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Abstract

This article draws from research on ensembles in computational intel-

ligence to propose structural combinations of forecasts, which are point

forecast combinations that are based on information from the parameters

of the individual models that generated the forecasts. Two types of struc-

tural combination are proposed which use seasonal exponential smoothing

as base models, and are applied to forecast short-term electricity demand.

Although forecasting performance may depend on how ensembles are gen-

erated, results show that the proposed combinations can outperform com-

petitive benchmarks. The methods can be used to forecast other seasonal

data and be extended to different types of forecasting models.
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1. Introduction

It is now several decades since Bates & Granger (1969) demonstrated

that a combination of forecasts can outperform individual forecasts. Since

then several methods have been developed, and reviews of the literature

(Clemen, 1989; De Menezes et al., 2000) concluded that combining multiple

forecasts tends to increase forecast accuracy. As Timmermann (2006) ar-

gued, unless there is a forecasting model that is consistently more accurate

than its competitors, a combination of forecasts enables diversification and

is thus better than relying on a single forecast for decision making. There

are different approaches to forecast combination, one of which is the cre-

ation of ensembles of forecasting models whose forecasts are then averaged,

and is a source of inspiration for this research.

1.1. Traditional combinations of forecasts and extensions

Stock & Watson (2004) have observed that often the best performing

combinations are simple, and averaging point forecasts has become a prac-

tice advocated in textbooks (Ord et al., 2017) and forecasting principles

(Armstrong, 2001). Linear combination is one of the simplest approaches,

yet the simple average is difficult to defeat (Armstrong, 2001). Che (2015)

suggested improvements to the selection of models for linear combinations

by using the concept of entropy to minimise linear redundancy and max-

imise linear relevance. Chan et al. (2004) examined whether and when the

weights in a combination should change, and concluded that there are ben-

efits from time-varying weights and complex models. While focusing on

forecast error distributions and their dynamics, De Menezes et al. (2000)

observed that gains could be achieved from averaging large number of fore-

casts (De Menezes & Bunn, 1998), and specially in cases where forecast

errors were serially correlated, the simple average was advocated.

Clustering forecasts, rather than averaging, is inspired by the assump-
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tion of commonalities underlying forecasting models. K-means has been

proposed, for example, as an approach to group similar forecasting models

into clusters based on past Mean Square Error (MSE) of individual forecasts

(see Timmermann, 2006). Switching between different forecasts at different

periods (Granger, 1993; Deutsch et al., 1994; Taylor & Majithia, 2000) is

a selection strategy that makes use of information from different forecasts.

It assumes that available forecasts might vary in relevance depending on

the period to forecast. Kolassa (2011) combined exponential smoothing

forecasts and incorporated information criteria when calculating weights.

1.2. Ensembles

The rationale for using ensembles of univariate models, is that by slightly

varying initial conditions and parameters in a model, different predictions

can be obtained and a summary of their distribution, such as their mean or

median, can be used as a forecast. This method involves three main steps:

generation, pruning and combination.

Ensembles of neural networks (NN) are widely used, in particular to

forecast short-term electricity demand, which is a problem where the effort

of generating many different models is judged worthwhile (e.g. Barak &

Sadegh, 2016; Li et al., 2016; Khwaja et al., 2017). The approach has also

been extended to other methods. Combinations using ensemble forecasts

provided by climate agencies have been proposed, for example, by Taylor

& Buizza (2003) and the building of ensembles containing statistical mod-

els (ARMA) has been adopted in several applications, e.g. Matijaš et al.

(2013). Variations in data patterns imply the use of different forecasting

algorithms. Hence, a wider set of models of different complexity have been

considered in ensembles, including statistical ARIMA and artificial intelli-

gence methods (Multilayer Perceptron and Recurrent Neural Networks, and

support vector machines). The literature underscores the usefulness of inte-

grating computational intelligence and traditional forecasting approaches.
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Kourentzes et al. (2014) constructed ensembles of exponential smoothing

forecasts by extracting components from the original time series through

temporal aggregation, fitting exponential smoothing models to these and

combining their forecasts. Their empirical evaluation demonstrated signif-

icant improvements in forecasting accuracy, especially for long-term fore-

casts. More recently, Bergmeir et al. (2016) created different replicas of a

time series by using a Box-Cox transformation followed by a sophisticated

time-series decomposition, such that the remainder of the series was boot-

strapped. Ensembles of exponential smoothing models were fitted leading

to a forecast. Through this procedure, the original exponential smoothing

models were outperformed consistently. The exploration of these encour-

aging results has been carried forward by Petropoulos et al. (2018), who

assessed the conditions of success of the approach.

1.3. Extensions of ensembles, hybrid models, and the use of model structure

in combinations

Hybrid foresting approaches have been proposed, where statistical and

computational intelligence methods are integrated. Genetic algorithms (GA)

have been used, in this context, as part of either the optimisation process or

the model specification mechanism (see for example Zhou et al., 2002; Pai

& Hong, 2005). Fuzzy inference systems were also investigated while com-

bining forecasts (Fiordaliso, 1998; Xiong et al., 2001), because their ability

to find non-linear mappings between an input and an output space can be a

combining mechanism. Non-linear combinations of forecasts have tended to

use NNs, because of perceived advantages over linear combination schemes

(Donaldson & Kamstra, 1996). In general, the importance of combinations

of computational intelligence models has been highlighted by Crone et al.

