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When is the condition of order preservation met?
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Abstract

This article explores a relationship between inconsistency in the pairwise
comparisons method and conditions of order preservation. A pairwise com-
parisons matrix with elements from an alo-group is investigated. This ap-
proach allows for a generalization of previous results. Sufficient conditions
for order preservation based on the properties of elements of pairwise com-
parisons matrix are derived. A numerical example is presented.
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1. Introduction

The first documented use of comparisons by pairs dates back to the XIII
century [7]. Later, the method was developed by Fechner [10], Thurstone
[36] and Saaty [30]. Saaty proposed the seminal Analytic Hierarchy Process
(AHP) extension to pairwise comparisons (henceforth abbreviated as PC )
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theory, which is a framework for dealing with a large number of criteria.
At the beginning of the XX century the method was used in psychometrics
and psychophysics [36]. Now it is considered part of decision theory [31]. Its
utility has been confirmed in numerous examples [37, 15, 27, 35]. Despite the
relative maturity of the area, it still invites further exploration. Examples of
new exploration are the Rough Set approach [13], voting systems [9], fuzzy PC
relation handling [28, 38, 29], incomplete PC relation [4, 11], non-numerical
rankings [19, 18], nonreciprocal PC relation properties [12], rankings with
the reference set of alternatives [23, 26], applications to software correctness
and cybersecurity [33] and others. Further references: [34, 16, 22].

Although the AHP is a popular method for multiple-criteria decision mak-
ing, it is often criticized as in [6]. An important objection to AHP originates
from Bana e Costa and Vansnick, [2], where the authors formulated a so
called COP (conditions of order preservations) and proved that the priority
deriving method followed in AHP does not meet COP. This phenomenon is
not, however, an inherent problem of AHP [24, 14]. Instead it is the result
of inconsistency and the size of the differences between the alternatives. Fur-
ther study of COP, the Eigenvalue Method (EVM) and inconsistency can be
found in [25]. In particular the work brings a theorem showing dependency
of COP and Koczkodaj inconsistency index [20] in the context of EVM.

Verifying whether for a certain set of pairwise comparisons COP is met
requires ranking calculation. As COP was originally formulated in the con-
text of EVM the criticism caused by [2] was directed at EVM and AHP. An
attentive reader will notice, however, that neither COP as such, nor the no-
tion of consistency understood as the cardinal transitivity [5, p. 158], depend
on prioritization methods. Hence the question arises whether the relation-
ship between COP and inconsistency is of a general nature and if so, how
does this relationship look like?

The present work is an attempt to answer this vital question. In order
to emphasize the general nature of the relationship between COP and incon-
sistency we decided to use pairwise comparisons based on ordered abelian
groups. These general results are presented in Section 4. Although AHP
was defined in the context of EVM other methods of prioritization are be-
coming more and more popular. The Geometric Mean Method (GMM) may
serve as an example [17]. Therefore, in Section 5 we redefine GMM in the
context of alo-groups and show that meeting the COP criteria under this
generalized GMM depends on the locally defined inconsistency. Similarly to
[25] we adopt the inconsistency index [20].
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2. Preliminaries, pairwise comparisons method

The input data for the PC method is a PC matrix C = [cij], i, j ∈
{1, . . . , n}, that expresses a weight function R with domain the finite set
of alternatives A = {ai ∈ A |i ∈ {1, . . . , n}}. The set A is a non empty
universe of alternatives and R(ai, aj) = cij . The values of comparisons cij
indicate the relative importance of alternatives ai with respect to aj . Here,
the elements cij of PC matrix C = [cij] belong to G, an alo-group which will
be defined bellow.

An abelian group is a set, G, together with an operation ⊙ (read “odot”)
that combines any two elements a, b ∈ G to form another element in G
denoted by a⊙ b, see [3, 1]. The symbol ⊙ is a general placeholder for some
concretely given operation. (G,⊙) satisfies the following requirements known
as the abelian group axioms, particularly: commutativity, associativity, there
exists an identity element e ∈ G and for each element a ∈ G there exists an
element a(−1) ∈ G called the inverse element to a.

