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Abstract

We establish a relationship between the robust counterpart of an uncertain
cone-convex vector problem and the optimistic counterpart of its uncertain
dual. Along the line marked by Beck and Ben-Tal (2009) in the scalar case, we
show that operating in the primal problem with a pessimistic view is equivalent
to operating with an optimistic approach in its dual.
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1 Introduction

We consider vector optimization problems where the objective and the constraint
depend on uncertain parameters. The robust approach (introduced in [4]) hedges
the decision maker against the worst cases that may occur as the uncertainties vary
within their domains and it is suitable to tackle the situation where no probability
distribution on uncertain parameters is available. In this paper we study the re-
lationship between the robust counterpart of the uncertain primal problem and its
uncertain dual problem. The relation involves the notion of optimistic counterpart
where, in contrast with the robust approach, the decision maker faces the indeter-
minacy by assuming that the occurrence of the uncertain parameters are the most
favorable ones. This is along the line marked by [2], where the authors show that, for
an uncertain scalar convex program, operating with a pessimistic view in the primal is
the same as operating with an optimistic view in the dual (�primal worst equals dual
best�). However, in the framework of uncertain vector optimization problems, the
values of the uncertain objective at each choice of the decision variable individuate
a set and the optimization of worst (and best) scenarios have an intrinsic set-valued
nature. Following a set optimization approach, we consider optimality with respect
to the upper quasiorder relation 2K among sets. Since the primal is a minimization
problem, this choice leads to a robust optimization approach, where only worst sce-
narios are considered. On the other hand, the use of the upper quasiorder relation
2K in the dual maximin problem, implies that only best scenarios are considered,
hence an optimistic approach is intrinsically adopted.

For our results to be valid we require the cone-convexity of the set-valued objec-
tive and constraint involved in the robust counterpart. Moreover, the analysis here
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considered is limited to those uncertain problems where, at each given value of the
decision variable, a single worst case exists that can be compared with all the other
scenarios. Despite this restriction, the result can be applied to a wide variety of
practical instances such as, for example, the case of interval-wise uncertainties, that
includes multiobjective linear programs with interval coe�cients.

The paper is organized as follows. In Section 3 we provide an extension to set
optimization of classical strong duality results for scalar programs (see [1], among
others). In Section 4 we de�ne the robust counterpart of an uncertain vector problem,
the optimistic counterpart of its uncertain dual and, in Section 5, we compare, if
possible, their solutions in the image set. In Section 6 we show that our results can
be applied for instance to those vector problems with interval-wise uncertainties, with
application to a multiobjective supplier selection model. Section 7 concludes.

2 Preliminary notions

Let Y be a normed linear space and let K ⊂ Y be a cone assumed closed, pointed
(K ∩ {−K} = {0}) convex and solid (that is intK 6= ∅ where intK denotes the
topological interior of K). Let Y ∗ be the topological dual space of Y and let K+ be
the dual cone de�ned as

K+ := {ϕ ∈ Y ∗ : ϕ(k) > 0, ∀ k ∈ K} (1)

In the present work, the following order structure induced on Y by the cone K is of
interest.

De�nition 2.1. Let y1, y2 ∈ Y . Then

y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K (2a)

y1 <K y2 ⇐⇒ y2 − y1 ∈ intK (2b)

Relations de�ned in 2.1 allow to de�ne minimal/maximal (resp. weakly mini-
mal/maximal) elements of a set w.r.t. the ordering cone.

De�nition 2.2. Let A ⊂ Y be a nonempty set and let K be a pointed, solid, closed
and convex ordering cone. The element y ∈ A is said to be

i) a minimal (resp. weakly minimal) element of A w.r.t. the ordering cone K if

A ∩ (y −K) = {y} (resp. A ∩ (y − intK) = ∅)

The set of minimal (resp. weakly minimal) elements of the set A w.r.t. K are
denoted by MinKA (resp. WMinKA);

ii) a maximal (resp. weakly maximal) element of A w.r.t. the ordering cone K if

A ∩ (y +K) = {y} (resp. A ∩ (y + intK) = ∅)

The set of maximal (resp. weakly maximal) elements of the set A w.r.t. K are
denoted by MaxKA (resp. WMaxKA).

Remark 2.3. The above de�nitions imply that y ∈ A is a minimal (resp. weakly
minimal) element of A if no element y′ ∈ A with y′ 6= y exists such that y′ ∈ y −K
(resp. y′ ∈ y − intK). Analogous considerations can be made for maximal (resp.
weakly maximal) elements of a set A.
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Let us denote by 2Y the power set of Y , namely the collection of all nonempty
subsets of Y . In the present work, the following relations induced onto 2Y by the
ordering cone K are of interest. We choose the so called upper type quasiorder
relation (see [16] and [17]), since it is the most suitable to be applied to robust
optimization.

De�nition 2.4. Let A,B ∈ 2Y . Then

A 2K B ⇐⇒ A ⊆ B −K (3a)

A ≺K B ⇐⇒ A ⊆ B − intK (3b)

De�nition 2.5. Let A,B ∈ 2Y . The equivalence relation between A and B w.r.t.
the order (3a) is de�ned as follows (see [17]):

A ∼K B ⇐⇒ A 2K B and B 2K A (4)

Equivalence classes w.r.t. the order 2K are denoted by [ · ]K , meaning that if
B ∈ [A]K then A 2K B and B 2K A.

For the proof of the following lemma see [10].

Lemma 2.6. Let A,B ∈ A. If A ≺K B and B ≺K A then A ∼K B

The following set-relation will also be considered.

De�nition 2.7. Let A,B ∈ A. Then

A ⊀K B ⇐⇒ A * B − intK

De�nition 2.8. Let A,B ∈ 2Y . A and B are said to be non comparable w.r.t. the
order ≺K if A ⊀K B and B ⊀K A and not A ∼K B.

The following notions of minimality of elements of a collection of sets A ⊂ 2Y

with respect to K are based on the set-relations de�ned in 2.4.

