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Abstract

The search for higher efficiency in transportation planning processes in real life applications
is challenging. The synchronisation of different vehicles performing interrelated operations
can enforce a better use of vehicle fleets and decrease travelled distances and non-productive
times, leading to a reduction of logistics costs. In this work, the full truck-load pickup and
delivery problem with multiple vehicle synchronisation (FT-PDP-mVS) is presented. This
problem is motivated by a real-life application in the biomass supply chain “hot-system”,
where it is necessary to simultaneously perform chipping and transportation operations at
the forest roadside. The FT-PDP-mVS consists in determining the integrated routes for three
distinct types of vehicles, which need to perform interrelated operations with minimum logistics
costs. We extend existing studies in synchronisation of multiple routes by acknowledging
several synchronisation aspects, such as operations and movement synchronisation. A novel
mixed integer programming model (MIP) is presented, along with valid inequalities to tighten
the formulation. A solution method approach is developed based on the fix-and-optimise
principles under a variable neighbourhood decomposition search. Results of its application
to 19 instances based on a real-world case-study demonstrate its performance. For a baseline
instance, the synchronisation aspects tackled in this problem allowed for significant gains when
compared to the company’s current planning approach. Furthermore, the proposed approach
can enhance planning and decision making processes by providing valuable insights about the
impact of key parameters of biomass logistics over the routing results.
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Highlights:
• A routing problem synchronising multiple types of vehicles is presented;
• A mathematical formulation is presented for the problem at hand;
• A fix-and-optimise matheuristic is proposed for solving large scale instances;
• A case study is solved with real-world instances of a biomass supplier from Finland;
• Managerial insights are drawn from a set of computational experiments.
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1 Introduction

Increasing efficiency of transportation planning processes in real life applications is a challenging
task. In recent years, there have been many examples of new generation transportation manage-
ment systems that propose cost-efficient vehicle routes complying with specific business require-
ments, and without compromising quality of service and reliability. Synchronisation of operations
and vehicles’ routes can play a major role to increase cost efficiency. Moreover, when the vehicle
service time is affected by the existence of other vehicles with similar schedules in the same loca-
tion, there may be delays or unnecessary idle times that impact the plan flexibility and lead to an
increase of the transportation costs.

Different situations can occur in respect to transportation planning under synchronisation con-
straints. There is often a need for two or more vehicles (or crews) to meet at the same location and
time to perform an interrelated operation in order to avoid unnecessary travel efforts, such as addi-
tional travel costs, idle times or vehicles. Contrariwise, when there are several vehicles performing
similar transportation services, synchronisation at origin and/or destination should prevent queu-
ing and congestion, in order to minimize the idle time. Furthermore, some applications also need
to acknowledge the existence of active and passive types of vehicles, where passive vehicles need to
be transported by an active vehicle in order to change locations. This paper focuses on performing
interrelated operations between vehicles at a given location, as well as ensuring the transportation
of passive vehicles through the use of active means of transport. The goal is to find minimum cost
routes for distinct types of vehicles engaged in interrelated operations, therefore synchronisation
is desirable for minimising the total transportation costs.

This problem is motivated by a real-life application in the biomass supply chain “hot-system”,
but it has similarities to problems in other sectors. The “hot-system” consists of performing simul-
taneously chipping and transportation operations at the forest roadside (or pickup location p), as
illustrated in Figure 1. For this purpose, the vehicle fleet is composed by several trucks (Figure
2a), chipping machines (loaders in a general case, Figure 2b) and lorries (Figure 2c). The chip-
ping machine fragments forest residues into wood chips and directly feeds them into a chargeable
container of a truck. Once the container is full, the truck carries the wood chips from the pickup
location up to a delivery location d for consumption or storage. Once the pile of forest residues
is fully chipped, the chipper is transported to another pickup location p′. Because chippers are
often trailer-mounted machines incapable of autonomous movement, they require the service of
a lorry. In the end of the planning horizon (usually one day) all vehicles must return to their
depot 0. In this framework, synchronisation of the vehicles can reduce chippers and trucks idle
times and the costs related with the use of the lorry, therefore decreasing the logistics costs. Since
logistics can represent up to 50% of the total cost of the biomass business (Allen et al., 1998), the
optimisation of biomass supply operations can in fact improve the cost-efficiency of biomass value
chains, ultimately making woody biomass more competitive than alternative fossil fuels.

pickup location 𝑝

0

delivery location pickup location

depotdepot

𝑑 𝑝 0

Figure 1: Chipping, transportation and hauling network

This real-world application includes a combination of conditions that are not found in the
literature. The cost structure of such logistic operations comprises a fixed cost for each vehicle
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(a) truck (b) loader (c) lorry

Figure 2: Types of vehicles

that is used, regardless of its type, as well as two variable cost components, namely the distance
travelled by each vehicle and its expended time since the start of the working schedule.

Firstly, the optimal route and schedule for each truck should account for the synchronisation of
operations between the loader and the truck at the pickup location. As stated before, both types
of vehicles should be present at the same location and at the same time so that the interrelated
operations can occur. The loader serves one truck at a time until its container is full, so other
trucks that arrive at that pickup location need to queue until the loader becomes again available.
The loader remains idle if no truck is present. The literature about the Log-Truck Scheduling
Problem (LTSP) addresses many business specificities of wood trucks scheduling, but do not con-
sider these synchronisation aspects (e.g., Hachemi et al. (2009)): typically the loader location is
known beforehand and it is unchangeable during the planning horizon, therefore disregarding the
chippers transportation cost. Other studies in Vehicle Routing Problems with Multiple Synchro-
nisation Constraints (VRPMSs) do address operations synchronisation to some extent, namely in
the prevention of queueing at locations (e.g., Lehuédé et al. (2015); Grimault et al. (2017)), but
need to be extended to practical applications in the biomass supply chain, such as ensuring that a
loader has been transported and is present at pickup locations.

Secondly, this study addresses the movements of the loader between pickup locations. The
route of the loader starts at the depot and encompasses a sequence of pickup locations where there
is material to be processed/loaded. The route ends in the depot at the end of the planning horizon,
the latest. The loader remains in the same location until all the material there has been loaded
in trucks, and only then can be moved. In the end of the horizon, all the pickup locations were
visited once by one loader. Moving the loader is a non-productive time that should be avoided.
Furthermore, the loader movement also represents extra transportation costs related with the usage
of the dedicated lorry that carries the trailer-mounted machine between pickup locations, as well
as the variable travel costs, proportional to the total distance travelled by the lorry. The lorry
route starts at the depot and encompasses a sequence of visits to pickup locations for pickup and
drop-off of the loaders. Only one loader is transported at a time. After each delivery, the lorry
may either engage a new pickup service, come back to the depot empty, or remain in that location.
The latter may be convenient in a case of a later pickup service nearby, thus avoiding unnecessary
trips with the empty lorry. The studies related with the truck and trailer routing problem (TTRP)
already cover some of these business requirements (e.g. Meisel and Kopfer (2012)), but further
extensions are needed, as discussed in the next section.

This research builds on a literature review on VRP variants with similarities to our problem.
The first contribution of this paper is a new mathematical formulation for integrated route plan-
ning for the three types of vehicles (lorries, loaders and trucks), which models the synchronisation
constraints based on the approach of Kim et al. (2010). The model can be solved to optimality for
small-scale instances, and a set of valid inequalities is presented to improve its performance. The
second contribution of this paper is a matheuristic approach developed to obtain better quality
solutions in a reasonable computational time for larger problem instances. The third contribution
is to demonstrate the effectiveness of this approach, exemplified in a case-study in the biomass-
for-bioenergy supply chain in Finland. For this purpose, the obtained routes and schedules are
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compared with the outcomes of the current planning approach. Furthermore, valuable manage-
rial insights are provided for planners of the biomass logistics, thus enhancing decision-making
processes.

The remainder of this paper is as follows. In Section 2, a literature review of similar problems
is presented. The problem description is detailed in Section 3. In Section 4 the novel mathematical
formulation and valid inequalities are presented. The proposed solution method for real-world
applicable instances is described in Section 5. Section 6 is devoted to the computational results
and managerial insights supported by a case-study in the biomass-for-bioenergy supply chain in
Finland. Finally, this paper concludes by summarising the main achievements and future work.

2 Literature review

Vehicle Routing Problems (VRPs), firstly introduced by Dantzig and Ramser (1959), aim to find the
minimum cost routes for vehicles subjected to a series of constraints. Over the years, several VRP
variants were proposed to deal with more realistic applications. The problem in hand covers several
aspects of known VRP variants, including the VRP with multiple synchronisation constraints
(VRPMS), the pickup and delivery problem (PDP), the log-truck scheduling problem (LTSP) and
the truck and trailer routing problem (TTRP). Table 1 summarises the literature review of each
of the routing problem variants according to each of its features. The following subsections will
frame this problem into each one of the enunciated VRP variants. Finally, a brief overview of rich
VRPs that mingle some of these VRPs variants will be performed, focusing on problems that show
similarities to the one we are tackling.

2.1 Vehicle routing problem with multiple synchronisation constraints

The Vehicle Routing Problem with Multiple Synchronisation Constraints (VRPMS), introduced
in Drexl (2012), aims to find the minimum cost routes for several vehicles, which need to be
synchronised in some nodes to fulfil common tasks. The major distinctive aspect of these problems
when compared to traditional VRPs, concerns to the fact that vehicles’ routes are dependent
of each other. This interdependence leads to complexity when developing solution methods for
these types of problems, as a change in one vehicle’s route may render all other routes infeasible.
In this work, the author distinguishes five types of synchronisation aspects in VRPs, namely
load, task, resource, operations (OS) and movement (MS) synchronisation. While load, task and
resource synchronisation are intrinsically present in any standard VRP, OS and MS are often dealt
separately and in the context of real-life applications. The problem under study can be viewed as
a VRP with OS and MS, not only because different vehicles will need to be synchronised in time
when arriving at certain locations to perform certain operations, but also because certain vehicles
(namely lorries and loaders) will need to move between locations simultaneously.

One of the first works explicitly addressing OS in vehicle routing was Bredström and Rönnqvist
(2008). This work focus on applications in homecare staff scheduling, although it enumerates sev-
eral alternative applications, such as planning of security guards and forest management. In this
problem, each staff member has certain locations to visit, and occasionally customers must be
visited by two staff members simultaneously or within a given precedence (e.g., visiting elderly or
disabled people at the same time for lifting purposes or with a fixed time offset to apply medical
treatments after a meal). From a modelling point of view, the staff members can be viewed as
vehicles, or generically resources needed for performing tasks. Besides introducing a Mixed Integer
Programming (MIP) model for the problem using a vehicle flow formulation, a solution method is
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presented, consisting in a heuristic approach where restricted MIP problems are solved iteratively.
Kim et al. (2010) present a VRP with OS with the purpose of obtaining a schedule of vehicles that
visit a set of customers, where a certain number of tasks has to be performed in a fixed sequence.
This problem also intends to assign vehicles to staff, allowing for staff “transshipments” at relay
stations in order to respect working time regulations. This paper presents a mathematical formu-
lation based on four-index decision variables xkmij , allowing to account for simultaneous movement
of crew m through vehicle k across an arc (i, j). More recently, Mankowska et al. (2014) present a
Home Health Care Routing and Scheduling Problem (HHCRSP), which consists in a generalisation
of the problem introduced by Bredström and Rönnqvist (2008) where a set of customers needs to
be serviced by a set of home carers. However, the specific requirements for the home health care
sector are approached differently, as customers may need simultaneous services by more than one
home carer at the same time (or with temporal precedence) and not all carers are able to perform
certain services. The mathematical model that is presented explicitly handles staff qualifications
and simultaneity/precedence requirements. A solution method is also presented, where several
neighbourhood structures are devised and used under an Adaptive Variable Neighbourhood Search
(AVNS) framework.

2.2 General pickup and delivery problem

The General Pickup and Delivery Problem (GPDP) consists in a vehicle routing problem where
customers pickup and delivery locations are acknowledged and its purpose is to perform the pickup
of load at pickup nodes and deliver it to delivery nodes. Parragh et al. (2008a,b) presented a
framework for classifying GPDPs, where these problems are split into two main variants, depending
on whether the pickup and delivery requests occur from and/or to the depot, or whether the pickups
and deliveries occur between customers. The problem under study frames itself in this latter variant
and an overview of its characteristics is now provided.

