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Abstract

The capacitated mobile facility location problem (CMFLP) arises in logistics planning of com-
munity outreach programs delivered via mobile facilities. It adds capacity restrictions to the
mobile facility location problem introduced previously by Demaine et al. [2009], thereby extend-
ing the problem to a practical setting. In the problem, one seeks to relocate (or move) a set
of existing facilities and assign clients to these facilities while respecting capacities so that the
weighted sum of facility movement costs and the client travel costs (each to its assigned facility)
is minimized. We provide two integer programming formulations for the CMFLP. The first is
on a layered graph, while the second is a set partitioning formulation. We prove that the lin-
ear relaxation of the set partitioning formulation provides a tighter lower bound to the CMFLP
than the linear relaxation of the layered graph formulation. We then develop a branch-and-price
algorithm on the set partitioning formulation. We find that the branch-and-price procedure is
particularly effective both in terms of solution quality and running time, when the ratio of the
number of clients to the number of facilities is small and the facility capacities are tight. Finally,
we present two heuristic approaches for the CMFLP. One is a LP rounding heuristic, and the
other is based on a natural problem decomposition on the layered graph.
Keywords: mobile facilities, capacitated facility location, column generation, branch-and-price,
local search.

1 Introduction

The capacitated mobile facility location problem (CMFLP) is defined on a network where clients

and facilities are initially located at vertices on the network. Associated with each client is a
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demand and each facility has a specified capacity available to service demand. A destination vertex

must be determined for each facility and each client should be assigned to one of the facilities so

that the total demand of the clients assigned to a facility respects the capacity. The objective is to

minimize the total weighted distance traveled by the facilities and the clients.

Formally, the CMFLP is set on a graph G = (V,E) where V denotes the set of vertices and

E denotes the set of edges. A non-negative distance dij is defined for each edge (i, j) ∈ E. We

interchangeably use cost and distance henceforth to indicate dij . The initial locations of the clients

are represented by the subset C ⊆ V . Each client i ∈ C has demand qi and a positive weight ui.

There are different types of facilities with differing capacities. Each facility is of a type from the

set T and the subset F =
⋃

t∈T Ft ⊆ V of vertices denotes the initial locations of the facilities

(so Ft denotes the set of initial locations of facilities of type t). Each facility j ∈ Ft has capacity

Qt and a positive weight wj for relocation. All facilities are equipped with the same capabilities

and therefore a client can get service from any one of them as long as the capacity restrictions are

satisfied. In a feasible solution to the CMFLP, each facility j ∈ F moves to a destination vertex

v(j) ∈ V and each client i ∈ C moves to a destination vertex v(i) ∈ V with the condition that

v(i) = v(j) for some j. A facility cannot share a destination vertex with another facility and a

client can only be served by a single facility, i.e. demand cannot be split. Total demand assigned

to a type t facility cannot exceed Qt, for all t ∈ T . Clients or facilities may stay put (i.e., have

their destination equal to their origin). Clients and facilities are also permitted to start at the same

vertex. The objective is to minimize the total weighted distance traveled by the facilities and the

clients, that is,
∑

j∈F wjdj,v(j) +
∑

i∈C uidi,v(i).

By including the capacity restrictions, the CMFLP extends the mobile facility location problem

(MFLP) introduced previously by Demaine et al. [2009] to a practical setting. The CMFLP finds

applications in logistics planning of community outreach programs delivered via mobile facilities.

Examples of community outreach programs that utilize mobile facilities include library outreach

programs in rural areas, mobile daycare delivered to farm children, and mobile schools that provide

basic education to street children, as well as temporary schools servicing refugee camps. The

deployment of mobile healthcare facilities (e.g. cancer screening units, blood banks, eye clinics,

vaccination booths in case of a disease outbreak) that serve beneficiaries residing in either urban

districts or rural regions is another important application area of the CMFLP. In these applications,

districts (population centers) that have patients residing in them are represented by client vertices

in the CMFLP. Mobile medical facilities currently located at some of the districts are represented

by facility vertices. The demand of a district shows the number of patients and their demands (i.e.,

visits to the medical facility) in the district and the capacity of a facility is the total number of

patient visits it can handle within a time frame. Weights may be assigned to facilities and client

locations according to priority, patient criticality, number of patient visits, etc. The objective of

the problem is to move the mobile facilities so that every patient is served and the total weighted

distance traveled by the facilities and the patients is minimized. After demand is served in an

area or demand patterns have significantly changed, facilities may be relocated to a new area. The
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facility destinations in the previous network will be the originating facility vertices in the current

network. Then, the problem can be solved with new clients and their respective demands.

The importance of mobile facilities is noted both in the medical and the operations research

communities. Geoffroy et al. [2014] discuss the benefits of mobile healthcare facilities as a com-

plementary service to fixed clinics by expanding access to healthcare for hard-to-reach areas. It

is well-known that ease of geographical access to a healthcare facility has a major impact on the

likelihood of participation in preventive healthcare services [see Weiss et al., 1971]. Bingham et al.

[2003] investigated factors affecting the utilization of preventive services for cervical cancer and

found the screening rates to be much lower in areas where services are distant or difficult to access.

They reported greater transportation cost and distance as the main reasons for low participation

rates. These examples motivate the use of the weighted distance objective in the CMFLP.

Studies addressing location decisions for healthcare facilities focus mainly on fixed clinics and

hospitals, and typically aim to maximize coverage of demand locations. For example, Verter and

Lapierre [2002] model the preventive healthcare facility location problem as an extension of the

Maximal Coverage Location Problem. Doerner et al. [2007] study a tour planning problem for a

single mobile healthcare facility with criteria concerned with the number of stops and tour length,

and the distance to the nearest tour stop. Ha et al. [2013] discuss applications of the multi-vehicle

covering tour problem related to deployment of mobile healthcare teams and mobile library teams

and the distribution of relief items after a disaster. The problem involves choosing the stops of the

vehicles from a set of potential locations so that every person can reach one of these stops within an

acceptable time limit. The CMFLP differs from these studies significantly as it addresses capacity

limitations of the facilities while minimizing the total distances traveled by both the facilities and

the clients.

Our Contributions: In this paper, we develop exact and heuristic algorithms to solve the CMFLP.

We first compare two (linear) integer programming (IP) formulations for the CMFLP. The first

formulation, which we call the layered graph formulation, extends the one given in Halper et al.

[2015] for the MFLP to account for the capacity constraints. The second formulation is a set

partitioning formulation where each variable corresponds to a type of facility to be moved to a

vertex in order to serve a feasible set of clients (i.e. the total demand of the clients cannot exceed

the capacity). We prove that the LP relaxation of the set partitioning formulation provides a lower

bound to the CMFLP that is greater than or equal to the LP relaxation bound from the layered

graph formulation and can be strictly better. Next, we provide a branch-and-price algorithm for the

set partitioning formulation where a column generation procedure is used on the set partitioning

formulation to obtain lower bounds. Furthermore, we present two heuristic approaches for the

CMFLP. The first is an LP rounding heuristic that is also used to obtain good quality upper bounds

within the branch-and-price algorithm. The second is a local search heuristic called 1-OptSwapBI

that is adapted from one of the local search heuristics described in Halper et al. [2015].

To show the efficacy of the branch-and-price algorithm and the underlying column generation

procedure, we conducted computational tests on instances adapted from Halper et al. [2015] (where
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each vertex hosts a client). We found out the ratio of the number of clients to the number of

facilities plays an important role on the performance of both the branch-and-price algorithm and

the heuristics. We solved the layered graph formulation using CPLEX as a benchmark. We observe

that in general the problem is harder to solve when the average number of clients per facility is

relatively small (i.e., the ratio of |C| to |F | is small). However, in these instances the branch-

and-price algorithm outperforms the CPLEX benchmark. Furthermore, the local search heuristic

complements the branch-and-price algorithm by obtaining good solutions quickly when the average

number of clients per facility is larger.

The rest of the paper is organized as follows. Section 2 discusses related work in the literature.

Section 3 describes two integer programming formulations. Section 4 explains the column generation

procedure and the branch-and-price algorithm. Section 5 discusses the heuristics, and Section 6

presents our computational results. Section 7 provides concluding remarks.

2 Related Work

To the best of our knowledge the CMFLP has not been considered previously in the literature. Its

uncapacitated version, the MFLP was introduced by Demaine et al. [2009] as one of a class of move-

ment problems. The majority of the previous work on the MFLP deals with the approximability of

the problem and mainly consists of deriving theoretical bounds [e.g., Friggstad and Salavatipour,

2011, Armon et al., 2012, Anari et al., 2015]. Halper et al. [2015] introduced an IP formulation for

the MFLP and developed various local search heuristics based on a decomposition of the problem.

Ahmadian et al. [2013] showed that the local search heuristic n-OptSwap introduced by Halper

et al. [2015] is a 3 + O
(√

log logn
logn

)
-approximation algorithm for the MFLP.

The CMFLP concerns heterogenous facilities. When all facilities have identical capacities, the

special case of CMFLP with homogeneous facilities is obtained. The CMFLP with homogeneous

facilities generalizes the well-studied capacitated p-median with single sourcing problem (CPMSP),

in which facilities are not relocated from their initial locations, but their locations are to be deter-

mined. We can easily see that by setting the cost of moving each facility to zero in the CMFLP

with homogeneous facilities, the CPMSP is obtained. A recent paper by Stefanello et al. [2015]

provides a nice discussion of earlier work on this problem. They also develop a matheuristic that

solves large scale CPMSP instances (with up to 4500 nodes and 1000 facilities) and obtain small

optimality gaps within an hour of computation time. Their heuristic approach mainly relies on

eliminating variables iteratively from the mathematical model.

In the single source capacitated facility location problem (SCFLP), an opening cost is associated

with each facility instead of specifying the number of facilities. Guastaroba and Speranza [2014],

Yang et al. [2012], Cortinhal and Captivo [2003], Chen and Ting [2008], Holmberg et al. [1999],

and Ahuja et al. [2004], among others, propose solution methods for this problem. Guastaroba and

Speranza [2014] develop a kernel search algorithm and achieve near optimal solutions for large scale

instances (with up to 1500 nodes and 300 potential facility locations, as well as 1000 nodes and 1000
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potential facility locations). Klose [1999] and Tragantalerngsak et al. [2000] study an extension of

the SCFLP by considering two echelons of facilities. Each second-echelon facility can be supplied

by only one first-echelon facility, and each customer is serviced by only one second-echelon facility.