De�nition 2.9. Let A ⊂ 2Y be a collection of sets. A nonempty set A ∈ A is said:

i) a 2K −minimal (resp. ≺K −minimal) set of A if

B ∈ A and B 2K A (resp. B ≺K A) =⇒ A 2K B (resp. A ≺K B) (5)

The family of 2K −minimal (resp. ≺K −minimal) sets of A will be denoted
as 2K −minA (resp. ≺K −minA).

ii) a 2K −maximal (resp. ≺K −maximal) set of A if

B ∈ A and A 2K B (resp. A ≺K B) =⇒ B 2K A (resp. B ≺K A) (6)

The family of 2K −maximal (resp. ≺K −maximal) sets of A will be denoted
as 2K −maxA (resp. ≺K −maxA).

From now on, let X, Y and Z be real normed linear spaces. The image spaces
Y and Z are endowed with an order structure induced respectively by the closed,
convex, pointed and solid cones K and C respectively.
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De�nition 2.10. A set-valued map F : X ⇒ Y is said to be 2K-convex on the
convex set A ⊆ X when

F (αx1 + (1− α)x2) 2K αF (x1) + (1− α)F (x2) (7)

for every α ∈ [0, 1] and for every x1, x2 ∈ A.

De�nition 2.11. The upper epigraph of F (x) is the set {2K −epiF} ⊆ X × Y
de�ned as {2K −epiF} := {(x, y) ∈ X × Y : F (x) 2K {y}}

Proposition 2.12. If the set-valued map F : X ⇒ Y is 2K-convex on X, then
{2K −epiF} is a convex set.

Proof. Let (x1, y1) and (x2, y2) be elements of {2K −epiF}. Hence

F (x1) ⊆ y1 −K and F (x2) ⊆ y2 −K

It follows that, ∀α ∈ [0, 1], it holds:

αF (x1) + (1− α)F (x2) ⊆ αy1 + (1− α)y2 −K

therefore

F (αx1 + (1− α)x2) ⊆ αF (x1) + (1− α)F (x2)−K ⊆ αy1 + (1− α)y2 −K.

thus showing that α(x1, y1) + (1− α)(x2, y2) ∈ {2K −epiF}.

De�nition 2.13. Let A ⊂ Y be a set. The element µ (A) ∈ Y is said to be a nadir
point of A if µ (A) ∈ A and A 2K {µ (A)}.

The following properties are easily proved.

Lemma 2.14. Let A,B ⊂ Y be nonempty sets and assume the existence of their
nadir points µ(A) and µ(B), respectively.

i) A−K = µ(A)−K;

ii) A− intK = µ(A)− intK;

iii) A 2K B ⇐⇒ µ(A) ≤K µ(B);

iv) A ≺K B ⇐⇒ µ(A) <K µ(B);

v) µ(A+B) exists and µ(A+B) = µ(A) + µ(B).

3 Some duality results in set optimization

Let Y and Z be normed linear spaces and let K ⊂ Y and C ⊂ Z be closed, pointed
convex and solid ordering cones. Let us consider the set-valued maps F : X ⇒ Y
and G : X ⇒ Z and the following set-valued optimization problem

≺K −min F (x) subject to G(x) 2C {0} (P )

De�nition 3.1. An element x ∈ X is said to be feasible for (P ) if G(x) 2C {0}.

De�nition 3.2. A feasible element x0 ∈ X for the problem (P ) is said to be a
solution of (P ) if the existence of x′ ∈ X such thatG(x′) 2C {0} and F (x′) ≺K F (x0)
implies F (x0) ≺K F (x′).
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Following the approach introduced in [16] (and considered in [10] and [9]), we
formulate the set-valued dual problem of the primal (P ) by adapting the involved
de�nitions, originally referred to a di�erent order relation among sets, to the upper
quasiorder relation 2K . Let L+(Z, Y ) be the set of monotone continuous linear
operators from Z to Y , i.e. Λ ∈ L+(Z, Y ) when Λ(C) ⊆ K. The Lagrangian
function associated to (P ) is the set-valued map L : X × L+(Z, Y )⇒ Y de�ned by

L(x,Λ) = F (x) + (Λ ◦G) (x) (8)

where (Λ ◦G)(x) =
⋃

z∈G(x) Λ(z). Let

Φ(Λ) = ≺K −min{L(x,Λ) : x ∈ X}

At any Λ, the objective Φ(Λ) is a collection of sets that includes all L(x,Λ) that are
minimal w.r.t. the quasiorder relation 2K as the variable x varies in X. In terms of
the objective Φ(Λ), the dual problem of (P ) is formulated as

≺K −MAX Φ(Λ) s.t. Λ ∈ L+(Z, Y ) (D)

Due to the fact that Φ is a collection of sets at any given Λ, we need to de�ne a
solution concept for (D).

De�nition 3.3. The pair (x,Λ) is feasible for (D) if L(x,Λ) ∈ Φ(Λ) and Λ ∈
L+(Z, Y ).

De�nition 3.4. An element Λ1 ∈ L+(Z, Y ) is said to be a solution of (D) if there
exists an element x1 ∈ X such that L(x1,Λ1) ∈ Φ(Λ1) and

L(x1,Λ1) ⊀K L(x′,Λ′) (9)

for all feasible pairs (x′,Λ′) of (D).

We provide a weak duality Theorem by adapting the results originally obtained
in [16] for a di�erent quasiorder relation among sets (see also [10] and [9]) to the
upper quasiorder structure 2K considered here.

Theorem 3.5 (Weak Duality). Let x0 be a feasible element of (P ) and let (x1,Λ1)
be a feasible pair of (D). If F (x0) ≺K L(x1,Λ1), then F (x0) ∼K L(x1,Λ1).

Proof. Let F (x0) ≺K L(x1,Λ1). Since (Λ1 ◦G)(x0) ⊆ −K, being G(x0) 2C {0} and
Λ1 ∈ L+(Z, Y ), it holds:

L(x0,Λ1) 2K F (x0) (10)

hence
L(x0,Λ1) ≺K L(x1,Λ1) (11)

In addition, since L(x1,Λ1) ∈ Φ(Λ1), it is also

L(x1,Λ1) ≺K L(x0,Λ1) (12)

Relations (12) and (10) lead to

L(x1,Λ1) ≺K F (x0) (13)

and, from Lemma 2.6, the thesis follows.

