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a b s t r a c t 

Starting in the late 80s Bayesian methods have gained increasing attention in the reliability literature. The 

focus of most of the earlier Bayesian work in reliability involved statistical inference and thus the main 

emphasis was on modeling and analysis. Advances in Bayesian computing after the 90’s have significantly 

contributed not only to the use of Bayesian inference and prediction but also to the implementation of 

Bayesian decision-theoretic approaches in reliability problems. In this review we present an overview of 

Bayesian methods to solve decision problems in reliability some of which involve two or more decision 

makers with conflicting objectives. We consider problems in areas such as design, life testing, preventive 

maintenance, reliability certification, or warranty policies. In doing so, we present key aspects of the 

decision problems, give a brief review of earlier methods and finally discuss recent advances in Bayesian 

approaches to solve them. 

© 2019 Elsevier B.V. All rights reserved. 
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Advances in Bayesian decision making in reliability
. Introduction and overview 

In his review paper Barlow (1984) noted that “The mathemat-

cal theory of reliability has grown out of the demands of mod-

rn technology and particularly out of the experiences in World

ar II with complex military systems”. Some of this earlier work

n reliability was in the area of machine maintenance which in-

olved renewal theory applications to replacement problems as in

otka (1939) . At about the same time, in von Neumann and Mor-

enstern (1944) published their celebrated Theory of Games and

conomic Behavior which contained the axiomatization of utilities

nd laid down the foundations of decision theory and analysis, as

ell as introducing the concept of the minimax solution in zero-

um games. Wald (1950) was the first statistician to recognize the

onnection between game theory and the statistical theory of hy-

othesis testing. The publication of Leonard Savage ’s (1954) The

oundations of Statistics completed the foundations of modern de-

ision theory and Bayesian statistics developing an axiomatic basis

f probability based on behavioral considerations in combination

ith utility theory. 

As pointed out by Singpurwalla (2009) , “Reliability is a key in-

redient for making decisions that mitigate the risk of failure. The

ther key ingredient is utility”. The Bayesian decision-theoretic ap-
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roach integrates both by quantifying uncertainty via probability

nd preferences via utility, providing a coherent framework for

aking decisions by subscribing to the principle of expected util-

ty maximization, see Lindley (1985) and French and Rios Insua

20 0 0) . This is well recognized by many authors in the Operations

esearch and reliability communities like Percy (2002) , who points

ut that the limited availability of data in many reliability related

ecision problems makes the Bayesian approach inevitable. He

entions preventive maintenance and repair/replacement strate- 

ies, condition monitoring of systems and specification of warranty

olicies, etc. as example areas. 

Reliability problems involving a single decision maker can be

ormulated and solved with the Bayesian decision-theoretic frame-

ork. However, as noted by Rios Insua, Ruggeri, Soyer, and Rasines

2018) , there are reliability problems that involve two or more

ecision makers, possibly with opposed interests. One of the

arliest Bayesian approaches in adversarial reliability settings is

ue to Lindley and Singpurwalla (1991) , Lindley and Singpurwalla

1993) who considered problems in acceptance sampling and life

esting. Such problems involving adversarial components can be

ramed as games and are typically solved using (non coopera-

ive) game-theoretic methods. Hausken (2002) provides examples

f using such approach in system reliability analysis, especially

n relation with infrastructure reliability of public systems. Other

dversarial reliability application areas include warranty analysis,

oftware testing, optimal maintenance and reliability demonstra-

ion. 

https://doi.org/10.1016/j.ejor.2019.03.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.03.018&domain=pdf
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Barlow (1984) noted that “Among statisticians working in re-

liability theory, perhaps the most significant trend is the growing

recognition of the usefulness of the Bayesian approach to inductive

inference.” Since then, there has been a considerable increase in

the use of Bayesian methods in reliability problems involving not

only inference but also decision making. The objective of this paper

is to focus on the latter and provide a review of recent advances

in Bayesian methods for decision making in reliability, including

Bayesian decision analysis methods to cope with adversarial issues

in reliability. 