While only the locations of the second-echelon facilities are selected in Klose [1999], the locations

of first-echelon facilities are also selected in Tragantalerngsak et al. [2000]. Similarly, two sets of

facilities (intermediate and upper level) are located in Addis et al. [2012] and Addis et al. [2013],

but the capacity of intermediate level facilities should also be determined by installing devices

that provide different capacities at different costs. All upper level facilities have the same given

capacity. The objective includes the cost of assigning clients to intermediate level facilities, and of

intermediate level facilities to upper level facilities, in addition to the cost of locating facilities. To

solve the two-level problem, Addis et al. [2012] propose a branch-and-price algorithm.

In dynamic facility location problems, facilities are relocated over a time horizon consisting of

multiple periods [see Arabani and Farahani, 2012, Nickel and Saldanha da Gama, 2015, for overviews

of studies on such problems]. Most of the existing multi-period location problems associate a fixed

cost for opening and closing facilities or resizing the capacities that depends on the location of the

facility. For instance, Torres-Soto and Uster [2011] develop exact solution methods for capacitated

multi-period relocation problems with fixed relocation costs, where demand of a customer can be

serviced by multiple facilities partially. On the other hand, Melo et al. [2006] include a unit variable

cost of moving capacity from an existing facility to a new facility, in addition to the fixed opening

and closing costs. In their model, relocation decisions are constrained by budget limitations, and

the objective includes production/supply costs, transportation costs between facilities, inventory

holding costs, and fixed facility operating costs. To the best of our knowledge, none of the existing

dynamic facility location models consider a fixed cost of relocating a facility that depends on the

initial and destination locations, as in the CMFLP.

Column generation and branch-and-price approaches have been widely used in the literature

to solve the CPMSP and the SCFLP. Lorena and Senne [2004] implement a column generation

approach to solve the LP relaxation of the set covering formulation of the CPMSP. The new columns

are generated by solving a 0-1 knapsack problem for pricing and a Lagrangean/surrogate relaxation

identified from the dual of the master problem to accelerate convergence. The relaxation also

provides lower bounds. Ceselli and Righini [2005] describe a branch-and-price algorithm that uses

column generation for the CPMSP. At each iteration of column generation, the current values of the

dual variables are used as Lagrangian multipliers to compute a lower bound as in Lorena and Senne

[2004]. The authors experiment with two branching strategies and computational experiments

suggest that the performance of the branch-and-price algorithm is closely related to ratio of the

number of clients (|C|) to the number of facilities |F |. Klose and Görtz [2007] describe a column

generation and branch-and-price algorithm for the SCFLP. The method is based on a Lagrangean

relaxation of the demand constraints and a stabilized column generation method for solving the

corresponding master problem to optimality.
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Figure 1: The original graph representation (left) and the layered graph representation (right) of a solution to an
instance of the CMFLP. Triangles denote the facility vertices, circles denote the client vertices and squares denote
the remaining vertices.

3 Integer Programming Formulations

We present two IP formulations for the CMFLP. The first one is the capacitated version of the

formulation in Halper et al. [2015], which we refer to as the layered graph formulation. We describe

a decomposition based on this formulation which also helps the development of a local search

algorithm. The second formulation is a set partitioning formulation for which we describe a branch-

and-price algorithm where the variables in the layered graph formulation are used for branching

and the LP relaxation is solved via a column generation procedure.

3.1 Layered Graph Formulation

An instance of the CMFLP can be represented in a graph with three layers. After making copies of

the client vertices C and the facility vertices F , the copies of the facility vertices make up the first

layer. The vertex set V makes up the second layer and the copies of the client vertices make up the

last layer. Figure 1 shows an example of the transformation from the original graph to the layered

graph representation. The layered graph representation aids visualizing the formulation and the

decomposition technique described next.

We define a binary variable xiv for each i ∈ C and v ∈ V , and a binary variable yjv for each

j ∈ F and v ∈ V . Let xiv = 1, if the destination of client i is vertex v; and xiv = 0, otherwise.

Similarly, let yjv = 1, if the destination of facility j is vertex v; and yjv = 0, otherwise. For each

vertex v ∈ V and each facility type t ∈ T , we define a binary variable ztv such that ztv = 1, if vertex

v is the destination of some facility of type t; and ztv = 0, otherwise. The CMFLP is formulated

as follows:

(IP1) Minimize
∑
i∈C

∑
v∈V

uidivxiv +
∑
j∈F

∑
v∈V

wjdjvyjv (1)

subject to
∑
v∈V

xiv = 1 ∀i ∈ C (2)∑
v∈V

yjv = 1 ∀j ∈ F (3)∑
j∈Ft

yjv = ztv ∀v ∈ V, t ∈ T (4)
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∑
t∈T

ztv ≤ 1 ∀v ∈ V (5)

xiv ≤
∑
t∈T

ztv ∀i ∈ C, v ∈ V (6)∑
i∈C

qixiv ≤
∑
t∈T

Qtztv ∀v ∈ V (7)

ztv, yjv, xiv,∈ {0, 1}. ∀i ∈ C, j ∈ F, v ∈ V, t ∈ T (8)

In IP1, the objective function (1) calculates the total weighted distance traveled by the facilities

and clients. Constraints (2) and (3) ensure that each client and facility has a destination vertex.

If ztv = 1, constraints (4) and (5) specify that vertex v is the destination of a facility of type t

and cannot host more than one facility. In the case that ztv = 0, no facility of type t may have

vertex v as its destination. Constraint (6) states that client i may travel to location v only if there

is a facility moving to v. By constraint (7), total demand for a facility cannot exceed its capacity.

Constraint (8) defines the binary variables. Note that by leaving the ztv variables binary the yjv

variables can be relaxed in the interval [0, 1], since constraints (3) and (4) correspond to the totally

unimodular assignment constraints.

This formulation lends itself to a decomposition when the ztv variables are fixed. Suppose we

are given destination vertices for each facility type t ∈ T . Let Zt denote the set of destination

vertices for facilities in Ft (so |Ft| = |Zt|). Let Z =
⋃

t∈T Zt ⊂ V . In other words ztv = 1 for v ∈ Zt,

and ztv = 0 for V \Zt. Then, the problem decomposes into a total of |T |+1 disjoint subproblems of

assigning each facility in Ft to a vertex in Zt for every t ∈ T (the |T | facility assignment problems),

and assigning each client to a vertex in Z (the client assignment problem).

In the facility assignment problems, the objective is to find a minimum cost bipartite matching

between the initial facility locations in Ft and the destination locations in Zt. For each facility type

t ∈ T , if ztv = 0, then constraint (4) implies yjv = 0 for all j ∈ Ft and v ∈ V \Zt. Then for ztv = 1,

constraint (4) can be rewritten as
∑

j∈Ft
yjv = 1 and v ∈ Zt. Given a subset Zt ⊂ V , the facility

assignment problem (FA(Zt, t)) can be formulated as,

FA(Zt, t) = Minimize
∑
j∈Ft

∑
v∈Zt

wjdjvyjv

subject to
∑
v∈Zt

yjv = 1 ∀j ∈ Ft∑
j∈Ft

yjv = 1 ∀v ∈ Zt

yjv ≥ 0 ∀j ∈ Ft, v ∈ Zt.

which models the least cost bipartite matching problem. Since the constraint matrix is totally

unimodular, the integrality of yjv is relaxed. The facility assignment problem can be solved in

polynomial time via the Hungarian Algorithm [see Kuhn, 1955].

In the client assignment problem, the objective is to assign each client to one of the facility
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destination locations in Z such that if ztv = 1, then the facility assigned to location v serves a

total demand of at most Qt and the total weighted distance traveled by the clients is minimized.

For v ∈ V \ Z, we have
∑

t∈T ztv = 0 and constraint (6) implies that xiv = 0 for i ∈ C since

a client cannot be assigned to a destination vertex without a facility. Therefore, constraint (6)

can be rewritten as xiv ≤ 1 for i ∈ C, v ∈ Z, which is redundant. Given a subset Z ⊂ V , the

client assignment problem (CA(Z)) is the well-studied generalized assignment problem (GAP) [see

Cattrysse and Van Wassenhove, 1992] and can be formulated as,

CA(Z) = Minimize
∑
i∈C

∑
v∈Z

uidivxiv

Subject to
∑
v∈Z

xiv = 1 ∀i ∈ C∑
i∈C

qixiv ≤ Qt ∀t ∈ T, v ∈ Zt

xiv ∈ {0, 1} ∀i ∈ C, v ∈ Z,

A similar decomposition technique was described in Halper et al. [2015] for the MFLP, which

has identical facilities without capacity restrictions by design, i.e., |T | = 1 and Qt = ∞. The

decomposition in Halper et al. [2015] is extended here to the CMFLP, such that the facility assign-

ment problem is solved separately for each facility type t ∈ T . In the client assignment problem

described for the MFLP, each client is assigned to its closest facility while in the CMFLP, the client

assignment problem is the GAP which is NP-Hard.

3.2 Set Partitioning Formulation

Let Stv denote the set of all feasible client assignments to a facility of type t to be located in v. A

client assignment Stv is feasible if
∑

i∈Stv
qi ≤ Qt. Let aiStv be a binary coefficient taking the value

1 if client i appears in assignment Stv, and 0, otherwise. For an assignment Stv ∈ Stv, dStv denotes

the total weighted travel cost of clients in Stv. That is, dStv =
∑

i∈Stv
uidiv. Furthermore, for all

Stv ∈ Stv, let πStv be a binary variable indicating if customers in Stv are assigned to the facility of

type t that will be located at v. Let yjv be a binary variable indicating if the facility j is moved to

v. The set partitioning formulation is as follows.

