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Abstract

In this paper, we focus on designing efficient 4D trajectories for the planning phase of Air

Traffic Flow Management (ATFM). A key feature of the proposed approach is the inclusion of

stakeholders’ preferences and priorities. In particular, we have implemented two priority mecha-

nisms recently developed by Eurocontrol, namely the Fleet Delay Reordering and the Margins.

For this purpose, we have customized a multi-objective binary program for the ATFM problem

taking into account the specific assumptions required for the ATFM planning phase. To compute

the Pareto frontier in a reasonable computational time, we have developed a simulated annealing

algorithm. The algorithm has been tested on an instance resembling real world conditions using

data extracted from the Eurocontrol data repository. This instance involves four major European

airports and their air traffic in one of the busiest days of year 2016, and precisely, October 3rd.

The simulated annealing algorithm has shown good computational performances and has provided

a good approximation of the Pareto optimal frontier. The results have been validated using

Eurocontrol tools and have demonstrated the viability of the proposed approach. Practitioners and

stakeholders’ representatives have provided positive feedback on the proposed modeling approach

and on the inclusion of ATM stakeholders’ preferences and priorities.
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1. Introduction

Since the advent of commercial air transport, the air transportation system is facing a con-

tinuous growth of air traffic demand. Even conflicts and events with a worldwide impact - e.g.,

the Gulf war, September 11, the 2008 financial crisis - had only a temporary and limited effect on

this trend. According to forecasts of Eurocontrol, 14.4 millions flights per year are expected to be5

operated within the ECAC3 area by 2035, with a 50% increase with respect to the 2012 number

of flights. Since the growth of demand has not been supported by a corresponding development

of the capacities of airports and related systems, both the European and the United States air

transportation systems are suffering from increased congestion, thus dwindling down the margins

of profitability. Indeed, the same forecasts also expect that the current air traffic system will not10

be able to accommodate the projected air traffic demand of about 1.9 million of flights. Against

this backdrop, the need of modernizing the air transportation system is evident. Prominent initia-

tives have been launched both in Europe (i.e., SESAR) and in the US (i.e., NextGen) to develop

the future air transport system that will be more flexible, resilient and scalable than today’s one.

One of the cornerstones of these initiatives is the implementation of the ICAO Trajectory Based15

Operations (TBO) concept. The scope of Air Traffic Management (ATM) in a TBO environment

is to manage flights’ trajectories and their interactions to achieve the optimum system outcome

with minimal deviation from the user-requested flight trajectory.A full implementation of the con-

cept requires a high level of automation for all the stakeholders’ decision-making processes, which

stems from the development of new mathematical models, algorithms and decision support sys-20

tems. Both SESAR and NextGen have fostered a number of “exploratory” research activities to

study several aspects of Air Traffic Management. The OptiFrame research project was part of this

effort, aiming to assess the viability of the TBO concept in the planning phase and to determine

whether and to what extent the objectives of flexibility and predictability of the Air Traffic Flow

Management (ATFM) system can be achieved.25

In the planning phase, the scope of Air Traffic Flow Management (ATFM) is to balance

the air traffic demand with the air system capacity by adopting control options which consist

of assigning to flights either ground delays, alternative routes (reroutings) or both. In the last

four decades, ATFM has continuously attracted the interest of the research community. The

survey by Vossen et al. [25] provides a thorough review of the literature on ATFM until 2008.30
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More recent ATFM research contributions have been published that are relevant for the problem

addressed in this paper. That is, “flight-centric” models, which specify the trajectory of each

single flight. Bertsimas et al. [5] presented a model that combines accuracy, in terms of ATFM

control options, with good mathematical structure to efficiently solve large-sized instances of the

problem. The main innovative feature of the model is the formulation of rerouting decisions35

in a very compact way. The same concept of rerouting has been also used in the model by

Augustin et al. [2]. The major difference between the two models lies in the definition of decision

variables. Indeed, the former model is node based, meaning that it associates a decision variable

to each node of the graph representing the feasible o-d routes of a flight, while the latter is edge

based. Both these formulations are “compact” formulations. A different modeling approach is40

the “path” formulation first proposed by Ricard et al. [19] in the ATFM context. Given the large

number of variables of these formulations, they are usually solved by means of a column generation

approach. Balakrishnan and Chandran [4] designed an algorithm for this class of formulations that

is computationally very efficient with good scalability properties. The algorithm solved nation-

wide numerical examples from the United States (very large scale instances) in short computational45

times.

All these models describe the flights’ trajectories in a two dimensional geographical space,

meaning that no flight level information is attached to the trajectories. In a TBO environment it

is fundamental that the information on the flight level is explicitly captured. To the best of our

knowledge, the only model focusing on 4D trajectories is the one presented by Sherali et al. [20].50

The model prescribes a flight plan for each flight. The flight plan of a flight is selected among

a pool of possible candidate plans. The model formulation minimizes an objective function that

combines both delays and fuel costs while taking into account air traffic controllers’ workload,

safety, and equity criteria as constraints.

In this paper, we present a 4D mathematical model for the ATFM planning phase that includes55

preferences and priorities. In an ideal situation, a preferred trajectory is the trajectory built by

the Flight Management System according to the business objectives of the flight operator [21].

However, in the presence of air traffic congestion, preferences can be conceived as a mechanism to

absorb delays at tactical level [17]. Priorities refer to the level of importance of a given flight in

comparison to all other flights operated by the same airspace user.60

The approach herein proposed takes an holistic view of the air traffic system. Indeed, in situa-

tions of capacity reductions and/or surges of the demand, with consequent severe demand-capacity
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imbalances, it is known that the system-wide optimal ATM strategies might be complex and coun-

terintuitive [16]. Complex because to optimize the performances of the ATM system, it might be

necessary to use a mix of ATM control strategies; counterintuitive because efficient ATM solutions65

may end up in imposing control actions, e.g., delay, rerouting and miles-in-tails, to flights that

are not directly affected by ATM constraints. Because relevant information on preferences is not

available, we adopt the multi-objective modeling approach presented in [8]. In the planning phase,

the number of control options are limited to ground delays, flight level changes and rerouting. Al-

though these assumptions lead to a more compact formulation with respect to those described70

in the literature, the dimensions of large realistic instances are prohibitive for exact methods as

shown in [7]. Therefore, it is important to develop fast heuristic algorithms to approximate the

Pareto frontier in reasonable computational time. In this paper, we present a simulated anneal-

ing approach to solve the multi-objective ATFM problem. As part of the algorithm design and

implementation, we compare and contrast two different neighbourhood structures for the local75

search routine of the simulated annealing heuristic. The first one mimics stakeholders’ preferences

and considers limited reroutes; while the second one searches in a larger neighbourhood using a

shortest path algorithm as a subroutine. The proposed approach has been tested on instances

resembling real world conditions and has been validated using Eurocontrol tools for calculating

key performance indicators identified during the First OptiFrame Stakeholders’ Workshop [17].80

Finally, we perform an analysis of solutions at different levels of aggregation with an initial assess-

ment of two prioritization schemes, i.e., Flight Delay Reordering and Margins, and their impact

on the efficient solutions.

