

trategy. The alternating procedure will alternate these two steps

ntil some stopping criterion is met. Suitable values for θ and α
ill be obtained by this procedure for a specific value of the regu-

arization parameter C . 

The value of C will be chosen by a grid search, as commonly

one in standard SVM. This means that, for every value of C in a

iven grid, we measure the accuracy in s 3 of the classification rule

btained with the best θ and α found as solutions of Problem (9) .

he C with the largest accuracy in s 3 will be chosen. Finally, we

stimate the correct classification rate using the fourth indepen-

ent sample, s 4 . 

A pseudocode of the heuristic is outlined in Algorithm 1 , and

n Section 3.2 , we detail an extension to more complex models by

eans of a nested heuristic, described above. 

.2. Optimization enhancement. A nested optimization 

When the dimension of θ is high, the approach described in

ection 3.1 may be time-consuming. The main reason is that, on

op of the grid search needed for C , Problem (9) may have many
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Algorithm 1 Heuristic for parameter tuning. 

Input: H 

• Randomly split the sample s into s 1 , s 2 , s 3 and s 4 . 

for C in the grid do 

Alternating Procedure 

repeat 

1. Fixed θ , calculate the parameters α of the SVM classifier 

by solving Problem (2) in s 1 . 

2. Fixed α, calculate θ by solving Problem (9) in s 2 . 

until stopping criteria 

• Evaluate the accuracy in the sample s 3 with C fixed. 

end for 

• The optimal value of C is the one with the best accuracy in 

s 3 . The optimal values of α and θ are the ones associated to the 

optimal parameter C. 

Output: optimal parameters C and θ , optimal classification coef- 

ficients α, and the corresponding accuracy estimated from s 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Nested heuristic for parameter tuning. 

Input: H, nested functional bandwidths ω (1) (t, θ(1) ) ≺ · · · ≺
ω (H) (t, θ(H) ) . 

• Randomly split the sample s into s 1 , s 2 , s 3 and s 4 . 

for C in the grid do 

Initialization: 

• h := 1 . 

• Randomly select an initial solution θ(h ) ∈ �(h ) . 

• Set θ := θ(h ) 

while h ≤ H do 

1. Using samples s 1 and s 2 , run the Alternating Procedure 

of Algorithm 1 for ω(t, θ(h ) ) , starting from θ and 

yielding θ opt 

(h ) 
= (ω 

opt 
1 

, . . . , ω 

opt 

h 
, τ opt 

1 
, . . . , τ opt 

h −1 
) 

as solution. 

2. Randomly select � ∈ { 1 , 2 , . . . , h } . 
3. Set 

θ := (ω 

opt 
1 

, . . . , ω 

opt 
� −1 

, ω 

opt 
� , ω 

opt 
� , ω 

opt 
� +1 

, . . . , ω 

opt 

h 
, τ opt 

1 
, . . . , τ opt 

� −1 
, 

τ
opt 
� 

+ τopt 
� −1 

2 , τ opt 
� , . . . , τ opt 

h −1 
) and h := h + 1 . 

4. Evaluate the accuracy in the sample s 3 with C fixed. 

end while 

end for 

• For h fixed, the optimal value of C is the one with the best 

accuracy in s 3 . The optimal values of α and θ(h ) are the ones 

associated to the optimal parameter C. 

Output: optimal parameters C, θ opt 

(h ) 
, ∀ h , the associated classifica- 

tion coefficients α, and the accuracy estimated from s 4 . 
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e  
local minima, and therefore multiple local searches are required

to find a good solution. The success of the method would be im-

proved if, instead of a random multi-start, a more intelligent search

strategy were possible. This is the case, for instance, for models of

the bandwidth parameter ω( t , θ ) that can be plugged into a se-

quence of models of increasing complexity. Thus the optimal solu-

tion obtained in the simple model can be used as a starting solu-

tion in the following more complex case. 

The above-explained methodology can be easily embedded in a

nested heuristic for SVM parameter tuning, Carrizosa et al. (2014) ,

in which a nested structure of kernels is assumed. More pre-

cisely, given a family of kernel functions, we construct a series of

nested kernel models with their associated parameters, or equiva-

lently, a series of H nested functional bandwidths ω (1) ( t , θ (1) ) ≺���≺
ω ( H ) ( t , θ ( H ) ). By ω (h ) (t, θ(h ) ) ≺ ω (h +1) (t, θ(h +1) ) we denote that the

bandwidth ω ( h ) ( t , θ ( h ) ) has parameters which are part of the pa-

rameters of the bandwidth ω (h +1) (t, θ(h +1) ) . 