2.2.1 Pickup and delivery problem

The Pickup and Delivery Problem (PDP), as it is named by Parragh et al. (2008a,b), is a particu-
larisation of the GPDP. It is the sub-class of GPDPs in which our problem is best framed because
it assumes that merchandise from pickup locations must be delivered to a predetermined delivery
location.

The PDP is especially relevant in applications where commodities are differentiated and only
can be delivered to a specific customer, such as courier transportation (Gendreau et al., 1999) or
maritime shipping (Korsvik et al., 2011).

Typical solution approaches for PDPs consist in heuristic methods. One of the most renowned
solution approaches is the Adaptive Large Neighbourhood Search (ALNS), introduced by Ropke
and Pisinger (2006). The main advantage of the ALNS consists in its flexibility, providing a
good balance between diversification and intensification in the search process (Pisinger and Ropke,
2010). The ALNS is employed for several PDPs (Ropke and Pisinger, 2006; Petersen and Ropke,
2011; Ghilas et al., 2016). Alternative solution approaches for PDPs include Column-Generation
(CG) algorithms (Gschwind et al., 2018) and Branch-and-Price (B&P) and Branch-and-Cut (B&C)
algorithms (Ropke et al., 2007; Veenstra et al., 2017).

2.2.2 Log-truck scheduling problem

GPDPs can be also be classified as less-than-truck-load problems and full-truck-load problems
(Parragh et al., 2008b). The former need to consider capacities of vehicles and the quantities
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of each node, so that vehicles capacity constraints are met, while the latter does not need to
consider quantities, as the delivery unit consists in a single truck-load. When considering the
PDP with paired pickups and deliveries as a full-truck-load problem, it is possible to infer that
the pickup performed by a truck will necessarily be followed by the delivery of the same load to
its corresponding customer. This is a valid assumption in several contexts, namely in the forestry
sector, as well as in our case. The Log-truck Scheduling Problem (LTSP) is a particular case of
the PDP considering full truck-loads, where previously paired pickup and delivery tasks must be
sequenced among the vehicles in order to obtain minimum costs (Gronalt and Hirsch, 2007). Given
the high quantities of raw materials involved in log-truck transportation, the quantities available
at one location usually exceed a full truck-load, which also turns this problem into a split delivery
PDP. In the context of our problem, the LTSP resembles the routes done by trucks transporting
the merchandise.

For solving the LTSP, Palmgren et al. (2004) presented a B&P algorithm, although Tabu
Search (TS) strategies are also common in the literature: Gronalt and Hirsch (2007) uses the
unified tabu search (UTS) algorithm (Cordeau et al., 2001) to solve the LTSP and modifies it
by allowing neighbourhood size oscillations in the search process. Flisberg et al. (2009) uses a
two-phase iterative procedure, where a linear programming problem is solved in the first phase to
determine the origin and destination nodes of each full truck-load and, in the second phase, the
UTS algorithm is applied for determining the vehicles routes.

2.3 Truck and trailer routing problem

Firstly introduced in Chao (2002), the Truck and Trailer Routing Problem (TTRP) encompasses
a set of trucks (active vehicles) with coupled trailers (passive vehicles) to perform the necessary
deliveries to customers. However, trailers cannot visit all locations, as certain customers have
site-dependent vehicle restrictions, so they must first visit a transshipment node where trailers
are uncoupled from trucks and loads are transferred from trailers to trucks and/or vice-versa.
Afterwards the truck will perform sub-tours to trailer-incompatible customers while leaving the
trailer uncoupled at the transshipment node. It is possible to state that the TTRP is a particular
case of the VRPMS, due to the occurrence of movement synchronisation between two different
types of vehicles.

A typical application of the TTRP is the raw milk collection problem with trucks and trailers,
where a dairy company collects raw milk from farmers, and trailers need to be collected by trucks
when they are full at milk collection locations. Drexl (2007) performs some extensions to the TTRP,
one of them allowing the truck-trailer combinations to be changed within the time horizon, also
presenting mathematical formulations using different decision variables: turn variables, designating
if a node j is visited immediately after i and immediately before k, arc variables, where routing
is set by the arcs that are traversed, and the traditional path variables, where routing is given
by whether a node j is visited immediately after node i. In Drexl (2011), the Generalized TTRP
(GTTRP) is presented, where time windows and a heterogeneous fleet are introduced.

The TTRP has similarities to our problem when we consider the routes performed by the lorry
that moves the loaders between pickup locations. The solution methods for the TTRP present
in the literature usually consist in meta-heuristic algorithms, such as TS (Chao, 2002; Scheuerer,
2006), Simulated Annealing (SA) (Lin et al., 2009) and Large Neighbourhood Search (LNS) (Derigs
et al., 2013). B&P and B&C algorithms are also rather common (Drexl, 2007, 2011; Parragh and
Cordeau, 2017).
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2.4 Rich vehicle routing problems

Several rich VRPs may be found in the literature that relate to the work in this article, namely in
the application of real-world problems. We highlight some of them, due to their intrinsic similarities
to our problem.

One of the rich VRPs that exhibits several similarities to our problem is the active-passive
VRP, introduced by Meisel and Kopfer (2012), which consists in a PDP where the fulfilment of
the pickup and delivery requests depend on the simultaneous movement of both an active and
passive vehicle, such as in a TTRP. Several applications can be found for this problem, such as
the transportation of containerised goods. Although the underlying similarities to the TTRP are
clear, in this problem there is no pre-defined assignment of active vehicles to passive vehicles,
meaning that active vehicles may couple/uncouple any passive vehicle as many times as necessary.
Meisel and Kopfer (2012) propose an ALNS approach as a solution method, and since then, exact
approaches have also been envisaged in Tilk et al. (2018). The main distinction between this
problem and ours consists in the fact that passive vehicles only have synchronisation requirements
with active vehicles. In our case the passive vehicle (loader) not only needs to be synchronised
with an active vehicle (lorry), but it is also necessary to synchronise its operations with a third
vehicle (truck).

Grimault et al. (2017) presents an ALNS algorithm for a PDP applied to construction, in which
construction sites need materials to be delivered from quarries or asphalt concrete plants. Different
pickup/delivery requests need to be synchronised, as loading operations require a resource that only
loads one vehicle at a time. The main distinction between this problem and ours consists in the
assumption that the loading resource is available at each location throughout the entire planning
horizon, which does not occur in our case. The problem is solved using instances from a case-study
and from the LTSP literature instances in Hirsch (2011). This problem can therefore be framed
not only as a PDP, but also as a VRPMS with resource synchronisation.

Neves-Moreira et al. (2016) presents a long-haul freight transportation problem where trac-
tors are allowed to visit transshipment points in the course of their routes in order to perform
exchanges of semi-trailers. The problem is solved using a fix-and-optimise matheuristic for real-
world instances. This problem can be framed into any of the problem variants addressed before, as
synchronisation is present by acknowledging trucks and trailers, as well as the pickup and delivery
nature of the routing problem.

3 Problem statement

According to the findings of the literature review, our problem can be considered a full truck-
load pickup and delivery problem with multiple vehicle synchronisation (FT-PDP-mVS). In this
problem, distinct types of vehicles – trucks and lorries and trailers (henceforth called loaders) –
are considered over a transportation network of pickup (supply) and delivery (demand) locations,
considering that loaders and lorries are subject to movement synchronisation (MS), and loaders and
trucks are subject to operations synchronisation (OS). The considered planning horizon consists in
one work day, and all the previously established pickup/delivery requests must be performed in this
time frame. The problem objective is to minimize the overall transportation costs, which consist
in a trade-off between the number of vehicles used (fixed costs), its travelled distance (distance
costs) and the total expended time each vehicle needed to perform its operations (time costs).
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3.1 Problem entities and features

3.1.1 Requests

A request is characterised as a truck-load that needs to be transported from a pickup location to
a delivery location. Each truck-load will be delivered to a single delivery location. It is assumed
that the commodity assignments from pickup to delivery locations are previously set at a higher
planning level, where different objectives from the ones in this paper are considered. Therefore,
these assignments are not a decision to be obtained in this problem. Examples of tactical plan-
ning problems in the biomass-for-bioenergy supply chain can be found in Marques et al. (2018);
Boukherroub et al. (2017); Meyer et al. (2015).

All requests must be performed within the established planning horizon. When the amount
required by a delivery location exceeds a full truck-load, requests are split into two or more requests,
considering the minimum number of truck-loads needed to satisfy the demand.

3.1.2 Vehicles – loaders, lorries and trucks

Loaders are entities that perform an operation on raw materials at pickup locations, prior to
its transportation to delivery locations. They are assumed to be homogeneous in terms of its
productivity, i.e. the amount of material produced per unit of time. Loaders consist in trailer-
mounted machines that are pulled by a lorry whenever they need to be moved (to and from the
depot, and between pickup locations).

Lorries are support vehicles and only carry out operations related with the loaders pickup and
drop-off. A lorry can only transport one loader at a time but it is able to transport multiple loaders
throughout the course of their routes, i.e. different loaders can be coupled to (or decoupled from)
lorries as many times as necessary. There may exist some particular cases where this situation
does not apply (i.e. lorries and loaders are unique vehicles and cannot be separated, precluding
the possibility of a lorry performing loader drop-offs and/or pickups during its route).

Trucks are the vehicles responsible for delivering the truck-loads from the pickup locations to
the delivery locations. The trucks fleet is considered homogeneous, i.e. all vehicles exhibit equal
transportation capacity.

3.1.3 Transportation network

The transportation network encompasses a set of depots, a set of pickup locations and a set of
delivery locations.

Depots are starting and ending locations for vehicle routes. All vehicles are associated with a
starting depot location, which is previously known, and it is not mandatory that they end their
route at that same depot. A depot also serves as a location for picking up and/or dropping off a
loader in the course of a lorry route.

Pickup locations are characterised for being geographically dispersed, each having a known
amount of material that is available to be transported to delivery locations. The amount of material
present at a pickup location typically exceeds the unit capacity of a truck, thus yielding multiple
pickup requests per location. Furthermore, the location requires a loader on site so that trucks’
containers can be loaded. As for lorries, they will visit the same pickup location at most twice,
one for machine drop-off and another for machine pickup. Due to space availability restrictions at
pickup locations, only one loader can be present at the location.

Delivery locations receive cargo that is transported directly from pickup locations by trucks.
Trucks may visit the same delivery location more than once in order to deliver multiple truck-loads



10

of material.

3.2 Operations and movement synchronisation

Synchronisation is essential in pickup locations, since loaders need to be transported to the location
by lorries (MS), as well as coordinate its temporal availability with both lorries and trucks (OS) so
that operations can be performed with the smallest idle time possible. Loaders only visit pickup
locations once, and therefore can only leave after all material is loaded into trucks.

Figure 3a presents an example of feasible routes for two lorries, R = {r1, r2}, three loaders,
L = {l1, l2, l3}, and three trucks, K = {k1, k2, k3}, over a transportation network composed by
two depots, O = {o1, o2}, four pickup locations, P = {p1, p2, p3, p4}, and three delivery locations,
D = {d1, d2, d3}. An example of a feasible route for truck k1 is {o2, p2, d1, p1, d2, o2}. A feasible
route for loader l1 is {o1, p2, o1}. The lorry r1 starts the route carrying loader l1 from the depot
to p2. Then, it returns empty to depot o1, where it engages with loader l2 and transports it to
p4. Lorry r1 waits there until all operations of l2 are over, and then transports it to p3. After
dropping off loader l2 in p3, the lorry will finish its service by collecting loader l3 at p1 (left there
previously by lorry r2) and returning it to the depot. In sum, a feasible route of lorry r1 is
{o1, p2, o1, p4, p3, p1, o1}. Regarding lorry r2, a feasible route is {o1, p1, p2, o1, p3, o1}.

Movement synchronisation is shown in the similarities between the routes of the loader l1 and
lorries r1 and r2. The first part of the route of the loader l1 is coincident with the beginning of the
route of lorry r1, while the second part of the route is coincident with the ending of the route of
lorry r2. The same logic applies to loaders l2 and l3.