(2011) in the context of the NN3 forecast competition. Several of the most

competitive models in NN3, contained a form of combination of forecasts.

Structural information of a model can relate to its functional form or to
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the specific values of its parameters. Such information has now been used by

different studies in forecast combinations, although some authors have not

explicitly acknowledged their use. Indeed, Bakker & Heskes (2003), to the

best of our knowledge were the first to argue that, in ensembles of NNs, a

combination could be achieved by exploring diversity not only in individual

forecasts, but also in the parameter space of the models that led to the

individual forecasts. Their study explored diversity via clustering for model

selection, thus taking the view that not all forecasts in an ensemble should

be included in the combination. Another possibility to use the structure of

NNs is to explore relationships between components of the model and its

forecasts. For example, in ensembles of NNs, Garson (1991) and Goh (1995)

estimated the importance of an input variable by examining the weighted

connections between nodes of interest from the input to the output, and

constructing in this way mappings of importance, which can be used to

estimate weights for forecast combinations.

Kolassa (2011), when using Akaike weights in their combinations, incor-

porated parameter information indirectly, since the combining weights are

based on the number of parameters in the model. Bergmeir et al. (2016)

fitted different bootstrapped time series to ETS state-space models (Hyn-

dman & Athanasopoulos, 2014). In doing so, they automatically created

model parameter diversity and the forecasts combinations are, therefore,

achieved by taking into account parameter information in the process. This

is similar to the procedure adopted by Kourentzes et al. (2014). In their

work, however, both parameter values and functional form were taken into

account, since the models selected by ETS routines can vary.

Bakker & Heskes (2003) considered the possibility of clustering NNs in

their parameter space. The present study takes inspiration from them in

order to combine forecasts of single-seasonal and double-seasonal exponen-

tial smoothing. In terms of structural information from the models, only
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parameter values are here considered. The single seasonal Holt-Winters

considered here belongs to the family of exponential smoothing methods

investigated by Bergmeir et al. (2016). The focus on double-seasonal time

series is particularly important for short-term electric load forecasting. Ad-

ditionally, the structural (parameter) information is here explicitly incorpo-

rated in the modelling procedure, by performing either clustering or genetic

algorithms searches in the parameter space in order to select forecasts to be

combined.

1.4. Load forecasting and combining forecasts

The safe and efficient operation of power systems requires accurate fore-

casts of electricity demand and of the expected load in the electric system.

In electricity markets, forecasts of the demand for electricity are also critical

to support transactions and decision making, because the limited ability to

store electricity implies that prices are very volatile, especially as the inter-

val between the transaction and the delivery of power decreases. Forecasting

methods that have been used are broadly categorised as: classical time se-

ries and regressions, artificial and computational intelligence methods, and

hybrid approaches (Hahn et al., 2009). The latter includes different types of

combinations which, however, tend to use models within a single category.

Nowotarski et al. (2016) has combined models by varying training configura-

tions, such as data partitioning, and the choice of the threshold to stop the

estimation process. Models with overlapping configurations are averaged

in different ways, including OLS and machine learning techniques. These

variation induction mechanisms can be traced to Pesaran & Pick (2011),

who combined forecasts produced by changing the estimation windows. As

a whole, methods to forecast electricity demand in the short term aim to

capture the seasonality and/or factors that drive consumption of electricity.

Hippert et al. (2001), while reviewing this literature, highlighted the rela-

tive success of complex neural networks in addressing the problem. Yet, the
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findings of (Clements & Harvey, 2010) and those by Taylor et al. (2006),

whose comparison included the first two types of methods, seem to favour

classical time series and regression models. In fact, Hahn et al. (2009) con-

cluded that future research in this area should focus on hybrid models and

explore the potential from different approaches to forecasting.

In this study, three applications with varying complexity illustrate the

proposed methodology. The first considers the problem of forecasting peak

hourly electricity demand and explores combinations of multiplicative Holt-

Winters models, which is commonly used to forecast seasonal time series

and is available in most statistical software. The second and third address

the problems of forecasting hourly and half-hourly electricity demand, re-

spectively, as intra-day and weekly seasonality patterns are present in the

data, the double-seasonal Holt-Winters-Taylor model (Taylor, 2003) is con-

sidered.

The remainder of this article is organised as follows. Section 2 describes

the base models and how they were prepared for the ensembles, the combi-

nation approach, and how the applications were set. Section 4 reports the

results. Section 5 concludes and suggests directions for future research.

2. Methodology

Figure 1 summarises the proposed approach to combine forecasts. Ac-

cordingly, replicas of the time series data are generated through a variation

induction mechanism (block swapping or noise addition) and the base mod-

els are fitted to them, thus creating a pool of diverse exponential smoothing

models. This pool (HW1 . . . HWn) is subject to what we will call a struc-

tural combination procedure and forecasts are produced.