(IP2) Minimize
∑
t∈T

∑
v∈V

∑
Stv∈Stv

dStvπStv +
∑
j∈F

∑
v∈V

wjdjvyjv (9)

subject to
∑
v∈V

∑
Stv∈Stv

πStv = |Ft| ∀t ∈ T (10)

∑
t∈T

∑
v∈V

∑
Stv∈Stv

aiStvπStv = 1 ∀i ∈ C (11)

∑
t∈T

∑
Stv∈Stv

πStv ≤ 1 ∀v ∈ V (12)
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∑
v∈V

yjv = 1 ∀j ∈ F (13)∑
j∈Ft

yjv =
∑

Stv∈Stv

πStv ∀v ∈ V, t ∈ T (14)

πStv ∈ {0, 1} ∀v ∈ V, t ∈ T, Stv ∈ Stv (15)

yjv ∈ {0, 1} ∀j ∈ F, v ∈ V (16)

The objective function calculates the total weighted distance traveled by facilities and clients.

Constraint (10) asserts that the total number of facilities moved for each type is equal to the total

number of facilities of that type. Constraint (11) ensures that a client only appears in exactly one

assignment. By constraint (12), at most one facility can be assigned to the same location. Similar

to IP1, by setting πStv binary, the yjv variables can be relaxed in the interval [0, 1] since constraints

(13) and (14) correspond to the assignment constraints that are totally unimodular.

Theorem 3.1. The optimal objective value of the LP relaxation of IP2 (namely, LP2) is greater

than or equal to the optimal objective value of the LP relaxation of IP1 (namely, LP1).

Proof. We first show that any feasible solution to LP2 can be transformed to a feasible solution of

LP1 of equal cost. Let π and y be a feasible solution to LP2. Let

ztv =
∑

Stv∈Stv

πStv ∀t ∈ T, v ∈ V, (17)

xiv =
∑
t∈T

∑
Stv∈Stv

aiStvπStv ∀i ∈ C, v ∈ V (18)

and yjv indicates if the facility j is moved to location v in both formulations. After the trans-

formation, constraints (2), (3), (4) and (5) are identical to constraints (11), (13), (14) and (12),

respectively. From (17) and (18) we get

xiv =
∑
t∈T

∑
Stv∈Stv

aiStvπStv ,

≤
∑
t∈T

∑
Stv∈Stv

πStv ,

=
∑
t∈T

ztv,

since aiStv is a 0-1 coefficient, which implies that constraint (6) holds.

By definition, all feasible assignments Stv ∈ Stv satisfy
∑

i∈Stv
qi ≤ Qt for all t ∈ t, v ∈ V , which

can also be stated as
∑

i∈C qiaiStv ≤ Qt. By summing up each side for t ∈ T and Stv ∈ Stv and

multiplying each side by πStv , a nonnegative term, we get∑
i∈C

∑
t∈T

∑
Stv∈Stv

qiaiStvπStv ≤
∑
t∈T

Qt

∑
Stv∈Stv

πStv .
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After replacing the corresponding terms with xiv and ztv, we have∑
i∈C

qixiv ≤
∑
t∈T

Qtztv,

which is constraint (7). Note that the lower and upper bound constraints for the variables are

satisfied by the transformation. The second terms in the objective functions of both LP1 and LP2

are identical. Therefore, we focus on the first terms. In LP2, after replacing dStv with
∑

i∈Stv
uidiv

in the first term, we get∑
t∈T

∑
v∈V

∑
Stv∈Stv

dStvπStv =
∑
t∈T

∑
v∈V

∑
Stv∈Stv

∑
i∈Stv

uidivπStv ,

=
∑
t∈T

∑
v∈V

∑
Stv∈Stv

∑
i∈C

uidivaiStvπStv ,

=
∑
i∈C

∑
v∈V

uidivxiv,

which is the first term in the objective function of LP1. Therefore, a feasible solution to LP2 can

be transformed into a feasible solution to LP1 of equal cost.

Now we provide an example where the objective value of the optimal solution of LP1 is strictly

less than the objective value of the optimal solution of LP2. Consider the example in Figure 2

with 3 nodes, 2 identical facilities (i.e., |T | = 1), and 3 clients. Facilities 1 and 2 with a capacity

of 5 are initially located at nodes 1 and 2, respectively. Clients 1, 2, and 3 with a demand of

1, 3, and 4 are at nodes 1, 2, and 3 respectively. Distances are given as d11 = d22 = d33 = 0,

d12 = d21 = d23 = d32 = 1 and d13 = d31 = 2. Let wj = 1 for all facilities and ui = 1 for all clients.

The optimal solution to LP1 is y11 = y22 = 1, x11 = x22 = 1 and x31 = x32 = 0.5 with objective

value 1.5. The optimal solution to LP2 gives us πS11 , πS12 = 1 , where S11 = {1, 3}, S12 = {2}.
This indicates that facilities stay put and clients 1 and 3 are assigned to facility 1 and client 2 is

assigned to facility 2, which is in fact the optimal solution to IP1. In this example, the lower bound

obtained from LP1 is 1.5 and the lower bound obtained from LP2 is 2. The integrality gap of LP1

is 33%, whereas the integrality gap of LP2 is 0%.

There is a more serious problem with the linear relaxation of IP1. It may be feasible when IP1

is infeasible. Consider the example in Figure 3 with 2 identical facilities and 2 clients. The distance

between the two nodes is 1 and both facilities and clients have weight 1. Facilities 1 and 2 both

have capacity 2, while client 1 has demand 1 and client 2 has demand 3. Clearly, this problem

is infeasible. However, when we solve LP1, we obtain a feasible solution y11 = y22 = 1, x11 = 1,

x21 = 1/3, x22 = 2/3 with objective value 1/3, in which client 1 is assigned to facility 1 and client

2 is partially assigned to both facilities. Both facilities remain at their locations and the capacity

constraints are satisfied. In contrast, LP2 is infeasible.
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Figure 2: IP1, IP2 and LP2 have objective value of 2 (facil-
ities and clients located at 1 and 2 stay put and client 3 is
assigned to facility 1). However, LP1 has an objective value
of 1.5, with a solution that splits the demand of client 3 be-
tween facilities 1 and 2.

1 2
q1=1 q2=31
Q=2 Q=2

Figure 3: While LP2 is infeasible, LP1 is feasi-
ble with an objective value of 1/3.

4 Branch-and-Price Algorithm

In this section we describe a column generation procedure to solve LP2. We then apply a branch-

and-price algorithm to IP2 (solving the linear relaxation using the column generation procedure),

in which the variables of formulation IP1 are used for branching. We provide three branching

alternatives and discuss the management of the columns.

4.1 Column Generation Procedure for LP2

Even though LP2 provides better bounds compared to LP1, there are exponentially many com-

binations of clients that can make up the set Stv. Instead of solving LP2 with all Stv for all

t ∈ T, v ∈ V , we describe a column generation procedure that generates columns after we solve

the restricted master problem (RMP), i.e., LP2 without the complete set of πStv columns. Let us

consider the dual of LP2.

(LP2D) Maximize
∑
t∈T
|Ft|αt +

∑
i∈C

βi +
∑
v∈V

γv +
∑
j∈F

δj (19)

subject to αt +
∑
i∈C

aiStvβi + γv − ωtv ≤ dStv ∀t ∈ T, v ∈ V, Stv ∈ Stv (20)

δj +
∑
t∈T

ωtv ≤ wjdjv ∀j ∈ F, v ∈ V (21)

γv ≤ 0 ∀v ∈ V (22)

For primal optimality, we need dual feasibility. Note that constraint (21) is always satisfied since

all of the yjv variables are in the RMP. However, for each t ∈ T, v ∈ V , we need to make sure there

is no assignment Stv such that αt +
∑

i∈C aiStvβi + γv − ωtv > dStv . To find such assignments, we

solve the following pricing problem, which is a 0-1 knapsack problem.

(KP(t, v)) Maximize
∑
i∈C

(βi − uidiv)ξi (23)
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subject to
∑
i∈C

qiξi ≤ Rtv (24)

ξi ∈ {0, 1} ∀i ∈ C (25)

When the pricing problem is solved at some node of the branch-and-price tree, the capacity of a

facility may already be partially allocated. Therefore, we denote the remaining capacity of a type

t facility at v by Rtv. At the root node of the tree Rtv = Qt. In order to ensure a given solution is

primal optimal (dual feasible), we have to solve KP(t, v) for all facility types t and vertices v (that

are not fixed to zero by branching). Note that KP(t, v) can be solved via dynamic programming

in O(|C|Rtv) time. Let Stv = {i | ξi = 1}. We check whether constraint (20) is satisfied. If the

constraint is satisfied for all facility types t and vertices v, then we conclude that the solution is

optimal. Otherwise, we add the column of πStv for every Stv that violates (20) and resolve the

RMP. The general outline of the column generation procedure is as follows.

Column Generation Procedure

Step 1: Generate an initial set of feasible columns for the RMP.

Step 2: Solve the RMP with the existing columns and calculate the values of the optimal dual

variables.

Step 3: By solving the pricing problems KP(t, v), find columns such that (20) is violated. If such

columns exist, add them to the RMP and go to Step 2. Otherwise, terminate with the

optimal solution.

4.2 Branching Scheme

The knapsack problems we solve for pricing depends on both the branching scheme we employ and

the node of the branch-and-price tree. Branching on the variables of IP2 (i.e. πStv) is not a viable

option for the following reason. Consider branching on the variable πStv , where Stv is a feasible

client assignment. For the branch where πStv = 0, only the specific assignment Stv is forbidden.

Therefore, any other assignment in Stv must still be considered. In order to do that, each client in

Stv must be excluded from KP(t, v) one by one. As the number of forbidden assignments increases,

the number of knapsack problems to be solved also increases drastically. However, branching on the

variables ztv and xiv does not have this problem and provides a much cleaner column generation

process. We describe three branching strategies that use ztv and xiv variables after transforming

them as in (17) and (18).

4.2.1 Binary Branching

In binary branching, we fix ztv and xiv variables to 1 in one branch, and to 0 in the other branch.

We first start by branching on the ztv variables since it is not possible to branch on xiv without

having branched on ztv = 1 at one of the parent nodes for some t. Consider the branch where
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ztv = 1, then some facility of type t will move to v. Since no other type of facility t′ can move to v,

we set zt′v = 0 for all t′ ∈ T \{t}. In addition, the constraint corresponding to v from constraint (12)

has to be set as an equality. That is, for v, the constraint is modified to
∑

t∈T
∑

Stv∈Stv πStv = 1 in

the RMP of LP2. For the branch where ztv = 0, vertex v is discarded for type t as a candidate for

a facility destination and KP(t, v) is not solved.