In a nutshell, the main contributions of the paper are: i) the development of a customized

multi-objective mathematical model for ATFM planning that explicitly includes two priority mech-85

anisms, namely Flight Delay Reordering and Margins, recently proposed by Eurocontrol [11]; ii)

the design and implementation of a simulated annealing algorithm to solve the multi-objective

ATFM problem in reasonable computational times; iii) the experimentation of the proposed ap-

proach on real instances of the problem, verifying the presence of a trade-off between the objective

functions and the performance of the algorithm in terms of computational times and approxima-90

tion of the Pareto frontier; iv) the proposal of a method to analyse solutions at different levels

of aggregation to facilitate the decision process, as well as an initial assessment of the impact of

proposed priority schemes.

The remainder of the paper is organized as follows: Section 2 presents in details the ATFM
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planning model with underlying assumptions. Section 3 presents the heuristic algorithm, based95

on a local search approach. Section 4 presents the case study used to test the algorithm and the

computational results, while the analysis of solutions is presented in Section 5. Finally, Section 6

concludes the paper.

2. The ATFM planning model

In this section we present the mathematical model for the ATFM planning phase, whose key100

feature is the incorporation of Stakeholders’ preferences and priorities. Before presenting the

model, we first describe preferences and priorities as applied in the ATFM context.

Preferences. A preference is a partial order of feasible options for managing delays at

tactical level. These options consist in deviations from the preferred trajectory in terms of either

time, flight level, lateral deviation or a combination of them. Because each option has different105

implications on the total costs of a flight, preferences are specific of the airspace user (AU). How-

ever, AUs are in general reluctant to disclose information about preferences, and more specifically

about the trade-offs involved among the identified primitives, i.e., delays (time), flight level and

lateral deviations. Therefore, in this paper we adopt a multi-objective approach as presented in

[7, 8] with the scope of providing to AUs and all stakeholders involved in the decision process all110

the information about the trade-offs involved with a set of feasible solutions, thus improving the

level of awareness of all the parties involved in the decision process.

Priorities. Each flight has its own revenue/cost structure and is more or less sensitive to

punctuality. An AU may want to protect specific flights from delays, assigning an higher priority

to ensure they depart on time, at the expense of a more consistent displacement of other flights.115

Within SESAR research activities, the concept of User-Driven Prioritization Process (UDPP) has

been developed. The objective of UDPP is to provide airlines with the flexibility to re-arrange

their flights [18]. Although initial developments focused on departure slot swapping, the ambition

for the SESAR UDPP is to extend the concept of priorities to the planning phase for the full

trajectory of flights and not to limit it to slot swapping [11]. On this subject, several mechanisms120

have been proposed to implement Stakeholders’ priorities. In this paper, we focus on two of the

most recent schemes proposed by Eurocontrol, namely Fleet Delay Reordering and Margins. The

Fleet Delay Reordering mechanism offers AUs the opportunity to assign delays to flights based

on their priorities, while the Margins mechanism assigns priorities by applying a time not before

or/and a time not after rule. The interested reader may refer to [11, 18] for further details.125
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2.1. Formulation

The objective of the mathematical model is to design for each flight a 4D trajectory, taking

into account the capacity of the air traffic system while minimizing deviations from the preferred

trajectories. In particular, the mathematical model herein formulated is customized for the ATFM

planning phase. The planning phase spans a time interval from one or two days to three hours130

before the departure time of each flight. In this phase, no airborne holding and miles-in-tails

(speed variation) are considered as control options. Therefore, the only control options included

in the mathematical model are:

1. ground delays,

2. reroutings,135

3. flight level changes.

In view of these assumptions, the travel time to fly any en-route sector is fixed for each aircraft.

Moreover, the amount of rerouting (route extension) is bounded. The upper bound is specific

to the airspace user. Some airspace users may be quite strict, thus accepting only small values

of route extension, while others could be more flexible. It is important to highlight, that the140

assumptions underpinning the mathematical model and its main features have been defined with

input provided by relevant stakeholders and practitioners [17].

As quite common in the ATFM literature, in the proposed mathematical model the airspace

structure is represented by a graph G = (V,E), where V is a set of nodes and E is the set of arcs.

More specifically, the set of nodes represents all the relevant waypoints of the airways system and145

airports. For clarity of exposition, in the sequel we use the term 2D route for an o-d path on the

graph G = (V,E), i.e., the airports of origin and destination as well as the sequence of waypoints

along the path. When the information about the flight level (altitude) is included, we use the

term 3D route; and finally, we use the term trajectory for a flight route when the time dimension

is included. For each flight f ∈ F , we define the subgraph Gf = (V f , Ef ) that represents all the150

feasible waypoints (and arcs) that flight f may cross. Without loss of generality, similarly to [5],

we assume that the graph is acyclic. The time horizon is discretized in time intervals t ∈ T . The

notation used to formulate the model is here listed.

– T set of time periods,

– S set of sectors,155

– F set of flights,
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– Gf = (V f , Ef ) feasible network for flight f ,

– Lfe set of outgoing arcs from the head node of arc e ∈ Ef ,

– Pfe set of arcs entering the tail node of arc e ∈ Ef ,

– Kfe set of feasible flight levels for flight f traversing arc e,160

– δ+f (δ−f ) maximum flight level increment (reduction) for flight f ,

– αfe flight time to travel arc e by flight f ,

– tf scheduled departure time of flight f ,

– T fe = [T fe , T̄
f
e ] set of feasible time periods to fly arc e for flight f ,

– Cfe,l cost of using arc e at level l for flight f ,165

– Rs route charge for crossing en-route sector s.