2.1. Generating replicas of the time series

In order to structurally combine forecasts, model diversity is required,

and thus, prior to fitting the exponential smoothing models to the data,
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Figure 1: Method

replicas of the original time series (Data) are generated. Two variation

induction mechanisms that are commonly used in ensembles are adopted:

noise addition (Brown et al., 2003; Zhang, 2007) and block bootstrapping

(Jing, 1997). The rationale for noise addition is that any given time series

can be regarded as a single realisation from an infinite set of possible reali-

sations, which can be captured by adding a normally distributed noise with

mean zero and a relatively small standard deviation.

Zhang (2007) argued that resampling procedures which maintain the

serial correlation in the time series can also be adopted. Hence, b blocks of

data are defined, i.e.: zt = (yt, . . . , yt+k−1) of length k from the original time

series (y1, y2, . . . , yT ), where b = T − k + 1; and by sampling with replace-

ment from blocks (z1, z2, . . . , zb) other samples (z∗1 , z
∗
2 , . . . , z

∗
l ) are produced

(Zhang, 2007, p. 5333). However, rather than building entire series from

blocks of data taken from the original series, randomly selected pairs of data

blocks are here swapped. The block size is equal to the longest seasonal cy-

cle and the number swaps is kept low, thus preserving the structure of the

series. This means that we can assume that the replicas and the original

series are samples from the same data generating process.

2.2. The base models

The first base model considered is derived from standard Holt-Winters

method (Hyndman et al., 2008) with an added autoregressive error correc-
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tion term. This model is suitable for seasonal time series and is also sup-

ported by previous studies on forecasting electricity demand (e.g. Clements

& Harvey, 2010; Taylor et al., 2006). Forecasts are produced up to S1 steps

ahead, according to the following:

lt = α
yt
st−m

+ (1− α)(lt−1 + bt−1) (1)

bt = β(lt − lt−1) + (1− β)bt−1

st = γ
yt

lt−1 + bt−1
+ (1− γ)st−m

ŷt+h|t = (lt + bth)st−m+h + φh(yt − (lt−1 + bt−1)st−m)

where α, β and γ are smoothing parameters; st is the seasonal index,

bt represents the trend, lt the level; m is the season length, ŷt+h|t is the

h step-ahead forecast from forecast origin t and φ is the parameter of the

autocorrelation error correction.

The second base model follows from the multiplicative Holt-Winters-

Taylor exponential smoothing method by Taylor (2003), which captures the

double seasonality in electricity demand time series of a higher frequency:

lt = α

(
yt

S1t−m1S2t−m2

)
+ (1− α)(lt−1 + bt−1) (2)

bt = β(lt − lt−1) + (1− β)bt−1

S1t = γ
yt

ltS2t−m2

+ (1− γ)S1t−m1

S2t = ω
yt

ltS1t−m1

+ (1− ω)S2t−m2

ŷt+h|t = (lt + hbt)S1t−m1+hS2t−m2+h + φh (yt − (lt−1 + bt−1)S1t−m1S2t−m2)

lt and bt, are the smoothed level and trend. S1t and S2t are the seasonal

indices for the intra-day and intra-week seasonal cycles, respectively; m1 and

m2 are the intra-day and intra-week season lengths, respectively; α, β, γ,

ω are the smoothing parameters; ŷt+h|t is the h step-ahead forecast made

from forecast origin t and φ is the parameter of the autocorrelation error

correction. Forecasts are produced up to m1 steps ahead.
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The models were implemented in Matlab R© 2010. The level, trend and

seasonal components were initialised by averaging the early observations

through moving average filters. Although Taylor (2010) optimised param-

eters based on the sum of squared errors (SSE), more recent studies, (e.g.

Arora, 2013), minimised the in-sample root mean squared errors (RMSE).

The latter approach is adopted in this study.

2.3. Structural combinations from exponential smoothing

The structure of an exponential smoothing model can be represented

as a vector containing its parameters (e.g. α, β, γ and φ in Equation 1).

Each model can be seen as a point in the N -dimensional space, where N is

the number of parameters. Suppose that c(·) is a combination of forecasts;

fi is the forecast produced by model Mi(Ai), where Mi is the model and

Ai = [αi, βi, γi, φi] is a structural descriptor of Mi (parameter values, for

example). Then fi = Mi(x;Ai) where x is an input. One approach is

combining based on fi, that is c({fi}), and a different approach is to combine

as c({fi}; {Ai}), that is, a combination where parameter information, Ai, is

considered.