Example 3.2. Consider the family of piecewise constant functions

with 3 pieces, in (7) . We have that ω (1) (t, θ(1) ) = ω 1 , with

θ(1) = ω 1 , ω (2) (t, θ(2) ) = ω 1 I [0 ,τ1 ] 
+ ω 2 I (τ1 ,T ] 

, with θ(2) =
(ω 1 , ω 2 , τ1 ) , and finally ω (3) (t, θ(3) ) = ω 1 I [0 ,τ1 ] 

+ ω 2 I (τ1 ,τ2 ] 
+

ω 3 I (τ2 ,T ] 
, with θ(3) = (ω 1 , ω 2 , ω 3 , τ1 , τ2 ) . Here I [ r,r ′ ] denotes the

indicator function, i.e., the function which is equal to 1 in the

interval [ r , r ′ ] and 0 otherwise. 

The idea of using nested models is to take advantage of the

easy-to-tune structure of the elementary models and consider

them as a simplification of the complex models. 

When solving Problem (8) for ω ( H ) ( t , θ ( H ) ) we will use a se-

quential approach where the (suboptimal) solution obtained when

using ω ( h ) ( t , θ ( h ) ), will be used as an initial solution of Problem

(8) with ω (h +1) (t, θ(h +1) ) . 

Example 3.3. For the bandwidth given in (7) , once we

have obtained the (suboptimal) solution of ω ( h ) ( t , θ ( h ) )

by θ opt 

(h ) 
= (ω 

opt 
1 

, . . . , ω 

opt 

h 
, τ opt 

1 
, . . . , τ opt 

h −1 
) , we randomly se-

lect an interval [ τ� −1 , τ� ) and split it into two pieces by

its midpoint, assigning the same bandwidth value to such

two new pieces. In other words, the initial point of the

parameters in the level h + 1 turns out to be θ(h +1) =
(ω 

opt 
1 

, . . . , ω 

opt 
� −1 

, ω 

opt 
� 

, ω 

opt 
� 

, ω 

opt 
� +1 

, . . . , ω 

opt 

h 
, τ opt 

1 
, . . . , τ opt 

� −1 
, 

τ opt 
� 

+ τ opt 
� −1 

2 ,

τ opt 
� 

, . . . , τ opt 

h 
) . 

The pseudocode of the nested algorithm defined in Section 3.1 ,

is shown in Algorithm 2 . 
o  
.3. Choice of the number of pieces, H

Thus far we have assumed that the number H of pieces is given

s input in the problem, and hence the results are dependent on

 . The larger H is, the better the accuracy (in the training sam-

le) since more flexibility is added to the model. However, if a too

arge value of H is chosen, the number of parameters involved in

he problem increases considerably, and this may deteriorate the

ccuracy in the test sample. 

Therefore, it is sensible to define a strategy to determine the

est H . In this respect, standard criteria, such as BIC, AIC or ICL,

 Akaike, 1974; Biernacki, Celeux, & Govaert, 20 0 0; Schwarz, 1978 )

an be applied in the SVM context, as done in Claeskens, Croux,

nd Kerckhoven (2008) for instance. They proposed two new in-

ormation criteria which are inspired, but not equal to AIC and BIC,

ith the aim of giving consistent selection criteria without much

dditional computational costs. In contrast, in this paper, we pro-

ose to keep the parameter H with the largest accuracy on the val-

dation sample s 3 . 

. Numerical experiments 

This section details the experiments performed ( Section 4.1 )

nd the main characteristics of the data bases here considered

 Section 4.2 ). Finally, Section 4.3 is devoted to the computational

esults obtained. 

.1. Description of the experiments 

In this section, a detailed description of the experiments carried

ut to test our methodology is made. To obtain stable estimates, k -

old cross-validation has been used to evaluate the performance of

he algorithm on different data sets. The number k of folds varies

epending on the size of the database. For small databases, k is

qual to the number of observations, i.e., we performed leave-one-

ut, whilst for large databases we take k = 10 . A database is con-
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Table 3 

Real data description summary. 