We will consider the following assumption.
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Assumption 3.6. Let F : X ⇒ Y and G : X ⇒ Z. The nadir points µ(F (x)) and
µ(G(x)) of F (x) and G(x) respectively exist for all x ∈ X.

Remark 3.7. If we consider the special case of a vector optimization problem, where
the image sets at any value of the decision variable shrinks to a singleton, Assumption
3.6 holds.

Under Assumption 3.6, the weak duality result of Theorem 3.5 can be reformu-
lated as follows.

Corollary 3.8. Let x0 be a feasible element of (P ) and let (x1,Λ1) be a feasible pair
of (D). Then, under Assumption 3.6, it holds

F (x0) ⊀K L(x1,Λ1)

In the sequel of this section we prove a strong duality result. Since, in set op-
timization, a partial quasiorder is used to compare images of objective maps, the
duality gap does not allow us to obtain an equality between optimal values of the
primal and of the dual problems; we can only establish either their equivalence or
their non comparability.

In order to provide a strong duality result, the following Lemmas will be useful.

Lemma 3.9. Let F : X ⇒ Y and G : X ⇒ Z be 2K-convex and 2C-convex maps
respectively and let

Q(x) = {y ∈ Y : F (x) 2K {y}} × {z ∈ Z : G(x) 2C {z}} (14)

Then the set
Q(X) =

⋃
x∈X

Q(x) (15)

is convex.

Proof. Since F is 2K-convex the set {2K −epiF} is convex (see Proposition 2.12),
for all (x1, y1), (x2, y2) ∈ {2K −epiF} and for all α ∈ [0, 1]

α (x1, y1) + (1− α) (x2, y2) = (αx1 + (1− α)x2, αy1 + (1− α) y2) ∈ {2 −epiF}

that is
F (αx1 + (1− α)x2) 2K {αy1 + (1− α) y2}

The same argument shows that the set {2C −epiG} is also convex since, by hypothe-
ses, G is 2C-convex. Consider now (y1, z1) ∈ Q (x1), (y2, z2) ∈ Q (x2) and α ∈ [0, 1].
Since (x1, y1) , (x2, y2) ∈ {2K −epiF} and (x1, z1) , (x2, z2) ∈ {2C −epiG} and
they are convex, we have

α (y1, z1) + (1− α) (y2, z2) = (αy1 + (1− α) y2, αz1 + (1− α) z2) ∈ Q (αx1 + (1− α)x2)

Hence Q (X) is convex.

Lemma 3.10. Let x0 be a solution of (P ) and let

A(y) = (y −K)× (−C) (16)

Under Assumption 3.6, it holds

Q(X)
⋂

intA(y0) = ∅ (17)

where y0 = µ(F (x0)).
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Proof. By contradiction, let (y1, z1) ∈ Q(x1) be such that y1 ∈ y0 − intK and z1 ∈
−intC. It holds F (x1) ⊆ y1−K ⊆ y0− intK, hence F (x1) ≺K F (x0) and G(x1) ≺C

{0}. Since x0 is a solution of (P ), if G(x1) 2C {0}, then F (x1) ∼K F (x0). Therefore

y0 −K = F (x0)−K = F (x1)−K (18)

This, together with F (x1) 2K {y1}, leads to y0 ∈ F (x1) − K ⊆ y1 − K. Hence
y1 − y0 ∈ K ∩ −intK, a contradiction, since K is pointed.

For the convenience of the reader, we provide the separation result given in the
�rst part of Theorem 6.2.5 in [15].

Theorem 3.11. Let W be a separated locally convex space and let A,B ⊂ W be
nonempty convex sets. Then, if intA 6= ∅ and B ∪ intA = ∅, or more generally, if
0 ∈ int(A−B) 6= ∅, then there exists w∗ ∈W ∗\{0} such that supw∗(A) ≤ inf w∗(B).

In the sequel, we say that the Slater Constraint Quali�cation (SCQ) holds when
an element x̂ ∈ X exists such that G(x̂) ≺C {0}.

Theorem 3.12 (Strong Duality). Let F : X ⇒ Y and G : X ⇒ Z be 2K-convex
and 2C-convex maps respectively on the convex set X and the SCQ holds. Under
Assumption 3.6, if x0 is a solution of (P ) and Λ1 is a solution of (D), then there
exists an element x1 ∈ X such that (x1,Λ1) is a feasible pair of (D), for which either
F (x0) ∼K L(x1,Λ1) or they are not comparable w.r.t. ≺K .

Proof. Let y0 = µ(F (x0)). From the separation result provided in Theorem 6.2.5 in
[15] and from Lemmas 3.9 and 3.10, there exists a pair (ϕ,ψ) ∈ Y ∗ × Z∗\{(0, 0)}
such that ∀(y, z) ∈ Q(X) and ∀(k, c) ∈ (K,C) it holds

ϕ(y) + ψ(z) ≥ ϕ(y0 − k) + ψ(−c) (19)

Step 1. Let us show that that ϕ ∈ K+ and ψ ∈ C+. From inequality (19), by
letting (y, z) = (y0, 0) ∈ Q(X) and c = 0, it holds ϕ(−k) ≤ 0, ∀k ∈ K which implies
ϕ ∈ K+. By letting (y, z) = (y0, 0) ∈ Q(X) and k = 0, inequality (19) leads to
ψ(−c) ≤ 0, ∀c ∈ C which implies ψ ∈ C+.

Step 2. We now claim that ϕ 6= 0. Indeed, by contradiction, suppose ϕ = 0. If
c = 0 is selected, then inequality (19) leads to ψ(z) ≥ 0, which holds for all z ∈ Z
such that there exists x ∈ X with G(x) 2C {z}. However, by SCQ, there exists an
element x̂ ∈ X such that G(x̂) ⊆ −intC. Let ẑ = µ(G(x̂)), since ẑ ∈ G(x̂) then
ẑ ∈ −intC. Picking such a ẑ, the previous inequality reads as ψ(ẑ) ≥ 0, which
contradicts ψ ∈ C+ because of ψ 6= 0, which follows from (ϕ,ψ) 6= (0, 0) and ϕ = 0.