The inverse operation ÷ to ⊙ is defined for all a, b ∈ G as follows:

a÷ b = a⊙ b(−1). (1)

Note that the inverse operation is not necessarily associative.
An ordered triple (G,⊙,≤) is said to be an abelian linearly ordered group,

alo-group for short, if (G,⊙) is a group, ≤ is a linear order on G, and for all
a, b, c ∈ G:

a ≤ b implies a⊙ c ≤ b⊙ c., (2)

in other words, ⊙ respects ≤.
If G = (G,⊙,≤) is an alo-group, then G is naturally equipped with the

order topology induced by ≤ and G×G is equipped with the related product
topology. We say that G is a continuous alo-group if ⊙ is continuous on G×G.

By definition, an alo-group G is a lattice ordered group. Hence, there
exists max{a, b}, for each pair (a, b) ∈ G×G . Nevertheless, a nontrivial alo-
group G = (G,⊙,≤) has neither the greatest element nor the least element.

Because of the associative property, the operation ⊙ can be extended by
induction to n-ary operation.

G = (G,⊙,≤) is divisible if for each positive integer n and each a ∈ G

there exists the (n)-th root of a denoted by a(1/n), i.e.,
(

a(1/n)
)(n)

= a.
Let G = (G,⊙,≤) be an alo-group. Then the function ‖.‖ : G → G

defined for each a ∈ G by

‖a‖ = max{a, a(−1)} (3)
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is called a G-norm.
The operation d : G × G → G defined by d(a, b) = ‖a÷ b‖ for all a, b

∈ G is called a G-distance. Next, we present the well known examples of
alo-groups; for more details see also [1], or, [29].

Example 1. Additive alo-group R = (R,+,≤) is a continuous alo-group
with: e = 0, a(−1) = −a, a(n) = n · a.

Multiplicative alo-group R+ = (R+, ·,≤) is a continuous alo-group with:
e = 1, a(−1) = a−1 = 1/a, a(n) = an. Here, by ‘·’ we denote the usual
operation of multiplication.

Fuzzy additive alo-group Ra=(R,+f ,≤), see [29], is a continuous alo-
group with:

a +f b = a+ b− 0.5, e = 0.5, a(−1) = 1− a, a(n) = n · a−
n− 1

2
.

Fuzzy multiplicative alo-group ]0, 1[
m

=(]0, 1[, •f ,≤), see [1], is a continu-
ous alo-group with:

a •f b =
ab

ab+ (1− a)(1− b)
, e = 0.5, a(−1) = 1− a.

Remark 1. Usually, the PC method is used with a multiplicative PC ma-
trix, i.e., with multiplicative alo-group, see e.g. [30, 24]. Then the relative
importance of an alternative is multiplied with the relative importance of
the other alternatives when considering a chain of alternatives. Now, our
approach based on a more general concept applying alo-groups enables to
extend the properties of the multiplicative system to the whole class of pair-
wise comparisons systems. The four instances listed in Example 1 show some
useful non-trivial cases.

Now, we define two important properties of a PC matrix.

Definition 1. A PC matrix C = [cij ], cij ∈ G, is said to be ⊙-reciprocal if

cij ⊙ cji = e for all i, j ∈ {1, . . . , n}, (4)

or, equivalently,
cji = c

(−1)
ij for all i, j ∈ {1, . . . , n}, (5)

and it is said to be ⊙-consistent if

cij ⊙ cjk ⊙ cki = e for all i, j ∈ {1, . . . , n}. (6)

4



Evidently, if C is ⊙-consistent, then it is also ⊙-reciprocal, but not vice
versa. Since the PC matrix usually contains subjective evaluations pro-
vided by (human) experts, the information contained therein may be ⊙-
inconsistent. That is, a triad of values cij, cjk, cki in C may exist for which
cij ⊙ cjk ⊙ cki 6= e. In other words, different ways of estimating the value of a
pair of alternatives may lead to different results. This fact leads to the con-
cept of an ⊙-inconsistency index describing the extent to which the matrix
C is ⊙-inconsistent.