To formulate the problem, the following decision variables are defined:

xfe,l(t) =

1 if flight f traverses arc e at flight level l by time t

0 otherwise

The flight level of arcs leaving (resp. entering) an airport of origin (resp. destination) refers to

the top of climb (resp. top of descent). In what follows, we denote these arcs for subgraph Gf as

origf ∈ Ef (resp. destf ∈ Ef ).

As mentioned above, we adopt a multi-objective approach as described in [7]. In particular we170

consider the same objective functions as they were identied by consultation with relevant ATM

stakeholders. For the sake of completeness, we here describe the three objective functions.

1. The total ground delays D(x).

D(x) =
∑

f∈F,t∈T ,l∈Kf
origf

(t− tf )(xforig,l(t)− x
f
origf ,l

(t− 1))

Recall that both airborne holding delay aircraft speed adjustments are not a control option

of the model. Therefore, for the purpose of this paper we focus on ground delay only.
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2. The deviation from the preferred routes C(x). An airspace user suggests the preferred

routes according to criteria of efficiency determined by the user itself. Flight efficiency is

described by EUROCONTROL in terms of subjective cost criteria such as flight time costs,

fuel costs and costs of delays due to air traffic flow and capacity management actions.

However, these internal costs are not available - AUs are reluctant to share this information

-, therefore we compute the efficiency of a flight in terms of distance from the preferred

route, according to costs Cfe,l, which are generated to reflect some efficiency factors such as

fuel consumption.

C(x) =
∑

f∈F,e∈Ef ,l∈Kf
e

Cfe,lx
f
e,l(T̄

f
e ).

Observe that according to the variables’ definition, xfe,l(T̄
f
e ) = 1 means that flight f has175

traversed arc e at level l in some time periods.

3. The route charges R(x). Each flight has to pay charges when flying the airspace of

any European State. Route charges of a flight are proportional to the great circle distance

between the entry and the exit point of the charging zone. In our implementation, we have

approximated the route charges, by summing up charges for flying an en-route sector. That

is, each time a flight f ∈ F enters a sector, the corresponding route charge is added to the

objective function. The expression used to compute route charge is the following:

R(x) =
∑
f∈F

∑
s∈S,e∈Ef∩Is,l∈Kf

e

Rsx
f
e,l(T̄

f
e )

where Is is the set of arcs entering sector s. The proposed approximation may double

count route charges if a flight enters the sector more than once. This event may occur if

en-route sectors are non-convex. However, we did not observe such abnormal behavior in

our computational experience.180

The resulting multi-objective binary programming model can be thus summarized:

min


total ground delays, D(x),

deviation from preferred routes, C(x),

total route charges, R(x).
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The model’s constraints set is as follows:

xfe,l(t) ≤
∑

e′∈Lf
e ,l−δ−≤l′≤l+δ+

xfe′,l′(t+ αfe ) ∀f ∈ F , e ∈ Ef , l ∈ Kf , t ∈ T fe : e 6= destf . (1)

∑
l∈Kf

e

xfe,l(T̄
f
e ) ≤

∑
e′∈Pf

e ,l∈Kf

e′

xfe′,l(T̄
f
e′) ∀f ∈ F , e ∈ Ef : e 6= origf . (2)

xfe,l(t− 1)− xfe,l(t) ≤ 0 ∀f ∈ F , e ∈ Ef , l ∈ Kfe , t ∈ T fe . (3)

Constraints (1) - (3) impose that each flight travels one single feasible trajectory. In addition

to constraints (1) - (3), the vector of decision variables x belongs to the polyhedron X defined by185

all the capacity constraints, both at airports and in en-route sectors, as in the model presented in

[7]. The polyhedron X also includes constraints on the maximum feasible route extension. These

constraints may also be used in a pre-processing phase to reduce the set of feasible arcs Ef for

each flight f, thus reducing the number of variables of the formulation.

Both Fleet Delay Reordering (FDR) and Margins priority schemes are incorporated in the for-190

mulation by fixing the values of certain input parameters of the problem and/or decision variables.

For instance, in the FDR mechanism, the decision variables of flights with a specified trajectory

are fixed. Moreover, delays constraints are included for flights that are ranked by the AU accord-

ing to their relative importance. The scope of these constraints is to align the assigned delays

with the ranking of the flight. The Margins mechanism is directly incorporated in the input data195

by shrinking the allowed departing time windows for the prioritized flights, according to the time

not before and time not after rules.

3. A simulated annealing algorithm

The mathematical model presented in Section 2.1 is a large scale model and its dimensions

rise dramatically with the increase of the instance size, thus making the solution of the multi-200

objective model impracticable by means of exact methods. To overcome this issue, we here present

a multi-objective simulated annealing algorithm to solve the ATFM problem and thus computing

a good approximation of the Pareto frontier in a reasonable amount of time. The motivations for

implementing a simulated annealing algorithm are: i) its effectiveness in finding good solutions in a

short amount of time; ii) the robustness, meaning that its performance is not negatively influenced205

by peculiarities of problem instances, as observed for example in [14]; iii) its applicability to a

number of optimization problems, see, e.g., [1]; iv) its successful implementation for problems with

similar features, e.g., the multi-criteria path problems [15].
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Compute initial solution xCURR

Choose a neighbour

evaluate new solution xNEW

xNEW improves xCURR ?

Update xCURR

Yes

Accept xNEW

with probability pNo

every Nstep

iterations

T = T · α

Yes

Unexplored

neighbours?No
STOP

No

Yes

Figure 1: Flow chart of the simulated annealing algorithm

The workflow of the simulated annealing algorithm is shown in Figure 1. The core routine of

the algorithm is the problem specific local search; combined with a mechanism that allows “uphill210

moves” to solutions of higher cost according to the so-called Metropolis criterion, to prevent the

algorithm from being trapped in a poor local optimum. At each iteration of the local search that

does not provide a better solution, the probability p of accepting the new solution (xNEW ) over the

current solution (xCURR) is given by p = exp(−1/τ ·∆(xNEW , xCURR)), where ∆(xNEW , xCURR)

is a weighted sum of the difference in the three objective functions between xNEW and xCURR.215

Because the objective function variations are comparable for all the three objectives, we used

uniform weights to compute ∆(xNEW , xCURR). The parameter τ is initially set so that the initial

probability of accepting the move is quite high, usually around 0.9. In practice, the value of τ

is set the first time in which we need to choose whether the non improving solution should or

should not be accepted, by computing τ = −∆(xNEW , xCURR)/ loge(0.9). The probability then220

decreases progressively, by being multiplied by a factor α < 1 every Nstep iterations, so that the

probability of accepting worsening moves decreases too and the convergence of the method is

guaranteed. When the worsening move is not accepted, the algorithm looks for a not yet explored

neighbour of the current solution, eventually stopping when no such neighbour is found.