Operations synchronisation at pickup location p1 along the time is illustrated in Figure 3b.
Operations start when lorry r2 arrives at the location and decouples loader l3. The first loading
operation of loader l3 starts when truck k2 arrives. Since truck k1 arrives while k2 is still being
served, k1 waits on site and is served right after. After serving truck k1 there is no other truck
available, so loader l1 remains idle until truck k2 returns to location p1. Next, loader l3 will be
moved to another pickup location because the requests (i.e. amount of material available) are
equivalent to three full truck-loads, now exhausted. Operations at p1 end when lorry r1 engages
loader l3 and departures from p1. It is noteworthy that operations synchronisation with precedences
can also be verified in this example. In fact, decoupling the loader from the lorry must be performed
before any loading task with trucks. The same applies to the coupling operation, as it must be the
final operation to be performed at the pickup location.

4 Problem modelling

The modelling approach encompasses three routing sub-problems, one for each type of vehicle –
lorries, loaders and trucks –, all of them intertwined with synchronisation constraints in order
to ensure the problem requirements. For each one of the routing sub-problems, a vehicle flow
formulation is used, where the generic decision variables state if a given vehicle traverses arc (i, j)

or not.

Given that multiple operations may be performed at each location, it is necessary to consider
artificial nodes in the transportation network. For the sake of clarity, we use the term “location”
to designate a real-world geographical site and the term “node” is used for referring to the nodes
of the transportation network, used for modelling purposes. Therefore, a location may have one
or more nodes associated with it.



11

𝑜

𝑜

𝑟 + 𝑙

𝑟

𝑟 + 𝑙
𝑟 + 𝑙

𝑟 + 𝑙

𝑟

𝑟

𝑘

𝑘

𝑘

𝑘

𝑘

𝑑

𝑑

𝑑

𝑘

𝑘

𝑘

𝑘

𝑘

𝑘

𝑘
𝑘

𝑘

𝑝
𝑙

𝑝

𝑝

𝑙

𝑙

𝑝
𝑙

𝑘

(a) Feasible routes for the three types of vehicles, where O = {o1, o2} are depots, P = {p1, p2, p3, p4} are
pickup locations, D = {d1, d2, d3} are delivery locations, R = {r1, r2} are lorries, L = {l1, l2, l3} are loaders
and K = {k1, k2, k3} are trucks; dotted lines are trips with an empty truck (in green) or lorries without
the trailer-mounted loader (in orange)

At pickup location 𝑝

Start operations End operations

𝑟

idle

wait

idle

Decoupling 
loader𝑟

𝑙
Working

(chipping)

𝑘

Working
(chipping)

𝑘

Decoupling 
loader

V
eh

ic
le

Working
(chipping)

idle

Coupling
loader

Loading 
container

Loading
container

Loading
container

time

Coupling
loader

(b) Operations synchronisation at pickup location p1

Figure 3: Example of routing plan considering multiple vehicle synchronisation



12

4.1 Transportation network preprocessing

A data preprocessing phase is crucial for reducing the model size and complexity, and consequently
reducing the solution time when using a commercial solver. This phase consists in the creation of
the nodes and arcs in a way that some constraints related with the solution consistency are dealt
a priori and do not need to be included in the mathematical model.

The network preprocessing phase consists in the creation of artificial nodes and the generation
of arcs, explained in the following subsections. Each vehicle type will have its own transportation
network, generated according to the specific tasks it is able to perform. To illustrate the rationale
behind the network preprocessing, Figure 4 revisits the example given in the problem statement
section.

4.1.1 Depot nodes

Start of vehicles routes: each depot location o ∈ O contains a start node O+
o , where vehicle routes

will necessarily start, regardless of the type of vehicle. Each vehicle is associated with an initial
depot location.

End of vehicles routes: each depot location o ∈ O contains a sink node O−o , where a vehicle ends
its route. The sink node that a vehicle visits may not necessarily correspond to the same location it
started from. There are no restrictions to the number of vehicles each depot sink node can receive.

Pickups and drop-offs of loaders: each depot location o ∈ O will have a fixed number n of inter-
mediate nodes

{
Ô1
o, ..., Ô

n
o

}
. These nodes are not mandatory to be visited, and their purpose is

to allow for a lorry to visit the depot in the middle of its route, either to drop off or to pick up a
loader present at that location. The number of intermediate nodes that are created corresponds
to the maximum number of pickups and drop-offs the depot will be able to handle.

In Figure 4a it is possible to verify that lorries r1, r2 ∈ R and loaders l1, l2, l3 ∈ L all leave
node O+

1 , which is the start node of depot o1. The same applies for trucks k1, k2, k3 ∈ K in the
start node of depot o2. Also, lorry r1 visits intermediate node Ô1

1, at where loader l2 also arrives
from O+

1 and engages with r1. The inverse situation can also be verified, as lorry r2 performs the
drop-off of loader l1 at intermediate node Ô3

1, after which loader l1 finishes its service by visiting
the depot sink node and lorry r2 proceeds with the remainder of its route. All these vehicles end
their routes at the sink node of depot o1.

4.1.2 Delivery location nodes

Unloading raw materials: each delivery location d ∈ D has a fixed number n of unloading nodes,{
D1?
d , ..., D

n?
d

}
, each one of them corresponding to the reception of a truck-load from its corre-

sponding origin, thus acknowledging the split delivery nature of this problem.

In Figure 4b this situation is easily observable, as trucks k1, k2 ∈ K visit delivery location d2
three times, once for each unloading node D1?

2 , D
2?
2 , D

3?
2 to deliver the truck-loads originating from

pickup location p1.

4.1.3 Pickup location nodes

Decoupling loader from lorry: each pickup location p ∈ P contains a decoupling node P+
p . These

nodes are used for considering movement synchronisation between lorries and loaders when these
vehicles arrive at the pickup location simultaneously. After the loader drop-off is complete, the
lorry will be able to leave the location and perform other services.
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Coupling loader to lorry: each pickup location p ∈ P contains a coupling node P−p . These nodes
are used for considering movement synchronisation between lorries and loaders when these vehicles
leave the pickup location simultaneously. A lorry will arrive at this node, as well as the loader that
was assigned to that location and has finished its service. Arcs to this node are generated taking
into account that this node can only be visited when all other nodes of the location have already
been visited.
Loading raw materials: each pickup location p ∈ P has a fixed number n of loading nodes,{
P̂ 1
p , ..., P̂

n
p

}
, which correspond to the number of truck-loads trucks will need to transport from

that location (corresponding to the requests defined beforehand). In each of these nodes, a loader
and a truck will arrive in order to start loading operations for the truck-load associated with that
node.

In Figure 4c, pickup location p1 comprises three loading nodes, corresponding to three truck-
loads. Initially lorry r2 and a loader l3 arrive simultaneously at decoupling node P+

1 . From this
point onwards, the lorry’s and loader’s routes will diverge, as lorry r2 will perform the pickup of
another loader at pickup location p2, and loader l3 will remain at location p1 until all work is com-
plete. The loader will “travel” to one of the possible loading nodes

{
P̂ 1
1 , P̂

2
1 , P̂

3
1

}
to begin loading

operations. Trucks will also arrive at the same node where loader l3 has gone to, ensuring that
loading operations can start. Afterwards the truck leaves the location to deliver the merchandise,
as loader l3 continues to travel to the remaining loading nodes. Finally, when all loading nodes
are visited (and therefore all work is complete), the loader will visit the coupling node P−1 , where
lorry r1 arrives to pick it up and finish their routes by visiting the sink node of depot o1.

4.1.4 Arc generation

The arc generation rules, synthesised in Table 2, aim to remove arc possibilities from the trans-
portation network that would lead to inconsistencies. For example, arcs where a lorry and a loader
leave a decoupling node may be eliminated, since the lorry must have already left the loader in the
location.

It is worth noting that arc generation for lorries and loaders present in Table 2 is valid for the
general case, where loaders may be decoupled from lorries. For cases where a lorry and a loader act
as an unique vehicle and cannot be split, movement synchronisation must be met at all times, and
decision variables for these vehicles only need to be generated this vehicle combination. In these
cases, the network can be significantly simplified. For example, arcs heading and originating from
depot intermediate nodes would be removed, and lorries would necessarily go from a decoupling
node to the coupling node of the same location, i.e. cannot leave the pickup location as long as
the loader does not finish all of its loading tasks.

In the event that all lorries and loaders act as unique vehicles, depot intermediate nodes would
have no use in the model, and therefore they would be eliminated.

4.2 Mathematical formulation

The mathematical formulation of the mixed integer programming model for the FT-PDP-mVS is
now presented. The sets and parameters will firstly be presented, followed by the decision variables,
the objective function and the model constraints.

4.2.1 Sets and parameters

Most of the model sets have already been presented, but they are presented again for the sake of
clarification.
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Table 2: Arc generation for lorries, r, loaders, l, and trucks, k

Destination
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Start node, 𝑂 𝑙# 𝑟 + 𝑙 𝑘 𝑟

Intermediate nodes, 𝑂 𝑙# 𝑟 + 𝑙 𝑟

Sink nodes, 𝑂
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ic
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p

 lo
ca

ti
on

s

Coupling nodes, 𝑃 𝑟 𝑟 𝑙# 𝑟

Loading nodes, 𝑃 𝑙# 𝑙# 𝑘

Decoupling nodes, 𝑃 𝑟 + 𝑙 𝑟 + 𝑙 𝑟 + 𝑙

Delivery locations
Unloading nodes, 𝐷∗ 𝑘 𝑘

# - within the same location

Locations and nodes: the sets containing locations and nodes are the following. In order to simplify
notation throughout the formulation, sets of nodes may be added a subscript relating to a specific
location, in which case we only refer to nodes of that specific location.

O Set of depot locations

P Set of pickup locations

D Set of delivery locations

O+, Ô, O− Set of depot start, intermediate and sink nodes, respectively

P+, P̂ , P− Set of pickup decoupling, loading and coupling nodes, respectively

D? Set of delivery unloading nodes

Auxiliary sets are also defined for depot locations, O? = O+ ∪ Ô ∪ O−, and pickup locations,
P ? = P+ ∪ P̂ ∪ P−, for designating the sets of all depot and pickup nodes, respectively.

Vehicles: let R, L and K be the sets of lorries, loaders and trucks, respectively. Also, let σ and χ be
a fictitious lorry and loader, respectively, and with that in mind, R? = R∪ {σ} and L? = L∪ {χ}.
These fictitious vehicles are used for modelling arcs where one travels without the other. Sets R?

and L? are used for defining the model’s decision variables, which are described in this subsection.
For designating all real (i.e. non-fictitious) vehicles, set V is also defined, V = R ∪ L ∪K.

Directed graphs: the problem as a whole is defined through two directed incomplete graphs. For
lorries and loaders, set G = (N,A), with N = O? ∪ P ? is used. Let δ+irl and δ−irl be the sets of
nodes that follow and precede node i ∈ N when using vehicles r ∈ R? and l ∈ L?, respectively.
The directed graph for trucks is G′ = (N ′, A′), with N ′ = O+ ∪ O− ∪ P̂ ∪ D?, and ϕ+

ik and ϕ−ik
define the sets of nodes that follow and precede i ∈ N ′ when using vehicle k ∈ K, respectively. As
expected, if a given node i is not possible to be visited by a vehicle (or pair of vehicles) due to the
network preprocessing, sets ϕ+

ik(δ
+
irl) and ϕ

−
ik(δ

−
irl) will result in an empty set.
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Parameters: the problem parameters are defined as follows.

Cv Fixed usage cost of vehicle v ∈ V

c′v Usage cost per distance unit of vehicle v ∈ V

d′ij Travel distance between node i ∈ (N ∪N ′) and node j ∈ (N ∪N ′)

cv Usage cost per time unit of vehicle v ∈ V

dij Travel time between node i ∈ (N ∪N ′) and node j ∈ (N ∪N ′)

si Service time of operation being performed at node i ∈ (N ∪N ′)

T Duration of the planning horizon

Note that parameter si relates to the necessary time for each operation to be performed by a
vehicle in a specific node, e.g., the time a loader takes to load a specific truck-load, or the time a
truck needs to perform the unloading operation at unloading nodes.