3. Priority deriving methods

There are a number of inconsistency indexes associated with deriving PC
rankings, including the Eigenvector Method [30], the Least Squares Method,
the Chi Squares Method [5], Koczkodaj’s distance based inconsistency in-
dex 1 [20], the Geometric Mean Method (GMM) and others. The three most
prominent methods are described below.

The result of the pairwise comparisons method is a ranking—a mapping
that assigns values to the concepts. Formally, it can be defined as the fol-
lowing function.

Definition 2. The ranking function for A (the ranking of A) is a function
w : A → R+ that assigns to every alternative from A ⊂ A a positive value
from R+.

In other words, w(a) represents the ranking value for a ∈ A. The w

function is usually written in the form of a vector of weights, i.e., w
df
=

[w(a1), . . . w(an)]
T and is called the priority vector.

Now, for the moment, we consider the usual multiplicative alo-group
R+ = (R+, ·,≤). The eigenvalue based consistency index CI(C) called
Saaty’s index of n× n reciprocal matrix C = [cij ] is defined as:

CI(C) =
λmax − n

n− 1
, (7)

where λmax is the principal eigenvalue of C.

1An alternate form of this definition can be found in [21].
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The value λmax ≥ n and λmax = n only if C is consistent [32]. Vector w is
determined as the rescaled principal eigenvector of C. Thus, assuming that
Cwmax = λmaxwmax the priority vector w is

w = γ [wmax(a1), . . . , wmax(an)]
T ,

where γ is a scaling factor. Usually it is assumed that γ = (
∑n

i=1wmax(ai))
−1

.
This method is called the Eigenvector Method (EVM).

Here, we consider a space of evaluations; an alo-group with the only one
binary operation, particularly, ⊙ = ·. Therefore, the Saaty’s index cannot
be defined, because two group operations in (7), e.g. ·, +, are necessary. In
what follows, we shall not deal with the Eigenvector Method.

Koczkodaj’s inconsistency index KI of n×n and (n > 2) reciprocal matrix
C = [cij ] is defined as

KI(C) = max
i,j,k∈{1,...,n}

{

1−min

{

cij
cikckj

,
cikckj
cij

}}

. (8)

Similarly, as we consider here a space alo-group with one binary oper-
ation, particularly, ⊙ = ·, the Koczkodaj’s inconsistency index cannot be
defined, as two group operations (8), e.g. ·, +/-, are necessary. That is
why we shall not deal with the Koczkodaj’s inconsistency index. Later on
(Theorem 3), however, we shall derive a relationship between Koczkodaj’s
inconsistency index and the generalized inconsistency index (which will be
also defined later) in the multiplicative alo-group R+ = (R+, ·,≤) together
with the additional field operation +, see Example 2.

One of the most important, and still gaining in importance, methods of
deriving priorities from pairwise comparisons has been proposed by Crawford
[8]. According to this approach, referred in the literature as geometric mean
method (GMM) the weight of i-th alternative is given by the geometric mean
of the i-th row of C. Thus, the priority vector is given as

w = γ





(

n
∏

r=1

c1r

)
1

n

, . . . ,

(

n
∏

r=1

cnr

)
1

n





T

, (9)

where γ is a scaling factor. As previously, γ = (
∑n

i=1wmax(ai))
−1

. Following
[30], we obtain the following definition.
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Definition 3. Let C = [cij ] be a reciprocal PC matrix. For each pair i, j ∈

{1, . . . , n}, and a priority vector w = [w(a1), . . . , w(an)]
T , a local error index

ǫ(i, j, w) is given as

ǫ(i, j, w)
df
= cij ⊙ w(aj)÷ w(ai), (10)

and similarly (as in [24]) let us define

E (i, j, w)
df
= max{ǫ(i, j, w), (ǫ(i, j, w))(−1)}. (11)

The global error index E (C,w) for the PC matrix C and a priority vector
w = (w1, . . . , wn), is the maximal value of E (i, j, w), i.e.,

E (C,w)
df
= max

i,j∈{1,...,n}
E (i, j, w). (12)

Now, let us derive the following properties of E (C,w).