Step 3. Let z0 = µ(G(x0)). We claim that

ψ(z0) = 0 (20)

Indeed, by letting (y, z) = (y0, z0) ∈ Q(X), k = 0 and c = 0, inequality (19) leads
to ψ(z0) ≥ 0. Since x0 is a solution of (P ) then it is G(x0) ⊆ −C, implying z0 =
µ(G(x0)) ∈ −C. Relation (20) follows from ψ ∈ C+.

Step 4. Let the linear operator Λ0 ∈ L+(Z, Y ) be de�ned as

Λ0(z) = k0ψ(z) (21)

where k0 ∈ intK. We show that

µ(L(x0,Λ0)) = µ(F (x0)) = y0 (22)
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Indeed, with no loss of generality, assume that ϕ(k0) = 1. Then, from Lemma 2.14,
point v), it holds that µ(L(x0,Λ0)) = µ(F (x0)) + Λ0(µ(G(x0))) = y0 + Λ0(z0) where
z0 = µ(G(x0)). Therefore, from relations (20) and (21), equality (22) follows.

Step 5. Let us show that (x0,Λ0) is a feasible pair for (D), that is

L(x0,Λ0) ∈ Φ(Λ0) (23)

where Φ(Λ0) = ≺K −min{L(x,Λ0) : x ∈ X}. Indeed, by contradiction, suppose that
there exists x1 ∈ X such that

F (x1) + (Λ0 ◦G) (x1) ≺K F (x0) + (Λ0 ◦G) (x0). (24)

Relation (24) and (22) imply that

F (x1) + (Λ0 ◦G) (x1) ⊆ F (x0)− intK = y0 − intK, (25)

i.e. ∀y1 ∈ F (x1) and ∀z1 ∈ G(x1) there exists k1 ∈ intK such that

y1 + k0ψ(z1) = y0 − k1 (26)

Hence, applying ϕ to (26), we get

ϕ(y1) + ψ(z1) = ϕ(y0)− ϕ(k1) < ϕ(y0) (27)

By choosing (y1, z1) = (µ (F (x1)) , µ (G(x1))) ∈ Q(X), relation (27) contradicts the
separation result (19) if the pair (k, c) = (0, 0) is selected. It follows L(x0,Λ0) ∈
Φ(Λ0), thus (x0,Λ0) is a feasible pair of (D).

Step 6. Finally, let us show that for every solution Λ1 of (D) there exists x1 ∈ X
such that (x1,Λ1) is a feasible pair for (D) and L(x1,Λ1) ⊀K F (x0). Suppose, by
contradiction, that for all x1 ∈ X such that the pairs (x1,Λ1) are feasible for (D), it
holds

L(x1,Λ1) ≺K F (x0) (28)

According to (22) and Lemma 2.14 point ii), we can reformulate relation (28) as

L(x1,Λ1) ⊆ F (x0)− intK = y0 − intK = L(x0,Λ0)− intK, (29)

which contradicts the fact that Λ1 is a solution of (D).
Step 7. From relation L(x1,Λ1) ⊀K F (x0), together with Corollary 3.8, ei-

ther F (x0) ∼K L(x1,Λ1) or they are not comparable w.r.t. the order ≺K and the
statement follows.

Corollary 3.13. Under assumptions of Theorem 3.12, for any solution x0 of (P )
there exists a solution Λ0 of (D) such that

F (x0) ∼K L(x0,Λ0)

Proof. Let x0 be a solution of (P ) and let Λ0 be as in the proof of Theorem 3.12.
From equation (22) and Lemma 2.14 point iii) it holds

F (x0) ∼K L(x0,Λ0) (30)

In the proof of Theorem 3.12, it has already been shown that the pair (x0,Λ0) is
feasible for (D). Moreover, by Corollary 3.8 and relation (30), it follows that Λ0 is a
solution of (D).
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Remark 3.14. Within the conduction of the proof of Theorem 3.12, we follow an
approach used in [9] (see also [10]), where the authors exploit separation results to
prove saddle-point theorems.

Even if our approach is similar, the fact that we consider a set minimization prob-
lem w.r.t. the upper order relation gives to our primal problem a peculiar structure.
As a consequence, the sets that are separated in our theorem and the thesis we prove
are di�erent from those appearing in the cited works (see Theorems 3.5 and 4.2 in
[9]). Strong duality, as formulated in Theorem 3.12, will be used in the sequel to state
a result in the line of �dual best equals primal worst� (see [2]) within the context of
uncertain vector programs.

We note further that Theorem 3.12 cannot be obtained as a direct adaptation
of Theorem 3.5 in [9], named �strong duality� as well, with a change in the order
relation among sets. In particular, we restrict our analysis to cone-convex objectives
and constraints and formulate our strong duality result using the upper order relation
among sets to compare, if possible, the images of the objective map F and of the
Lagrangian map L, of the dual problem.

Our formulation can be considered as a direct extension to the set optimization
problem (P ) of the Lagrangian dual considered in [19]. We recall that in [19], even
in the spacial case of a vector optimization primal, the set-valued dual is implicitly
solved by the so called �vector criterion� introduced in [5].

Finally, we remark that Theorem 3.12 reduces, in the scalar case, to the classical
strong Lagrangian duality theorem (see [1], among others), thus providing an explicit
generalization of those results to set-valued problems under Assumption 3.6. Hence,
we denote Theorem 3.12 as �strong duality�.