4.2.2 Decision variables

For each one of the routing sub-problems, a vehicle flow formulation is used. For the sub-problem
concerning the trucks routes, a standard set of binary three-index path decision variables was
considered. In respect to lorries and loaders, a new set of decision variables was needed to address
movement synchronisation aspects. To that effect, a similar modelling approach to the one in Kim
et al. (2010) is adopted. Consider a unique set of binary four-index path decision variables xrlij ,
taking the value 1 if arc (i, j) is traversed by lorry r and loader l simultaneously, 0 otherwise. For
situations where the lorry moves without the loader, for example, a fictitious entity replaces the
index of the missing entity. Therefore, xrχij would mean that lorry r traverses arc (i, j) carrying the
fictitious loader χ. By using these decision variables, movement synchronisation is easily introduced
(or removed) in the model, thus avoiding the addition of unnecessary synchronisation constraints.

Additionally, due to the need to ensure synchronisation requirements, it is necessary to define
additional decision variables which will account for the arrival time of vehicles to locations.

Therefore, the models decision variables are the ones that follow.

xrlij

1 if arc (i, j) ∈ A is traversed by lorry r ∈ R? and loader l ∈ L? simultaneously;

0 otherwise.

ykij

1 if arc (i, j) ∈ A′ is traversed by truck k ∈ K;

0 otherwise.

tiv Arrival time of vehicle v ∈ V at location i ∈ (N ∪N ′)

4.2.3 Objective function

The objective function (equation (1)) consists in minimising the overall costs. It contains three
main components: equation (1a) corresponds to the sum of fixed costs for each one of the types of
vehicles (lorries, loaders and trucks), and equation (1b) corresponds to the costs associated with
the travelled distance for each type of vehicle. Equation (1c) corresponds to vehicle time costs: it
accounts for the total time each vehicle spent in performing its routes and therefore is computed
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by using the arrival time of each vehicle at depot sink nodes. This summand is the one that guides
the MIP model towards the minimisation of the makespan of each vehicle, which corresponds to
the elapsed time since the start of the work day up to the time instant it finishes its route. All
vehicles start the work day at time 0.

min
∑
r∈R

∑
l∈L?

∑
j∈O−

∑
i∈δ−jrl

Cr · xrlij +
∑
l∈L

∑
r∈R?

∑
j∈O−

∑
i∈δ−jrl

Cl · xrlij +
∑
k∈K

∑
j∈O−

∑
i∈ϕ−jk

Ck · ykij (1a)

+
∑
r∈R

∑
l∈L?

∑
(i,j)∈A

d′ij · c′r · xrlij +
∑
l∈L

∑
r∈R?

∑
(i,j)∈A

d′ij · c′l · xrlij +
∑
k∈K

∑
(i,j)∈A′

d′ij · c′k · ykij (1b)

+
∑
v∈V

∑
j∈O−

cv · tjv (1c)

4.2.4 Constraints

The constraints directly related to lorries correspond to equations (2)-(8). Constraints (2)-(3)
guarantee the depot is the start and end of all lorry routes. Constraints (4) ensure the intermediate
depot nodes are only visited by lorries if they have already left the depot start node. Constraints
(5) establish the route inflow-outflow conditions for lorries. Constraints (6)-(7) set the lorries
arrival times at nodes. Constraints (8) are linking constraints between the arrival times at nodes
and the assigned routes to lorries.

∑
l∈L?

∑
i∈O+

∑
j∈δ+irl

xrlij =
∑
l∈L?

∑
j∈O−

∑
i∈δ−jrl

xrlij ∀r ∈ R (2)

∑
l∈L?

∑
i∈O+

∑
j∈δ+irl

xrlij ≤ 1 ∀r ∈ R (3)

∑
l∈L?

∑
j∈δ+irl

xrlij ≤
∑
l∈L?

∑
o∈O+

∑
j∈δ+irl

xrloj ∀r ∈ R,∀i ∈ Ô (4)

∑
l∈L?

∑
i∈δ−jrl

xrlij =
∑
l∈L?

∑
i∈δ+jrl

xrlji ∀r ∈ R,∀j ∈ N \ (O+ ∪O−) (5)

si + dij ≤ tjr +M ·

(
1−

∑
l∈L?

xrlij

)
∀r ∈ R,∀i ∈ O+,∀j ∈ N \O+ (6)

tir + si + dij ≤ tjr +M ·

(
1−

∑
l∈L?

xrlij

)
∀r ∈ R,∀i 6∈ O+,∀j ∈ N \O+ (7)

tjr ≤M ·
∑
l∈L?

∑
i∈δ−jrl

xrlij ∀r ∈ R,∀j ∈ N \O+ (8)

The constraints related to loaders correspond to equations (9)-(15) and are now introduced.
Constraints (9)-(10) guarantee the depot is the start and end of all loader routes. Constraints (11)
ensure the intermediate depot nodes are only visited by loaders if they have already left the depot
start node. Constraints (12) establish the route inflow-outflow conditions for loaders. Constraints
(13)-(14) set the loaders arrival times at nodes. Constraints (15) are linking constraints between
the arrival times at nodes and the assigned routes to loaders.
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∑
r∈R?

∑
i∈O+

∑
j∈δ+irl

xrlij =
∑
r∈R?

∑
j∈O−

∑
i∈δ−jrl

xrlij ∀l ∈ L (9)

∑
r∈R?

∑
i∈O+

∑
j∈δ+irl

xrlij ≤ 1 ∀l ∈ L (10)

∑
r∈R?

∑
j∈δ+irl

xrlij ≤
∑
r∈R?

∑
o∈O+

∑
j∈δ+irl

xrloj ∀l ∈ L,∀i ∈ Ô (11)

∑
r∈R?

∑
i∈δ−jrl

xrlij =
∑
r∈R?

∑
i∈δ+jrl

xrlji ∀l ∈ L,∀j ∈ N \ (O+ ∪O−) (12)

si + dij ≤ tjl +M ·

(
1−

∑
r∈R?

xrlij

)
∀l ∈ L,∀i ∈ O+,∀j ∈ N \O+ (13)

til + si + dij ≤ tjl +M ·

(
1−

∑
r∈R?

xrlij

)
∀l ∈ L,∀i 6∈ O+,∀j ∈ N \O+ (14)

tjl ≤M ·
∑
r∈R?

∑
i∈δ−jrl

xrlij ∀l ∈ L,∀j ∈ N \O+ (15)

The constraints related to trucks correspond to equations (16)-(21) and are the ones that follow.
Constraints (16)-(17) guarantee the depot is the start and end of all truck routes. Constraints (18)
establish the route inflow-outflow conditions for trucks. Constraints (19)-(20) set the trucks arrival
times at nodes. Constraints (21) are linking constraints between the arrival times at nodes and
the assigned routes to trucks.

∑
i∈O+

∑
j∈ϕ+

ik

ykij =
∑
j∈O−

∑
i∈ϕ−jk

ykij ∀k ∈ K (16)

∑
i∈O+

∑
j∈ϕ+

ik

ykij ≤ 1 ∀k ∈ K (17)

∑
i∈ϕ−jk

ykij =
∑
i∈ϕ+

jk

ykji ∀k ∈ K,∀j ∈ N ′ \ (O+ ∪O−) (18)

si + dij ≤ tjk +M ·
(
1− ykij

)
∀k ∈ K,∀i ∈ O+,∀j ∈ N ′ \O+ (19)

tik + si + dij ≤ tjk +M ·
(
1− ykij

)
∀k ∈ K,∀i 6∈ O+,∀j ∈ N ′ \O+ (20)

tjk ≤M ·
∑
i∈ϕ−jk

ykij ∀k ∈ K, ∀j ∈ N ′ \O+ (21)

The following equations (22)-(27) establish that all pickup and delivery nodes are visited by its
appropriate vehicles exactly once. Constraints (22) ensure that exactly one lorry and one loader
arrive at decoupling nodes at pickup locations. Constraints (23) and (24) guarantee that exactly
one loader and one truck can visit loading nodes, respectively. Constraints (25) and (26) ensure
that exactly one lorry and one loader can visit coupling nodes, respectively. Finally, constraints
(27) guarantee that all loading and unloading nodes are visited exactly once by a truck.

∑
r∈R

∑
l∈L

∑
i∈δ−jrl

xrlij = 1 ∀j ∈ P+ (22)
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∑
l∈L

∑
i∈δ−jσl

xσlij = 1 ∀j ∈ P̂ (23)

∑
k∈K

∑
i∈ϕ−jk

ykij = 1 ∀j ∈ P̂ (24)

∑
r∈R

∑
i∈δ−jrχ

xrχij = 1 ∀j ∈ P− (25)

∑
l∈L

∑
i∈δ−jσl

xσlij = 1 ∀j ∈ P− (26)

∑
k∈K

∑
i∈ϕ−jk

ykij = 1 ∀j ∈ (P ? ∪D?) (27)

Constraints (28) are sub-tour elimination constraints. They avoid lorries and loaders from
performing sub-tours through depot intermediate nodes and travelling a lower distance than from
visiting a location directly. Depending on how the distance matrix of the problem is conceived,
these constraints may or not be needed. If euclidean distances (both for time and distance) are
considered, these constraints are not necessary, as vehicles will always prefer to travel a lower
distance. If real distance matrices are considered where the objective is to minimize travel time or
distance, these constraints should be introduced into the model, as in these situations the triangle
inequality assumption does not hold. With these additional constraints, vehicles will not be able
to visit an intermediate depot node without either performing a loader drop-off or a pickup, i.e.
vehicles cannot leave these nodes in the same form as they arrived.

∑
i∈δ−jrl

xrlij +
∑
i∈δ+jrl

xrlji ≤ 1 ∀j ∈ Ô,∀r ∈ R?,∀l ∈ L? (28)

The synchronisation constraints that link the different routing sub-problems correspond to
equations (29)-(30).

∑
r∈R

tir =
∑
l∈L

til ∀i ∈ (P+ ∪ P−) (29)∑
l∈L

til =
∑
k∈K

tik ∀i ∈ P̂ (30)

Constraints (29) establish that lorries and loaders must arrive to the pickup decoupling and coupling
nodes at the same time and therefore must wait in their previous nodes until both are available to
arrive at the same time. Constraints (30) are analogous to constraints (29) and ensure that trucks
arrive at pile loading nodes at the same time as loaders.

Finally, decision variables domain is presented in equations (31):

xrlij ∈ {0, 1}, ykij ∈ {0, 1}, 0 ≤ tiv ≤ T. (31)

4.2.5 Valid inequalities

We now present valid inequalities that can tighten the mathematical formulation and induce im-
provements in the branch-and-bound procedure. All of the presented inequalities can be added
statically with the model constraints.
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One of the three sets of valid inequalities that follow can be used to reduce the occurrence of
symmetric solutions on the vehicle allocation. They are VRP-specific valid inequalities adapted
from the literature (e.g. Sherali and Smith (2001); Adulyasak et al. (2014)). Assuming that
Ro =

{
r1, r2, ..., r|Ro|

}
, Lo =

{
l1, l2, ..., l|Lo|

}
, Ko =

{
k1, k2, ..., k|Ko|

}
define the sets of lorries,

loaders and trucks that depart from depot o ∈ O, respectively, and that the cost structures (i.e.
fixed and variable costs) of each vehicle are equal to the ones of its peers, the symmetry-breaking
constraints SB1–SB3 that follow can be applied between ordered pairs of vehicles, according to the
desired vehicle allocation order.

The first set of symmetry-breaking constraints (SB1) is presented in equations (32)-(34) and it
specifies that a certain vehicle can only be used if another identical vehicle is already being used.

∑
l∈L?

∑
i∈O+

∑
j∈δ+ir(n+1)l

x
r(n+1)l

ij ≤
∑
l∈L?

∑
i∈O+

∑
j∈δ+irnl

xrnlij ∀o ∈ O, 1 ≤ n ≤ |Ro| − 1 (32)

∑
r∈R?