The structure of the paper is as follows. The material in

Section 2 focuses on Bayesian design for life tests including cen-

sored life testing experiments. Extensions such as accelerated life

testing are considered. The main aspects of decision problems and

the associated computational issues are discussed. Related prob-

lems of optimal stopping and planning of reliability demonstration

tests are also presented. Section 3 refers to Bayesian maintenance

policies for both repairable and non repairable systems. Different

replacement protocols are presented and computation of optimal

replacement intervals are discussed. Recent work on nonparamet-

ric Bayesian policies that are based on advances in Bayesian com-

puting are also highlighted. The final part of the section considers

sequential maintenance problems and outlines implementation of

semi-Markov decision processes. The focus of Section 4 is on ad-

versarial problems in reliability. Bayesian solutions are discussed

for game theory and adversarial risk analysis setups for acceptance

sampling plans and methods for specifying warranty policies are

presented. Concluding remarks follow in Section 5 . 

2. Design of life testing experiments 

In reliability analysis, experiments are conducted to obtain in-

formation about failure characteristics of systems or components of

interest, to assess reliability and, if necessary, improve system per-

formance based on information from the experiment. Such exper-

iments are generally referred to as life tests . For example, we may

be interested in learning about the life length of a component un-

der certain environmental conditions, its reliability at a given mis-

sion time, or the failure rate, and in making a decision on whether

to change the design of the component based on such information.

Design problems in life testing involve the determination of one or

more elements of the life test such as the testing environment, the

number of items to be tested or the stopping rule. Optimal selec-

tion of the design variables require consideration of benefits from

the life test as well as the costs associated with performing the

test. 

As noted by Polson and Soyer (2017) , the Bayesian decision-

theoretic approach to the optimal design problem requires the

specification of three components: 

1. A utility (loss) function: reflecting the consequences of se-

lecting a specific design. 

2. A probability model: life distribution of the items in ques-

tion. 

3. A prior distribution: reflecting a priori beliefs about all un-

known quantities. 

Let a ∈ A denote the design variables, which may represent the

number of items to be tested, the duration of testing, or binary

actions such as stop/continue testing. Let the observed outcome of

a life test be x and the probability model for x given parameter(s)

θ be p ( x | θ , a ). We assume that the uncertainty about θ prior to

the life test is described by a probability distribution p ( θ ). Finally,

we denote the utility function associated with the consequences

of selecting a specific design a as u ( x , θ , a ) which will, therefore,

depend on both x and θ in general. Then, the Bayesian solution to

the design problem is obtained by maximizing the expected utility
 [ u (x, θ, a ) ] = u (a ) = 

∫ ∫ 
u ( x, θ, a ) p ( x, θ | a ) d θ d x, (1)

ith respect to the design variable a . Since (1) can be written as 

 (a ) = 

∫ ∫ 
u (x, θ, a ) p(θ | x, a ) p(x | a ) d θ d x, (2)

here p ( θ | x , a ) is the posterior distribution of θ , u (a ) is usually

eferred to as the pre-posterior expected utility . The optimal design

s then obtained by solving 

 

∗ = arg max 
a 

ū (a ) . (3)

Life test data are typically censored and provide partial fail-

re/survival information. The most commonly used strategies are

ailure truncated (Type II) and time truncated (Type I) censoring. Un-

er the Type II scenario, n items are tested until k ≤ n of them

ail. The testing duration, which is the time of k -th failure, is an

nknown quantity whereas n and k are pre-specified design vari-

bles. In the time truncated censoring, n items are put on test for

re-specified τ units of time, that is, testing stops after τ . In this

ase, test duration is known but the number of items that will fail

uring τ units of time is an unknown quantity. The design vari-

bles are, respectively, a = (k, n ) and a = (τ, n ) in the Type II and

ype I censoring problems. It is also common to accelerate life-

ests by changing the testing environment to induce early failures

nd, in this case, the testing environment is also part of the design

ariables a . Sometimes life tests consist of several stages and are

onducted sequentially until a criterion known as stopping rule is

atisfied; see, for example, Deely and Keats (1994) . 