For the branch where xiv = 1, client i is assigned to vertex v. Then all xiv′ for v′ ∈ V \ {v}
can be set to zero. For all facility types t ∈ T , we adjust the residual capacity to Rtv − qi while

solving KP(t, v) and exclude client i from KP(t, v). For the branch where xiv = 0, client i is simply

excluded from KP(t, v) for all t ∈ T .

Among all fractional ztv, we branch on the most fractional one (i.e. closest to 0.5). If there

does not exist a fractional ztv, then among all i and v pairs, we branch on the most fractional xiv

given that ztv is fixed to 1.

4.2.2 Partition Branching

Partition branching is similar to the branching strategies proposed for the GAP by Savelsbergh

[1997] and for the CPMSP by Ceselli and Righini [2005]. Given a client i ∈ C, we divide the set

of vertices V into two sets V + and V 0 such that V + = {v | xiv > 0, v ∈ V } and V 0 = {v | xiv =

0, v ∈ V }. Then we further partition V + and V 0 into two sets such that V + = V +
1 ∪ V

+
2 and

V 0 = V 0
1 ∪ V 0

2 . We set V1 = V +
1 ∪ V 0

1 and V2 = V +
2 ∪ V 0

2 . A balanced partition can be achieved by

sorting the vertices in V + in non-increasing order of xiv and assigning them alternately to V +
1 and

V +
2 . We assign the vertices in V 0 to V 0

1 and V 0
2 in a similar fashion. We branch on the client i∗

that satisfies i∗ = arg max{|V +|}, breaking ties arbitrarily. Finally, we set xi∗v = 0 for all v ∈ V1

in one branch and xi∗v = 0 for all v ∈ V2 in the other branch. In the column generation procedure,

setting xi∗v = 0 translates into removing client i∗ from KP(t, v) for all t.

4.2.3 Hybrid Branching

Ceselli and Righini [2005] reported that partition branching performs better than the binary branch-

ing for the CPMSP, which is a special case of the CMFLP where |T | = 1 and wj = 0 for all

j ∈ F . After preliminary computational experiments performed on instances for the CMFLP with

T = {1, 2}, we have observed that using partition branching by itself is inferior to the binary

branching in terms of average computational time and nodes explored. This may attest to the dif-

ferences between the two problems. In hybrid branching, we use binary branching on ztv variables.

When there is no fractional ztv, we employ partition branching for the xiv variables. Though not

necessary, branching on ztv variables before the partition branching improves the computational

time according to our tests.
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4.3 Columns Management

Columns management is an integral part of any column generation procedure as it significantly

affects the computational effort required to complete the procedure. There are three pillars to

managing columns to which every column generation procedure needs to attend. First, the initial

set of columns to start the procedure. Second, the addition of new columns through the pricing

problem or other approaches. Third, the management of the existing columns. In the literature,

there are various schools of thought on columns management. As it is prohibitive to examine all

possible approaches proposed in previous studies, we experimented on a few of the better practices

in the literature with adjustments of our own.

4.3.1 Setting initial columns

At the root node of the branch-and-price tree, we generate an initial set of columns for the RMP by

a greedy algorithm targeted towards obtaining feasible solutions in short time. We let the facilities

stay in their original locations. Therefore, the algorithm only assigns clients to the facilities. Let

Rj be the remaining capacity of facility j ∈ F . Initially Rj = Qt, if j ∈ Ft. Also, initially let

F ′ = F and C ′ = C. The initial column generation algorithm is outlined as follows.

Initial Column Generation Algorithm

For each j ∈ F ′, go through the following steps while C ′ 6= ∅ and F ′ 6= ∅.

Step 1: Let i∗ = arg mini∈C′|qi≤Rj
{uidij

qi
}.

Step 2: If i∗ = ∅, then set F ′ = F ′ \ {j}; otherwise, assign i∗ to facility j and set Rj = Rj − qi and

C ′ = C ′ \ {i∗}.

When the algorithm terminates, either C ′ = ∅ or F ′ = ∅. If C ′ = ∅, it means that all clients are

assigned and we have a feasible solution. If F ′ = ∅, it means there are clients left unassigned and

there is no facility with enough remaining capacity to accommodate them. In this case, we run the

following assigned-unassigned client exchange procedure.

Assigned-Unassigned Client Exchange Procedure

Step 1: For an unassigned client i ∈ C ′, assign i to its closest facility j ∈ F such that qi ≤ Rj . If

no such facility exists, then let F ′ = F and go to Step 2.

Step 2: If F ′ = ∅, then terminate. Otherwise, consider the facility j ∈ F ′ that is closest to i; find

a client i′ assigned to facility j such that i′ satisfies the following criteria:

• qi > qi′

• Rj − qi + qi′ ≥ 0

• if more than one client satisfy the above criteria, pick the client with the larger ui′di′j .

Step 3: If i′ does not exist, set F ′ = F ′ \ {j} and go to Step 2. Otherwise, exchange i with i′, i.e.,

assign i to j and i′ to C ′ and go to Step 1.
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Note that even after running this procedure, we may still not have a feasible solution. In that

case, we add a separate dummy variable for each constraint with a very large objective function

coefficient to have a starting feasible solution.

In addition to a starting feasible solution, we generate more columns by creating a feasible

assignment Stv for each facility type t ∈ T and vertex v ∈ V according to the following procedure.

Generation of Additional Columns

Step 1: For each v, sort the list of clients with respect to uidiv in non-decreasing order. Let

d̄v =
∑

i∈C uidiv/|C| be the average weighted distance of clients to v.

Step 2: For each facility type t, let Rtv = Qt be the remaining capacity.

• For each client i on the sorted list: Let r ∼ U [0, 1]. If r ≤ e−uidiv/d̄v , and qi ≤ Rtv,

then add client i to the assignment and set Rtv = Rtv − qi. Otherwise, process the

next client.

We run the additional column generation procedure m times resulting in m feasible assignments

for each facility type t and vertex v. Note that instead of completely random assignments, we use

this procedure so that clients that are closer to a given vertex v have a higher chance of being in

the feasible assignment Stv. After the preliminary computational experiments, we set m = 5, as it

caused the largest decrease in the average computational time. Compared to m = 0, that is, the

case where no additional columns are added to the initial feasible solution, setting m = 5 decreases

the computational time required to solve the root node two to three-fold in most of the instances.

For a child node, the active columns inherited from the parent node can be used as initial

columns and the optimal basis for the parent node can be used as a starting feasible basis for the

child node. This can be done provided that the columns corresponding to infeasible assignments

based on the branching decision have sufficiently large objective function coefficients. That way,

these columns will be replaced by other columns that would yield a lower objective value. If column

generation procedure terminates with one of the infeasible columns in the optimal basis, we can

conclude that the node is infeasible and proceed to prune the node.

4.3.2 Adding columns through pricing

While solving the exact KP(t, v) in every RMP iteration is possible, finding columns that violate

(20) does not require solving the pricing problem exactly. Instead, we prefer to use a greedy

2-approximation algorithm to speedup the computational time. The clients are sorted in non-

increasing order of (βi − uidiv)/qi and the knapsack is filled until no capacity is left. We check

constraint (20) for violations. We only solve the exact KP(t, v) when the greedy algorithm fails to

find violating columns. If the exact solution also fails to find violating columns, then we terminate

with an optimal solution. However, if violating columns have been found after solving the exact

KP(t, v), then we add those to the RMP and switch back to applying the greedy algorithm until it

fails again.
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4.3.3 Managing active columns

Even though there are exponentially many πStv variables, only |T | + |C| + |V | + |T | · |V | can be

in the basis, hence a vast majority of them will be non-basic. The size of the problem grows

every time we add a column, but the number of basic columns stays exactly the same. Clearly,

the growth in the number of columns reflects badly on the computational time. To remedy this,

we introduce a procedure that removes columns from the RMP. If a variable is non-basic for κ

consecutive iterations, we remove that variable from the RMP. This procedure ensures that the size

of the RMP stays in O(κ(|T |+ |C|+ |V |+ |T | · |V |)). Note that a removed column may be added

again. This may increase the number of iterations and the total number of columns added to the

RMP but the gain in computational time is well-justified based on the preliminary computational

experiments.

5 Heuristics

We describe two heuristics for the CMFLP. The first is an LP rounding heuristic which is employed

at all nodes of the branch-and-price tree. The second is a local search heuristic.

5.1 LP Rounding Heuristic

By rounding the optimal fractional solution at any node of the branch-and-price tree, it is possible

to quickly find good quality feasible solutions to the CMFLP and generate primal bounds. After

calculating the values of ztv and xiv variables from the optimal fractional solution to the corre-

sponding LP2 as in (17) and (18), we run the following heuristic to obtain a feasible solution to

the CMFLP.

Step 1: Sort the ztv variables in non-increasing order. Then for each t, select the first |Ft| vertices

to a set named Zt.

Step 2: Solve the facility assignment problems (FA(Zt, t)) which sets the destination vertices for

the facilities.

Step 3: For the client assignment problem, we run the following subroutine.

• Create a list of clients and their preferred vertices. Pair any client i in the list with

the vertex v such that xiv is closest to 1.

• Sort the list in non-increasing order of xiv. Starting from the top of the list, assign

each client to the facility that has its preferred vertex as the destination. Adjust its

remaining capacity. If there is not enough remaining capacity, then go to the next

client in the list.

• At the end of the list, if there are some clients left unassigned because there was not

enough remaining capacity, assign them to the nearest facility with enough remaining

capacity.
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Step 4: Finally, run the following improvement heuristic.

• Evaluate all possible client shifts, i.e., removing the client from its current facility and

assigning it to a different facility. Implement the shift that would best improve the

total cost. If no such shift is found, go to the next step.

• Evaluate all possible client swaps, i.e., exchanging clients that are assigned to different

facilities. Implement the swap that would best improve the total cost. If there is no

improving swap, then the heuristic is terminated.

The LP rounding heuristic is run every time a feasible LP solution is obtained in the branch-

and-price tree. Note that the LP rounding heuristic is not guaranteed to terminate with an integer

feasible solution. In fact, determining whether or not an instance to the CMFLP has a feasible

solution is NP-Complete.