Before describing the local search in detail, we introduce the concept of dominance in multi-225

objective optimization, which is used to compare two solutions, say xA and xB . In particular,

xA is said to dominate xB (xA � xB), if the value of each objective function of xA is not worse

than the corresponding value of xB ; and if xA is strictly better than xB in at least one objective
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function. xA is non-dominated with respect to xB (xA � xB), if xA outperforms xB for some of

the objectives but it is outperformed in the remaining ones [22].230

In the following subsections, we present the main components of the proposed local search,

i.e., i) the definition of the neighbourhood and its exploration; ii) the acceptance criterion; and

iii) the computation of the initial solution.

3.1. Definition of the neighbourhood and its exploration

The definition of the neighbourhood of a solution is a crucial element for the development of235

a local search algorithm. We here present two neighbourhood structures, both obtained by re-

routing one flight as the “primitive” move. To choose the flight to be rerouted at any iteration,

we tested two different criteria, i.e., the “most delayed flight” and the “random”. However,

after a preliminary analysis, we opted for the random selection criterion as it provides some more

“diversification” in the algorithm. For similar reasons, we also randomly choose, whenever needed,240

an arc to be avoided which belongs to the route of this flight.

In the following example, we show the potential benefits of rerouting flights.

Example 1. Let us consider two flights f1 (dashed line) and f2 (solid line). Suppose that f1 is

planned to take off at tf
1

= 4 and f2 at tf
2

= 6. This would result in both flights entering the

shaded sector (see Figure 2), that we suppose can held no more than one flight per time period,245

at time period t = 7. Because of the (shaded) sector capacity constraints, and supposing that the

sector is already congested at time periods t = 8, 9, flight f1 needs to be delayed and take off at

time period t = 7, as shown in Figure 2(a). However, if we reroute f2 as depicted in Figure 2(b),

flight f1 is able to take off on time. We can see that the overall ground delay is decreased, yielding

an improvement on the current solution, even if the reroute forces f2 to depart with one time250

period of delay to avoid congestion in the following sector.

3.1.1. Rerouting according to Stakeholders’ preferences

The first neighborhood structure described is the one that mimics the stakeholders’ preferences.

Although a common agreement on the ranking of alternatives (preference) has not been found yet,

a reasonable ranking of options for managing delays is 1) flight level change, 2) horizontal deviation,255

and 3) ground delays, with the third one the least preferable. Therefore, given a solution x of the

ATFM problem, the neighborhood Np(x) is defined as the set of all solutions obtained from x by

rerouting one flight with one of the following moves (which are applied sequentially) :
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Figure 2: Example of rerouting benefits
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Figure 3: Flight level reroute

Change in the flight level: we choose an arc e entering a sector with no spare capacity

left, then we increase or lower the flight level of that arc by one level, ensuring that the new flight260

level is feasible and that the difference between flight levels in adjacent arcs does not exceed a

fixed maximal variation δf . Figure 3 illustrates this kind of rerouting.

Change the 2D route: Because the amount of rerouting - meaning deviation from the

preferred route - accepted by airlines is rather modest and in our analysis is limited to 80 nm, we

first restrict the rerouting of flights to waypoints adjacent to the ones currently traversed by the265

flight. The following two distinct rerouting moves are considered:

• 1-waypoint reroute: we select an arc e = (i, j) between the waypoints i and j that flight f

needs to avoid. We then look for another waypoint y such that there exist two arcs (i′, y)

and (y, j′), where i′ and j′ belong to the current path and i′ does not follow i, j′ does not

precede j. Examples of rerouted paths are shown in Figure 4.270

• 2-waypoints reroute: this second rerouting routine applies a major disruption to the current

horizontal trajectory, as shown in Figure 5. Given an arc e = (i, j) that cannot be traversed,

we look for an arc ē = (y, h) such that there exists two arcs (i′, y) and (h, j′), where i′ and

j′ are defined as in the previous routine.

12



(a) (b)

Figure 4: 1-waypoint reroute

(a) (b)

Figure 5: 2-waypoints reroute

Observation 3.1. If the graph representing the airways system is maximal planar, then the 2-275

waypoint move can be obtained by applying the 1-waypoint move twice. Indeed, under the assump-

tion of maximal planarity of the graph, any route between an origin-destination pair of airports

can be obtained by applying a sequence of the flight level change and 1-waypoint moves.

The value of the objective functions of the new solution are computed in the following way: the

deviation from the preferred route and route charges are updated by subtracting the contribution of280

the modified flight and by adding the contribution of the new trajectory. Because the modification

of a trajectory may violate some capacity constraints, delays are assigned by solving a single

objective binary program, precisely a scheduling problem (SP) described in Section 3.3, and thus

restoring feasibility. The full routine is summarized in Algorithm 1. It takes as input the current

solution xCURR and ends as soon as a new neighbour is selected, or when no suitable neighbour285

is found.

3.1.2. Neighbourhood Ns for sparse networks.

The main issue with the previous exploration of the neighbourhood is that it is necessary to

consider a fairly well-connected network. This is not always possible in real applications, due to

the following reasons: first, the storage of a maximal planar graph for real-size instances can lead290

to massive memory requirements; second, networks based on historical data are generally sparse.

This means that, for all practical purposes, it is unlikely that a full representation of the network

between waypoints is used. In this event, the neighbourhood definition given in the previous
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Algorithm 1 Local search with neighbourhood structure Np
1: procedure FollowPreferences

2: given the current solution xCURR

3: randomly choose flight f , arc e ∈ Ef to be avoided

4: apply flight level reroute and compute the new solution xNEW

5: if xNEW � xCURR or xNEW � xCURR then

6: xCURR = xNEW

7: Stop.

8: else

9: apply 1-waypoint reroute and compute xNEW

10: if xNEW � xCURR or xNEW � xCURR then

11: xCURR = xNEW

12: Stop.

13: else

14: apply 2-waypoint reroute and compute xNEW

15: if xNEW � xCURR or xNEW � xCURR then

16: xCURR = xNEW

17: Stop.