In what follows, we first present the Bayesian optimal design

f censored life tests and discuss some of its extensions and re-

ent Bayesian work. This is followed by a discussion of optimal ac-

elerated life testing design. Finally, we present optimal stopping

roblems in life testing and sketch optimal release problems in re-

iability analysis. 

.1. Optimal Bayesian life test design 

As mentioned, by providing failure/survival data, life tests al-

ow us to infer relevant failure features of the components in ques-

ion. Earlier Bayesian work on design of life tests include Thyregod

1975) who considered Type II censoring where the test results

ould be used to accept/reject a production lot. Using a cost-based

tility function, an optimal sampling plan was determined specify-

ng the failure truncation and the acceptance rule for the lot. In re-

ated work, Barnett (1972) developed a Bayesian sequential life test

rocedure using a posterior probability based criterion. An alterna-

ive Bayesian sequential procedure was considered by Bancroft and

unsmore (1978) using the predictive distribution of observed life-

imes. 

The concept of gain in information about the failure character-

stic from a life test, discussed by Brooks (1982) and Barlow and

siung (1983) , plays an important role in the optimal design of

ayesian life tests. A general utility function for the design prob-

em is given by 

 (x, θ, a ) = g(x, θ, a ) − c(x, a ) , (4)

here functions g and c are similar to the gain and cost func-

ions of Bernardo (1997) , respectively. It is important to note that g

nd c have the same units. For example, if g(x, θ, a ) = −V (θ | x, a ) ,

hat is, g is set to be the negative of the posterior variance

f θ , then the evaluation of ū (a ) in (2) requires assessing the

re-posterior variance of θ . If we choose the gain function as

(x, θ, a ) = log p(θ | x, a ) , where p ( θ | x , a ) is the posterior distribu-

ion of θ under design a , then the evaluation of ū (a ) requires as-

essing Lindley ’s (1956) measure . The utility function (4) provides
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n additive structure to reflect the benefits and costs associated

ith the life test design a . It is possible to reflect such trade-offs

y using alternative forms as well, as in Section 2.2 . 

In the following two subsections we will consider a specific

orm of the utility function (4) and discuss how optimal designs

an be obtained in failure and time truncated life tests. 

.1.1. Design of failure truncated life tests 

As previously mentioned for failure truncated censoring, the de-

ign variable to be determined is a = (k, n ) . We assume a specific

orm for (4) given by 

 ( T (x, a ) ) = −V ( θ | T (x, a ) ) − c t T (x, a ) , (5)

here T ( x , a ) is the total time on test (TTOT) under the failure

runcated scenario and c t represents the cost of testing. The util-

ty function (5) captures the trade-off between reduction of uncer-

ainty about θ via more testing, reflected by the posterior variance,

nd the cost of testing, reflected by the TTOT. In this case, the TTOT

s given by 

 (x, a ) = 

k −1 ∑ 

i =1 

X (i ) + (n − k + 1) X (k ) , (6) 

here X (1) < ��� < X ( k ) are the first k order-statistics from the dis-

ribution p ( x | θ , a ). 

Assume that the life-length of the items follow an exponential

istribution with failure rate θ with gamma prior distribution 

p(θ ) = 

b d 

�(d) 
θ d−1 e −bθ , 

enoted as θ ∼ Gam ( d , b ). The standard Bayesian updating implies

hat θ | T (x, a ) , a ∼ Gam (d + k, b + T (x, a )) and V (θ | T (x, a ) , a ) =
(d + k ) / (b + T (x, a )) 2 . The evaluation of the preposterior utility re-

uires the predictive distribution of T ( x , a ) given by 

p(T (x, a )) = 

∫ 
θ

p(T (x, a ) | θ ) p(θ ) dθ, 

here T ( x , a )| θ ∼ Gam ( k , θ ). It can be shown that 

p(T (x, a )) = 

�(d + k ) 

�(d)�(k ) 