5.2 Local Search Heuristic

In Halper et al. [2015], the authors describe several heuristics for the MFLP based on the decompo-

sition of the MFLP to facility and client assignment problems for a given set of facility destination

vertices. Even though the facility and client assignment problems are different for the CMFLP,

the general framework of the local search heuristics still applies. Here, instead of having a single

facility assignment problem, we have |T | facility assignment problems and instead of a polynomially

solvable client assignment problem, we have the NP-hard generalized assignment problem.

In n-OptSwapBI (where BI stands for best improvement), we are given a set of facility desti-

nation vertices Z ⊂ V . For each type t, a subset of kt facility destinations in Zt are replaced by a

subset of kt destinations in V \Zt. Every possible combination of replacements across all types are

considered such that 1 ≤
∑

t∈T kt ≤ n. For each replacement, the corresponding facility assignment

problems are solved optimally by the Hungarian Algorithm. Unlike the MFLP, the CMFLP has

multiple facility types. Therefore, in n-OptSwapBI for the CMFLP, a set of facility destinations

from one type of facility may be replaced by destinations currently occupied by other facilities of

different facility types. In that case, the facility assignment problem has to be solved for every

type of facility involved. For the facility assignment problem FA(Zt, t), the Hungarian algorithm

requires O(|Zt|3) from scratch. However, Halper et al. [2015] describe a procedure to update the

facility assignments in O(kt|Zt|2), given the previous optimal assignments. We also employ this

update procedure in our computations.

To solve the client assignment problem, we use the same greedy algorithm we have used to

generate feasible solutions in the column generation procedure outlined in Section 4.3.1, albeit with

one caveat. Instead of choosing i∗ according to i∗ = arg mini∈C′|qi≤Rj
{uidij

qi
} in Step 1, we use

i∗ = arg mini∈C′|qi≤Rj
{uidij} in order to target solution quality rather than feasibility. In the case

that the algorithm terminates with unassigned clients, we run the same assigned-unassigned client

exchange procedure.
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In Halper et al. [2015], the computational results indicate that setting n > 1 is not viable

computationally, even for the MFLP where there is a single facility assignment problem and the

client assignment problem is solvable in polynomial time. Hence, we focus on the case where

n = 1. That is, we consider replacing each facility destination in Zt with every other destination in

V \ Zt for each type t by solving corresponding facility and client assignment problems, and select

the replacement that yields the largest decrease in the objective value. If a facility destination is

replaced by a destination currently occupied by another type of facility, then the facility assignment

problem is solved for both facility types. Note that the neighborhood of 1-OptSwapBI for the

CMFLP is populated by at most
∑

t∈T |Zt|(|V | − |Zt|) possible replacements.

6 Computational Results

In order to assess the solution quality and computational efficiency of the branch-and-price algo-

rithm and the underlying column generation procedure, we coded the branch-and-price algorithm

to solve IP2 as described in Section 4. We used the hybrid branching scheme in the results reported

since it performed the best during the preliminary computational experiments. We evaluate the

nodes in the branch-and-price tree according to breadth-first search. We used CPLEX to solve IP1

as a benchmark to the branch-and-price algorithm. In this section we first provide results on the

root node LP relaxations for IP1 and IP2, namely, LP1 and LP2 to compare the strength of the

formulations. We also compare the solutions obtained from the LP rounding heuristic based on

LP2 (i.e., at the root node of the branch-and-price tree for IP2), namely LP2RH, and the local

search heuristic LSH with those obtained from the branch-and-price algorithm. We provide results

for both the homogeneous facilities case and the heterogenous facilities case with two facility types.

6.1 Test Instances

The computational experiments are performed on instances titled p-med adapted from Halper et al.

[2015]. Originally, the p-med instances were generated for the p-median problem and adapted to

the MFLP by Halper et al. [2015]. We further adapted the instances to the CMFLP to make

them capacitated. The computational studies performed on these instances provide insights into

the relationships between the solution quality and the computational efficiency of the proposed

algorithms, as well as the structural properties of the instances.

The instances are adapted to the CMFLP by generating a demand value qi for all i ∈ C. We

draw qi randomly from a Gamma distribution with α = 5 and β = 2. If qi exceeds 0.8·E[qi]·|C|
|F | ,

we set it to 0.8·E[qi]·|C|
|F | so that the demand can be served by a single facility with some slack. We

experimented with homogeneous facilities (|T | = 1) and heterogeneous facilities (|T | = 2). For

homogeneous facilities, the capacity Q is set to
∑

i∈C qi
0.9·|F | . When we have two types of facilities, the

facilities are alternately assigned to F1 and F2, and their capacities Q1 and Q2 are set to
0.65

∑
i∈C qi

0.9·|F1|

and
0.35

∑
i∈C qi

0.9·|F2| . We provide some slack to the total capacity by scaling so that the problem is

feasible with very high probability. In fact, we have not encountered an infeasible instance.
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6.2 Computational Settings

The CPLEX MIP solver is used to solve IP1 and LP1. We also solved IP1 after disabling the default

CPLEX cuts, which we denote as IP1*, to assess the performance of IP1 in a plain branch-and-

bound framework. LP2 is solved using the column generation procedure described in Section 4.

IP2 is solved using the branch-and-price algorithm proposed in Section 4.2. Within the algorithm,

LP2 is used to obtain lower bounds and the LP rounding heuristic is used to obtain upper bounds.

Recall that we remove columns staying nonbasic for κ iterations. After preliminary analysis, we

concluded that setting κ to d0.15 · |V |e and d0.1 · |V |e provides the most average decrease in run time

for |V | ≤ 500 and |V | > 500, respectively. We have implemented the branch-and-price algorithm

using C++ where the RMP is solved with CPLEX. We used CPLEX version 12.5 coded in C++ in

all computational experiments and ran the instances on a computer with Intel Core i7-2600 CPU

@ 3.40 GHz and 16 GB of RAM running 64-bit Windows 7. Further, each instance was limited to

a three hour (10800 seconds) run time.

In general when there is significant slack capacity in the facilities (i.e., the ratio of the total

demand to the total available capacity is significantly less than 1) IP1 and its relaxation LP1 work

well. In these cases the capacity constraints do not play much of a role and given that IP1 works

well for the uncapacitated version of the problem, i.e., the MFLP, it is not a surprise that IP1

works well in these cases. Similarly, the local search heuristic, which performs well for the MFLP

as reported in Halper et al. [2015], also performs well for the CMFLP in these cases.

On the other hand, the practical setting of the CMFLP is in an environment where capacity

constraints are tight (i.e., there is not too much unused capacity in the problem instance) as budgets

are tight and organizations are keen on efficiently utilizing their resources to the fullest extent. In

these tightly capacitated scenarios (which our simulated instances are) we observed a relationship

between the ratio of the number of clients to the number of facilities, |C|/|F |, and the quality

of solutions obtained from IP1 and its relaxation LP1. In 17 of the 40 p-med instances where

the ratio of |C|/|F | > 10 (i.e., client demands are small compared to the facility capacity), the

packing problem (i.e., GAP) is easy to solve and LP1 provides tight bounds (for instances with

homogenous facilities the average gap between the lower bound provided by LP1 and the upper

bound provided by IP1 is 0.63% and for instances with heterogenous facilities this average gap is

0.72%). For these problem instances where IP1 works well, we would recommend IP1 over IP2

since it is a compact formulation and is very easy to implement in a commercial solver like CPLEX

(as compared to IP2 which requires special purpose column generation code to be written). In 23

of the 40 p-med instances where the ratio of |C|/|F | ≤ 10 (i.e., client demands are somewhat larger

compared to the facility capacity), the quality of LP1 significantly deteriorates and IP1 becomes

computationally challenging to solve. Our focus in our computational experiments will be on these

tightly capacitated instances (the ratio of the total demand to the total capacity is 0.9) where

|C|/|F | ≤ 10 to see whether IP2 and the column generation approach provide a viable alternative

to IP1.

In the p-med instances adapted from Halper et al. [2015] problem instances range from 100 to
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900 nodes. To ensure we have instances where |C|/|F | = 3, |C|/|F | = 5, and |C|/|F | = 10 for each

problem size, we generated 5 additional instances to the 23 where the ratio of |C|/|F | ≤ 10 (for a

total of 28 instances). We generated one 700 node instance (named p-med34-1 using the shortest

path distances, client and facility weights and client demands of instance p-med34 only generating

more facility locations to conform to the structure observed in the first 30 instances. In a similar

fashion, two instances each were generated for 800 and 900 node instances (named p-med37-1 and

p-med37-2, and p-med40-1 and p-med40-2).

6.3 Homogeneous Facilities Case

Tables 1, 2, and 3 describe our results when |C|/|F | ≤ 10. If an instance of IP1 or IP2 was

terminated at three hours, we report the objective value of the best integer solution found, namely

the best upper bound, and the best lower bound found. In all tables, if a value cannot be calculated

due to the time limit, we denote the corresponding cell with ‘-’. The running times exceeding three

hours are also denoted with ‘-’.

6.3.1 Comparison of the LP Relaxations

Table 1 presents the bounds obtained from LP1 and LP2 with respect to the best IP lower and

upper bounds. The first column specifies the names of the instances. Generically, let X(L) denote

the best lower bound obtained from model X after 3 hours of computation, where X can be either

IP1, IP1* or IP2. Similarly, X(U) denotes the objective value of the best feasible integer solution

obtained from model X after 3 hours of computation. In the first group of columns, we report the

best lower bound (BL) from either IP1(L), IP1*(L), or IP2(L) and the best upper bound (BU)

from either IP1(U), IP1*(U), IP2(U) for each instance, along with the source of the bound. If

the same bounds are found by IP1, IP1*, and IP2, we specify the source as ‘ALL’. Note that if

IP1, IP1* or IP2 terminated with the optimal solution, then BU=BL. For example, in Table 1,

the source of the best known upper bound for the p-med15 instance is IP1(U). That is, the integer

feasible solution with the lowest objective function value for p-med15 is obtained from IP1. On

the other hand, the source of the best known lower bound for p-med15 is IP2(L), meaning that

it is found while solving IP2 by the branch-and-price algorithm. In the second group of columns

labeled Gap (%), we provide the percentage gaps between various formulations. For all reported

gaps denoted as X-Y, the gaps are calculated as (X−Y)/X. The column labeled BU-BL provides

the gap between the best upper bound and the best lower bound, i.e. the best known optimality

gap. The columns labeled BU-LP1 and BU-LP2 denote the gap between the best upper bound and

the lower bounds obtained by solving LP1 and LP2, respectively. Similarly, the columns labeled

BL-LP1 and BL-LP2 denote the gap between the best lower bound and lower bounds of LP1 and

LP2. The group of columns labeled ‘Running time (s)’ provides the CPU times in seconds. Finally,

the size of the instances are given in the last group of columns.