18: end if

19: end if

20: end if

21: end procedure
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subsection may be highly ineffective, as it can even happen that no suitable neighbour is found.

Hence, we present an alternative neighbourhood structure (Ns) that is not negatively affected by295

the sparsity of the network representing the airspace system.

Definition 3.1. Given the current solution, a neighbour is obtained by forcing one flight to avoid

a particular arc and computing the resulting shortest path between its origin and destination. All

the flights are then rescheduled accordingly.

Similarly to the previous reroutes, we randomly select a flight f and an arc e that should300

be avoided. We set the cost Cfe,l of traveling that arc at the current flight level to +∞ and we

compute the shortest path from the airport of departure to the airport of destination. Notice that

the preferences of stakeholders are still taken into account, as a change in the flight level will be

taken into account as long as a more efficient horizontal reroute is not found. The objectives that

express the efficiency of flights and the route charges are updated by modifying the contribution305

given by flight f , while the amount of delays is determined solving optimally the related SP

problem. This routine is summarized in Algorithm 2.

Algorithm 2 Local search with neighbourhood Ns
1: procedure JumpShortestPath

2: given the current solution xCURR

3: randomly choose flight f , arc e ∈ Ef to be avoided

4: let l be the flight level occupied by fight f along arc e

5: set Cf
e,l = +∞

6: compute the shortest path between df and af with weights Cf
e,l on the arcs

7: compute xNEW

8: if xNEW � xCURR or xNEW � xCURR then

9: xCURR = xNEW

10: Stop.

11: end if

12: end procedure

3.2. Acceptance criterion

When a neighbour solution is evaluated, the algorithm has to decide if it improves the current

solution and hence if it should be accepted as the new current solution. Because of the multi-310

objective context, when comparing a new solution xA with the current solution xB , we can have

three possible outcomes:
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1. xA dominates xB (xA � xB);

2. xA is dominated by xB (xA � xB);

3. xA is non-dominated with respect to xB (xA � xB).315

As pointed out in [22], case 3 is specific of multi-objective formulations and can be treated in

different ways: we can either always consider non-dominated solutions as improving ones, or we

can always discard them, or set a probability according to which we accept them as improving

solutions. In this paper we always consider non-dominated solutions as improvements and hence

we accept them.320

3.3. Computation of an initial solution

To compute an initial feasible solution, we use the following mathematical programming ap-

proach. We assume that each aircraft flies its preferred 3D route. This implies that one of the

objectives, i.e., the deviation from the preferred routes C(x), is minimum. In this specific appli-

cation, fixing the 3D routes also unambiguously determine the value of the route charges (third325

objective of the model presented in Section 2.1). Hence, the following observation holds:

Observation 3.2. If the 3D routes are fixed, the multi-objective ATFM problem reduces to find a

feasible schedule for all the flights that can be computed by solving a single-objective binary program

of the type:

min total delays

s. t. capacities are not exceeded
330

This model is much more compact than the “full” model presented in §2.1, as it has a single

objective and we only need to decide the estimated departure time for each flight. We here

introduce some additional notation to be used in the formulation of this scheduling problem (SP).

– S set of sectors,

– A set of airports,335

– df departure airport of flight f ,

– af arrival airport of flight f ,

– Atk arrival capacity of airport k ∈ A at time t,

– Dt
k departure capacity of airport k ∈ A at time t,
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– Γts capacity of sector s ∈ S at time t,340

– Γts,l capacity of sector s at flight level l and time t,

– Is set of arcs entering sector s,

– T f = [tf , T̄ f ] the set of feasible time periods for flight f to take off. Recall that tf is the

scheduled departure time of flight f .

Moreover, we introduce the quantity

θfe =
∑
εle

αfε ,

which is equal to the time needed to reach arc e along the path used by flight f . Notice that the345

symbol l is used to denote the arcs that preceed arc e along the path. For ease of notation, θ̄f

denotes the amount of time needed to fly the entire route of flight f .

We formulate the problem using the following binary variables

xf (t) =

1 if flight f takes off at time t ∈ T f ,

0 otherwise.

The scheduling problem (SP) is formulated as follows:

(SP ) min
∑

f∈F,t∈T f

(t− tf )xf (t)

s. t.
∑
t∈T f

xf (t) = 1 ∀f ∈ F (4)

∑
f∈F :df=k

xf (t) ≤ Dt
k ∀ k ∈ A, ∀ t ∈ T (5)

∑
f∈F :af=k

xf (t− θ̄f ) ≤ Atk ∀ k ∈ A, ∀ t ∈ T (6)

∑
f∈F,e∈Ef∩Is

δfe · xf (t− θfe ) ≤ Γts ∀ s ∈ S, ∀ t ∈ T (7)

∑
f∈F,e∈Ef∩Is

δfe,l · x
f (t− θfe ) ≤ Γts,l ∀ s ∈ S, ∀ t ∈ T , ∀ l ∈ L (8)

xf (t) ∈ {0, 1} ∀ f ∈ F , t ∈ T f

where parameter δfe,l is equal to one if flight f crosses arc e at flight level l, and zero otherwise;

and parameter δfe is the aggregation over the feasible set of flight levels (δfe =
∑
l∈Kf δ

f
e,l).
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Constraints (4) ensure that each flight is scheduled, i.e. it needs to take off by the end of its350

feasible time window. Constraints (5) - (6) are the departures and arrivals capacity constraints

respectively, while constraints (7) and (8) impose en-route sector capacity constraints. These

constraints take into account the total workload of air traffic controllers. The scope of constraints

(7) is to have a more accurate measure of the capacity. Finally, observe that this procedure

to compute an initial solution of the simulated annealing is valid as long as the SP problem is355

feasible, which is guaranteed if the set of feasible time periods (T f ) is sufficiently large for each

flight f ∈ F .

4. Computational results

The proposed heuristic was implemented using C++ language. To solve the SP problem, we

used SCIP libraries combined with CPLEX. We tested the performance of the algorithm on a360

case study involving four major European airports, namely, London Heathrow, Paris Charles De

Gaulle, Amsterdam Schiphol and Frankfurt. Data were gathered from the Eurocontrol Demand

Data Repository (DDR2), as described in [3]. We selected October 3rd, 2016 because it was a

busy day of the year. 186 flights, operated by six airlines, flew between origin-destination pairs

of the four selected airports during the whole day, and the routes traversed in total 694 relevant365

waypoints. We simplified the underlying network and we built an acyclic, connected network

between each pair of the four selected airports. For each flight, we estimated the cost (Cfe,l) for

traversing an arc e of the acyclic graph taking into account both the time needed to fly the arc

and the flight level l. We also assumed that the preferred route corresponds to the shortest path

between the origin and destination because relevant information was not available. We limited370

the amount of rerouting (route extension) to 80 NM for all airlines, as suggested during the

OptiFrame workshop [17]. Information on capacity was also retrieved from the DDR2 database.