2.3.1. Combination based on clustering (CB)

Fuzzy C-Means is an algorithm that partitions a collection of vectors

into c fuzzy groups and finds a cluster centre in each group so that a cost

function of dissimilarity is minimised (Jang et al., 1997). When clustering

forecasting models in their parameter space, the output of the algorithm

(centroids in the model space) can be used as reference points to select

models in their vicinity. The forecasts of selected models can then be com-

bined. We prefer C-means to K-means (used by Bakker & Heskes, 2003,

with NNs in a similar approach) because the identification of completely

distinct clusters, as implied by K-means, is likely to be unrealistic since

each forecasting model attempts to capture the same underlying time se-
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ries process. An important feature of C-means is the use of a degree of

membership to clusters (between 0 and 1), instead of a binary membership

(0 or 1, equivalent to non-member or member). Therefore, a given object

(model in this case) may belong to several groups with different degrees of

belongingness between 0 and 1. Normalisation can be imposed, such that

the summation of degrees of belongingness of an object to all the clusters

is always equals unity (as described by Jang et al., 1997, p. 426). However,

given that C-means produces non-deterministic clusters, a variant of the al-

gorithm is here adopted (based on Friedman, 1991), which uses a recursive

partitioning of objects in their space that enables a deterministic partition

(the same partition is obtained when faced with the same set of objects).

The centre of those partitions become the cluster centres to be considered

in the combinations, as candidate models were selected in their vicinity.

Clustering is performed over pools of forecasting models. When cre-

ating pools, for each constructed series (through noise addition or block

swapping), the in-sample errors are calculated on the constructed series it-

self. When the clustering is performed, the selected models in the clusters

have their fit evaluated on the original series before being combined.

Given a forecast origin t, each model in the clusters produces forecasts

ŷt+1, . . . , ŷt+h. The combined forecast for t + h is calculated based on a

combination of the forecasts for this horizon produced by the selected models

in each of the n clusters:

ŷt+h =
n∑

i=1

φiŷCi,t+h (3)

where φk is an average of the normalised membership degree of models

selected within cluster k:

φk =

∑
m∈Ck

wm(vCk
)

Nk
wi(v) =

ui(v)∑n
j=1 uj(v)

ui(v) = e
− D2

i (v)∑n
j=1

D2
j
(v) (4)

wi(v) is the normalised membership degree of v to cluster i and ui(v) is

the membership of v to cluster i (v is a model represented as a vector with
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its parameters). The squared euclidean distance D2
i (v) between v and the

i-th centre is divided by the sum of squared distances from v to all centres.

An exponential transformation is taken, in order to allow the membership

of a model in a cluster to decrease as the distance from the centre increases.

Ck denotes cluster k, vCk
is the centre of such cluster and Nk is the number

of models in it. In Equation 3, ŷCi,t+h is the output from cluster i for step

t+ h, that is:

ŷCi,t+h = αi,0 + αi,1ŷi,1,t+h + αi,2ŷi,2,t+h + . . .+ αi,Lŷi,L,t+h (5)

Variables ŷi,1,t+h, ŷi,2,t+h, . . . represent the forecasts for t + h produced by

models selected within cluster i, and αi,j are the coefficients for forecasts

obtained with model j from cluster i, including a constant αi,0. L models

are selected, with L varying between 1 and 5 (refer to section 3 for details

on this choice).

The partitioning algorithm, in a forward (growing) step, exhaustively

searches each dimension of the model space and tries partitioning it while

fixing the others. When a partition results in a reduction of the loss function

(RMSE), it is stored, and the search continues. In a backwards (pruning)

step, it revisits iteratively the partitions and eliminates one at a time, if

the resulting configuration further reduces loss function. During this pro-

cess, the loss function is calculated as follows: first an OLS regression is

estimated, using in-sample data, of the actual values of the series on the

forecasts produced by models selected in each cluster, according to Equa-

tions 5. In this way, the α coefficients are obtained. Then the φ parameters,

according to Equations 4, are calculated and forecasts produced. When the

growing and pruning processes come to an end, a further optimisation of α

and φ parameters is performed through a non-linear optimisation routine

(fmincon1 in Matlab).

1The configuration was: x, the vector to be optimised, comprised αi,j . Constraints
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2.3.2. Structural combination based on genetic algorithms (GA)

A structural combination based on genetic algorithms (GA) is the sec-

ond approach proposed. It is a simpler form of combination (average) still

informed by the parameter space.

A series of reference points in the model parameter space is generated,

which are analogous to cluster centres. From each point, Pi, five models

are selected, as those having the smallest euclidean distance to it. The

forecasts from these models are averaged, thus producing forecasts for each

reference point. The final forecast combination for horizon h (ŷAvg,t+h)

is the average of the points forecasts produced in the previous step from

the reference points. Genetic algorithms are used to select the reference

points such that one-step ahead mean squared error (MSE) of the ŷAvg is

minimised. Individuals to evolve are then vectors, each of which represents

a set of centres in the model parameter space.

The algorithm is run over the same pool that is used in the cluster-based

structural combination, and was implemented in Matlab R© 2010 using ga

routine, with a maximum number of generations equal to 3000.

3. Analysis procedure

Table 1 summarises the main design factors of the study. For each

time series NDv × NLv = 6 pools are created, each one concentrating in a

method and a level for data variation. Each pool contains NMp = 50 models,

each fitted to a different series replica. In each application, the time series

replicas are divided into training and testing periods. The training period

is used to fit the models and the testing period to assess the out-of-sample

A · x ≤ b and Aeq · x = beq were left empty for unconstrained searches; lower and upper

bounds for estimates were left open. The maximum number of function evaluations

allowed was MaxFunEvals = 3000. The maximum number of iterations allowed was

MaxIter = 3000 and tolerance for the objective function is TolFun = 0.0001.
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performance.