In Table 1 we observe that as |C| gets larger, especially for |C| ≥ 600, IP2 starts to overtake

IP1 at finding the best upper bound. Furthermore, the best lower bound is found by IP2 when
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|C| ≥ 300. LP2 provides significantly smaller gaps than LP1 on the average with 1.80% versus 5.62%

compared to the best upper bound. In addition, we observe that the quality of LP2 compared to

LP1 gets progressively better as |C|/|F | gets smaller. Compared to the upper bound, LP2 has

an average gap of 0.80% versus 1.27% of LP1 for |C|/|F | = 10. The gaps become 2.09% versus

4.92% for |C|/|F | = 5 and 2.62% versus 11.17% for |C|/|F | = 3. We attribute this difference to

the packing constraints (7) in LP1 which lead to more fractional variables as |F | gets larger. These

computational results confirm the theoretical finding that IP2 is a stronger formulation than IP1.

In general, as expected, LP1 runs faster than LP2 with an average of 128.2 versus 519.7 seconds.

As a result, we observe an apparent trade-off between obtaining smaller gaps and having longer

run times.

6.3.2 Comparison of the Lower Bounds

Table 2 presents the computational results for IP1(L), IP1*(L), and IP2(L) and the running times

of IP1, IP1*, and IP2. The columns labeled BL-IP1(L), BL-IP1*(L) and BL-IP2(L) report the gap

between the best lower bound and IP1(L), IP1*(L) and IP2(L). On average, IP2(L) is better than

IP1(L) with an average value of 0.04% compared to 0.47%, which is somewhat expected given the

quality of LP2 versus LP1 when |C|/|F | ≤ 10. In fact, CPLEX does a pretty good job closing the

initial gap of LP1, which is 4.27% on average with respect to the best lower bound. On the other

hand, deprived of its state-of-the-art cuts, we observe that the poor quality of LP1 hinders the

ability of IP1* at closing the gap, which is 3.53% on average but gets as large as 9.71%. In terms

of running time, IP1, IP1* and IP2 all hit the three hour limit when |C| ≥ 300 (except p-med13

for IP1) with IP1 faring slightly better.

6.3.3 Comparison of the Upper Bounds

Table 3 presents the computational results for IP1(U), IP1*(U), IP2(U), the LP rounding heuristic

from LP2 (LP2RH), and the local search heuristic (LSH). The columns labeled IP1(U)-BL, IP1*(U)-

BL and IP2(U)-BL report the gap between IP1(U), IP1*(U) and IP2(U), and the best lower bound,

i.e., the optimality gap. In the column LP2RH-BL, the gap between the best integer feasible solution

found by LP2RH and the best lower bound is given. In the next column labeled LSH-BL, we provide

the gap between the feasible solution found by LSH and the best lower bound.

We observe that on average, IP2 performs better than IP1 in finding a good feasible solution.

IP1 gives an average gap of 4.02% while IP2 yields 1.60% gap on the average with respect to the

best lower bound. When we discard instance p-med40-2 for which IP1 terminated with a very

poor quality upper bound, IP2 still performs better compared to the lower bound with gaps 1.54%

vs. 1.68%. Especially when |C| ≥ 600, excluding instance p-med40-2, the average IP1(U)-BL gap

is 3.12% versus 2.56% of IP2(U)-BL, which signals that the relative quality of IP2 solutions get

better in larger instances.
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Table 1: Comparison of the quality of LP1 and LP2 on homogenous instances.

Objective Value Gap (%) Runtime (s) V = C
Instance BL Source BU Source BU-BL BU-LP1 BU-LP2 BL-LP1 BL-LP2 LP1 LP2 |C| |C|/|F |

pmed2 5275.27 ALL 5275.27 ALL 0.00% 1.47% 0.60% 1.47% 0.60% 0.42 0.98 100 10
pmed3 6023.05 ALL 6023.05 ALL 0.00% 0.61% 0.27% 0.61% 0.27% 0.24 0.89 100 10
pmed4 5374.39 ALL 5374.39 ALL 0.00% 4.19% 0.78% 4.19% 0.78% 0.26 0.45 100 5
pmed5 3320.49 ALL 3320.49 ALL 0.00% 9.86% 2.22% 9.86% 2.22% 0.30 0.34 100 3
pmed8 6658.71 ALL 6658.71 ALL 0.00% 1.31% 0.70% 1.31% 0.70% 1.94 16.66 200 10
pmed9 5046.37 IP1(L) 5061.78 IP1(U) 0.30% 4.31% 1.21% 4.02% 0.90% 2.81 4.17 200 5
pmed10 3128.94 IP1(L) 3128.94 IP1(U) 0.00% 8.56% 0.92% 8.56% 0.92% 1.62 2.90 200 3
pmed13 5690.55 IP1(L) 5690.55 IP1(U) 0.00% 0.73% 0.32% 0.73% 0.32% 7.75 45.52 300 10
pmed14 4427.26 IP2(L) 4465.27 IP1*(U) 0.85% 4.15% 1.16% 3.32% 0.31% 7.77 10.76 300 5
pmed15 3416.81 IP2(L) 3459.56 IP1(U) 1.24% 9.65% 1.47% 8.52% 0.24% 5.50 9.92 300 3
pmed18 6010.19 IP2(L) 6038.28 IP1(U) 0.47% 1.04% 0.70% 0.58% 0.23% 19.95 93.34 400 10
pmed19 4674.05 IP2(L) 4749.88 IP1*(U) 1.60% 4.80% 2.03% 3.25% 0.44% 14.99 36.60 400 5
pmed20 3928.93 IP2(L) 3966.80 IP1(U) 0.95% 10.25% 1.13% 9.39% 0.18% 14.81 23.65 400 3
pmed23 6996.73 IP2(L) 7023.91 IP2(U) 0.39% 1.04% 0.59% 0.66% 0.20% 62.15 252.86 500 10
pmed24 5320.38 IP2(L) 5397.27 IP1(U) 1.42% 4.25% 1.62% 2.87% 0.20% 34.57 124.43 500 5
pmed25 3852.84 IP2(L) 3972.88 IP1*(U) 3.02% 12.11% 3.19% 9.38% 0.17% 27.83 85.02 500 3
pmed28 6367.63 IP2(L) 6390.13 IP1(U) 0.35% 0.90% 0.43% 0.55% 0.08% 101.12 386.88 600 10
pmed29 5286.17 IP2(L) 5405.70 IP2(U) 2.21% 5.34% 2.35% 3.20% 0.14% 64.94 193.69 600 5
pmed30 4031.32 IP2(L) 4187.17 IP2(U) 3.72% 13.41% 4.04% 10.06% 0.33% 40.11 91.39 600 3
pmed33 6981.21 IP2(L) 7007.81 IP1(U) 0.38% 0.87% 0.51% 0.49% 0.13% 227.11 793.56 700 10
pmed34 5075.42 IP2(L) 5254.71 IP2(U) 3.41% 6.07% 3.55% 2.75% 0.14% 163.35 222.80 700 5
pmed34-1 4079.74 IP2(L) 4241.66 IP2(U) 3.82% 12.10% 3.93% 8.61% 0.12% 59.85 129.40 700 3
pmed37 6536.65 IP2(L) 6646.71 IP1(U) 1.66% 2.21% 1.81% 0.57% 0.16% 384.68 1055.25 800 10
pmed37-1 5081.89 IP2(L) 5218.90 IP2(U) 2.63% 5.49% 2.71% 2.94% 0.09% 279.35 592.47 800 5
pmed37-2 4190.18 IP2(L) 4337.52 IP1(U) 3.40% 12.44% 3.48% 9.36% 0.08% 111.42 6332.21 800 3
pmed40 7397.00 IP2(L) 7543.70 IP1(U) 1.94% 2.53% 2.09% 0.60% 0.15% 1127.80 2115.01 900 10
pmed40-1 5790.58 IP2(L) 5984.67 IP2(U) 3.24% 5.64% 3.37% 2.47% 0.13% 478.20 1164.40 900 5
pmed40-2 4642.74 IP2(L) 4790.29 IP2(U) 3.08% 12.12% 3.19% 9.33% 0.11% 220.26 246.65 900 3

Min 0.00% 0.61% 0.27% 0.49% 0.08% 0.24 0.34
Max 3.82% 13.41% 4.04% 10.06% 2.22% 1127.80 6332.21
Avg 1.43% 5.62% 1.80% 4.27% 0.37% 123.61 501.15
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Table 2: Comparison of the quality of lower bounds obtained from IP1, IP1* and IP2 on homogenous instances.

Gap (%) Runtime (s) V = C
Instance BL-IP1(L) BL-IP1*(L) BL-IP2(L) IP1 IP1* IP2 |C| |C|/|F |

pmed2 0.00% 0.00% 0.00% 9.45 34.45 13.26 100 10
pmed3 0.00% 0.00% 0.00% 1.05 1.15 10.13 100 10
pmed4 0.00% 0.00% 0.00% 32.67 973.69 41.24 100 5
pmed5 0.00% 4.01% 0.00% 112.29 - 3868.58 100 3
pmed8 0.00% 0.47% 0.00% 1227.54 - 7949.99 200 10
pmed9 0.00% 2.92% 0.32% - - - 200 5
pmed10 0.00% 6.52% 0.62% 1591.44 - - 200 3
pmed13 0.00% 0.32% 0.06% 1048.31 - - 300 10
pmed14 0.39% 2.69% 0.00% - - - 300 5
pmed15 0.44% 7.88% 0.00% - - - 300 3
pmed18 0.07% 0.24% 0.00% - - - 400 10
pmed19 0.84% 2.93% 0.00% - - - 400 5
pmed20 0.42% 8.86% 0.00% - - - 400 3
pmed23 0.29% 0.57% 0.00% - - - 500 10
pmed24 0.66% 2.55% 0.00% - - - 500 5
pmed25 0.43% 8.88% 0.00% - - - 500 3
pmed28 0.15% 0.47% 0.00% - - - 600 10
pmed29 0.71% 3.13% 0.00% - - - 600 5
pmed30 0.79% 9.71% 0.00% - - - 600 3
pmed33 0.25% 0.45% 0.00% - - - 700 10
pmed34 0.89% 2.69% 0.00% - - - 700 5
pmed34-1 1.47% 8.47% 0.00% - - - 700 3
pmed37 0.36% 0.53% 0.00% - - - 800 10
pmed37-1 1.00% 2.93% 0.00% - - - 800 5
pmed37-2 1.28% 9.31% 0.00% - - - 800 3
pmed40 0.36% 0.57% 0.00% - - - 900 10
pmed40-1 1.00% 2.46% 0.00% - - - 900 5
pmed40-2 1.40% 9.20% 0.00% - - - 900 3

Min 0.00% 0.00% 0.00% 1.05 1.15 10.13
Max 1.47% 9.71% 0.62% - - -
Avg 0.47% 3.53% 0.04% 8273.57 9822.32 9297.10
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Table 3: Comparison of the quality of upper bounds obtained from IP1, IP1*, IP2, LP2RH, and LSH on homogenous instances.