#Records #Points measurements #Records label −1 #Records label + 1 

ECG 200 96 67 133 

growth 93 31 54 39 

gun 200 96 100 100 

MCO 89 360 44 45 

phoneme 200 150 100 100 

phoneme_large 1717 256 1022 695 

rain 35 365 15 20 

regions 35 365 20 15 

synthetic_magnitude 150 100 75 75 

tecator 215 100 77 138 

wine 111 234 54 57 

yoga 306 426 150 156 
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idered small here if and only if it has less than 100 observations.

ee Table 3 . 

Algorithm 2 is run k times, one per fold. Each time, the divi-

ion into four independent samples s 1 , s 2 , s 3 , and s 4 is done as

xplained in Section 3.1 . The number of runs of the multi-start

ocal search optimization method is set to five. The algorithm is

un until the maximum number of iterations reached to ten, or

hen the difference between the objective values in two consecu-

ive iterations is less than 10 −5 . The functional bandwidth ω( t , θ )

s the piecewise constant function in (7) with H = 8 . The regular-

zation parameter C varies in the set { 2 −10 , . . . , 2 10 } . The parame-

ers θ ( h ) are in the set �(h ) = { (ω 1 , . . . , ω h , τ1 , . . . , τh −1 ) : ω � ≥ 2 −4 ,

 = 1 , . . . , h, 0 ≤ τ1 ≤ . . . ≤ τh −1 ≤ T } , ∀ h = 1 , . . . , 8 . 

For comparison purposes, apart from the standard SVM, i.e., our

pproach with H = 1 , we have run three supervised classification

ethods for functional data, available at the fda.usc library of R
 Febrero-Bande & Oviedo de la Fuente, 2012 ), namely classif.depth ,

lassif.kernel , classif.knn with the default parameters. In order to ob-

ain a fair comparison, the accuracy obtained is estimated on the

ery same testing sample s 4 used in our approach. 

Our algorithm is coded in R and is carried out on a cluster with

 terabyte of RAM memory at 6.2 TFlops, running CentOS Linux

.3. The code is available upon request. 

.2. Description of the data sets 

Our methodology has been tested in 12 benchmark data sets,

idely used in the functional data classification literature, namely,

CG , ( Chen et al., 2015; Xing, Pei, & Philip, 2009 ), growth , ( Cuevas

t al., 2007; Muñoz & González, 2010; Torrecilla Noguerales,

015 ), gun , ( Chen et al., 2015; Xing et al., 2009 ), MCO , ( Baíllo

t al., 2011; Cuevas, Febrero, & Fraiman, 2006; Ruiz-Meana et al.,

003 ) and Online companion of ( Carrizosa et al., 2014 ), phoneme ,

 Ferraty & Vieu, 2006; Muñoz & González, 2010; Rossi & Villa,

006; Torrecilla Noguerales, 2015 ), phoneme_large , ( Berrendero

t al., 2016; Delaigle & Hall, 2012; Friedman, Hastie, & Tibshi-

ani, 20 01a; 20 01b ), rain , ( Martín-Barragán et al., 2014 ), regions ,

 Martín-Barragán et al., 2014 ), synthetic_magnitude , model 3 of

 López-Pintado & Romo, 2009 ), tecator , ( Ferraty & Vieu,

006; Martín-Barragán et al., 2014; Rossi & Villa, 2006; Tor-

ecilla Noguerales, 2015 ), wine , ( Chen et al., 2015 ) and yoga , ( Wei,

0 06; Wei & Keogh, 20 06 ). Note that the data set phoneme is used

s described in the fda.usc library, ( Febrero-Bande & Oviedo de la

uente, 2012 ), of R . Table 3 summarizes the data sets description,

hich gives the overall number of records, the number of time

easurements, and the number of records of each class. A plot

ith a sample of 10 instances of each data set is shown in Fig. 4 ,

epicting in solid black line the observations with label −1 and

n dashed red line the records with label 1. The number of folds

s determined by leave-one-out in the data sets growth , MCO , rain ,
nd regions , and with 10 −fold cross-validation in the remaining

atabases. 

.3. Results 

We provide the boxplots of the accuracy measured on s 4 from

 = 1 to h = 8 for the different folds in the k -fold accuracy estima-

ion procedure. 