∑
i∈O+

∑
j∈δ+irl(n+1)

x
rl(n+1)

ij ≤
∑
r∈R?

∑
i∈O+

∑
j∈δ+irln

xrlnij ∀o ∈ O, 1 ≤ n ≤ |Lo| − 1 (33)

∑
i∈O+

∑
j∈ϕ+

ik(n+1)

y
k(n+1)

ij ≤
∑
i∈O+

∑
j∈ϕ+

ikn

yknij ∀o ∈ O, 1 ≤ n ≤ |Ko| − 1 (34)

The second set of symmetry-breaking constraints (SB2) is presented in equations (35)-(37),
which consist in alternative tighter constraints that order vehicle allocation by the number of
traversed arcs by each vehicle. These constraints further reduce the number of symmetric solutions,
compared with SB1.

∑
l∈L?

∑
(i,j)∈A

x
r(n+1)l

ij ≤
∑
l∈L?

∑
(i,j)∈A

xrnlij ∀o ∈ O, 1 ≤ n ≤ |Ro| − 1 (35)

∑
r∈R?

∑
(i,j)∈A

x
rl(n+1)

ij ≤
∑
r∈R?

∑
(i,j)∈A

xrlnij ∀o ∈ O, 1 ≤ n ≤ |Lo| − 1 (36)

∑
(i,j)∈A′

y
k(n+1)

ij ≤
∑

(i,j)∈A′
yknij ∀o ∈ O, 1 ≤ n ≤ |Ko| − 1 (37)

The third set of symmetry-breaking constraints (SB3), presented in equations (38)-(40), also
reduces the number of symmetric solutions by ordering allocated vehicles by their travelled distance
in the solution.

∑
l∈L?

∑
(i,j)∈A

d′ij · x
r(n+1)l

ij ≤
∑
l∈L?

∑
(i,j)∈A

d′ij · x
rnl
ij ∀o ∈ O, 1 ≤ n ≤ |Ro| − 1 (38)

∑
r∈R?

∑
(i,j)∈A

d′ij · x
rl(n+1)

ij ≤
∑
r∈R?

∑
(i,j)∈A

d′ij · x
rln
ij ∀o ∈ O, 1 ≤ n ≤ |Lo| − 1 (39)

∑
(i,j)∈A′

d′ij · y
k(n+1)

ij ≤
∑

(i,j)∈A′
d′ij · y

kn
ij ∀o ∈ O, 1 ≤ n ≤ |Ko| − 1 (40)

Besides breaking solution symmetry by ordering vehicle allocation, it is also possible to order
identical pickup and delivery requests. In fact, if the total quantity demanded by a delivery location
coming from a certain pickup location exceeds a full truck-load, the arrival times of vehicles of
loading and unloading nodes can be established in a given order. Note that this only applies to
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truck-load requests whose associated quantities are equal, as well as its origin and destination
locations. This fourth set of symmetry-breaking constraints (SB4) is presented in equations (41)-
(42).

∑
v∈(L∪K)

tiv ≤
∑

v∈(L∪K)

ti′v ∀p ∈ P, i, i′ ∈ P̂p (41)

∑
k∈K

tjk ≤
∑
k∈K

tj′k ∀d ∈ D, j, j′ ∈ D?
d (42)

Finally, we present a set of valid inequalities whose purpose is to set lower bounds (LB1)
to vehicles arrival times at depot sink nodes. The principles behind these valid inequalities are
presented in Meisel and Kopfer (2012) and were adapted to our specific case. These constraints
are present in equations (43)-(45), taking into account the minimum required travel and service
times for each vehicle type.

For lorries, constraints (43) take into account the minimum required travel times for arriving
and leaving a pickup location, plus the service times for performing the decoupling and coupling
operations of a loader. These lower bounds become active if lorries visit these pickup locations.

For loaders, constraints (44) take into account the minimum required travel times for arriving
and leaving a pickup location, plus the service times at loading, decoupling and coupling nodes.
These lower bounds become active if loaders visit these pickup locations.

For trucks, constraints (45) take into account the minimum required travel times for arriving
at a pickup location of a specific request, the service time for the request’s loading node, the travel
time from the pickup and the delivery location, the service time for the request’s unloading node
and the minimum required travel time when departing from the delivery location. These lower
bounds become active if trucks perform a specific request.

∑
j∈O−

tjr ≥
∑
l∈L

∑
p∈P

∑
i∈δ−

P
+
p rl

min
i∈N

{
dip + sP+

p

}
· xrl

iP+
p
+

+
∑
l∈L

∑
p∈P

∑
j∈δ+

P
−
p rl

min
i∈N

{
dip + sP−p

}
· xrl

P−p j
∀r ∈ R (43)

∑
j∈O−

tjl ≥
∑
r∈R

∑
p∈P

∑
i∈δ−

P
+
p rl

 min
j,j′∈N

{djp + dpj′}+
∑
p′∈P?p

sp′

 · xrl
iP+
p

∀l ∈ L (44)

∑
j∈O−

tjk ≥
∑
p∈P̂

∑
d∈D?

min
i,j∈N

{dip + sp + dpd + sd + ddj} · ykpd ∀k ∈ K (45)

It should be noted that symmetry-breaking constraints SB1–SB3 cannot be combined in the
same model, as they would render it infeasible. On the other hand, constraints SB4 and LB1 may
be combined with any of the other presented inequalities.

5 Matheuristic solution method

Routing problems with inter-vehicle synchronisation have an additional difficulty when developing
solution methods, as changing a vehicle’s route may have negative effects in the feasibility of other
routes.
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The solution approach proposed comprises two main phases. The first phase consists in ob-
taining an initial solution, where slight adaptations to the MIP model need to be considered. The
second phase consists in the implementation of a fix-and-optimise matheuristic approach grounded
on the principles of a variable neighbourhood decomposition search (VNDS). The following sub-
sections will outline these two phases.

5.1 Initial solution

Due to all the intricacies present in the problem at hand and in VRPs with synchronisation in
general, the main bottleneck when developing solution methods for large instances of these problems
consists in solution feasibility.

The initial tests performed with the largest case-study instances showed that the commercial
solver had difficulties obtaining an initial solution. For some cases the solver was not able to find
any feasible solution within a two hour time limit. In order to overcome this problem and to allow
a fast convergence into the feasible domain, high penalty costs for unaccomplished pickup/delivery
requests were introduced into the objective function, thus allowing infeasible solutions to be con-
sidered in early stages of the algorithm.

The addition of penalties for unaccomplished requests has some repercussions in the model
described in the previous section. Constraints (22)-(27), which ensure that all nodes are visited,
were adapted with an additional decision variable together with the routing decision variables, so
that a node visit can be skipped. To that effect, new decision variables are defined as follows.

zij

1 if request from loading node i ∈ P̂ to unloading node j ∈ D? is not being satisfied;

0 otherwise.

z′p

1 if no requests at pickup location p ∈ P are being satisfied;

0 otherwise.

Decision variables zij will be applied to constraints relating to the corresponding nodes of the
request they refer to. Decision variables z′p are applied to the constraints relating to the pickup
coupling and decoupling nodes and their purpose is to ensure that these nodes are not visited
when no requests are being satisfied in that location. These two new sets of variables are linked
by constraints (46).

z′p ≥
∑
i∈P̂p

∑
j∈D?

zij −
∣∣∣P̂p∣∣∣+ 1 ∀p ∈ P (46)

The interpretation of these constraints is as follows: for a given pickup location p ∈ P , if∑
zij =

∣∣∣P̂p∣∣∣, i.e. the number of unaccomplished requests in p is equal to the number of loading
nodes, these two summands cancel each other and z′p will necessarily be equal to 1. Note that it is
not necessary to include additional constraints ensuring the contrapositive situation, i.e. that z′p
can only take value 0 if

∑
zij <

∣∣∣P̂p∣∣∣, as the model’s underlying transportation network is already
able to ensure this situation.

The addition of these penalty variables allows the solver to immediately obtain an initial (trivial)
solution, where all requests are unaccomplished. Afterwards, the solver is given an initial time limit
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TL0 to search for better solutions and start satisfying some requests, so that the matheuristic
algorithm that follows does not start so far from the feasible domain.

5.2 Solution approach: fix-and-optimise

The proposed solution method consists in an improvement matheuristic under a fix-and-optimise
(FO) framework, similar to the one proposed by Helber and Sahling (2010). The concept behind
FO resides in solving smaller MIP sub-problems in an iterative manner so that the computational
burden from the high number of integer variables is reduced.

In each iteration, FO uses the best found solution (incumbent solution) as an initial solution
for the mathematical solver. From the incumbent solution, a sub-problem is defined by fixing a
portion of the binary variables which value is equal to 1, leaving the remaining decision variables
(not used in the solution) to be optimised by the mathematical solver.

The outline of the sub-problems is a critical aspect of the FO procedure. Sub-problems need to
take into account possible variable interdependencies in order to avoid entrapment in local optima.
In our case, variable interdependencies can be verified through vehicles routes dependency. In fact,
if two vehicle routes need to be synchronised at a given location and only one of them is fixed,
the other route will typically remain the same, as synchronisation constraints will need to be met.
Therefore, it is necessary to reach a compromise so that variables dependencies are attenuated and
sub-problem size is not significantly large.

The outline of the matheuristic is present in Algorithm 1. FO sub-problems construction is
outlined in lines 7-12. It consists in randomly selecting a given number of pickup locations for which
all associated routing decision variables will be released, regardless of the type of vehicle, while
fixing all remaining variables in the solution whose value is equal to 1. In the early stages of the
algorithm, it is likely that the incumbent solution will be “infeasible” (i.e. having unaccomplished
requests), and in these situations, the selection of the first location to be included in the sub-
problem will only consider locations whose requests are not yet completely satisfied, thus allowing
to reach problem-feasible solutions more quickly.

The optimisation process of each sub-problem is outlined in line 14. Each optimisation iteration
is given an initial time limit TLit, which is increased by TLinc if a new incumbent solution is found
during that initial time.

After obtaining an initial solution and objective function values (x0, f0) in lines 1-2, the
matheuristic is executed under a VNDS framework where the number of locations in a sub-problem
is increased until new incumbent solutions are found. After each FO iteration the resulting so-
lution (xsolve, fsolve) from the optimisation process is evaluated against the incumbent solution
(xcur, fcur) in lines 15-17. In case of an improvement, sub-problem construction is restarted with
two random locations (n = 2). Otherwise, an additional location is added into the current sub-
problem up to the maximum sub-problem size, given by parameter N .

6 Computational experiments

The proposed model was applied to a case-study in the biomass supply chain, inspired in a wood
chips supplier company operating in Southern Finland. The mathematical model was implemented
in the Gurobi 7.5 commercial solver. The solution method was implemented in Python 3.6. The
performance of the proposed solution method was tested in problem instances of increasing size
in terms of number of pickup/delivery requests and number of vehicles. The results for a baseline
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Algorithm 1: Matheuristic outline
input: MIPmodel (mixed integer programming model),

TL0 (time limit for obtaining an initial solution),
TLit (initial time limit for a solver iteration),
TLinc (time limit increment in solver iteration if new incumbent solution is found),
N (maximum neighbourhood size)

1 x0, f0 = MIPsolve(MIPmodel, TL0);
2 xcur = x0; fcur = f0;
3 while termination criteria not met do
4 n = 1; selected_locs = ∅;
5 while n < N do
6 n = n + 1;
7 release binary variables of MIPmodel
8 while |selected_locs| < n do
9 append random location to selected_locs

10 foreach var in xcur do
11 if var = 1 and var not associated with any location in selected_locs then
12 fix var

13 feed MIPmodel with initial solution xcur
14 xsolve, fsolve = MIPsolve(MIPmodel, TLit, TLinc);
15 if fsolve < fcur then
16 n = 1; selected_locs = ∅; xcur = xsolve; fcur = fsolve;

17 else n = n + 1;

18 print xcur, fcur

instance are described in detail, with emphasis on fleet sizing, the vehicle routes and schedules and
the accomplishment of the synchronisation aspects.

The model was also used to compare the obtained plan with the currently adopted planning
approach by the supplier, in which synchronisation between lorries and loaders is not taken into
account. Finally, some additional managerial insights are provided about the biomass logistics that
are relevant to improve planning and decision making in this sector.