Gap (%) Runtime (s) Nodes V = C
Instance IP1(U)-BL IP1*(U)-BL IP2(U)-BL LP2RH-BL LSH-BL LSH Explored |C| |C|/|F |

pmed2 0.00% 0.00% 0.00% 0.90% 3.54% 0.32 33 100 10
pmed3 0.00% 0.00% 0.00% 0.24% 3.10% 0.29 7 100 10
pmed4 0.00% 0.00% 0.00% 3.80% 6.39% 1.48 366 100 5
pmed5 0.00% 0.00% 0.00% 7.10% 12.84% 4.43 49973 100 3
pmed8 0.00% 0.06% 0.00% 2.57% 5.32% 6.48 944 200 10
pmed9 0.30% 0.59% 0.30% 2.15% 10.41% 34.77 31539 200 5
pmed10 0.00% 0.40% 0.68% 6.04% 13.78% 68.33 38760 200 3
pmed13 0.00% 0.00% 0.01% 0.70% 2.80% 40.73 1125 300 10
pmed14 0.95% 0.85% 1.11% 4.92% 8.20% 191.19 14590 300 5
pmed15 1.24% 1.58% 1.93% 10.04% 16.68% 401.13 12410 300 3
pmed18 0.47% 0.51% 0.69% 4.50% 3.33% 188.12 2489 400 10
pmed19 2.06% 1.60% 1.80% 4.90% 9.61% 863.69 6742 400 5
pmed20 0.95% 1.93% 1.79% 7.28% 12.97% 2100.53 6317 400 3
pmed23 0.44% 0.64% 0.39% 2.55% 4.19% 559.10 1521 500 10
pmed24 1.42% 1.61% 1.79% 6.00% 8.45% 3126.61 4128 500 5
pmed25 3.13% 3.02% 3.06% 6.70% 15.73% 5201.88 3552 500 3
pmed28 0.35% 0.39% 0.51% 3.92% 5.89% 1184.15 1311 600 10
pmed29 2.87% 3.26% 2.21% 4.14% 8.77% 4679.60 3785 600 5
pmed30 5.83% 5.80% 3.72% 5.86% 16.23% - 3003 600 3
pmed33 0.38% 0.48% 0.58% 3.83% 4.10% 2384.93 907 700 10
pmed34 3.99% 4.72% 3.41% 5.47% 8.73% - 2855 700 5
pmed34-1 5.03% 5.62% 3.82% 5.62% 20.20% - 2062 700 3
pmed37 1.66% 1.92% 1.72% 3.13% 5.06% 3905.30 620 800 10
pmed37-1 3.21% 4.39% 2.63% 4.01% 12.98% - 1931 800 5
pmed37-2 3.40% 9.39% 4.18% 6.80% 22.16% - 586 800 3
pmed40 1.94% 2.59% 2.12% 5.64% 4.32% 7157.25 519 900 10
pmed40-1 5.61% 5.08% 3.24% 5.47% 18.71% - 1060 900 5
pmed40-2 67.21% 9.57% 3.08% 5.47% 26.04% - 876 900 3

Min 0.00% 0.00% 0.00% 0.24% 2.80% 0.29 7
Max 67.21% 9.57% 4.18% 10.04% 26.04% - 49973
Avg 4.02% 2.36% 1.60% 4.63% 10.38% 3846.47 6928.96
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The LP rounding heuristic performs fairly well, given the hardness of this subset of instances

(i.e., where |C|/|F | ≤ 10) and the poor quality of the local search heuristic. On average, the gap

is 4.63%, which means by just solving LP2 at the root node and using the LP rounding heuristic,

we get an integer solution which is on average at most 4.63% away from the optimal. However,

the quality of the local search heuristic is extremely poor with an average gap of 10.38%. This is

somewhat expected since the greedy procedure for the GAP tends to work better when the number

of items assigned to a single bin gets larger. The running time of the LP rounding heuristic nearly

equals the running time of LP2 since the steps after LP2 solution take negligible time. Therefore,

we see that the LP rounding heuristic is quite fast for |C|/|F | ≤ 10 and gets even faster as |C|/|F |
gets smaller. In contrast, the local search heuristic runs quite slowly since the neighborhood size

is larger for |C|/|F | ≤ 10. We observe that the speed of LP2 does not translate into IP2 since the

number of nodes explored increases as |C|/|F | gets smaller. We see two reasons for the increased

number of nodes. The first one is simply the increased number of variables as |F | gets larger. The

second reason is more subtle. After fixing a ztv variable, we naturally expect the lower bound

obtained at that node to increase. However, as |F | increases, the marginal increase in the lower

bound caused by fixing a single facility decreases. This in turn makes the algorithm explore more

nodes as we observe in the column labeled ‘Nodes Explored’, which provides the total number of

nodes explored by the branch-and-price algorithm that solves IP2.

6.4 Heterogeneous Facilities Case

Tables 4 through 6 present the results using the same layout and format as for homogeneous facil-

ities. We did not implement the Local Search heuristic for the heterogeneous facilities since it is

significantly outperformed by every other method when |C|/|F | ≤ 10. Furthermore, its neighbor-

hood structure and size make its performance highly predictable in terms of time and quality.

In Table 4, the BU-BL gap values show that the presence of heterogeneous facilities increases

the difficulty of the problem as expected. The average BU-BL gaps are observed to be 1.43%

and 2.86%, respectively for homogeneous and heterogeneous facilities. In general, the insights we

gain from homogeneous facilities are still valid and more pronounced in heterogeneous facilities. In

homogeneous facilities, we observe that IP2 starts to produce better upper bounds compared to

IP1 when |C| ≥ 600. Not only the trend holds up even stronger for heterogeneous facilities, but

the quality of the upper bounds obtained from IP1 rapidly declines after |C| ≥ 700. After disabling

default CPLEX cuts, IP1* failed to find a feasible solution in three hours for six out of nine instances

for |C| ≥ 700. The quality of the LP rounding heuristic slightly declines for heterogeneous facilities.

However, compared to IP1, the LP rounding heuristic provides good quality solutions in reasonable

time. Especially for |C| ≥ 700, the LP rounding heuristic generally outperforms IP1. Similarly, the

lower bound IP1(L) obtained from IP1 after three hours is worse than the lower bound obtained

from LP2 for the same instances. Interestingly after solving the root node, the branch-and-price

algorithm has better lower and upper bounds than IP1 has at its termination after three hours.

25



Table 4: Comparison of the quality of LP1 and LP2 on heterogenous instances.

Objective Value Gap (%) Runtime (s) V = C
Instance BL Source BU Source BU-BL BU-LP1 BU-LP2 BL-LP1 BL-LP2 LP1 LP2 |C| |C|/|F |

pmed2 5064.83 ALL 5064.83 ALL 0.00% 1.25% 0.48% 1.25% 0.48% 0.24 7.47 100 10
pmed3 6162.93 ALL 6162.93 ALL 0.00% 1.99% 0.88% 1.99% 0.88% 0.19 1.98 100 10
pmed4 5172.33 ALL 5172.33 ALL 0.00% 3.16% 1.30% 3.16% 1.30% 0.17 0.73 100 5
pmed5 3302.98 ALL 3302.98 ALL 0.00% 9.10% 1.19% 9.10% 1.19% 0.22 0.53 100 3
pmed8 6484.06 IP1(L) 6484.06 IP1(U) 0.00% 2.18% 0.48% 2.18% 0.48% 2.62 32.15 200 10
pmed9 5043.84 IP2(L) 5115.69 IP1(U) 1.40% 6.02% 1.73% 4.68% 0.33% 2.40 6.24 200 5
pmed10 3199.40 IP1(L) 3240.95 IP1(U) 1.28% 11.36% 1.87% 10.21% 0.60% 2.62 9.92 200 3
pmed13 5673.47 IP1(L) 5673.47 IP1(U) 0.00% 1.09% 0.49% 1.09% 0.49% 10.90 87.39 300 10
pmed14 4372.98 IP2(L) 4414.65 IP1(U) 0.94% 4.40% 1.12% 3.49% 0.18% 6.43 17.36 300 5
pmed15 3364.28 IP2(L) 3447.41 IP1(U) 2.41% 10.63% 2.53% 8.42% 0.13% 6.38 13.31 300 3
pmed18 5997.19 IP2(L) 6038.59 IP1*(U) 0.69% 1.81% 0.80% 1.13% 0.12% 15.51 133.51 400 10
pmed19 4701.85 IP2(L) 4830.43 IP1*(U) 2.66% 6.28% 2.74% 3.72% 0.08% 16.68 34.05 400 5
pmed20 3973.66 IP2(L) 4162.68 IP1(U) 4.54% 14.31% 4.66% 10.23% 0.13% 15.07 30.55 400 3
pmed23 6997.44 IP2(L) 7039.70 IP1*(U) 0.60% 1.50% 0.67% 0.91% 0.07% 58.06 355.03 500 10
pmed24 5247.22 IP2(L) 5406.64 IP2(U) 2.95% 6.08% 3.02% 3.23% 0.07% 46.93 82.17 500 5
pmed25 3780.82 IP2(L) 3944.54 IP1(U) 4.15% 12.79% 4.21% 9.02% 0.06% 29.16 44.69 500 3
pmed28 6352.88 IP2(L) 6429.52 IP1(U) 1.19% 2.21% 1.26% 1.03% 0.07% 107.78 609.07 600 10
pmed29 5184.69 IP2(L) 5332.38 IP2(U) 2.77% 5.61% 2.84% 2.92% 0.07% 79.42 128.86 600 5
pmed30 3931.89 IP2(L) 4213.84 IP2(U) 6.69% 15.90% 6.77% 9.87% 0.08% 43.32 80.81 600 3
pmed33 6970.24 IP2(L) 7064.82 IP1*(U) 1.34% 2.26% 1.39% 0.93% 0.05% 260.57 861.42 700 10
pmed34 5056.57 IP2(L) 5267.82 IP2(U) 4.01% 6.76% 4.06% 2.87% 0.05% 204.86 202.46 700 5
pmed34-1 4079.69 IP2(L) 4358.50 IP2(U) 6.40% 15.31% 6.44% 9.52% 0.05% 129.03 124.13 700 3
pmed37 6507.84 IP2(L) 6655.00 IP2(U) 2.21% 3.14% 2.26% 0.95% 0.05% 500.87 969.15 800 10
pmed37-1 5092.52 IP2(L) 5352.55 IP2(U) 4.86% 8.55% 4.91% 3.89% 0.05% 446.82 341.45 800 5
pmed37-2 4134.17 IP2(L) 4558.39 IP2(U) 9.31% 18.41% 9.36% 10.04% 0.05% 159.37 187.87 800 3
pmed40 7351.84 IP2(L) 7510.01 IP2(U) 2.11% 2.98% 2.15% 0.89% 0.05% 1102.80 2620.10 900 10
pmed40-1 5742.88 IP2(L) 5918.55 IP2(U) 2.97% 6.12% 3.00% 3.25% 0.03% 575.02 524.82 900 5
pmed40-2 4731.60 IP2(L) 5192.53 IP2(U) 8.88% 17.77% 8.91% 9.76% 0.03% 313.58 238.67 900 3