(1 /b)(T (x, a ) /b) k −1 

[1 + (T (x, a ) /b)] d+ k (7)

orresponding to a scaled inverted beta or beta prime density,

unsmore (1974) . To obtain the optimal design, we need to maxi-

ize the pre-posterior utility u (a ) . This is equivalent to minimizing

 T (x,a ) [ V (θ | T (x, a )) + c t T (x, a )] , (8)

here the expectation is taken with respect to the predictive dis-

ribution (7) . Note that in this setup, the only design variable is

 = k . Using properties of the scaled inverted beta distribution we

an obtain that the preposterior loss (8) is 

d(d + 1) 

b 2 (d + k )(d + k + 1) 
+ c t 

bk 

(d − 1) 
, (9) 

or d > 1. The expected loss (9) can be easily minimized with re-

pect to k to find the optimal design. Note that the choice of a

amma prior distribution for failure rate θ enables us to evaluate

he preposterior loss analytically as in (9) . This is a common choice

n the Bayesian design literature; see for example Barnett (1972) .

ther choices of priors for θ require use of the Monte Carlo meth-

ds for evaluation of the preposterior loss. 

.1.2. Design of time truncated life tests 

We shall assume the same utility function (5) for the time trun-

ated censoring case with design variable a = (τ, n ) . The TTOT is

ow given by 

 (x, a ) = 

K ∑ 

i =1 

X (i ) + (n − K) τ, 
here X ( i ) is the i − th order statistic of truncated exponential ran-

om variables with density function 

p(x | θ, τ ) = 

θe −θx 

1 − e −θτ
, (10)

or x < τ . In this case, both the X ( i ) ’s and the number K of failures

re random quantities. Given K , it can be shown that 
∑ K 

i =1 X (i ) is a

um of independent truncated exponential densities as in (10) and

he distribution of K is binomial with parameter [1 − e −θτ ] , that is,

p(k | θ ) = 

(
n 

k 

)[
1 − e −θτ

]k 
e −θτ (n −k ) . (11)

he sampling distribution of T ( x , a ) and K was obtained by

artholomew (1963) as 

p ( t, k | θ ) = 

(
n 

k 

)
θ k 

( k − 1 ) ! 
e −θt 

∑ k 
i =0 ( 

k 
i ) (−1) i [ max { 0 , t−τ (n −k + i ) } ] k −1 

(12) 

or k > 0 and p(t, 0 | θ ) = e −θnτ , for k = 0 . Assuming a gamma prior

or θ ∼ Gam ( d , b ), the predictive distribution of T ( x , a ) and K is 

p(t, k ) = 

(
n 

k 

)
�(d + k ) 

�(d)�(k ) 

b d 

[ b + h (t, k )] d+ k , (13)

here h (t, k ) = t 
∑ k 

i =0 

(
k 
i 

)
(−1) i [ max { 0 , t − τ (n − k + i ) } ] k −1 . 

As with Type II censoring, the utility function is given by 

 (T (x, a )) = − d + K 

(b + T (x, a )) 2 
− c t T (x, a ) , (14)

here the first term on the right-hand side of (14) is the posterior

ariance and the second term is cost of testing. In other words,

he utility function captures the same trade-offs as in the failure

runcated case. Evaluating the preposterior expected utility u (a )

nvolves obtaining the expectation of (14) with respect to the pre-

ictive distribution (13) . This cannot be obtained analytically, but

 (a ) can be approximated by a Monte Carlo (MC) sum by draw-

ng samples of ( K , θ ) from p(k, θ ) = p(k | θ ) p(θ ) , and using these

o draw samples from K independent truncated exponential ran-

om variables from (10) to evaluate T (x, a ) = 

∑ K 
i =1 X i + (n − K) τ .

ote that T ( x , a ) is a function of ( τ , n ). Once MC draws ( K 

( s ) , T ( x ,

 ) ( s ) ) are available, we can find the optimal design a ∗ = (τ ∗, n ∗) by

inimizing the MC average 

1 

S 

S ∑ 

s 

d + K 

(s ) (
b + T (s ) (x, a ) 

)2 
+ c t T 

(s ) (x, a ) 

ith respect to ( τ , n ). 