6.1 Case-study

The company under study is responsible for sizing, assigning and scheduling the vehicles needed
for performing the daily chipping and transportation operations that correspond to the contracted
wood chips requests. A request is a certain amount of spruce wood chips to be transported be-
tween each pickup location and each destination, established beforehand as a result of the biomass
distribution plan for that week, as discussed in Marques et al. (2018). The amounts of material
to be transported are expressed in bulk cubic meters (b-m3), which translate the effective amount
of wood chips obtained from raw materials in its “unchipped” state. Empirically, it is commonly
accepted that 1 m3of roundwood corresponds to 3 b-m3of wood chips and 1 tonne of wood chips
corresponds to 4 b-m3of spruce wood chips (Francescato et al., 2008).

The baseline case for this research is the biomass operations scheduling plan for a certain region
“A”, encompassing 15 requests of full truck-loads for a given planning day. The capacity of each
truck is 76 b-m3and the total amount of wood chips to be delivered is 940.3 b-m3. There are 5
wood piles of spruce forest residues geographically dispersed and ready to be chipped, also called
pickup locations.

The number of available vehicles are 3 lorries, 3 loaders and 7 trucks. Vehicles fixed costs
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correspond to e 200 for lorries and e 4500 for loaders. The costs related to vehicles travelled
distance is 1.00, 1.50 and 1.20 euros per travelled km for lorries, loaders and trucks, respectively.
Finally, vehicle costs per expended minute correspond to 0.67, 5.00 and 1.42 euros for lorries,
loaders and trucks, respectively.

The considered productivity of loaders is 42 b-m3/h, meaning that a total of 42 b-m3of wood
chips can be produced per hour from the original raw materials (Yoshida et al., 2016). The
service time of each truck-load request is calculated by the quotient of its amount by the loader
productivity. A full truck-load will have a loading operation time of 109 min. Given the total
available amount of 940.3 b-m3, the loaders total working time will amount to 22.4h.

Trucks transportation capacity is assumed to be equal to 19 t, which corresponds to a maximum
capacity of 76 b-m3, a value coherent with the estimates given by Francescato et al. (2008). Each
unloading operation at delivery nodes will be proportional to the amount of each transported
truck-load so that unloading a truck at its full capacity will amount to 20 min of expended time.
Additionally, it is assumed that loader decoupling and coupling operations at depots and pickup
locations take 10 min.

The considered duration of the planning horizon is 12 hours, from 8:00 to 20:00. The average
travel time between locations is equal to 17.5 min, varying between 3 and 34 min. Travel distances
between locations, on the other hand, vary between 2 and 27 km, with an average distance of 13.8
km. The distances between locations were computed by resorting to the national road database of
Finland (http://www.liikennevirasto.fi/avoindata/digiroad).

During the data preprocessing phase, the pickup locations were split into truck-load equiva-
lents, as explained in the node creation procedure, which originated the 15 pickup loading nodes
corresponding to each request. The average number of requests fulfilled by a pickup location is
3. There are 3 different delivery locations for the sum of the daily requests, meaning that each
delivery location, in average, will receive 5 truck-loads. For the baseline instance, a single depot is
considered.

Additional instances were considered for analysing the performance of the solution method, as
presented in Table 3, where instance A5 corresponds to the baseline case described earlier. They
consist in variants of the baseline case instance of region “A” through the addition or removal of
pickup locations. Specifically, instance A4 corresponds to removing the pickup location that is
farther from the depot, instance A3 corresponds to removing the two farthest pickup locations
from the depot, while instance A6 corresponds to adding a new pickup location that is closest to
the depot, and so on. For the purpose of completeness, a second region “B” is also considered, with
different locations and a different fleet. The rationale behind these instances is analogous to the
one used for generating instances for region A. For each instance the number of vehicles of each
type was progressively reduced or enlarged according to the number of requests demanded in each
case. Finally, instances “C” are multi-depot instances, used for the sole purpose of evaluating the
adequateness of the solution approach in these situations.

The total quantities to be delivered vary between 535.0 and 1712.3 b-m3. Due to instances
being based on real data, adding or removing one location may result in a big or small increase or
decrease in the total quantity to be transported, depending on the actual quantity the new location
has available.

6.2 Performance of the solution approaches

The contents of this subsection are threefold: first, the baseline results for the MIP solver approach
are introduced and analysed. Afterwards, we evaluate the impact of introducing different combi-

http://www.liikennevirasto.fi/avoindata/digiroad
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nations of the valid inequalities presented earlier in this paper. Finally, we compare the results
obtained by the matheuristic approach with the baseline results.

All computational experiments were performed in an Intel Xeon E5-2680v2 @ 2.80 GHz CPU,
with capacity for 20 simultaneous processing threads, with a maximum time limit of two hours for
each instance.

6.2.1 Exact approach: mixed integer programming solver

Table 3 summarizes the obtained results for the MIP solver in all 19 problem instances. In it, the
main features of each problem instance are shown, as well as the main indicators of the solution
approach, namely the final value of the objective function, the percentual MIP gap computed by
Gurobi, the runtime after which no solution improvement was found within the established time
limit, as well as the initial and final linear relaxation of the branch-and-bound procedure (root
relaxation and best bound, respectively).

Table 3: Results for the MIP solver approach

Instance

Instance Size MIP Solver

Locations Vehicles
available Requests Objective

Function
MIP
Gap

Runtime
(s)

Root
Relaxation

Best
Bound

Model size Vehicles used
(R / L / K)

|O| |P | |D| |R| |L| |K| No.
Total

quantity
(b-m3)

Decision
variables

(bin. / cont.)
Constraints

A2 1 2 1 2 2 7 9 535.0 14,386 12.5% 4,409 9,203 12,584 960 / 179 1,591 1 / 2 / 3

A3 1 3 1 3 3 7 11 682.3 19,363 15.5% 4,093 14,321 16,359 1567 / 248 2,368 2 / 2 / 4

A4 1 4 2 3 3 7 13 815.3 25,549 31.7% 4,997 16,607 17,449 2110 / 294 3,026 3 / 3 / 4

A5 1 5 3 3 3 7 15 940.3 27,845 16.1% 5,144 19,294 23,365 2733 / 340 3,758 3 / 3 / 4

A6 1 6 3 3 3 7 16 974.3 28,097 16.0% 4,026 19,910 23,611 3172 / 369 4,245 2 / 3 / 5

A7 1 7 4 4 4 8 18 1,123.3 41,878 33.0% 6,982 27,194 28,069 5068 / 504 6,113 3 / 4 / 7

A8 1 8 4 4 4 8 19 1,183.3 ——– ——– ——– 28,479 29,409 5800 / 540 6,802 ——–

A9 1 9 4 5 5 9 21 1,279.3 49,914 26.7% 6,791 35,290 36,590 8821 / 702 9,296 3 / 4 / 6

B2 1 2 1 2 2 7 8 500.0 13,131 4.4% 1,814 8,035 12,557 792 / 163 7,452 2 / 2 / 4

B3 1 3 1 3 3 7 11 720.0 19,268 13.0% 420 14,269 16,772 1543 / 248 12,422 2 / 2 / 4

B4 1 4 2 3 3 7 14 900.0 26,431 30.6% 2,418 17,954 18,349 2297 / 311 17,210 3 / 3 / 5

B5 1 5 2 3 3 7 15 961.7 27,256 13.8% 6,445 19,149 23,496 2711 / 340 1,371 3 / 3 / 5

B6 1 6 2 3 3 7 16 986.7 28,269 15.4% 1,822 20,234 23,914 3154 / 369 2,344 3 / 3 / 4

B7 1 7 3 4 4 8 18 1,116.7 34,840 21.4% 4,237 26,880 27,371 5044 / 504 3,285 3 / 3 / 5

B8 1 8 3 5 5 9 22 1,386.7 50,890 24.7% 5,645 37,186 38,335 8600 / 705 3,740 4 / 4 / 7

B9 1 9 3 6 6 10 26 1,636.7 ——– ——– ——– 50,576 51,299 13594 / 938 4,227 ——–

C4 2 4 2 4 4 12 17 1,035.0 34,243 20.9% 6,908 27,098 27,098 5788 / 612 6,089 3 / 3 / 6

C6 2 6 2 6 6 12 22 1,402.3 61,048 28.1% 7,141 43,899 43,899 11532 / 900 9,413 5 / 4 / 10

C8 2 8 4 6 6 12 27 1,715.3 ——– ——– ——– 52,834 52,834 16812 / 1098 13,699 ——–

The results show that Gurobi is unable to prove optimality for any of the solutions if finds
within the established time limit, even for smaller instances. For the smaller instance A2 and B2,
the estimated MIP gap is 12.5% and 4.4%, respectively, obtained after 4,409 and 2,270 seconds.
For the baseline instance A5 the final objective function value with the MIP solver is obtained
after 5144 seconds with a gap of 16.1%. Larger instances (e.g. A8, A9, B8, B9, C6, C8) yield a gap
between 20% and 32%. Additional tests for for instances A2, A5 and C6 show that even when the
stopping criterion is set to 48 hours the MIP solver still fails to find optimum solution with little
improvements in the MIP gap for instances A5 and C6, and the obtained solution for instance A2
is proven to be optimal in approximately 40 hours.

Within the established time limit, Gurobi is able to increase the initial root relaxation in 16 out
of the 19 instances, exceptions being instances C4, C6 and C8. In general, the results show that,
as instance size increases, the increase in the root relaxation value is less expressive. For example,
in instance A2 the root relaxation increases by a order of 3,000, while instance A9 only yields an
increase of around 1,000. This analysis suggests that, as instance size increases, Gurobi is not able
to keep up with the increase of the number of nodes in the search tree, due to the combinatorial
nature of the problem at hand. This conclusion motivates the tests that follow, where several valid
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inequalities will be tested with the purpose of reducing the size of the branch-and-bound tree in
need to be explored by the MIP solver.

6.2.2 Exact approach: valid inequalities

In order to validate the adequacy of the valid inequalities in facilitating solution convergence, a
new set of computational experiments was run in Gurobi. In these tests, all feasible combinations
of valid inequalities were tested for each problem instance, resulting in a total of 15 combinations
of valid inequalities and a total of 285 solver runs.

The main indicators used for the assessment of the valid inequalities were the percentual im-
provements of the root relaxation, best bound and final solution values against the baseline MIP
solver approach, without valid inequalities, and within the established time limit. Table 4 sum-
marises these indicators.

Table 4: Main indicators of the use of valid inequalities

Valid inequalities Root Relaxation Improvement Best Bound Improvement Solution Improvement

SB1 / SB2 / SB3 SB4 LB1 Minimum Median Average Maximum Minimum Median Average Maximum Minimum Median Average Maximum

—

— LB1 10.3% 14.5% 14.1% 17.4% 2.5% 11.5% 14.0% 39.9% -2.1% 0.0% 1.2% 18.4%

SB4
— 7.9% 11.5% 11.0% 15.2% 4.6% 10.2% 12.7% 39.8% -1.5% 0.2% 0.7% 7.0%

LB1 10.3% 14.5% 14.1% 17.4% 4.6% 13.1% 15.8% 42.3% -3.9% 0.0% 1.2% 17.2%

SB1

—
— 7.9% 11.5% 11.2% 17.5% 2.5% 10.5% 11.5% 21.7% -13.1% 0.0% -1.3% 1.2%

LB1 10.3% 14.5% 14.3% 19.2% 2.0% 12.2% 16.1% 39.9% -1.7% 0.0% 0.7% 12.2%

SB4
— 7.9% 11.5% 11.3% 17.5% 4.6% 11.5% 14.0% 39.5% -3.2% 0.0% 1.5% 19.7%

LB1 10.3% 14.5% 14.3% 19.2% 4.6% 14.6% 17.4% 40.8% -13.8% -0.1% 0.5% 17.3%

SB2

—
— 7.9% 11.5% 11.2% 17.5% 1.5% 9.0% 8.5% 12.2% -16.0% -0.3% -1.6% 1.0%

LB1 10.3% 14.5% 14.1% 18.3% 1.4% 11.9% 14.4% 40.0% -19.8% -0.9% -2.2% 1.0%

SB4
— 7.9% 11.5% 11.3% 17.5% 4.6% 9.7% 13.0% 39.2% -7.9% -0.1% -0.8% 1.1%

LB1 10.3% 14.5% 14.3% 19.2% 4.6% 12.4% 15.1% 42.7% -18.1% 0.0% -2.5% 1.3%

SB3

—
— 7.9% 11.5% 11.2% 17.5% 2.1% 9.1% 8.6% 12.2% -19.2% -0.9% -2.7% 1.0%

LB1 10.3% 14.5% 14.1% 18.3% 3.1% 11.5% 14.2% 39.8% -20.0% -1.0% -2.4% 1.0%

SB4
— 7.9% 11.5% 11.3% 17.5% 3.9% 9.7% 12.7% 41.3% -17.4% -0.4% -1.8% 1.0%

LB1 10.3% 14.5% 14.3% 19.2% 4.6% 12.5% 15.0% 41.5% -17.6% -0.5% -2.2% 1.0%

In all combinations of valid inequalities it was possible to obtain an increase of the root relax-
ation value. The minimum root relaxation percentual increase is 7.9%, and its maximum value
is 19.2%. From the different combinations that were tested, the introduction of valid inequality
LB1 into the mathematical model has a significant effect in the root relaxation improvement: in
fact, these valid inequalities yield a minimum of 10.3% increase in this indicator. Compared with
only using constraints LB1, there is no significant change in the root relaxation improvement when
symmetry-breaking constraints are introduced into the model together with constraints LB1, thus
suggesting this latter set of constraints absorbs most of the root relaxation improvement.