For each sector, the capacity profile over time was the residual capacity computed by subtracting

the capacity used by all the other flights with different origin and/or destination. The values of the

flight level capacities was computed by dividing the total sector capacity by the number of flight375

levels and by rounding up the results. The time horizon was discretized into 10-minute periods,

yielding a total of 144 time periods. Finally, for each flight f and arc e, the set of feasible flight

levels Kfe included: i) the preferred flight level; ii) one level above the preferred flight level; and

iii) two flight levels below. From now on, we refer to this instance as instance I1.To account for

the effect of an air traffic growth, as forecasted by EUROCONTROL in 2035, we also generated a380
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second instance with 300 flights, labeled I2. The remaining characteristics of Instance I2 are the

same as in the case of Instance I1. 114 additional flights were randomly generated and assigned

to origin-destination pairs and airlines. This instance would also provide the opportunity to test

the scalability of the proposed algorithm.

To examine the effects of different air traffic system disruptions, for both instances we also385

analyzed the following scenarios in the interest of practitioners [17]:

1. Airport Closure (AC): one of the four airports is closed for one hour, i.e. for six time periods,

both for departures and arrivals,

2. Airport Restriction (AR): one airport for one hour has reduced capacity for both take offs

and landings,390

3. Sector Restriction (SR): a sector has reduced capacity throughout the day.

The approximated Pareto frontier was generated by combining the non-dominated solutions

obtained from 10 runs of the algorithm (obtained with different seeds of the random number

generator). The time limit for each run was set to 3 hours.

To compare the computational performances of the two neighbourhood structures and to395

assess the quality of the solutions with reference to the Pareto frontier, we use metrics indicators

specifically designed for multi-objective optimization [23, 9, 13, 12]. The scope of these indicators

is to assess two major requirements of a heuristic algorithm: convergence and uniform diversity.

The convergence property ensures that the approximated solutions are not too far from the actual

Pareto frontier, while the uniform diversity ensures that a wide portion of the efficient frontier is400

explored. In this section, we use the Generational Distance and the Generalized Spread indicators

to measure the convergence and the diversity respectively. A brief description of these indicators

is here given:

1. Generational Distance (GD) [9]: it measures how far the elements of the approximation

set are from the Pareto frontier. Let N be the number of non-dominated solutions in the

approximation set and di, i ∈ {1, . . . , N} be the distance between each approximated solution

and the nearest point in the Pareto frontier. The GD indicator is computed as:

GD =

∑N
i=1 d

2
i

N

The smaller this indicator is, the better the approximation of the Pareto front we get. In

particular, if this indicator is equal to zero then every point of the approximation set is also405

Pareto optimal.
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Np Ns
Instance # non-dom time (s) # non-dom time (s)

av. σ av. σ av. σ av. σ

I1 10.60 1.85 78.85 32.28 121.90 23.47 585.02 14.47

I1 AC 8.70 2.57 70.45 23.04 167.50 27.95 696.35 79.42

I1 AR 9.40 2.65 77.92 31.11 124.50 21.76 637.69 110.86

I1 SR 10.00 2.57 91.44 32.79 144.10 18.66 702.03 59.09

Table 1: Average performance of the local search routine

2. Generalized Spread (∆) [9]: it generalizes the spread indicator. This indicator is based on

the computation of the distance between two consecutive solutions. When dealing with more

than two objectives, however, the concept of consecutive solutions is not easily defined, thus

the need of a more general indicator. Let S be the approximation set and S? the Pareto

frontier, d(X,S) the distance between the solution X and the nearest point belonging to S,

e1, . . . , em the extreme solutions, given m the number of objective functions, and let

d̄ =
1

|S|
∑
X∈S

d(X,S), d̄? =
1

|S?|
∑
X∈S?

d(X,S).

The ∆ indicator is given by:

∆ =

∑m
i=1 d(ei, S) +

∑
X∈S |d(X,S)− d̄|∑m

i=1 d(ei, S) + |S| · d̄?

Higher values of this indicator show that the heuristic spans a wider area of the feasible

space.

4.1. Comparison of the two neighbourhood structures

In this section we compare the two neighbourhood structures presented in Section 3, namely410

Ns and Np. For the four instances with the current air traffic demand (group I1) and for each

neighbourhood structure, Table 1 displays the average value (av.) and standard deviation (σ)

obtained over 10 runs of the algorithm for both the number of non-dominated solutions and the

computational time in seconds.

The statistics reported in the Table 1, clearly demonstrates that the neighbourhood struc-415

ture Np, the one mimicking the stakeholders’ preferences, only explores a limited portion of the

feasible space and is able to find only a small set of non-dominated solutions. On the other
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Instance (Pref) (ShortP)

GD ∆ GD ∆

I1 3.68 0.03 3.30 0.12

I1 AC 5.22 0.05 4.29 0.08

I1 AR 3.97 0.04 3.16 0.11

I1 SR 4.88 0.04 2.34 0.12

Table 2: Performance indicators on different neighbourhhoods

hand, the neighbourhood structure Ns is able to better explore the feasible region and computes

a significantly larger set of non-dominated solutions, which obviously comes at the cost of larger

computational times. However, such computational times are still tractable for the considered420

application domain. It is also important to observe that given the large number of non dominated

solutions computed at each run of the algorithm, a smaller number of runs might be sufficient to

have a good representation of the Pareto frontier.

The different behavior of the two neighbourhood explorations is also highlighted in Figure 6.