The Bayesian optimal design setup presented for the exponen-

ial model under both censoring scenarios can be extended to

ther failure models. For example, Zhang and Meeker (2005) con-

idered life test plans for the Weibull model with known shape

arameter under Type II censoring and presented optimal plans

sing different criteria. More recently, Kundu (2008) considered

ife test designs under progressive censoring, whereas Hong, King,

hang, and Meeker (2015) developed Bayesian designs for the log-

ocation-scale family of distributions using Markov Chain Monte

arlo (MCMC) methods to evaluate expectations. 

.2. Design of accelerated life tests 

Accelerated life tests (ALTs) involve testing systems in an envi-

onment that is more severe than the use environment and em-

loying the data collected in the accelerated environment to in-

er failure behavior in the use environment. The design problem in

ccelerated life testing is concerned with the specification of the

umber and magnitude of the accelerated stress levels, as well as



4 D.R. Insua, F. Ruggeri and R. Soyer et al. / European Journal of Operational Research 282 (2020) 1–18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

o  

s  

m  

“  

p

2

 

a  

t  

T  

a  

d

T

t  

S  

f

u  

w  

a  

i  

t  

e  

l  

t  

T  

r  

t

 

(

 

w  

(  

a  

(  

w  

θ  

t  

i  

a  

p  

i  

t  

i  

t

2

 

t  

m  

l  

s  

t  

o  

p  
the number of items to be tested at such stress levels; see for ex-

ample, Soyer (2007) . 

Original work in ALT design is due to Chernoff (1962) . There

is a considerable literature on Bayesian ALT designs dating back

to Martz and Waterman (1978) and DeGroot and Goel (1979) .

Later work include Chaloner and Larntz (1992) , who developed

Bayesian designs for Type I censored tests using an optimality cri-

terion proportional to the expected asymptotic variance of the fail-

ure characteristics of interest; Menzefricke (1992) , who considers

design of Type II censored ALTs for lognormally distributed life-

lengths; Verdinelli, Polson, and Singpurwalla (1993) , who present

optimal designs maximizing Shannon information; and Soyer and

Vopatek (1995) , who introduce linear Bayesian designs for ALTs. As

pointed out by Soyer (2007) , most of these Bayesian approaches

are based on the theory of optimal Bayesian designs for linear

models as in Chaloner (1984) and therefore, they either consider

normal or lognormal failure models or use asymptotics. In the case

of non Gaussian models such as the exponential or the Weibull,

nonlinearities arise in the analysis. As a result, simulation meth-

ods are required to compute optimal designs. For example, Erkanli

and Soyer (20 0 0) use MCMC methods with nonparametric sur-

face estimation to find optimal ALT designs and Zhang and Meeker

(2006) consider large sample results for Bayesian ALT designs, as

well as simulation-based methods. Nasir and Pan (2015) present

simulation-based ALT designs for model discrimination. 

A more recent treatment of the optimal design in ALTs can be

found in Polson and Soyer (2017) who propose to use the aug-

mented probability simulation (APS) method in Bielza, Muller, and

Insua-Rios (1999) to compute the optimal design a maximizing the

preposterior expected utility (2) . In the following section, we dis-

cuss an APS approach, assuming that the environment is charac-

terized by a single stress and let the design a represent the stress

level variable characterizing the accelerated test environment. It is

possible to consider extensions to multiple stresses, as in Zhang

and Meeker (2006) , or testing at K accelerated levels of the stress

variable. 