Lemma 1. Let C = [cij ] be a reciprocal PC matrix and w = [w(a1), . . . , w(an)]
T

be a priority vector. Then
E (C,w) ≥ e, (13)

moreover, if
E (C,w)) = e,

then C is ⊙-consistent.

Proof. Either ǫ(i, j, w) ≥ e, or, ǫ(i, j, w) ≤ e, then ǫ(i, j, w))(−1) ≥ e. Hence,

E (i, j, w) = max{ǫ(i, j, w), (ǫ(i, j, w))(−1)} ≥ e.

By (12) we obtain
E (C,w) ≥ e.

Moreover, let E (C,w) = e. Then by (11), (12) for all i, j ∈ {1, . . . , n}, it
holds

ǫ(i, j, w) = cij ⊙ w(aj)÷ w(ai) = e,

hence, equivalently,
cij = w(ai)÷ w(aj).

Then we obtain

cij ⊙ cjk ⊙ cki = w(ai)÷ w(aj)⊙ w(aj)÷ w(ak)⊙ w(ak)÷ w(ai) = e,

hence by (6), C is ⊙-consistent. �
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Remark 2. The global error index E (C,w) depends not only on the ele-
ments cij of PC matrix C, but also on the priority vector w. It is, however,
always greater or equal to the identity element e ∈ G. If the global error in-
dex of C is equal to e then PC matrix C is ⊙-consistent. Later, in Lemma 2,
we will show that if PC matrix C is ⊙-consistent, then there exists a priority
vector w such that E (C,w) = e holds.

4. Condition of Order Preservation

In [2] Bana e Costa and Vansnick formulate two conditions of order
preservations. Here, we formulate these conditions in a more general setting,
i.e., for alo-groups. The first, the preservation of order preference condition
(POP), claims that the ranking result in relation to the given pair of alter-
natives (ai, aj) should not break with the expert judgment, that is, if for a
pair of alternatives ai, aj ∈ A such that ai dominates aj (cij > e) then:

w(ai) > w(aj), or, equivalently w(ai)÷ w(aj) > e. (14)

Here, w(ak), k = 1, 2, ..., n, are individual weights of a priority vector w.
The second one the preservation of order of intensity of preference con-

dition (POIP), claims that if ai dominates aj more than ak dominates al
(ai, aj , ak, al ∈ A ), i.e., if cij > e, ckl > e and cij > ckl then

w(ai)÷ w(aj) > w(ak)÷ w(al). (15)

We show that POP and POIP condition is satisfied if the PC matrix is ⊙-
consistent. We start with the well known necessary and sufficient condition
for a PC matrix to be ⊙-consistent, see also [29].

Lemma 2. Let C = [cij] be an ⊙-reciprocal PC matrix. Then C is ⊙-

consistent if and only if there exists a priority vector w = [w(a1), . . . , w(an)]
T

such that for all i, j ∈ {1, . . . , n}

w(ai)÷ w(aj) = cij . (16)

Proof. Suppose that C = [cij ] is ⊙-consistent, then by Definition 1

cij ⊙ cjk ⊙ cki = e for all i, j, k ∈ {1, . . . , n},

or, equivalently,
cij ⊙ cjk = cik.
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Let w = (w1, . . . , wn) be given by

w(ai) = δ ⊙

(

n
⊙

r=1

cir

)( 1

n
)

, i ∈ {1, 2, ..., n}, (17)

where δ is a scaling factor, δ = (
⊙n

r=1 c1r)
(− 1

n
)
⊙ . . .⊙ (

⊙n
r=1 cnr)

(− 1

n
)
. Then

we obtain by consistency condition cir ⊙ crj = cij

w(ai)÷ w(aj) = δ ⊙

(

n
⊙

r=1

cir

)( 1

n
)