Remark 3.15. We note that, under Assumption 3.6, we can associate to the set-
valued primal problem (P ) an equivalent vector optimization problem

WMinK µ(F (x)) s.t. µ(G(x)) ≤C 0 (p)

Indeed, by Lemma 2.14, point iv), an element x0 ∈ X is a solution of (P ) if and only
if it is a solution of (p). Moreover, the 2K-convexity of F and the 2C-convexity
of G imply that (p) is a convex program. However, since the dual problem of a
vector valued primal has an intrinsic set-valued nature (see e.g. [19], [14], where
the solution of the set-valued dual problem is considered according to the so called
vector criterion introduced by [5]), we choose a set optimization formulation for the
primal that allows us to state the general weak duality result in Theorem 3.5 and to
maintain a uniform set-valued treatment in Theorem 3.12.

4 Robust vector optimization: pessimistic primal and opti-

mistic dual

Robust optimization is one of the basic methodologies to face optimization problems
which depend on uncertain parameters. More precisely, robust optimization deals
with the cases in which information on the uncertainties are limited to the knowledge
of the sets where they range (see [4]). We aim at applying such a methodology to
uncertain convex vector programs where both the objective as well as the constraint
depend on uncertain parameters to obtain a result in the sense of �primal worst
equals dual best�, provided by [2] for the scalar case. To this purpose we extend
the concept of minmax robustness, introduced by [21] and widely developed in [3]
for scalar cases, to vector uncertain optimization problems as in [11] (see also [6]
and [18] for the special case in which Y = Rm ordered by the cone K = Rm

+ and
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Z = Rk ordered by the cone C = Rk
+). For a recent survey on robust multiobjective

optimization, see also [22] and [12].
Let us consider the family of parametric vector optimization problems:

WMinK
x

f(x, v) subject to g(x, u) ≤C 0 (U − P )

The robust approach hedges against worst cases and only the values of the objective
in the worst possible realizations of parameters are of interest. In order to formulate
the robust counterpart of (U − P ) as a deterministic set-valued program, let us
consider the set of objective values at the decision variable x:

F (x) := {f(x, v) : v ∈ V } ⊆ Y (31)

Before proceeding, it should be noted that also the compliance with the con-
straints is conditioned upon the parameters' realizations. In order to introduce the
concept of robust feasible elements we refer to [4], where the authors note that for
real-world optimization problems the constraints must remain feasible for all the re-
alizations of the data. Then, robust feasible elements are those elements x ∈ X for
which the condition g(x, u) ≤C 0 is satis�ed for all u ∈ U , worst cases included. In
this view, consider the set of constraint values at x

G(x) := {g(x, u) : u ∈ U} ⊆ Z (32)

The correspondence (32) de�nes the set-valued map G : X ⇒ Z that is used to
express the feasible region of the robust counterpart of (U − P ). Indeed, an element
x ∈ X is robust feasible provided that G(x) ⊆ −C or, equivalently, G(x) 2C {0}.

The following set-valued optimization problem can be interpreted as the robust
counterpart of the uncertain problems (U − P ) since it takes into account the worst
case scenarios:

≺K −min F (x) subject to G(x) 2C {0} (RC − P )

Remark 4.1. Solutions of (RC − P ) can be considered as robust weakly e�cient
solutions, de�ned in [6], in presence of a parametric constraint, for the special case
in which Y = Rm ordered by the cone K = Rm

+ and Z = Rk ordered by the cone
C = Rk

+.

Similarly to what was done within the formulation of the robust counterpart of
the uncertain primal problems (U−P ), we aim at associating to their uncertain dual
problems (U −D) an optimistic counterpart, consisting in a deterministic set-valued
program where the parameters' realizations are assumed to be the most favorable
ones. The goal is to establish a relationship among the image sets of the solutions of
the robust primal and of the set of solutions of optimistic dual. Let Λ ∈ L+(Z, Y ) be
a monotone linear operator from Z to Y and let us consider the uncertain Lagrangian
function associated to problem (U − P ):

l(x,Λ, v, u) = f(x, v) + Λ(g(x, u)) (33)

In terms of the uncertain Lagrangian, the family of parametric set-valued dual
problems (U −D) can be formulated as an uncertain set-valued maximization with
respect to Λ ∈ L(Z, Y ) of the following parametric objective

WMinK{l(x,Λ, v, u) : x ∈ X} (34)
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We remark that, for a given pair (v, u), (34) is a vector minimization problem where
the optimal values are, in general, sets and not singletons; hence the maxmin problem
(U−D) is intrinsically set-valued. We de�ne the solution concept of (U−D), adapting
to our set optimization setting the approach considered in [19] with reference to the
so called �vector criterion�, introduced in [5]: given a pair (v, u), Λ1 solves (U −D)
if there exists x1 ∈ X such that l(x1,Λ1, v, u) ∈ WminK{l(x,Λ1, v, u), x ∈ X} and,
for all pairs (x′,Λ′) such that l(x′,Λ′, v, u) ∈WminK{l(x,Λ′, v, u) : x ∈ X} it holds

l(x1,Λ1, v, u) ≮K l(x′,Λ′, v, u)

Now, we de�ne a notion of optimistic counterpart of (U − D) by means of the
quasiorder relation 2K that allows us to consider only best scenarios in the bilevel
parametric dual problem (U − D). To this purpose, let us consider the set of La-
grangian values at (x,Λ):

L(x,Λ) = {l(x,Λ, v, u) : (v, u) ∈ V × U} (35)

We say that Λ1 ∈ L+(Z, Y ) is an optimistic solution of (U−D) if there exists x1 ∈ X
such that

L(x1,Λ1) ∈ {≺K −min{L(x,Λ1), x ∈ X}}
and, for all pairs (x′,Λ′) such that

L(x′,Λ′) ∈ {≺K −min{L(x,Λ′) : x ∈ X}}
it holds

L(x1,Λ1) ⊀K L(x′,Λ′)

Hence, by introducing the collections of sets

Φ(Λ) = ≺K −min{L(x,Λ) : x ∈ X}, for all Λ ∈ L+(Z, Y ) (36)

we reformulate the optimistic counterpart (OC −D) of the parametric dual (U −D)
as

≺K −MAX Φ(Λ) subject to Λ ∈ L+(Z, Y ) (OC −D)

where the �≺K −MAX� operator is de�ned in Section 3.