Boxplots are not very informative for small data sets, for which

eave-one-out is performed. Indeed, for each fold either one ob-

ains an accuracy of 0% or 100%, since either the testing obser-

ation is wrongly or correctly classified. For this reason, only the

oxplots of the largest data sets are depicted. See Fig. 6 . Moreover,

he exact values of the average accuracy and its standard deviation,

s well as the corresponding values for the three fda.usc library

ethods considered in Section 4.1 , are also presented in Table 4

or the sake of comparison. The four gray columns correspond to

he four methods we are comparing with, denoted as depth , kernel ,

nn and classic SVM, h = 1 . Finally, last column of Table 4 gives the

est number of pieces chosen, according to the strategy explained

n Section 3.3 . 

We have highlighted in bold in Table 4 the maximum of the

ccuracy values for h = 2 , . . . , 8 which are equal or greater than

ny of the four methods. In general, our method for h = 2 , . . . , 8

s better than the four comparative approaches in the data sets

rowth , MCO , phoneme , phoneme_large , and regions . This improve-

ent may be produced by the shape of the curves. The different

lass labels seem to be easy to identify depending on the time

ubinterval, and therefore our strategy makes easier such separa-

ion. Observe for instance, the growth data set, in which the two

lasses have a different pattern around the time instant 15. More-

ver, it is seen that the improvement in the accuracy strongly

epends on the data set considered. Indeed, no improvement is

een for the databases gun , rain , and tecator when comparing our

ethodology with h = 1 and h ≥ 2. However, for some of the values

 ≥ 2 the accuracy obtained in gun is better than that provided by

epth . The results of our approach in the database rain are always

etter than the ones provided by the three fda.usc methods. In

ontrast, such three methods should be applied if the tecator data

et is studied. In the databases ECG , growth , phoneme_large and

oga there is a minor improvement (about a 0.5%) when compar-

ng the classic SVM with our approach for h ≥ 2. Such improvement

lso holds in the ECG data set when comparing with the depth

ethod. The accuracy value obtained in phoneme_large with our

pproach when h = 4 pieces are optimally chosen is better than

ll the three fda.usc methods. Analogous conclusions are obtained

n the yoga data set. A considerably larger accuracy is obtained

n databases MCO , phoneme , regions , synthetic_magnitude , and wine

hen solving the problem with h ≥ 2 than when solving with

 = 1 , i.e., the classic SVM. In some cases such improvement yields
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Fig. 4. Sample of functional data in the real data sets analyzed. 
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Fig. 4. Continued 
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round ten percentage points of difference in accuracy terms. Such

 large accuracy also occurs when comparing our approach with

he three fda.usc methods in the databases MCO , regions and wine .

he improvement is not so evident in the phoneme data set. In the

ata set synthetic_magnitude , our results are comparable to pro-

ided by depth and knn , but much better than the ones in kernel . 

Apart from the improvements in the accuracy, our approach

nables us to identify subintervals of special interest. This fact

ould be impossible if the standard scalar bandwidth, which treats

qually all time instants, were considered. We highlight, for in-

tance, the case of the wine data set, whose curves are almost

dentical except around the time instants at which peaks occur.

ig. 5 shows the boxplots of the values of ω 1 , ω 2 , ω 3 , τ 1 and τ 2 

btained when a functional bandwidth with h = 3 pieces is sought.

e observe that the time instants which distinguish one piece

rom another are around 50 and 125, which coincides with the

oints of some of the peaks. Furthermore, the associated weight

s greater in the third part, where the biggest peak is located. 

Regarding the trajectory of the accuracy versus the number of

ieces, we observe that there is not a clear pattern in the behavior.

or instance, in the MCO data set, we have worse results with h = 2

ieces than with the classic SVM ( h = 1 ). However, a difference of

ix points is obtained when comparing h = 6 with h = 1 . 

In contrast, in the regions data set, the accuracy with h ≥ 2 are

ignificantly better than with h = 1 , reaching the maximum value

ith h = 6 . Similar conclusions can be drawn in the remaining data

ets. 

This fact shows the importance of using an adequate value of H .

ince the value of the parameter H depends on the division of the

ata set, we show in the last column of Table 4 the average value

f the best H parameter estimated on sample s 3 as explained in

ection 3.3 . 