In order to produce these charts, we collect the overall non-dominated solutions achieved during425

the ten runs of each instance to form the approximated Pareto frontier, i.e., among all the non-

dominated solutions obtained from the ten runs, we only keep those that are not dominated by

any other solution. In Figure 6 we show the approximated frontiers for the Np neighbourhood,

on the left, and the Ns neighbourhood, on the right. Both the approximated Pareto frontiers

are compared with the exact one. The blue dots in each graph represent the non-dominated430

approximated solutions in a 3D space in which each axis represents one of the objective functions,

while the red dots represent the Pareto frontier computed with the Quadrant Shrinking Method

[6] (further described in Section 4.2). It is clear that, due to the network structure of the instances

considered (i.e. graphs are too sparse), the local search that mimics the stakeholders’ preferences

is trapped in the neighbourhood of the initial solution, thus leaving unexplored a large portion435

of the feasible space. This is quantitatively expressed by the Generational Distance and the

Generalized Spread indicators introduced above, whose values are reported in Table 2. Indeed,

the Ns neighbourhood yields a considerably larger value for the spread 0.12 vs 0.03 for the Np
neighbourhood. Ns neighbourhood performs better also in terms of the Generational Distance

indicator, meaning that the associated approximation set is closer to the actual Pareto frontier440

(3.68 vs 3.60).
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(a) Np (b) Ns

Figure 6: Non-dominated solutions for neighbourhoods Np and Ns.

In view of these results, in the remaining of this section we use the local search with the Ns
neighbourhood within the simulated annealing algorithm.

4.2. Performance of the algorithm.

In this section, we compare the set of efficient solutions computed by the simulated annealing445

algorithm with the Pareto frontier obtained by the Quadrant Shrinking Method (QSM) [6]. This

exact solution method, specifically developed to solve tri-objective integer programs, iteratively

computes all the Pareto optimal solutions. At each iteration, the method solves two integer

problems: the first problem computes a weekly efficient solution by minimizing only one objective

(e.g., the third one) while imposing an upper bound on the other two objectives; the second450

problem minimizes the sum of the three objectives while bounding the each objective to the

objective value of the solution computed in the first integer program. At each iteration the

boundaries of the feasible region are shrinked. A detailed description of how this method has been

adapted to the ATFM problem herein studied can be found in [7].

In addition to showing the number of non-dominated solutions (# non-dom) and the compu-455

tational time in seconds (time) for both the exact method and the simulated annealing algorithm,

Table 3 provides the hypervolume (HV) ratio between the value of the heuristic set of efficient

solutions (HV-H) and the value of the exact Pareto frontier (HV-E). The hypervolume is a metric

to assess the quality of multi-objective optimization algorithm. For a problem with n objectives,

the hypervolume gives a measure of the n-dimensional space enclosed between all the solutions of460

the Pareto frontier and a reference point identified by the worst possible value for each objective
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Instance QSM Simulated annealing
HV −H
HV − E

# non-dom time (s) # non-dom time (s) (%)

I1 232 20722 257 5875 70

I1 AC 233 18333 317 6221 51

I1 AR 232 18910 220 7053 68

I1 SR 232 19039 228 6818 64

I2 185 43236 216 10792 67

I2 AC 183 51303 293 11575 53

I2 AR 184 54240 311 7964 52

I2 SR 185 48788 279 12699 66

Table 3: Comparison between QSM and simulated annealing algorithms.

function. The ratio between the hypervolume for the heuristic and the exact methods gives a

measure of the proximity between the two frontiers. The higher is the ratio, the better is the

approximation. This metric has the property of capturing both the generational distance and

the spread in the objective space of the approximation set of the Pareto front. Moreover, it is465

also the only known indicator that reflects Pareto dominance, i.e., if an approximation set weakly

dominates another this will be reflected in the values of HV. To compute the hypervolume, we

have here used an algorithm based on Lebesgue Measure Algorithm, described in [10].

The simulated annealing heuristic shows significantly smaller computational times and better

scalability properties, without sacrificing the quality of the solutions computed. Indeed, the470

simulated annealing heuristic is able to produce non-dominated solutions that are close to the

Pareto frontier and span a large portion of it, as demonstrated by the values of the GD and

∆ indicators shown in Table 2; and the HV ratio displayed in Table 3. Although the HV ratio

reduces for some of the disruption scenarios, the average value is 61%, which is satisfactory for

the application under consideration.475

5. Solutions’ analysis to support decisions.

To represent the trade-off between the three objectives of the ATFM problem, Figures 7(a)

and 8(a) show the value paths of the non-dominated solutions for instances I1 and I2 respectively.

Each solution is represented by a colored piecewise linear curve (value path) which connects the

three values along the vertical lines, corresponding to the three objective considered. The values

reported on the vertical axes represent how much each solution differs from the optimal solution

of the corresponding objective. The deviation values are computed as the percentage difference
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(a) Nominal Scenario (b) Minimum Delay

(c) Minimum Deviation (d) Minimum Route Charges

Figure 7: Value paths of non-dominated solutions, instance I1

between each solution and the optimal solution of the corresponding objective (Gap). In formula,

the Gap for each of the three objectives f1, . . . , f3 and for each solution i is computed as follows:

Gapn(i) =
fn(i)−mini{fn(i)}

maxi{fn(i)} −mini{fn(i)}
· 100

Figures 7(b), (c), (d) and 8(b), (c), (d) highlight the solutions that reached minimum values for at

least one of the objective functions. Notice that there are multiple non-dominated solutions that

yield the minimum amount of delay, i.e., there are different ways of assigning flights trajectories

that lead to the same amount of total delay (Figure 7(b), 8(b)). This does not happen when480

minimizing the deviation from the preferred routes or the route charges. In these cases, there is

a unique solution as shown see figures (c) and (d) of Figure 7 and Figure 8. However, for the

route charges objective this is not in general the case. From both instances, it is evident that

the minimization of one of the objectives leads to a significant deterioration of the other two

objectives. Indeed, the values of the gap for the other objectives are considerably higher, see for485

instance solutions with minimum deviation or route charges. This shows that there is actually

a trade-off between the objectives of the model, thus justifying the choice of a three-objective

optimization approach.
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(a) Nominal Scenario (b) Minimum Delay

(c) Minimum Deviation (d) Minimum Route Charges

Figure 8: Value paths of non-dominated solutions, instance I2

5.1. Solutions’ filtering

The scope of the multi-objective approach is to enable the stakeholders to make more informed490

decisions by providing information about the trade-offs involved among the three objective function

values. However, as shown in the illustrated examples, the multi-objective approach may produce

a large number of non-dominated solutions, e.g., 250 non-dominated solutions for instance I1. It is

important to provide the stakeholders with tools that enable them to discern the “best” solution

out of all the non-dominated solution. Therefore, it is fundamental to provide criteria to filter out495

solutions of the Pareto frontiers. The criteria can be stakeholder specific. For instance, consider

the following two criteria:

• limiting the (feasible) values of a specific objective within a certain range;

• limiting all the objectives in specified intervals of the percentage gap.