Remark 4.2. The interpretation of Λ1 as an optimistic solution of the uncertain
dual problem (U −D) is more explicit under the special case in which Assumption
3.6 holds. Indeed, in this event, at each (x,Λ) ∈ X ×L+(Z, Y ) the nadir µ(L(x,Λ))
represents the best scenario at (x,Λ), since

µ(L(x,Λ)) = MaxK{l(x,Λ, v, u) : (v, u) ∈ V × U}
Then, according with the previous de�nition of optimistic solution, it follows that Λ1

solves (OC −D) if there exists x1 ∈ X such that

µ(L(x1,Λ1) ∈WminK{µ(L(x,Λ1)) : x ∈ X}
and, for all pairs (x′,Λ′) such that

µ(L(x′,Λ′)) ∈WminK{µ(L(x,Λ′)) : x ∈ X}
it holds

µ(L(x1,Λ1)) ≮K µ(L(x′,Λ′))

Hence, under Assumption 3.6, we can reformulate the duality result as a maxmin
problem on best scenarios.

Remark 4.3. We remark that problem (OC−D) does not reduce, in the scalar case,
to the optimistic counterpart (OD-P) considered in [2], but only to the so called dual
robust problem (DR-P) without any additional concavity assumptions.
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5 Primal worst and dual best in vector optimization

In this section we aim at highlighting the relationship among the image solutions of
the robust counterpart of an uncertain vector problem and the image solutions of the
optimistic counterpart of the related uncertain dual. This is along the line marked by
[2] where the authors show that, for a scalar uncertain convex program, optimizing
under the worst case scenario in the primal is the same as optimizing under the best
case scenario in the dual (�primal worst equals dual best�). We note that, within
the present context, the robust counterpart and the optimistic dual have an intrinsic
set-valued nature. Following a set optimization approach, we compare sets under a
partial quasiorder. Hence, we may �nd pairs of non comparable sets and nontrivial
equivalence classes.

Relations between the image sets of the robust counterpart and the image sets of
the optimistic dual are obtained through the weak duality (see Theorem 3.5), which
leads to the following result.

Theorem 5.1. Let x0 be a feasible element of (RC − P ) and (x1,Λ1) be a feasible
pair of (OC −D). If F (x0) ≺K L(x1,Λ1), then F (x0) ∼K L(x1,Λ1)

Proof. By noting that the optimistic counterpart (OC − D) is the set-valued dual
of the robust counterpart (RC − P ), as de�ned in Section 3, the thesis follows from
Theorem 3.5.

Further characterizations of relations between the image sets of the robust coun-
terpart and the image sets of the optimistic dual are obtained through the strong
duality result (see Theorem 3.12), which is proven for set-valued programs where
both the image sets of the objective and of the constraint contain their nadir points
for any value of the decision variable (see Assumption 3.6). With reference to the
uncertain problems (U − P ), we note that Assumption 3.6 is equivalently stated as
follows.

Assumption 5.2. A pair of uncertainties (v̄(x), ū(x)) ∈ V × U at any given value
x of the decision variable such that

f(x, v) ≤K f(x, v̄(x)) and g(x, u) ≤C g(x, ū(x)) for any (v, u) ∈ V × U (37)

exists.

Relations (37) imply f(x, v̄(x)) = µ(F (x)) and g(x, ū(x)) = µ(G(x)) and the pair
(v̄(x), ū(x)) represents the unique worst case scenario at x. Moreover, we will see in
Section 6 that such an assumption, implicitly considered e.g. in [8], is not unrealistic
in many applications.

Remark 5.3. The assumption that the worst case scenario at x, corresponding to
the nadir point µ(F (x) = f(x, v(x)), can be achieved is not realistic in many applica-
tions. This may occur when the uncertainty on the objective vector-valued function
cannot be described componentwise, for instance because there is negative correla-
tion among uncertainties on distinct components of the objective function. If one
considers a typical portfolio selection model where uncertainties on expected returns
and volatility are deeply correlated, the assumption that worst case scenarios are
achieved is usually not satis�ed. For instance, in the robust multiobjective portfo-
lio optimization model introduced in [7], it can be clearly seen (in Fig.2, p. 431)
that nadir points of the uncertainty sets are not achieved, hence the robusti�cation
procedure proposed there may be unduly restrictive.
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Theorem 5.4. Consider the vector problem (U−P ) under Assumption 5.2. Assume
that the decision space X is convex, the set-valued maps F (x) = {f(x, v) : v ∈ V }
and G(x) = {g(x, u) : u ∈ U} are respectively 2K-convex and 2C-convex on X and
there exists x̂ such that g(x̂, u) <C 0 for all u ∈ U (SCQ). Then, if x0 solves (RC−P )
and Λ1 solves (OC − D), there exists an element x1 such that the pair (x1,Λ1) is
feasible for (OC −D) and either

F (x0) ∼K L(x1,Λ1) (38)

or F (x0) and L(x1,Λ1) are not comparable w.r.t. ≺K .

Proof. Relation (38) follows from the strong duality Theorem 3.12.

The following formulation follows from Corollary 3.13.

Corollary 5.5. Under all the assumptions of Theorem 5.4, if x0 solves (RC − P )
there exists Λ0 ∈ L+(Z, Y ) such that (x0,Λ0) is feasible for (D), Λ0 solves (OC−D)
and

F (x0) ∼K L(x0,Λ0) (39)

Relations (38) and (39) imply that operating under the worst possible data in
the primal is neither better nor worse than operating under the best possible data
in the dual. Then the solutions of the two set optimization problems (RC − P )
and (OC − D) correspond to equivalent or not comparable image sets w.r.t. ≺K .
Moreover, corollary 5.5, ensures that equivalence can be reached by choosing the
solution of the optimistic dual in the form (21).