2.2.1. APS model 

Polson and Soyer (2017) point out that the evaluation of the

preposterior expected utility u (a ) via traditional MC techniques

can become inefficient and hinder computing the optimal design

a ∗ = arg max a ū (a ) , especially for high dimensional cases. To alle-

viate such inefficiencies, they propose an alternative approach by

treating the design variable a as a random quantity and recasting

the problem as one of drawing samples from the augmented prob-

ability model, defined through the probability distribution 

π(x, θ, a ) ∝ u (x, θ, a ) p(x, θ | a ) p(a ) , (15)

where the distribution p ( a ) is generally specified as a uniform dis-

tribution over the decision space. The ”tilted” marginal distribu-

tion π ( a ), which can be obtained from the augmented probability

model (15) , is proportional to u (a ) . Therefore, the optimal design

can be obtained by simulating samples from the marginal distribu-

tion of a and finding its mode. This can be done by using a MCMC

scheme to draw from the augmented distribution (15) . Polson and

Soyer (2017) use a Gibbs sampler in their development by simulat-

ing from π ( x , θ | a ) and π ( a | x , θ ). 

With higher dimensional a ’s and flat expected utility surfaces,

one can use π ( a ) with a power type transformation as suggested

by Muller (1999) . By drawing J samples (x j , θ j ) 
J 
j=1 

for each design

a , we can obtain 

πJ 

(
x J , θ J , a 

)
∝ 

J ∏ 

j=1 

u 

(
x j , θ j , a 

)
p 
(
θ j , x j | a 

)
, (16)

where θ J = (θ1 , . . . , θJ ) and x J = (x 1 , . . . , x J ) . It follows from

(16) that π J ( a ) ∝ u J ( a ). As noted by Polson and Soyer (2017) the APS
pproach performs evaluation and optimization of u (a ) simultane-

usly by treating the design variable a as a random quantity and

imulating a , together with ( x , θ ) from the augmented probability

odel (15) . In doing so, unlike the standard MC approach, the APS

tilts” MC draws to regions of high utility values improving com-

utational efficiency. 

.2.2. APS for ALT designs 

Assume that failure times X i under the stress environment

 i are exponentially distributed with failure rate θa i . Assuming

hat n items are tested under environment a i , the distribution of

TOT T (x, a i ) = 

∑ n 
j=1 X i j is gamma, denoted as Gam ( n , θa i ). Using

 gamma prior for θ ∼ Gam ( d , b ), we can show that the predictive

istribution is an inverted beta density 

p ( T (x, a i ) ) = 

�(d + n ) a i /b 

�(n )�(d) 

( T (x, a i ) a i /b ) 
n −1 

( 1 + T (x, a i ) a i /b ) 
d+ n . 

he objective now is to select the accelerated environment a i > a u 
o learn about the failure rate θa u at the use stress a u . Polson and

oyer (2017) consider a single point design and assume a utility

unction 

 (x, a ) = 

1 

( a/a u ) 
α e −kT (x,a ) , (17)

here α and k are positive constants with α > 1. Note that (17) is

 conjugate utility function in the sense of Lindley (1976) reflect-

ng the consequences of choosing a design a and observing a total

ime on test T ( x , a ). It is desirable to test at a closer to a u . How-

ver, smaller values of a will imply a lower failure rate and, thus,

onger TTOT. The utility function (17) captures the trade-off be-

ween testing closer to the use-stress a u and shorter testing time.

his is achieved by appropriate choice of constants α and k which

eflect the cost of selecting a design away from a u and the cost of

esting, respectively. Without loss of generality, we let a u = 1 < a . 

Using (17) and the gamma prior for θ , the augmented model

16) can be written as 

πJ 

(
T J (x, a ) , θ J , a 

)
∝ 

J ∏ 

j=1 

1 

a α
e −kT j (x,a ) 

(
θ j a 

)n (
T j (x, a ) 

)n −1 
e −θ j aT j ( x,a ) 

θ d−1 
j 

e −θ j b , (18)

here a is uniform over (1, a max ). The conjugate utility function

17) and conjugate prior for θ allow us to design a Gibbs sampler

s all full conditional distributions are available. Polson and Soyer

2017) show that the full conditional of a is Gam (J(n − α) + 1 , s J )

here s J = 

∑ J 
j=1 

θ j T j (x, a ) . Similarly, the full conditionals of the

j ’s are Gam (n + d, b + aT j (x, a )) , for j = 1 , . . . , J and the full condi-

ionals of the T j ( x , a )’s are Gam (n, k + aθ j ) for j = 1 , . . . , J. By draw-

ng iteratively from the full conditionals, the mode of the draws

 

( g ) ’s histogram collapses on the optimal design. Consideration of

riors other than the gamma density for θ or non-conjugate util-

ty functions require use of methods such as Metropolis–Hastings

o draw from the full conditionals. Polson and Soyer (2017) discuss

mplementation issues associated with APS as well as an extension

o multiple point designs. 