Any of these criteria or any their combination leads to a reduction of non-dominated solutions500

to be considered and can facilitate the decision making process. As an example, we may disregard

all the solutions that for any of the three objective fall either in the worst 20% or in the best 20%.

The rationale for discarding the best solutions for a given objective lies in the trade-off embedded in
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(a) I1 - All (b) I1 - Filtered

Figure 9: Solutions with percantage gap between the 20% and 80% for each objective function.

any solution. Stakeholders accept suboptimality ( small deterioration) of one objective in exchange

of better performances of the other objectives. Applying these criteria to the approximated Pareto505

frontier of instance I1, we reduce the number of solutions from 257 to 48, as shown in Figure 9.

The decision regarding the selection of a solution of the Pareto frontier to be implemented is a

very central and crucial issue regarding the implementation of the TBO concept. The criticality

and importance of this decision stems from the fact that each solution of the efficient frontier

may impact the stakeholders differently. Furthermore, different stakeholders may assign different510

importance to the different objectives expressing their preferences. Therefore, it is important to

provide the capability to drill down from aggregate values of the objective functions to single

airline values. For instance, Figure 10 displays the values of the three objectives for each airline

together with a chart that shows the airline’s share of each objective, for three randomly selected

non-dominated solutions. With this additional level of information, each airline will be able to515

evaluate all the efficient solutions and the corresponding trade-off.

5.2. Incorporation of priority schemes

In this section we consider the implementability and impact of incorporating two priority

schemes, namely the Flight Delay Reordering (FDR) and Margins schemes. Both schemes are

incorporated at a pre-processing level as discussed in Section 2. In the following subsections we520

present preliminary results on the effects on the overall system performance derived from the

incorporation of priorities. All tests have been performed on instance I1.

5.2.1. Application of FDR priority scheme

We applied the FDR priority scheme to an airline that incurred a delay at one of the airports in

some of the efficient solutions. We suppose that, given the probability of the flight to be delayed,525
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Delay Deviation Charges

Airline 1 1 1811 1343

Airline 2 2 2090 1650

Airline 3 1 3253 2136

Airline 4 0 3175 1992

Airline 5 0 2148 1436

Airline 6 0 2550 1783

Total 4 15027 10340

Delay Deviation Charges

Airline 1 1 1813 1339

Airline 2 2 2107 1636

Airline 3 1 3251 2126

Airline 4 1 3179 1977

Airline 5 1 2141 1431

Airline 6 1 2574 1757

Total 7 15065 10266

Delay Deviation Charges

Airline 1 2 1808 1344

Airline 2 1 2101 1635

Airline 3 0 3263 2107

Airline 4 1 3169 2000

Airline 5 1 2148 1437

Airline 6 0 2575 1755

Total 5 15064 10278

(a) (b) (c)

Figure 10: Analysis of results at airlines’ level

the airline decides to give it a higher priority and hence its departure time is swapped with the

departure time of a subsequent flight of the same airline. Total delays are computed taking into

account the original departure times.

Figure 11a shows in a 3D representation the alternative Pareto frontiers each identified with

a different color. More precisely, in red is depicted the optimal Pareto Frontier of the instance530

without priorities; in blue the efficient solutions found by the heuristic algorithm; and in yellow the

efficient solutions found by the heuristic algorithm under the priority scheme. In this case study,

the efficient solutions with and without the priority scheme, though different, have comparable

quality. Therefore, in this specific example, the introduction of the priority scheme does not

weaken the quality of the initial efficient solutions found.535

Notice that this priority scheme is unlikely to produce infeasible solutions if the original sched-

ule allows a feasible one, because flights may be displaced in time as much as it is necessary

to comply with the capacity constraints. As a drawback, if too many priorities are taken into

account, it may result in an overall increase of the total delay that can hit back the flights with

high priority.540

5.2.2. Application of Margins scheme

We tested the Margins priority scheme by selecting a pair of flights to be prioritized for each

airline and reducing the feasible time window for their departure. In this way, we force the flight
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(a) I1 - FDR (b) I1 - Margins

Figure 11: Impact of priority schemes

to follow the time-not-before and time-not-after rules set by the scheme.

In Figure 11b we show the performance of the heuristic algorithm under this priority scheme.545

Similarly to the previous figure, we represent in yellow colour the solutions with the margin

priorities and in the without margin priorities. Also in this case, we do not observe a relevant

deterioration of the quality of efficient solutions by applying the margins scheme. Indeed, the

increment of the objective functions values is rather modest and can be noticed only for the portion

of the Pareto frontier with higher values of deviation and route charges. This is a reasonable550

behaviour, as the introduction of margins forces the solution to decrease the delay for the selected

flights, which are more likely to be rerouted in order to be assigned to a feasible trajectory.

However, it is also important to highlight that an extensive use of margins may lead to infeasible

instances; event that is more likely if the underlying network is not highly connected. In fact, to

accommodate a large number of flights departing on time or with small delays, a great availability555

of possible reroutes is needed to ensure all capacity constraints are satisfied.

6. Conclusions

In this paper we presented a multi-objective approach for trajectory based operations in ATFM.

We customized the model presented in [7] to exploit specific assumptions of the ATFM planning

phase. To compute the Pareto frontier we proposed a simulated annealing heuristic that proved560

to be a viable approach to solve realistic instances of the problem in reasonable computational

times.
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The algorithm has been tested on a case study involving four major airports within Europe

and has been validated in terms of scalability and response to disruptive scenarios such as airport

closure, airport restriction and sector restriction, using a number of tools provided by Eurocontrol565

[24], i.e., NEVAC, NEST and BADA. The results herein described were also presented to key

stakeholders during the OPtiFrame Final Workshop that took place at Eurocontrol HQ (Brus-

sels) on February 14, 2018. Stakeholders provided useful feedback regarding the potential of the

proposed approach to further support the development of the TBO concept; and the following

directions for further research were recommended: i) better calibration of the model to limit the570

number of altitude changes; ii) identification of the appropriate methodology to compute flight

level capacities; iii) refinement of the process leading to the representation of the underlying ATM

network used in the mathematical model; and iv) development of a post-processing engine that

will automate the analysis of the alternative efficient solutions generated by the algorithm and will

provide Decision Support for reaching a consensus on the solution that should be implemented.575
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