Remark 5.6. Under Assumption 5.2, the existence of a worst case scenario at each
decision variable allows us to formulate the robust counterpart (RC −P ) as a vector
valued problem (as in [8], for the special case considered there)

WMinK µ(F (x)) s.t. µ(G(x)) ≤C 0 (rc− p)

However we maintain a homogeneous set-valued approach consistent with Theorem
5.1, regardless Assumption 5.2. More generally, we conduct the treatment of the
robust counterpart coherently with the existing literature (see e.g. [6], [11]). We
remark also that when worst case scenarios cannot be achieved, notions such as
objective-wise worst case considered in [6] and introduced in [18] may lead to a
robust solution concept that does not necessarily correspond to the one considered
here. Hence, without Assumption 5.2, the vector optimization formulation (rc − p)
is not coherent with our approach. Finally, we observe that problem (OC −D) has
an intrinsic set-valued nature (see to this purpose Remark 3.15).

We highlight that the convexity assumptions in our results are di�erent from the
ones considered in [2]. The following lemma establishes a su�cient condition for the
map F (x) = {f(x, v) : v ∈ V } to be 2K-convex on X in terms of the convexity
properties of the vector function f .

Lemma 5.7. Let X be a convex set and let the vector function f : X × V −→ Y
be convex on X. Then the set-valued map F : X ⇒ Y de�ned at any x ∈ X as
F (x) = {f(x, v) : v ∈ V } is 2K-convex.

Proof. Because of the convexity of f w.r.t. its �rst variable, it results that

f(αx1 + (1− α)x2, v) ∈ αf(x1, v) + (1− α)f(x1, v)−K (40a)
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The previous relation holds true for any v ∈ V , so one can consider the union over
the set V , which leads to

F (αx1 + (1− α)x2) ⊆ αF (x1) + (1− α)F (x1)−K (41a)

Then, according to De�nition (2.10), F is 2K-convex.

Hence the convexity properties of (RC−P ) can be inherited from those of (U−P ).
Indeed, if the objective f and the constraint g of an uncertain vector problem are
convex w.r.t. the decision variable x, then the objective F and the constraint G of
the robust counterpart are 2K-convex and 2C-convex respectively. Conversely, if F
and G are 2K-convex and 2C-convex respectively, the objective and the constraint
of the uncertain problems need not to be convex w.r.t. the decision variable. This is
shown in the following example.

Example 5.8. Consider the uncertain problem

WminR+ − vx2 subject to − x ≤R+ 0 (U − P (Ex. 5.8))

where x ∈ R, v ∈ [0, 1] and R+ = {x ∈ R : 0 ≤ x} is the ordering cone. Note
that the objective f(x, v) = −vx2 is not convex w.r.t. x but the set-valued map
F (x) = {−vx2 : v ∈ [0, 1]} is 2R+

-convex.
Note that also G is 2R+

-convex, being G(x) = {−x}, and for any x̂ ∈ {x ∈ R :
x < 0} it is G(x̂) ≺R+

{0} (SCQ). In addition, µ(F (x)) = {0} and µ(G(x)) = {−x}.
Hence all the hypotheses of Theorem 5.4 are ful�lled.

Moreover, for a complete comparison with the convexity assumptions in [2], we
show with an example that, if F and G are 2K-convex and 2C-convex respectively,
the objective and the constraint of (U − P ) are not necessarily concave w.r.t. the
uncertain parameters.

Example 5.9. Consider the uncertain problem

WMinR+
v2x subject to − x ≤R+

0 (U − P (Ex. 5.9))

where x ∈ R, v ∈ [0, 1] and R+ = {x ∈ R : 0 ≤ x} is the ordering cone. Note that
f(x, v) = v2x is not concave w.r.t. v but the set-valued map F (x) = {v2x : v ∈ [0, 1]}
is 2R+ -convex.

Note that also G is 2R+ -convex, being G(x) = {−x}, and for any x̂ ∈ {x ∈ R :
x < 0} it is G(x̂) ≺R+

{0} (SCQ). In addition, µ(F (x)) = {x} and µ(G(x)) = {−x}.
Hence all the hypotheses of Theorem 5.4 are ful�lled.

6 Application to componentwise uncertain multiobjective pro-

gramming

In many practical instances, the existence of pessimistic nadir points for the sets
of values of the objective and of the constraint at any given value of the decision
variable, occurs. For example, in multiobjective optimization, we can consider the
case of componentwise uncertainties where the uncertainties in the components of the
objective and of the constraint vector functions are independent of each other. We
de�ne componentwise uncertain multiobjective problems by extending the de�nition
of objective wise uncertain problems provided in [6] to the case where also the feasible
region is uncertain and expressed by means of inequalities.
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De�nition 6.1. A multiobjective problem (U−P ) where (v, u) ∈ V ×U ⊂ Rn×Rm,
is componentwise uncertain if the uncertainties of each component of the objective
f : X × V −→ Rn and of the constraint g : X × U −→ Rm are independent of each
other, namely if V = V1×V2 . . . Vn with Vi ⊂ Rni and

∑
i ni = n, U = U1×U2 . . . Um

with Uj ⊂ Rmj and
∑

j mj = m and

f(x, v) =


f1(x, v1)
f2(x, v2)

...
fn(x, vn)

 , g(x, u) =


g1(x, u1)
g2(x, u2)

...
gm(x, um)


Under suitable assumptions, the following lemma shows that for multiobjective

problems with componentwise uncertainties a worst case in the parameter space exists
at any given x.

Lemma 6.2. See [6], Lemma 5.2. Let (P (u, v)) be a componentwise uncertain
multiobjective problem. If maxv∈V fi(x, v) and maxu∈U gj(x, u) exist for any x ∈ X,
i = 1, ..., n and j = 1, ...,m, then

v̄(x) :=


arg maxv1∈V f1(x, v1)
arg maxv2∈V f2(x, v2)

...
arg maxvn∈V fn(x, vn)

 ∈ V, ū(x) =


arg maxu1∈U g1(x, u1)
arg maxu2∈U g2(x, u2)

...
arg maxum∈U gm(x, um)

 ∈ U
Remark 6.3. It follows immediately that f(x, v̄(x)) = µ(F (x)) and g(x, ū(x)) =
µ(G(x)), where F (x) = {f(x, v) : v ∈ V } and G(x) = {g(x, u) : u ∈ U}, since

f(x, v) ≤Rn
+
f(x, v̄(x)), ∀v ∈ V and g(x, u) ≤Rm

+
g(x, ū(x)), ∀u ∈ U

6.1 Multiobjective supplier selection model

An important class of componentwise uncertain multiobjective programs are multiob-
jective linear programs (MOLP) with interval coe�cients (see [20] and the references
therein for an overview). Such uncertain programs arise when the interval program-
ming approach is applied to MOLPs. For the sake of completeness, we recall that
the interval programming approach is devoted to provide decision support models
for real-world situations, where the coe�cients involved in optimization programs
are not exactly known. Interval programming tackle indeterminacy by means of con-
�dence intervals for the uncertain coe�cients, just requiring the indication of lower
and upper bounds and with no need to specify empirical or postulated distributions.