.3. Optimal stopping and optimal release 

An important question in the testing of any product is when

o finish testing and release it to the customer or place it on the

arket. This decision depends on how reliable the product is be-

ieved to be, as well as the costs and benefits of release: a deci-

ion to delay will incur in costs for further testing and a poten-

ial loss of market advantage, but benefits of increased reliability,

r reduced uncertainty about the reliability leading to lower ex-

ected repair costs or penalties for not meeting warranty or service
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Fig. 1. Decision tree for single stage testing. 
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greement targets. This can be formulated as a decision problem

n which the actions are to release the product now, or test. If the

ecision is to test, this may be broken down further to consider

ow much further testing to do. Hence the set A of alternatives

ay simply take the form {test, release} or be the set of testing

imes A = [0 , ∞ ) , with a = 0 corresponding to immediate release.

 probability model p ( x | θ ) is assumed for the time to failure of

he product with parameter θ representing the failure character-

stics of the product with an elicited prior distribution p ( θ ). The

onsequences are usually the financial implications of the action,

r its utility. They are usually based around the costs of testing,

he costs of product failure after release and the potential costs of

he loss of market advantage due to delaying release. The utility

an be specified as u ( θ , a ) reflecting the consequences of releas-

ng the product with failure characteristic θ following the testing

ecision a . 

The simplest testing strategy in this context is that of single-

tage testing, where testing is to be done for a period of time and

hen the product is released, regardless of the test results. The de-

ision is to choose the optimal test time. This strategy can be rep-

esented by a decision tree ( Fig. 1 ). In this case, the decision is

urely based on the utility and prior on θ , with the optimal deci-

ion being 

rg max 
a 

ū (a ) = 

∫ 
θ

u (θ, a ) p(θ ) dθ . 

f the utility depends explicitly on the failure time x of the released

roduct, u ( x , θ , a ), then similar to (3) , the optimal decision is: 

rg max 
a 

ū (a ) = 

∫ ∫ 
(x,θ ) 

u (x, θ, a ) p(x | θ ) p(θ ) dx dθ . 

A ‘full’ solution would provide for multiple testing stages, with

he option at the end of each stage to release or continue for an-

ther stage. This gives the decision tree in Fig. 2 . The optimal strat-

gy now consists of a sequence of testing times a 1 , a 2 , a 3 , . . . , with

 i depending on the prior and the data up to the last testing pe-

iod x 1 , . . . , x i −1 . This would include conditions under which re-

ease would occur after i testing stages. Unfortunately this optimal

trategy is generally infeasible to compute, being a dynamic pro-

ramming type of problem with nested maximizations and expec-

ations, and the utility at the n th stage will depend on the optimal

ction at the (n + 1) th stage as a result of the “principle of opti-

ality”; see (Bellman & Dreyfus, 1962, pp. 15) . More specifically

e have 

 

∗
n = arg max 

a n 
E 
(
u 

(
X n , θ, a n ; a ∗n +1 

))
, (19) 

here X n = (x n , x n +1 , . . . ) are the test data from the n th and subse-

uent stages. Only in special circumstances will such computations

cale to even moderate n ( Dunsmore & Wright, 1985 ). 

The usual solution is to assume a Markov property, and solve

he sequence of single stage problems, with the posterior distribu-

ion at stage n given x 1 , . . . , x n −1 being used: 

 

∗
n = arg max 

a n 
E ( u ( x n , θ, a n ) | x 1 , . . . , x n ) 

= 

∫ 
(x n ,θ ) 

u ( x n , θ, a ) p ( x n | θ ) p ( θ | x 1 , . . . , x n −1 ) d x n d θ . (20) 
The work of Barnett (1972) was one of the first to consider this

dea. 