Min 0.00% 1.09% 0.48% 0.89% 0.03% 0.17 0.53
Max 9.31% 18.41% 9.36% 10.23% 1.30% 1102.80 2620.10
Avg 2.66% 7.11% 2.91% 4.63% 0.26% 147.75 276.64
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Table 5: Comparison of the quality of lower bounds obtained from IP1, IP1* and IP2 on heterogenous instances.

Gap (%) Runtime (s) V = C
Instance BL-IP1(L) BL-IP1*(L) BL-IP2(L) IP1 IP1* IP2 |C| |C|/|F |

pmed2 0.00% 0.00% 0.00% 5.78 5.48 439.52 100 10
pmed3 0.00% 0.00% 0.00% 17.43 185.24 2113.54 100 10
pmed4 0.00% 0.00% 0.00% 26.18 205.45 277.40 100 5
pmed5 0.00% 0.00% 0.00% 194.19 - 1642.23 100 3
pmed8 0.00% 0.44% 0.31% 2240.12 - - 200 10
pmed9 0.31% 3.19% 0.00% - - - 200 5
pmed10 0.00% 8.54% 0.37% - - - 200 3
pmed13 0.00% 0.38% 0.36% 8570.64 - - 300 10
pmed14 0.60% 2.88% 0.00% - - - 300 5
pmed15 0.75% 7.33% 0.00% - - - 300 3
pmed18 0.40% 0.61% 0.00% - - - 400 10
pmed19 1.28% 3.37% 0.00% - - - 400 5
pmed20 1.54% 9.62% 0.00% - - - 400 3
pmed23 0.48% 0.61% 0.00% - - - 500 10
pmed24 1.33% 3.12% 0.00% - - - 500 5
pmed25 1.66% 8.92% 0.00% - - - 500 3
pmed28 0.58% 0.85% 0.00% - - - 600 10
pmed29 1.24% 2.84% 0.00% - - - 600 5
pmed30 1.51% 9.57% 0.00% - - - 600 3
pmed33 0.63% 0.90% 0.00% - - - 700 10
pmed34 1.41% 2.80% 0.00% - - - 700 5
pmed34-1 2.23% 9.49% 0.00% - - - 700 3
pmed37 0.71% 0.93% 0.00% - - - 800 10
pmed37-1 2.11% 3.85% 0.00% - - - 800 5
pmed37-2 3.06% 10.02% 0.00% - - - 800 3
pmed40 0.81% 0.87% 0.00% - - - 900 10
pmed40-1 1.81% 3.25% 0.00% - - - 900 5
pmed40-2 3.16% 9.75% 0.00% - - - 900 3

Min 0.00% 0.00% 0.00% 5.78 5.48 277.40
Max 3.16% 10.02% 0.37% - - -
Avg 0.99% 3.72% 0.04% 8926.10 9716.26 9417.65
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Table 6: Comparison of the quality of upper bounds obtained from IP1, IP1*, IP2, and LP2RH on heterogenous instances.

Gap (%) Nodes V = C
Instance IP1(U)-BL IP1*(U)-BL IP2(U)-BL LP2RH-BL Explored |C| |C|/|F |

pmed2 0.00% 0.00% 0.00% 1.78% 223 100 10
pmed3 0.00% 0.00% 0.00% 5.37% 2632 100 10
pmed4 0.00% 0.00% 0.00% 3.72% 1745 100 5
pmed5 0.00% 0.00% 0.00% 6.64% 18422 100 3
pmed8 0.00% 0.08% 0.21% 0.89% 932 200 10
pmed9 1.40% 2.23% 2.66% 6.32% 21716 200 5
pmed10 1.28% 1.64% 3.26% 7.89% 29006 200 3
pmed13 0.00% 0.12% 0.28% 1.51% 1032 300 10
pmed14 0.94% 1.88% 1.91% 4.85% 11439 300 5
pmed15 2.41% 2.60% 5.31% 13.47% 14975 300 3
pmed18 0.73% 0.69% 0.86% 2.17% 3221 400 10
pmed19 2.74% 2.66% 3.54% 10.15% 10408 400 5
pmed20 4.54% 7.66% 6.95% 12.05% 9592 400 3
pmed23 0.70% 0.60% 1.12% 3.08% 2484 500 10
pmed24 3.45% 3.05% 2.95% 7.19% 6493 500 5
pmed25 4.15% 5.92% 6.68% 13.09% 5447 500 3
pmed28 1.19% 1.25% 1.25% 5.71% 1334 600 10
pmed29 6.82% 6.58% 2.77% 3.95% 3781 600 5
pmed30 10.81% 18.81% 6.69% 10.71% 3964 600 3
pmed33 1.58% 1.34% 1.61% 1.65% 960 700 10
pmed34 4.98% 7.69% 4.01% 7.06% 3021 700 5
pmed34-1 71.41% - 6.40% 8.48% 2529 700 3
pmed37 2.44% - 2.21% 6.13% 601 800 10
pmed37-1 62.34% - 4.86% 5.51% 1983 800 5
pmed37-2 11.66% - 9.31% 11.31% 1746 800 3
pmed40 52.19% 50.73% 2.11% 5.14% 436 900 10
pmed40-1 60.86% - 2.97% 4.42% 1375 900 5
pmed40-2 70.75% - 8.88% 12.05% 1304 900 3

Min 0.00% 0.00% 0.00% 0.89% 223
Max 71.41% 50.73% 9.31% 13.47% 29006
Avg 13.55% 5.25% 3.17% 6.51% 5814.32
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7 Conclusions

In this paper we introduced the CMFLP, a problem that arises in the logistics planning of com-

munity outreach programs delivered via mobile facilities. We provided two integer programming

formulations for the CMFLP. The first (IP1) is a layered graph formulation adapted from the MFLP

formulation in Halper et al. [2015] to account for the capacity restrictions. The second (IP2) is a

set partitioning formulation. We show that the LP relaxation of IP2 (LP2) is stronger than the LP

relaxation of IP1 (LP1) and propose an efficient column generation procedure to solve LP2, which

is used within a branch-and-price algorithm to solve IP2. Within the branch-and-price algorithm,

we use a greedy 2-approximation algorithm to solve the pricing problem and only solve the pricing

problem exactly when the heuristic algorithm fails to find a column to be added to the RMP of

LP2. We also keep track of variables that have been nonbasic for a certain number of iterations

and remove them from the problem to maintain tractability. Since branching on the variables of

IP2 was not a viable option, we implicitly branch on the variables of IP1 in the branch-and-bound

tree while using IP2 as the relaxation. These strategies result in a computationally effective column

generation and branch-and-price procedure. We propose and test two heuristics for the CMFLP.

The first is an LP rounding heuristic that uses the fractional variables from the column generation

procedure. The second is a local search heuristic called 1-OptSwapBI, originally proposed for the

MFLP, that uses the decomposition of IP1 into client and facility subproblems.

The computational results provide some interesting conclusions. The increase in the total

number of vertices makes the problem harder to tackle. However, IP1 has more trouble handling

larger problems than IP2, especially when the average number of clients assigned to a facility is

small. When |C|/|F | ≤ 10, IP2 and LP2 dominate IP1 and LP1 respectively. The disparity between

IP1 and IP2 are accentuated when we consider heterogenous facilities as opposed to homogenous

facilities. A similar behavior is observed with the heuristics. When the average number of clients

assigned to a facility is small (|C|/|F | ≤ 10) the local search heuristic performs poorly. On the

other hand, under these conditions the LP rounding heuristic runs faster and provides high quality

upper bounds.

We suggest IP1 as the go-to formulation in loosely capacitated problems as well as problems

where the average number of clients assigned to a facility is large. However, for problems where

capacity constraints play a more significant role (i.e., where the ratio of total demand to total

capacity is closer to 1 and the ratio of clients to number of facilities is less than or equal to 10) IP2

becomes the better formulation.
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K. Holmberg, M. Rönnqvist, and D. Yuan. An exact algorithm for the capacitated facility location
problems with single sourcing. European Journal of Operational Research, 113(3):544–559, 1999.

A. Klose. An LP-based heuristic for two-stage capacitated facility location problems. The Journal
of the Operational Research Society, 50(2):pp. 157–166, 1999.
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