⊙

(

δ
n
⊙

r=1

cjr

)(− 1

n
)

=

=

(

n
⊙

r=1

(cir ⊙ crj)

)( 1

n
)

=
(

c
(n)
ij

)( 1

n
)

= cij,

hence, (16) is satisfied. On the other hand, let condition (16) be satisfied.
Then for each i, j, k ∈ {1, . . . , n} we obtain

cij ⊙ cjk ⊙ cki = (w(ai)÷ w(aj))⊙ (w(aj)÷ w(ak))⊙ (w(ak)÷ w(ai)) =

= w(ai)⊙ w(aj)
(−1) ⊙ w(aj)⊙ w(ak)

(−1) ⊙ w(ak)⊙ w(ai)
(−1) = e,

hence, C is ⊙-consistent. �

Theorem 1. Let C = [cij] be an ⊙-reciprocal PC matrix, and let w =

[w(a1), . . . , w(an)]
T be a priority vector, let i, j, k, l ∈ {1, . . . , n}. If C is

⊙-consistent then condition POP is satisfied, i.e. cij > e implies wi > wj.
Moreover, if cij > ckl, then condition POIP is also satisfied, i.e., cij > ckl
implies wi ÷ wj > wk ÷ wl.

Proof. Suppose that C = [cij ] is ⊙-consistent. If for some i, j ∈ {1, . . . , n}
we have cij > e, then by (16) in Lemma 2 we have

cij = w(ai)÷ w(aj) > e,

which is equivalent to w(ai) > w(aj) and condition POP is satisfied. More-
over, by Lemma 2, it holds that cij > ckl if and only if

w(ai)÷ w(aj) > w(ak)÷ w(al),

hence, (14) is satisfied. �
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Lemma 3. Let C = [cij ] be an ⊙-reciprocal PC matrix and w = (w1, . . . , wn)
be a priority vector. Then for all i, j ∈ {1, . . . , n}

E (C,w)(−1) ⊙ w(ai)÷ w(aj) ≤ cij ≤ E (C,w)⊙ w(ai)÷ w(aj). (18)

Proof. By (11), (12) we obtain

E (C,w) ≥ max{ǫ(i, j, w), (ǫ(i, j, w))(−1)} ≥ ǫ(i, j, w) = cij ⊙ w(aj)÷ w(ai),
(19)

E (C,w) ≥ max{ǫ(i, j, w), (ǫ(i, j, w)(−1)} ≥ ǫ(i, j, w)(−1) = cji⊙w(ai)÷w(aj),
(20)

hence, when multiplied both sides of (19) by w(ai) ÷ w(aj), and both sides
of (20) by w(aj)÷ w(ai), we get

E (C,w)⊙w(ai)÷w(aj) ≥ cji⊙w(ai)÷w(aj)⊙w(aj)÷w(ai) = cij ⊙ e = cij .
(21)

E (C,w)(−1)⊙w(ai)÷w(aj) ≤ cij⊙w(aj)÷w(ai)⊙w(ai)÷w(aj) = cij⊙e = cij .
(22)

Combining (21) and (22) we obtain (18). �

Now, we turn our attention to ⊙-inconsistent ⊙-reciprocal PC matrix.
The following theorem gives sufficient conditions for validity of POP and
POIP.

Theorem 2. Let C = [cij] be an ⊙-reciprocal PC matrix, and let w =

[w(a1), . . . , w(an)]
T be a priority vector, let i, j, k, l ∈ {1, . . . , n}. If

cij > E (C,w), ckl > E (C,w)

and
cij ÷ ckl > (E (C,w))2, (23)

then
w(ai) > w(aj), w(ak) > w(al)

and
w(ai)÷ w(aj) > w(ak)÷ w(al),

i.e., condition POP and also POIP is satisfied.