We show here that our results can be applied to the multiobjective uncertain prob-
lems studied in [13]. The authors consider a single item supplier selection problem
(SSP), modeled as a MOLP, where the decision maker (company) considers three
criteria, that are purchasing cost, rejects and lead-times. Let us denote by n the
number of suppliers and let xi ∈ R be the amount of items ordered from supplier i.
Moreover, denote by

ui the capacity of supplier i;

ci the unit purchasing price from supplier i;

qi the expected defect rate of supplier i;

pi the percentage of items delivered late by supplier i.
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The SSP formulated in [13] can be adapted in our framework as

WminR3
+
f(x) subject to g(x) ≤R2n+1

+
0 (SSP )

where the parametric objective f : Rn −→ R3 and the parametric constraint g :
Rn −→ R2n+1 are given by

f(x) =


∑n

i=1 cixi∑n
i=1 qixi∑n
i=1 pixi

 and g(x) =



d−
∑n

i=1 xi
x1 − u1
x2 − u2

...
xn − un
−x1
−x2
...
−xn


where d is the demand and x ∈ Rn. Let us now account for the uncertainties
within the suppliers capacities and services. By applying the interval programming
approach, let us assume that the demand d and the parameters ui, ci, qi, pi, for
all i = 1, ..., n, are uncertain and their lower and the upper bounds are given. The
uncertainty sets V and U , which are related to the parameters entering into the
objective and into the constraint respectively, are de�ned as

V =

n∏
i=1

[ci, c̄i]×
n∏

i=1

[
q
i
, q̄i

]
×

n∏
i=1

[
p
i
, p̄i

]
and U =

[
d, d̄
]
×

n∏
i=1

[ui, ūi]

where under-signed and over-signed values denote lower and upper bounds of un-
certain parameters. Under this assumption, problem (SSP ) becomes a MOLP with
interval coe�cients. We reformulate it as componentwise uncertain multiobjective
problem, which reads as

WMinR3
+
f(x, v) subject to g(x, u) ≤R2n+1

+
0 (U − SSP )

where (v, u) ∈ V × U are the uncertainties.
The robust counterpart of (U − SSP ) is the following set-valued program

≺R3
+
−min F (x) subject to G(x) 2R2n+1

+
{0} (RC − SSP )

where, for all x ∈ Rn, it is F (x) = {f(x, v) : v ∈ V }, G(x) = {g(x, u) : u ∈ U} and

µ(F (x)) =


∑n

i=1 c̄ixi∑n
i=1 q̄ixi∑n
i=1 p̄ixi

 and µ(G(x)) =



d̄−
∑n

i=1 xi
x1 − u1
x2 − u2

...
xn − un
−x1
−x2
...
−xn


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The uncertain dual problems of (U − SSP ) are

≺R3
+
−max φ(Λ, v, u) subject to Λ ∈ L+(Z, Y ) (D − SSP )

where φ(Λ, v, u) = WMinR3
+
{l(x,Λ, v, u) : x ∈ X}, Λ is a 3× (2n+ 1) matrix

Λ =

λ1,1 λ1,2 . . . λ1,2n+1

λ2,1 λ2,2 . . . λ2,2n+1

λ3,1 λ3,2 . . . λ3,2n+1


with λi,j ≥ 0 and the uncertain Lagrangian is

l(x,Λ, v, u) = f(x, v) + Λ(g(x, u))

=

∑n
i=1 cixi + λ1,1 (d−

∑n
i=1 xi) +

∑n
i=1 λ1,i+1 (xi − ui)−

∑n
i=1 λ1,i+n+1xi∑n

i=1 qixi + λ2,1 (d−
∑n

i=1 xi) +
∑n

i=1 λ2,i+1 (xi − ui)−
∑n

i=1 λ2,i+n+1xi∑n
i=1 pixi + λ3,1 (d−

∑n
i=1 xi) +

∑n
i=1 λ3,i+1 (xi − ui)−

∑n
i=1 λ3,i+n+1xi


The optimistic counterpart of (D − SSP ) is the following set-valued program

≺R3
+
−MAX Φ(Λ) subject to Λ ∈ L+(Z, Y ) (OC − SSP )

where Φ(Λ) = ≺R3
+
−min{L(x,Λ) : x ∈ Rn} and, at any (x,Λ), the set-valued

Lagrangian is L(x,Λ) = {f(x, v) + Λ(g(x, u)) : (v, u) ∈ V × U} with µ(L(x,Λ)) =
µ(F (x)) + Λ(µ(G(x))).

7 Conclusions

We formulate the robust counterpart of an uncertain vector optimization problem
and the optimistic counterpart of its uncertain dual. The resulting deterministic
programs have an intrinsic set-valued nature. Following a set optimization approach,
we compare the sets in the image space of the objective maps by means of a partial
quasiorder with the aim of providing a result in the sense of �primal worst equal dual
best� by [2]. For our result to be valid we require the cone-convexity of the set-valued
objective and constraint involved in the robust counterpart. Moreover, we limit our
attention to those uncertain primal optimization problems where, at each given value
of the decision variable, pessimistic nadir points exist. In future works we aim at
weakening such an assumption by extending the strong duality Theorem in Section
3 to generic cone-convex set-valued maps.
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