Unlike the root relaxation improvement, the distribution of the best bound improvement val-
ues is far more asymmetric. The percentual improvements range from 1.4% up to 42.7%. The
variability of this indicator is lowest when using only one of the SB1, SB2 or SB3 types of valid
inequalities, although its low variability also determines a significant lower average improvement
in the best bound values.

Despite the improvements in the linear relaxation values, this does not necessarily translate
into improvements in the final solution: the average improvements in the final solution are mostly
negative or around zero percent for each combination of valid inequalities. The results show that the
most promising valid inequalities for the problem are the combination of SB1 and SB4 constraints,
leading to an average solution improvement of 1.5%. Anyhow, this improvement is observed due
to an increase in variability.

In conclusion, these results suggest that the impact of the valid inequalities in the performance
of the MIP solver is largely instance-dependent. Therefore, the branch-and-bound procedure re-
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veals itself to be inadequate for these problems, even after strengthening the model with valid
inequalities.

6.2.3 Matheuristic approach: fix-and-optimise

The used parameters for the matheuristic approach are exhibited in Table 5. These parameters
were obtained after evaluating the convergence process of the method with different values of these
parameters in a preliminary stage. The Gurobi MIP solver was also fed hint values of zero to the
penalty variables zij and z′p. This feature of Gurobi allows us to inform the solver that these hint
values should yield good quality solutions, therefore changing the branching decisions it makes to
explore the search tree. All other Gurobi parameters were set to its default values.

Table 5: Used parameters for the matheuristic approach

Parameters Value

Termination criteria Global time limit (TL) 7200s

Obtaining an initial solution Unit penalty values for zpd variables 10000

Time limit (TL0) 300s

Sub-problem construction Sub-problem sizes 2, 3, 4 pickup locations

MIP solver iteration time limit
(TLit)

15s

Time limit increment in MIP solver
iteration if new incumbent is found
(TLinc)

30s

Table 6 summarizes the matheuristic results for the 19 problem instances, including the average
value of the best objective function value (bOF) after 10 repetitions for each instance, its standard
deviation, the average runtime after which no solution improvement was found and the number of
vehicles used. The percentual difference between the bOF obtained with both methods (% diff.)
is also presented.

Table 6: Comparison of the MIP solver approach with the matheuristic approach

Instance

Instance Size MIP Solver Fix-and-Optimise

% diff.Locations Vehicles
available Requests Objective

Function
MIP
Gap

Runtime
(s)

Vehicles used
(R / L / K)

Objective
Function Runtime

(s)
Vehicles used
(R / L / K)

|O| |P | |D| |R| |L| |K| No.
Total

quantity
(b-m3)

Average Std.
Deviation

A2 1 2 1 2 2 7 9 535.0 14,386 12.5% 4,409 1 / 2 / 3 14,386 0 69 1 / 2 / 3 0.0%

A3 1 3 1 3 3 7 11 682.3 19,363 15.5% 4,093 2 / 2 / 4 19,197 47 294 1 / 2 / 3 -0.9%

A4 1 4 2 3 3 7 13 815.3 25,549 31.7% 4,997 3 / 3 / 4 25,461 65 964 2 / 3 / 4 -0.3%

A5 1 5 3 3 3 7 15 940.3 27,845 16.1% 5,144 3 / 3 / 4 27,294 89 1,290 2 / 3 / 5 -2.0%

A6 1 6 3 3 3 7 16 974.3 28,097 16.0% 4,026 2 / 3 / 5 27,754 108 2,071 3 / 3 / 5 -1.2%

A7 1 7 4 4 4 8 18 1,123.3 41,878 33.0% 6,982 3 / 4 / 7 34,850 138 3,474 3 / 3 / 5 -16.8%

A8 1 8 4 4 4 8 19 1,183.3 ——– ——– ——– ——– 41,761 179 4,081 4 / 4 / 6 ——–

A9 1 9 4 5 5 9 21 1,279.3 49,914 26.7% 6,791 3 / 4 / 6 49,294 97 4,412 4 / 4 / 6 -1.2%

B2 1 2 1 2 2 7 8 500.0 13,131 4.4% 1,814 2 / 2 / 4 13,131 0 47 2 / 2 / 4 0.0%

B3 1 3 1 3 3 7 11 720.0 19,268 13.0% 420 2 / 2 / 4 19,295 50 248 2 / 2 / 4 0.1%

B4 1 4 2 3 3 7 14 900.0 26,431 30.6% 2,418 3 / 3 / 5 26,243 53 775 3 / 3 / 5 -0.7%

B5 1 5 2 3 3 7 15 961.7 27,256 13.8% 6,445 3 / 3 / 5 27,237 97 1,437 3 / 3 / 5 -0.1%

B6 1 6 2 3 3 7 16 986.7 28,269 15.4% 1,822 3 / 3 / 4 27,734 91 1,770 3 / 3 / 5 -1.9%

B7 1 7 3 4 4 8 18 1,116.7 34,840 21.4% 4,237 3 / 3 / 5 34,410 104 2,910 2 / 3 / 5 -1.2%

B8 1 8 3 5 5 9 22 1,386.7 50,890 24.7% 5,645 4 / 4 / 7 49,970 119 5,054 3 / 4 / 7 -1.8%

B9 1 9 3 6 6 10 26 1,636.7 ——– ——– ——– ——– 69,323 266 4,860 5 / 5 / 8 ——–

C4 2 4 2 4 4 12 17 1,035.0 34,243 20.9% 6,908 3 / 3 / 6 33,904 150 1,452 3 / 3 / 5 -1.0%

C6 2 6 2 6 6 12 22 1,402.3 61,048 28.1% 7,141 5 / 4 / 10 56,522 79 2,392 3 / 4 / 7 -7.4%

C8 2 8 4 6 6 12 27 1,715.3 ——– ——– ——– ——– 70,273 197 5,350 4 / 5 / 8 ——–

Average -2.3%

For the matheuristic approach, small values of standard deviation were found for all problem
instances, thus suggesting that 10 repetitions per instance are sufficient for obtaining representative
results. As the number of pickup locations increases, as well as the number of truck-loads to be
transported, the runtime is higher, as expected. For small instances (e.g. A2, B2), it takes around
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one minute to find good admissible solutions. For instance A5 the bOF is reached after 22min and
for larger instances it takes close to 1h30min.

Within the two hours time limit, the average bOF is within the same range of the MIP solver for
practically all problem instances and it is obtained in much lower computational times. However,
in the majority of the cases (12 in 16) the difference of the bOF in both methods is below 2%. The
major differences are found in instances A7 (yielding a bOF 16.9% better in FO than in the MIP
solver) and in C6. In these cases, there is a significant difference in the total number of vehicles
used. For example, for instance A7, FO proposes 3 lorries, 3 loaders and 5 trucks while the MIP
solver estimates one additional loader and two additional trucks. In the case of instance C6, FO
proposes 4 lorries, 4 loaders and 7 trucks, while the MIP solver allocates one more lorry and three
more trucks. In the other problem instances, both solution methods point to equal conclusions
regarding the number of vehicles used, therefore the difference in terms of bOF are due to distinct
scheduling and synchronisation solutions.

In conclusion, the FO solution approach seems to be adequate to solve this problem. As the
number of pickup locations increases, it provides good quality solutions in shorter computational
time when compared with the MIP solver. For instances above 8 pickup locations the MIP solver
is typically unable to even obtain an initial solution, while the matheuristic is able to obtain
admissible solutions within the two hours time limit.

6.3 Baseline instance solution analysis

The results for the baseline instance A5, obtained with the FO approach, show that all daily
requests can be fulfilled with a fleet composed by 2 lorries, 3 loaders and 5 trucks. The total
transportation costs amount to e 27,301, from which 51% (e 13,900) correspond to daily usage
costs (i.e. fixed costs), 3% (e 799) are travel costs and 46% to vehicle time costs. Almost all fixed
costs are related to the daily use of the loaders (e 13,500). Lorries correspond to approximately
3% of the daily usage costs. In respect to travel costs, e 493 are related with the routes of the
trucks, while e 306 relate with the routes of loaders and lorries.

As expected, the loaders are the bottleneck equipment of biomass logistics. In total, the loaders
remain idle only 61 min out of the used 1708 min of the shift, yielding an average of 20 min per
loader. The loader remains at a pickup location 5 h in average. Consequently, lorries are sub-used,
as its average idle time is 3h12min per lorry.

It is noteworthy that the model indeed captures all the business aspects that lead to the
definition of feasible routes in this complex real-world problem. The routes of lorries r1 and r2 are
showed in Figure 5a, based on the real-life coordinates of all locations (depots, pickup locations
and delivery locations). As an example, r1 departures from depot o1 carrying l1 to unload it in
pickup location p3. Then, it travels empty back to depot o1, from where it departs with loader l3
to pickup location p4. Next, it travels back empty to depot o1 and finishes the route. Note that all
pickup locations are visited by lorries twice, both for loader drop-off and pickup, which suggests
that it is more advantageous to have lorries perform multiple loader pickups and drop-offs instead
of pairing with a single loader and wait in the pickup location until loading operations are done.
This is a consequence of the value of the lorry daily usage cost and the ratio of the latter and the
variable transportation cost, as discussed in section 6.5.

Figure 5a also presents the pickup assignments for loaders l1, l2 and l3. In this case, l2 is
assigned to the farthest pickup location, p5, with 5 truck-loads, so the schedule of l2 consists in
departing from the depot in the beginning of the day heading to pickup location p5 (arrival at 8:18),
remaining there all day and returning to the depot in the end of the day at 19:07. Conversely, l1
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and l3 are assigned to pickup locations closer to depot o1 and with less truck-loads, being able to
visit more than one location during the day. In fact, loader l1 is the mostly used resource during
the day.

The routes and schedules for the trucks are also presented in Figure 5a. Pickup location p5

receives 4 out of the 5 available trucks and this can be explained due to the fact that operations at
p5 have a very little time slack, and therefore the location requires trucks to arrive quickly so that
the minimum amount of time is spent. After delivering truck-loads coming from p5 to delivery
location d1, trucks usually visit other pickup locations with less truck-loads, with preference for
the ones that do not lead to queueing at the location.