10



Proof. If for some i, j ∈ {1, . . . , n} we have cij > E (C,w), then by (18) in
Lemma 3 and cij > E (C,w) we obtain

E (C,w)⊙ w(ai)÷ w(aj) ≥ cij > E (C,w), (24)

which implies, when “multiplied” both sides of (2) by E (C,w)(−1),

w(ai)÷ w(aj) > e,

i.e., wi > wj, hence condition POP is satisfied. Similarly, if for some k, l ∈
{1, . . . , n} we have cij > E (C,w), ckl > E (w), then we obtain w(ai) > w(aj)
and w(ak) > w(al), i.e. POP condition. Moreover, by (18) in Lemma 3 we
obtain

E (C,w)⊙ w(ai)÷ w(aj) ≥ cij, (25)

E (C,w)⊙ w(al)÷ w(ak) ≥ clk = c
(−1)
kl . (26)

By “⊙-multiplying” left sides and right sides of (24) and (26), we obtain

(E (C,w))2 ⊙ (w(ai)÷ w(aj))⊙ (w(ak)÷ w(al))
(−1) ≥ cij ÷ ckl. (27)

If we assume that (w(ai)÷w(aj))⊙(w(ak)÷w(al))
(−1) ≤ e, which is equivalent

to w(ai)÷ w(aj) ≤ w(ak)÷ w(al), then by (27) we obtain

(E (C,w))2 ≥ cij ÷ ckl.

This result, however, is in contradiction with (23), hence, it must be
w(ai)÷ w(aj) > w(ak)÷ w(al), therefore, condition POIP is satisfied. �

Remark 3. Notice that in the previous lemmas and theorems, there is no
special assumption concerning the method for generating the priority vector
w = [w(a1), . . . , w(an)]

T . The priority vector, or, vector of weights w, may
be an arbitrary positive vector with normalized elements. Specifically, in
the case of multiplicative alo-group of positive real numbers R+ = (R+, ·,≤)
with some field operation +, we may use EVM, GMM or any other priority
vector generating method. In the following section we shall investigate a
generalized version of GMM.
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5. Generalized Geometric Mean Method (GGMM)

Following the Geometric Mean Method (GMM) we define the Generalized
Geometric Mean Method (GGMM), where the weight of i-th alternative is
given by the ⊙-mean of the i-th row of C = [cij].

Definition 4. Let C = [cij] be a reciprocal PC matrix. Let for i, j, k ∈
{1, ..., n}

e(i, j, k)
df
= cij ⊙ cjk ⊙ cki, (28)

and similarly let us define

η(i, j, k)
df
= max{e(i, j, k), (e(i, j, k))(−1)}. (29)

The generalized inconsistency index of the PC matrix C is defined as

GI(C)
df
= max{η(i, j, k)|i, j, k ∈ {1, ..., n}}. (30)

Lemma 4. Let C = [cij ] be a reciprocal PC matrix, w = (w1, . . . , wn) be a
priority vector defined as

w = δ ⊙





(

n
⊙

r=1

c1r

)( 1

n
)

, . . . ,

(

n
⊙

r=1

cnr

)( 1

n
)




T

, (31)

where δ is a scaling factor, δ = (
⊙n

r=1 c1r)
(− 1

n
)
⊙ . . .⊙ (

⊙n
r=1 cnr)

(− 1

n
)
. The

individual weights are given as

wi = δ ⊙

(

n
⊙

r=1

cir

)( 1

n
)

, i ∈ {1, ..., n}. (32)

Then the global error index of C is always less or equal to the generalized
inconsistency index, i.e.,

E (C,w) ≤ GI(C). (33)

Proof. Providing the use of GGMM we have

cij ⊙ w(aj)÷ w(ai) = cij ⊙

(

n
⊙

k=1

cjk ÷
n
⊙

k=1

cik

)( 1

n
)
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thus,

cij ⊙w(aj)÷w(ai) =

(

n
⊙

k=1

cij ⊙ cjk ÷

n
⊙

k=1

cik

)( 1

n
)

=

(

n
⊙

k=1

cij ⊙ cjk ⊙ cki

)( 1

n
)