For each pool, 3 CB and 3 GA combinations are fitted and an average

forecast calculated. Therefore, for each series, the number of forecast com-

binations is NDv ×NLv ×NC ×NSa +NDv ×NLv = 42. The combination

models are denoted as CB(M,Lv, NC) or GA(M,Lv, NC), where M is the

data variation method (noise addition or block swapping), Lv is the level of

variation and NC corresponds to how many options are considered in the

analysis for the maximum number of clusters: 2, 4 or 8, thus 3 options.

Table 1: Design factors

Factor Values

Ns: Number of time series 3

NDv: Number of data variation mechanisms 2

NLv: Number of levels of data variation 3

NC : Number of alternative maximum number of clusters 3

NSa: Number of structural approaches 2 (CB and GA)

NMp: Number of models in each pool 50

NMc: Maximum number of models in each cluster 5

NMp is equal to 50, in accordance with Bakker & Heskes (2003). Having

a maximum of 5 models selected per cluster and 2, 4 and 8 clusters allows

to use at least 20% of the total and at most 80% of the individual models

in the combinations, thus following the advice from previous studies that

considered a fraction of models in the pool to be included in the ensemble

(e.g. Zhou et al., 2002). This reasoning was applied to both the clustering-

based and the genetic-algorithm-based approaches.

Three levels of block swapping are used: 0.1I, 0.2I and 0.3I, where

I = In-sample length /S2 and S2 is the length of the longest cycle in the

series (for the peak and hourly electricity demand I = 20 and for the half-

hourly demand I = 37). For noise addition, levels ~σ1 = 0.1~σb, ~σ2 = 0.2~σb
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and ~σ3 = 0.3~σb were used, and ~σb is the standard deviation of the boot-

strapped original series. A normally distributed noise, ~N(0, ~σi), i = 1, 2, 3,

was generated and added to the series, thus implying three different levels

of uncertainty.

Performance of forecast combinations was assessed based on the orig-

inal series. Comparison of our proposals are made against the following

benchmarks: the seasonal näıve, a model in which the forecast for time

period t and lead time h is ŷt+h|t = yt+h−m, where m is the longest sea-

sonal cycle; the average of point forecasts of all models in each pool; the

base best model (denoted as Base Seasonal or Base Dd. Seasonal), which

is an instance of the base model fitted with the original series (without

noise addition or block swapping). The model selected has the lowest in

sample RMSE within 100 trials obtained using different random starting

points. For the single-seasonal time series the ets function from R forecast

package (Hyndman, 2018) was used to fit an exponential smoothing bench-

mark (which will be called ETS). For the double-seasonal time series the

functions dshw (an implementation of models proposed by Taylor, 2003)

and tbats (De Livera et al., 2011) from the same package were used to fit

double-seasonal exponential smoothing models. They are called Dshw and

Tbats, respectively. Finally, the average between the base model and the

best performing among ETS, Dshw and Tbats was calculated. It is denoted

as Avg(Ets, Base Seasonal) for the first study, and analogously for the other

two. Table 2 summarises the forecasting methods. The implementation col-

umn indicates the methods, equations or sources that were used.

Performance is assessed by using the Mean Squared Error MSE =

(1/n)
∑n

i (yi−ŷi)2, Symmetric Mean Absolute Percentage Error SMAPE =

(100/n)
∑n

i
|yi−ŷi|
|yi|+|ŷi| and Geometric Mean Relative Absolute ErrorGMRAE =

n

√∏n
i
|yi−ŷi|
|yi−ŷ′i|

, where n is the number of out-of-sample observations and ŷ′i

is a benchmark forecast (Base Seasonal or Base Db. Seasonal). As results
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Table 2: Forecasting methods

Applications Forecasting method Implementation

D, H, HH Cluster based with noise addition* Combination models in Section 2.3.1, (Equations 3, 4 and 5),

and block swapping** with Equation 1 (single-seasonal) or 2 (double-seasonal)

as base model.

D, H, HH Genetic algorithms based with noise addition* Combination models in Section 2.3.2, using Matlab R© 2010

and block swapping** ga routine, with Equation 1 (single-seasonal)

or 2 (double-seasonal) as base model.

D, H, HH Seasonal naive Forecast for period t and lead time h is ŷt+h|t = yt+h−m,

where m is the longest seasonal cycle.

H, HH Base double seasonal model Model in Equation 2.

H, HH Dshw The function dshw from R forecast package (Hyndman, 2018)

that implements double-seasonal models by Taylor (2003) was used.

H, HH Tbats The function tbats from R forecast package (Hyndman, 2018)

that implements double-seasonal models was used.

H, HH Average of Dshw and Base Db. Seasonal

D Base seasonal model Model in Equation 1.