The timeline with the sequence of operations in pickup location p2 is showed in Figure 5b,
evidencing the synchronisation aspects that were correctly dealt by the model. Loader l1 is dropped
at location p2 by lorry r2 at 11:45. Loader drop-off takes 10 min and then stays idle for 21 min until
the first truck (k7) arrives at 12:11. The synchronised operations are wood chipping (by l1) and
truck container loading (by k7), and takes about 66 min. The second truck (k2) arrives just 2 min
after the departure of k7 and synchronised operations are immediately started. After the second
truck-load is served, the availability in p2 is exhausted and the loader is now ready for transport.
Lorry r2 returns to location p2 at 13:41 and waits until 15:08 for the loader to be available for
pickup. Movement synchronisation corresponds to both the arrival of r2 with l1 in the morning of
the day and the departure of r2 with l1 in the end of the day.

6.4 Comparison with current planning process

The biomass operational planning process of our case-study consisted in elaborating the operational
plans manually. This was due to the fact that no planning tool for integrated fleet sizing and
vehicle routing that acknowledged inter-vehicle synchronisation was available. To that effect, the
elaboration of plans consisted in decomposing the decisions into a fleet sizing phase, followed by a
route planning phase.

One of the main limitations of this planning process consisted in the fact that not all syn-
chronisation aspects were considered because it would turn route construction more difficult to
address manually. In fact, lorries and loaders were assumed as being unique vehicles, and therefore
eventual gains from a lorry performing multiple loader pickups and drop-offs were not considered.

The fleet sizing phase relies on empirically-driven rules, such as:

1. the number of loaders required cannot exceed the number of pickup locations, and can be
estimated as a function of the total amount of material available for chipping at each pickup
location, ap, the loader average available time for chipping operations, ATL, and the loader
average productivity, w (equation (47)). This function resembles the OEE (Overall Equip-
ment Effectiveness) performance indicator that is widely used in the TPM (Total Productive
Maintenance) methodology (e.g., Singh et al. (2013));

|L| =
∑
p∈P ap

ATL · w
(47)

2. the number of lorries is equal to the number of loaders. As already stated above, the pos-
sibility of decoupling the lorry and the loader was not considered, and therefore lorries and
loaders will always move simultaneously;

3. the number of trucks required can be estimated as a function of the total amount of wood
available for chipping at each pickup location, ap, the trucks capacity, Q, the truck average
available time for transportation (ATK), the average travel time between locations, TT , and
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the average loading and unloading time, TO (equation (48));

|K| =
∑
p∈P ap · 2(TT + TO)

Q ·ATK
(48)

In this study, the total amount of available material is 940.3 b-m3. The average loader available
time is estimated in 6 h based on expert’s opinions, corresponding to the amount of time (in the
daily shift) that the loader can be working, subtracting all stopping time (i.e. transportation to
and from pickup locations, breaks, faults). The average trucks available time is estimated in 7h,
based on expert’s opinions, corresponding to the amount of time (in the daily shift) that the truck
and driver can be working, subtracting all stopping time (i.e. transportation to and from the
depot, breaks).

According to this approach the resulting number of loaders required is 3.73, rounded up to 4,
therefore one more loader than in the plan obtained with the proposed solution approach. The
number of lorries required is also equal to 4, which is double the number of lorries proposed by
our solution approach. In respect to trucks, the number of lorries required is 7.4, rounded up to 8,
therefore 2 more trucks needed than in the solution obtained in the matheuristic approach.

In order to obtain the routes corresponding to the previously sized fleet, the matheuristic
approach was run again assuming the usage of this fleet and considering that lorries and loaders
cannot be split. For this purpose the mathematical formulation presented in Section 4 was adapted
to include constraints that enforce the use of these vehicles and the transportation network pre-
processing was also changed, as explained in 4.1.4.

The obtained costs increased to e 38,142, which are 40% higher than the previously obtained
plan. In fact, because the number of lorries (and loaders) is almost equal to the number of pickup
locations, each lorry and loader will visit only one pickup location except for one loader and one
lorry, which will visit two. Therefore, a lorry and loader visit pickup location p1, followed by
location p2 after p1 is completed. Due to truck-loads of these locations being smaller than the
ones in the remaining locations, the plan chooses these two locations to be performed sequentially
rather than simultaneously, although their relative distance is fairly large.

Table 7 shows the main indicators for this current plan. Compared with our baseline plan, we
are able to acknowledge the significant increase in vehicles fixed costs, while travel costs remain
stable. Vehicles idle times, however, have greatly increased for lorries and trucks. Lorries idle time
has increased due to these vehicles now having to wait for loaders until they have completed all
truck-loads. Trucks idle time increase can be explained by the fact that most pickup locations are
being processed in an almost simultaneous manner, leading to a high demand of trucks at pickup
locations practically at the same time.

From this analysis it is possible to conclude that the routing of these vehicles is simplistic when
compared with the proposed plan, as such a solution will incur into unnecessary vehicle fixed costs
when tasks could be concentrated in a lower number of vehicles, thus taking advantage of the length
of the planning horizon. These results therefore suggest that the current planning approach did
not yield satisfactory plans because it used a significantly higher number of vehicles than necessary,
thus increasing fixed costs without having significant gains in vehicles idle time or travel costs that
would compensate its usage in the first place.

6.5 Managerial insights for biomass logistics planning

The proposed matheuristic approach was further tested for providing additional managerial insights
about the impact of key parameters of biomass logistics systems over the optimal plan. For this
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purpose, two main parameters were selected based on experts opinions. Alternative scenarios were
built for the baseline instance by changing the parameters values within a range of possible values
taken from the literature and model results were compared.

The first selected parameter is the loader’s productivity, as it defines the time needed to perform
the loading operations at pickup locations and therefore significantly impacts the ability of a lorry
having sufficient time to perform multiple loader pickups and drop-offs during the route. The
predicted impacts can range from a lower number of used lorries and/or loaders to lower vehicle
idle times in general. The considered values of loaders productivity were from 36, 42 and 60 b-
m3/h, values that are coherent with the ones in Francescato et al. (2008). The second selected
parameter is the lorries fixed costs, as it is believed that the ratio between this parameter and its
variable costs can significantly impact the number of used lorries. The considered fixed costs were
e 0, e 100 and e 200.

Consequently, 8 alternative scenarios were generated with the combination of the possible
parameter values. The results are presented in Table 7.

Table 7: Main information about the different studied scenarios

Scenario Productivity
(b-m3/h)

Lorries
fixed cost
(EUR)

Runtime
(s)

Vehicles used
(R / L / K)

Objective
Function
(EUR)

Fixed
costs
(EUR)

Travel
costs
(EUR)

Total idle time (min) Decoupling
ratio

Lorries Loaders Trucks

Baseline 42 200 1,804 2 / 3 / 5 27,301 13,900 799 383 61 320 100%

Current plan 42 200 304 4 / 4 / 8 38,142 18,800 739 1,458 65 519 0%*

Scenario 1 42 100 6,502 3 / 3 / 5 26,509 13,800 803 307 5 384 100%

Scenario 2 42 0 1,546 3 / 3 / 5 26,226 13,500 804 307 8 380 100%

Scenario 3 36 200 1,707 3 / 3 / 5 28,179 14,100 812 394 15 256 100%

Scenario 4 36 100 983 3 / 3 / 5 28,020 13,800 814 408 14 348 100%

Scenario 5 36 0 526 3 / 3 / 5 27,929 13,500 798 408 14 519 100%

Scenario 6 60 200 907 2 / 2 / 4 19,296 9,400 741 363 19 346 0%

Scenario 7 60 100 1,789 2 / 2 / 4 19,183 9,200 695 548 1 450 80%

Scenario 8 60 0 765 2 / 2 / 4 19,096 9,000 719 549 5 454 80%
Decoupling ratio = No. of decoupling situations / No. total pickup locations; * - by definition.
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The comparison of the results of the alternative scenarios shows a clear trend for using less
vehicles when loaders are more productive. The decrease in the number of vehicles reflects itself
not only on the number of used loaders, but also on the number of used lorries and trucks. This
is due to the fact that the usage of less loaders implies the occurrence of less simultaneous loading
operations, which in turn reduces the need for additional lorries and trucks.

The increase of the loader productivity from 36 b-m3/h to 42 b-m3/h appears to have very little
impact in the obtained solution, as it does not change the number of used vehicles and the decrease
of the objective function is approximately 5%. However, increasing the loader productivity from
42 b-m3/h to 60 b-m3/h has a very significant impact, mainly due to the decrease in vehicles fixed
costs.

Results analysis also contains a decoupling ratio indicator, which tells the proportion of oc-
currences where a lorry was decoupled from the loader to perform different routes. In almost all
the scenarios, including the baseline, the decoupling ratio is equal to 100%, meaning that for all
the five pickup locations the optimal route plans encompasses decoupling the lorry and loader, i.e.
the lorry departures just after the loader drop-off and the same or another lorry comes back when
the loader is ready for transport. However, when the loader productivity is equal to 60 b-m3/h
and lorries fixed cost is e 200 (scenario 6), the decoupling ratio is equal to zero, meaning that no
loader decouplings were made and all lorries and loaders behaved as unique vehicles.

In respect to the analysis of the vehicles idle time, represented in Figure 6, results suggest
that when the loader productivity is increased to 42 b-m3/h the total idle time also increases to
approximately 1,000 min, specially due to the increase of the idle time of the lorries at the pickup
locations. For the scenarios with lower productivity the total idle time is between 600 and 800
minutes, similar to the baseline.

Contrarily to our expectations, decreasing the lorry fixed cost has little impact in the increase
of the total distance costs, i.e. it does not stimulate decoupling. The results also suggest that
performing loader decouplings at pickup locations is an advantageous choice for low loader produc-
tivity values. For high productivity values there can be an incentive for not performing decouplings,
namely the lorry fixed costs. For the studied scenarios, a lorry fixed cost of e 200 with a pro-
ductivity of 60 b-m3/h induces lorries to be used as efficiently as possible, which in this case is
achieved by waiting for its loader to finish operations at the location, as loading times are now
shorter.

From the obtained results it is possible to conclude that, for this instance, the main factor
favouring loader decoupling is its productivity and not the variation of lorry fixed costs.

7 Conclusions and future work

In this work, a full truck-load pickup and delivery problem with multiple vehicle synchronisation is
presented, motivated by a real-world case-study in the biomass supply chain in Finland. Although
the literature about pickup and delivery problems is vast, there is a gap in the literature considering
the synchronisation of different types of vehicles with the purpose of avoiding unproductive times
while at the same time successfully modelling operations and movement synchronisation of lorries
and trailers.

A novel modelling approach was developed in a systematic manner, where synchronisation as-
pects were dealt in the model preprocessing stage, in the definition of the decision variables and in
specific time synchronisation constraints. With the purpose of tightening the mathematical formu-
lation, a set of valid inequalities was also devised. The computational experiments performed with
these valid inequalities allowed to conclude that this approach was unable to facilitate convergence
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into greater quality solutions.

Due to all the vehicle route dependencies and a highly pre-processed transportation network,
a matheuristic approach based on the fix-and-optimise principles was developed, which not only
proved to obtain better results than a traditional MIP solver but also was able to obtain feasible
solutions for more constrained problem instances while the MIP solver was unable to find an initial
solution.

The direct impact of this model and solution approach yields significant cost savings when
compared with the current planning approach, which was a cumbersome task, performed manually.
The cost savings consist in a higher utilisation ratio of each vehicle by considering that lorries
can be decoupled from loaders and may perform multiple loader pickups and drop-offs, therefore
decreasing their unproductive times. This increase in vehicle efficiency allows for a significant
reduction of the number of necessary vehicles to perform the scheduled operations, and therefore
avoids incurring into unnecessary vehicle fixed costs.

Additional tests were made with the purpose of studying the impact of two main instance
parameters, namely loader productivity, which defines the average duration of each loading task
at pickup locations, and the lorry fixed cost. The performed analysis suggests that a higher loader
productivity can greatly impact the structure of the routing plan, as lorries and loaders will tend
to behave as a single vehicle.

These last results may be interesting to consider in future work. More general models may be
developed where loader productivity may be considered variable according to the location and the
vehicle itself, which would allow to account for trade-offs between performing loading operations
faster with more expensive loaders or performing loading operations slower with lower fixed costs.
Future work may also consider alternative models for tackling multiple vehicle synchronisation
under different modelling perspectives, the introduction of uncertainty factors in the problem
through robust or stochastic optimisation or the development of dynamic routing approaches.
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