With respect to the running times, we first point out that most

f the time is spent in the training phase since once the classi-

er is built, classifying new observations is definitely quick. In-

eed, it just reduces to compute the score given in (1) and follow

he corresponding classification rule. Moreover, for a given fold,

or a fixed value of C , h and for each iteration of the alternat-

ng approach, the resolution of both optimization problems (2) and

9) highly depends on the size of the data set. Particularly, solving

ne SVM problem in the rain data set lasts an average of 0.3 sec-

nds, whereas 3.3 seconds are spent if Problem (2) is solved on the

honeme_large data set. On the other hand, the average running

ime of Problem (9) goes from 0.5 seconds to 26.8. Such values

orrespond respectively to the rain and phoneme_large databases.

ote also that the computational times will depend on the value

f h since harder optimization problems of type (9) , involving more

ecision variables, are to be solved as h grows. For example, in the

ata set yoga , 5.9 seconds are spent in solving our approach with

he single bandwidth case, i.e., h = 1 and 7.5 when h = 2 pieces are

ought. In order to have the whole amount of time invested in our

lgorithm, we should take into account different elements, such as

he number of folds, the number of C values in the grid, the max-

mum number of iterations in the alternating approach, and the

umber of runs in the multi-start. Nevertheless, the total time does

ot increase linearly, since running the code in parallel, as done in

his paper, reduces the elapsed time. Furthermore, our strategy of

esting the problem alleviates the increase in running times since

he optimization of the most complex models is not started from

cratch but from the optimal solution of the simplest models. The

unning times of the three methods of the fda.usc library with the

efault parameters are around 3 seconds, for a given fold. How-

ver, our approach gains in interpretability terms, as has already

een mentioned. 
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Fig. 5. Bandwidth and time instants results for the wine data set. 
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Fig. 6. Accuracy boxplots in the analyzed larger data sets depending on the number of pieces, H . Since the boxplots are rather informative for the small data sets, i.e., growth , 

MCO , rain and regions , only the accuracy values of the remaining databases are depicted. 
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5. Conclusions and extensions 

In this paper, we have shown how SVM for functional data can

be easily improved if a functional bandwidth, to be tuned via a

nested heuristic, is used. By using very simple functional parame-

ters, together with our tuning procedure, we obtained better accu-

racy than with the traditional scalar parameter model in the test

sets. The methodology here proposed is able to identify the crit-

ical points in which a change in the behavior of the functions is

produced, yielding the most relevant intervals in terms of the clas-

sification rate and also regarding the interpretability of the results.

The difficulties associated to the tuning of more complex struc-

tures are mitigated by the use of a heuristic that exploits the

nested structure of the functional parameter, by using the (sub-

optimal) solution of one level as an initial solution for the next

level. Our tuning procedure takes advantage of the functional na-

ture of the data by expressing the tuning problem as a bilevel opti-

mization problem in continuous variables. In contrast to the usual

approach, where the misclassification rate is minimized, here the

correlation between labels and scores are optimized, allowing us

to use gradient-based local search algorithms. 

In our approach, the number of pieces of the functional band-

width, H , is fixed from the beginning, and the trajectory of the

classification rates for the different number of pieces is shown.

However, since the results depend on H we choose the value of

H yielding the best accuracy, as estimated on the validation sam-

ple. The analysis performed here, using piecewise constant func-

tions as bandwidths, can be easily extended to other expressions

such as polynomials, or piecewise polynomials, including splines

( De Boor, 1978; Friedman et al., 2001b ). Apart from the Pearson

coefficient, different types of association measures can be applied

( Székely et al., 2007; Torrecilla Noguerales, 2015 ). 

The functional data here considered are univariate functions.

The case of multivariate (hybrid) functional data, ( Jiménez-Cordero

& Maldonado, 2018 ) can also be addressed with our proposal, after

the convenient modification of the kernel function. 

The standard hinge loss function has been used in the SVM. Our

approach might also be adapted to other loss functions, such as the

so-called ramp loss, ( Brooks, 2011 ), by replacing (2) with the cor-

responding SVM problem. The same happens if the SVM in (2) is

replaced by some related methods such as the least-squares SVM,

e.g., ( Cruz-Cano, Chew, Choi, & Leung, 2010 ). 

We have limited ourselves to classification problems. If instead,

functional regression is pursued, ( Sood, James, & Tellis, 2009 ), our

methodology can be easily adapted to this context, replacing SVM

by Support Vector Regression. This research line is also under in-

vestigation. 
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