D ETS (exponential smoothing benchmark) The function ets from R forecast package (Hyndman, 2018)

that implements exponential smoothing state space models was used.

D Average of ETS and Base seasonal.

D: Daily peak electricity demand, H: Hourly electricity demand, HH: Half-hourly electricity electricity demand.

* Structural combinations with three levels of noise addition and three levels of maximum number of clusters.

** Structural combinations with three levels of block swapping and three levels of maximum number of clusters.

for MSE and SMAPE are similar, we report only the later. To further as-

sess the difference between the proposed approaches and the base models,

a Wilcoxon test was perform to test the hypothesis |emodel| < |ebase seasonal|,

where emodel is the out-of-sample error of a given model.

3.1. Model Confidence Set

Given the number of competing combinations, the Model Confidence

Set, MCS, (Hansen et al., 2011) was estimated for each application. A

MCS is a set of models that is constructed so that it will contain the best

model with a given level of confidence 1 − α. We used α = 0.1 in an R

implementation by Catania (2014). We report the best models according to

MCS. It is noteworthy that due to memory constraints of the R routines,

the MCS was calculated with the full result set only in the first application.

For the second application, 30% of the error set could be used and for the

last application, 10%. The samples, however, were large, and all forecast
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horizons were included.

4. Applications

4.1. Forecasting daily peak electricity demand with structural combinations

of Holt-Winters Forecasts

Structural combinations of Holt-Winters models are illustrated using

data from Sunday 5 May 1996 to Saturday 30 November 1996 extracted

from (Taylor et al., 2006). The first 20 weeks (140 observations) were used

for training (fitting) and the remaining 10 weeks (70 observations) were

used for evaluating the accuracy of forecasts up to 7 days ahead. The time

series is depicted in Figure 2, where seasonality and time-varying volatility

can be observed.

Figure 2: Daily peak electricity demand in Rio de Janeiro from Sunday, 5 May 1996 to

Saturday, 30 November 1996.

4.1.1. Results

CB and GA combinations using both noise addition and block swapping

at all 3 levels, the average forecast for each method-level combination and

the benchmarks described in section 3 are considered. Figure 3 illustrates
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the performance of the best forecasting approaches and benchmarks. Fur-

ther detail is provided in Table 3: the test on differences with respect to

the base model; the rank within the Model Confidence Set, if a forecasting

approach was included in it; the overall SMAPE and GMRAE with ranks

and performance measurements for one horizon.

In general, improvements over the base best model, the average and the

ETS benchmark suggest that multiplicative Holt-Winters can be combined

with the proposed approach, and the combination is competitive against

established benchmarks. For brevity, GA combinations are not reported,

but perform relatively well and notably better when model diversity was

induced through block swapping. By contrast, CB combinations do bet-

ter with noise addition, but perform worse than the benchmarks in several

forecast horizons. However, the combination CB(Noise, 2, 4), with a middle

level of noise addition and a maximum of 4 clusters outperforms all bench-

marks: with respect to base model, improvement in SMAPE ranges from

4.41% to 6.74% and between 7.39% and 8.54% in MSE. Concerning the

forecast error distributions, forecast errors from all selected models pass the

Shapiro–Wilk test of normality in all horizons (at 5% significance level).

Table 3: Best performers (out of 46) for daily peak load forecasting

Model Diff. MCS SMAPE GMRAE SMAPE(GMRAE)

rank (rank) (rank) t+ 1

CB(Noise,2,4) 7 1 2.927% ( 1 ) 0.895 ( 1 ) 2.394% ( 0.975 )

CB(Swap,2,2) 7 3 3.031% ( 2 ) 0.903 ( 2 ) 2.503% ( 1.020 )

GA(Swap,1,2) 7 2 2.779% ( 15 ) 1.000 ( 14 ) 2.502% ( 1.051 )

Base Seasonal NA 3.105% ( 7 ) 1.000 ( 21 ) 2.520% ( 1.000 )

ETS 5 3.785% ( 45 ) 1.095 ( 41 ) 3.572% ( 1.570 )

Avg(ETS, Base Seasonal) 7 3.307% ( 37 ) 0.980 ( 11 ) 2.906% ( 1.272 )

Diff: number of horizons for which |emodel| < |ebase seasonal| cannot be rejected at 5% significance.
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Figure 3: Best forecasting performance for daily peak electricity demand.

4.2. Forecasting hourly electricity demand with structural combinations of

Double Seasonal Exponential Smoothing Forecasts

The time series of hourly electricity demand (Figure 4), which was used

by Taylor et al. (2006) to assess performance of various univariate fore-

casting methods is considered. The first 20 weeks of data (equivalent to

3360 hourly observations) were used for training (fitting), and the remain-

ing 10 weeks (equivalent to 1680 observations) were used for evaluating the

accuracy of forecasts up to 24 hours ahead. Both the Tbats and Dshw

benchmarks are considered.