However, it holds that

(

n
⊙

k=1

cij ⊙ cjk ⊙ cki

)( 1

n
)

≤ max
k∈{1,...,n}

{cij ⊙ cjk ⊙ cki} =

max
k∈{1,...,n}

{η(i, j, k)}, (34)

hence, E (C,w) ≤ GI(C). �

Now, we shall derive a relationship between Koczkodaj’s inconsistency
index (8) and the generalized inconsistency index (30) in the multiplicative
alo-group R+ = (R+, ·,≤) together with the additional field operation +.
First, we modify Theorem 2 with respect to the above mentioned Koczko-
daj’s inconsistency index KI(C) and the new generalized inconsistency index
GI(C), see [24, Corollary 1].

Theorem 3. Let C = [cij ] be an ⊙-reciprocal PC matrix, w = [w(a1), . . . , w(an)]
T

be a priority vector generated by GGMM, i.e., (31) and (32). If

cij >
1

1− KI(C)
, ckl >

1

1− KI(C)

and

cij ÷ ckl >

(

1

1− KI(C)

)2

, (35)

then
w(ai) > w(aj), w(ak) > w(al),

and
w(ai)÷ w(aj) > w(ak)÷ w(al),

i.e., condition POP and also condition POIP is satisfied.
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Proof. Comparing (8) and (12), (30) we easily derive the relation between
KI(C) and GI(C) as follows

GI(C) =
1

1− KI(C)
. (36)

If for some i, j, k, l ∈ {1, . . . , n} we have cij > GI(C) = 1
1−KI(C)

, ckl > GI(C),

then by Theorem 2 and Lemma 4 we obtain w(ai) > w(aj) and w(ak) >
w(al). �

Example 2. We consider an illustrating example of 4 × 4 PC matrix C in
the usual multiplicative alo-group of positive real numbers R+ = (R+, ·,≤),
as follows:

C =









1 5
2

3 5
2
5

1 2 4
1
3

1
2

1 3
1
5

1
4

1
3

1









.

The priority vector generated by GGMM (in fact GMM ) is:

w = [0.494, 0.2675, 0.168, 0.072]T ,

hence, the newly proposed generalized ‘·’-inconsistency index GI(C) = 2.00,
GI(C)2 = 4.00 and Koczkodaj’s inconsistency index KI(C) = 0, 5. We con-
clude that if cij > 2.00, then w(ai) > w(aj). It is clear, that POP condition
holds for all elements located above the main diagonal of PC matrix C.
Moreover, c12 = 2.50, c23 = 2.00 and c12/c23 = 1.25. We obtain w1/w2 = 1.85
and w2/w3 = 1.59, hence, w1/w2 > w2/w3. Here, POIP condition is satisfied.

6. Discussion and summary

Is it possible to meet the COP criteria [2] when the ranking method is
EVM ? Would it be possible to use GMM instead of EVM while preserving
COP? Theorem 2 provides the evidence that as long as the result cij of
the direct comparison of the i-th and j-th alternative is large enough it is
possible. In such a case the lower limit for cij is given by the global error
index E (C,w) defined for any priority vector w. Hence, the minimal value
of cij guaranting that COP is met depends on w, regardless of how w is
obtained.

14



An even more surprising conclusion comes from Theorem 3. Assuming
that the weight vector was obtained using GMM (GGMM) the minimal value
of cij—which guarantees compliance with the COP criteria—depends only
on the inconsistency of the PC matrix. In particular this means that by
improving the consistency among the pairwise comparisons we are able to
make the PC matrix comply with COP. Interestingly, a similar situation
occurs in the case when the priority deriving method is EVM [25]. This
raises the question whether a similar property can be observed for any priority
deriving method. This question remains unanswered today, however, it seem
to be an interesting direction for further research.

By abstracting into an alo-group, we define GI a new generalized inconsis-
tency index based only on the group operation ⊙. We showed the relationship
between the triad GI, KI (Koczkodaj’s inconsistency index) and COP. The
particulars of this relationship have been examined in the example at the end
of Section 5.
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