4.2.1. Results

For this time series, structural combinations based on replicas of the

time series generated via noise addition were poor. Their performance was

on average at least 8% in SMAPE worse than the best base model. Hence,

this section concentrates on the results obtained with block swapping, as

illustrated in Figure 5, depicting SMAPE for all horizons.
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Figure 4: Hourly electricity demand in Rio de Janeiro for Sunday, 5 May 1996 to Saturday,

30 November 1996. source:Taylor et al. (2006)

Gains are very small with respect to the base model and the averages 2.

Both Dshw and Tbasts benchmarks are outperformed by the set of selected

CB and GA combinations and do not appear in the MCS (Table 4). When

the higher level of block swapping is considered, CB with 2 clusters and

GA with 4 outperform the simple average, and thus are alternatives to the

standard ensemble forecast.

Examining the forecast error distributions in each horizon, normality

was rejected by the Shapiro-Wilk test. Out-of-sample errors for all models

and benchmarks behave similarly, except those from Tbats. It was observed

that the distributions change their central location for horizons 2 and 3,

whereas for the remaining horizons, they are centred around zero. Thus,

two and three step-ahead forecasts seem to be biased, and this could impact

the performance of combinations.

2GA(Swap, 3, 8) reduces SMAPE by up to 0.34% compared to Avg(Swap, 3) and by

up to 2.79% compared to the base model.
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Figure 5: Best forecasting performance for hourly electricity demand.

Table 4: Best performers (out of 47) for hourly electricity demand.

Model Diff. MCS SMAPE GMRAE SMAPE(GMRAE)

rank (rank) (rank) t+ 1

CB(Swap,2,2) 24 3 2.725% ( 1 ) 0.991 ( 6 ) 1.178% ( 0.996 )

GA(Swap,3,4) 24 2 2.732% ( 2 ) 0.984 ( 1 ) 1.153% ( 0.983 )

GA(Swap,3,8) 24 1 2.732% ( 3 ) 0.984 ( 3 ) 1.151% ( 0.986 )

Base Db. Seasonal NA 2.796% ( 18 ) 1.000 ( 15 ) 1.160% ( 1.000 )

Dshw 0 3.514% ( 38 ) 1.338 ( 40 ) 2.726% ( 2.483 )

Tbats 0 4.698% ( 46 ) 1.679 ( 45 ) 2.368% ( 1.621 )

Avg(Dshw, Base Db. Seasonal) 0 3.065% ( 25 ) 1.138 ( 25 ) 1.771% ( 1.583 )

Diff: number of horizons for which |emodel| < |ebase seasonal| cannot be rejected at 5% significance.
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4.3. Forecasting half-hourly electricity demand with structural combinations

of Double Seasonal Exponential Smoothing Forecasts

Half-hourly observations of electricity demand in England and Wales

for the year 2016 (from Friday, 1 January 2016, to Saturday, 31 December

2016) were split into a training period consisting of 35 weeks and an evalu-

ation period of 17.3 weeks (121 days). Forecasts up to 24 hours ahead are

considered. 3 The time series comprising 17568 observations is depicted in

Figure 6.

Figure 6: Half-hourly electricity demand in England and Wales, 1 January 2016 to 31

December 2016. source: National Grid

3Adjustments were made on 27 March and 30 October, when the clock went forward

and backward. On the first date, when the clock went forward one hour, the resulting

missing data points were linearly interpolated. On the second date, data for the repeated

observations were averaged. Two additional missing points were linearly interpolated.

Observations corresponding to public holidays (according to the Bank of England) and

Christmas were also smoothed by replacing demand on each special day by the mean of

the demand in the corresponding periods of the two adjacent weeks.
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4.3.1. Results

When comparing the two approaches for diversity generation in ensem-

bles, there are benefits from using noise addition over block swapping, spe-

cially for longer forecasting horizons (see Figure 7). Table 5 summarises

results. The structural combinations outperformed both double seasonal

benchmarks and the averages: GA(Swap,1,2) reduces SMAPE by up to

49% with restpect to Dshw and by up to 14% with respect to Avg(Swap,

1).

Figure 7: Best forecasting performance for England and Wales electricity demand.

Considering the addition of noise, the GA(Noise, 1, 2), GA(Noise, 1, 4)

and GA(Noise, 3, 2) outperformed the other benchmarks in most horizons.

Given the middle level of noise, CB(Noise, 2, 4) and CB(Noise, 2, 8) per-

form well, but overall, GA combinations perform better. The block swap-

ping approach worked better with GA combinations for the first forecast

horizons, outperforming all benchmarks. They were consistently superior

to the base model as illustrated by the tests on differences in Table 5.

Forecast error distributions rejected normality as per the Shapiro–Wilk
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Table 5: Best performers (out of 47) for half-hourly electricity demand.

Model Diff. MCS SMAPE GMRAE SMAPE(GMRAE)

rank (rank) (rank) t+ 1

GA(Noise,1,4) 44 3.237% ( 1 ) 0.777 ( 2 ) 0.975% ( 1.828 )

GA(Swap,1,2) 48 1 3.402% ( 13 ) 0.783 ( 5 ) 0.484% ( 0.889 )

GA(Boot,3,4) 48 2 3.356% ( 8 ) 0.774 ( 1 ) 0.485% ( 0.892 )

Base Db. Seasonal NA 4.265% ( 45 ) 1.000 ( 44 ) 0.537% ( 1.000 )

Dshw 0 5.383% ( 47 ) 1.262 ( 46 ) 0.899% ( 1.662 )

Tbats 29 4.171% ( 44 ) 1.005 ( 45 ) 0.863% ( 1.627 )

Avg(Tbats, Base Db. Seasonal) 45 3.546% ( 25 ) 0.852 ( 24 ) 0.598% ( 1.128 )

Diff: number of horizons for which |emodel| < |ebase seasonal| cannot be rejected at 5% significance.

test. Some of the ensemble combinations forecast error distributions that

are better behaved than those of the best base model, thus suggesting that

combinations from the ensembles can provide more robust forecasts.

5. Summary and conclusion

Ensembles have been applied to neural networks and exponential smooth-

ing methods, thus exploring the general idea of creating diverse models un-

der different conditions. This approach was applied here to the Holt-Winters

and Multiplicative Holt-Winters-Taylor models. In contrast to neural net-

works, optimal parameters (structural descriptors) for these types of models

tend to be homogeneous. Therefore, diversity was promoted by adding noise

or swapping blocks of data to generate replicas of the time series. The latter

approach is akin to the bootstrap performed by Bergmeir et al. (2016), but

in this study the focus is on the time series rather than its components.

Three applications illustrated the performance of proposed combina-

tions. Comparisons were made against the average of point forecasts in the

ensembles, the base best model (building block in each ensemble) and other

suitable benchmarks. Results are encouraging, but also highlight the need

for further investigation, as several questions also emerged from the study.
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These relate to the choice of variation induction mechanisms, and how to

optimise the number of clusters and other factors in the procedures. We

also note that additional analysis with simulated data suggested that the

length of the seasonal cycles may influence performance and thus the choice

of structural combination.

For the single-seasonal daily time series series (peak electricity demand),

improvements over both the average and the best model in the pool were

observed, but the strategy of noise addition for model diversity worked bet-

ter than block swapping in producing competitive structural combinations.

Results suggest that CB combinations are better at exploiting model vari-

ations coming from noise addition in order to improve performance on this

series. GA combinations, on the other hand, seem to perform well under

both approaches. Additionally, CB combinations are volatile while GA are

not. These observations deserve future investigation, as different clustering

procedures and measures of memberships to clusters can also be considered.

In the case of the first double-seasonal time series (hourly electricity

demand in Rio de Janeiro), improvement over the average forecast in the

ensembles produced with noise addition was more common in CB combi-

nations than in GA. By contrast, for the second time series (half-hourly

electricity demand in England and Wales), improvement over the average

was easier for GA combinations than for CB under both noise addition and

block swapping. For some forecast horizons, 14% reduction in SMAPE were

observed for several horizons, with significant gains by both types of struc-

tural combinations, independently of how replicas of the original time series

were generated.

Overall, the results suggest that structural combinations can outper-

form standard ensemble forecasts, and underscore how robust exponential

smoothing models can be. Given the larger number of observations in the

last application, which led to better results, further investigation should

25



consider how sensitive are these combinations to the number of observa-

tions and cycles in the in-sample period. With the availability of larger

data sets and increasing computing power, the methodology proposed can

be also applied to different forecasting problems with seasonal data (e.g.

hourly road traffic, demand for public transportation, access to websites,

volumes in call centres). Finally, these structural combinations can be ex-

tended to include other types of models and support the development of

hybrid ensembles.

The results obtained can be viewed from the perspective of a learning

process, interpreted as a link between a problem space and a solution space

(Kasabov, 1996, p. 332). For different problems (data) there are different

mappings (forecasting algorithms) that lead to a solution. In this research

the fitting of a forecasting model was used instead of a learning algorithm

(as in neural networks), and variation was introduced into the problem by

altering the data. These variations led to different mappings. Subsequently,

such mappings were combined, structurally. When using cluster-based com-

binations (which showed volatility), the forecasting performance could un-

dergo favourable jumps when noise was added to the data and therefore

improve markedly over benchmarks. This could be interpreted as a jump

in the search of a problem-solution mapping. When data were diversified

through block swapping, the mappings (or fitted models) provided a more

stable performance, closer to the average and the base model. The first

situation is specially observable in CB combination, when applied to the

single-seasonal time series. The second situation is observed in various CB

and GA combinations in both hourly and half-hourly electricity demand

time series.

The selection of structural combinations, as proposed in this study, can

be made by using a rule of thumb: if significant forecast improvement by

a cluster based combination with respect to the base best model and other
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benchmarks is observed in the first horizons, then the cluster-based com-

bination is preferred. If insignificant improvement is obtained for the first

horizons, either the base best model, a well-performing benchmark or a GA

combination is preferred.

Future research may also consider state-space models, due to their greater

use of model structural information. Subsequent studies can also explore

the automation and comparison of alternative design decisions, such as the

maximum number of clusters and the number of models selected per cluster.
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