An illustration of this approach is in McDaid and Wilson (2001) ,

pplied to software testing. The goal is to determine the time a to

est the software. Uncertainty arises from N ( a ), the number of bugs

iscovered in the software by time a , and then N̄ (a ) = N(∞ ) −
(a ) , the number that are discovered after time a . Many prob-

bility models have been proposed for this ( Singpurwalla & Wil-

on, 1999 ). A popular one is that of Goel and Okumoto (1979) , in

hich N ( a ) follows a Poisson process with mean function M(a ) =
1 (1 − e −θ2 a ) , for parameters θ = (θ1 , θ2 ) that represent the ex-

ected total number of bugs in the software and the discovery

ate, respectively. Thus, N ( a ) is a Poisson distribution with expected

alue M ( a ). It is possible to consider extensions of this model by

ncorporating covariate information as in Ray, Liu, and Ravishanker

2006) . 

A simple form for the utility of testing to time a , with N ( a ) bugs

iscovered in testing and N̄ (a ) discovered after release, is: 

 

(
x = 

(
N(a ) , N̄ (a ) 

)
, a, θ

)
= B − CN(a ) − D ̄N (a ) − F a, (21)

here B is the profit from releasing the software without any test-

ng, C is the cost of fixing a bug discovered in testing, D is the cost

f fixing a bug post-release and F is the cost per unit time of test-

ng, which includes both the testing costs as well as lost sales and

arket opportunity. In practice, D should be considerably larger

han C . Gamma distributions are used as priors with parametric

orm p(θ ) = αβ θβ−1 e −αθ / �(β) , with mean β/ α and standard de-

iation 

√ 

β/α. McDaid and Wilson (2001) describe an elicitation

rocess for these parameters based on these relationships. Here,

e assume that such elicitation process has led to specifying a

amma prior with parameters ( α1 , β1 ) for θ1 , and ( α2 , β2 ) for θ2 .

iven θ , N ( a ) and N̄ (a ) are Poisson distributed. Averaging out over

he prior on θ gives the expected values of N ( a ) and N̄ (a ) 

(N(a )) = 

β1 

α1 

[
1 −

(
α2 

α2 + a 

)β2 

]
(22) 

 

(
N̄ (a ) 

)
= 

β1 

α1 

(
α2 

α2 + a 

)β2 

. (23) 

ence, the expected utility of testing to time a is: 

¯
 (a ) = B − C 

β1 

α1 

[
1 −

(
α2 

α2 + a 

)β2 

]
− D 

β1 

α1 

(
α2 

α2 + a 

)β2 

− F a, 

nd the optimal time a ∗ to test, which maximizes this function, is:

 

∗ = α2 

[ (
β1 β2 (D − C) 

α1 α2 F 

)1 / (β2 +1) 

− 1 

] 

; (24) 

ssuming that D > C . When D ≤ C , the optimal strategy is not to test

nd just repair all bugs post-release. 

Fig. 3 illustrates the case where the prior mean on a is 100 (we

xpect about 100 bugs in the code), that on b is 0.01 (based on

1 = 0 . 01 , β1 = 1 , α2 = 100 and β2 = 1 ) and the utility parameters

re B = 20 0 0 , C = 1 , D = 20 and F = 0 . 5 . The left plot shows the

xpected utility as a function of a , and identifies a ∗ = 516 . 4 (its ex-

ected utility being 1333.6). The right plot shows how a ∗ changes
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as a function of D , the cost of fixing a post-release bug, portraying

how the testing time should increase as the relative cost of fixing

bugs after testing rises. 

In this solution, release occurs regardless of the results of the

testing and so there is no opportunity to learn about the software’s

reliability from the testing results. McDaid and Wilson (2001) dis-

cuss other solutions that involve more than one testing stage al-

lowing for learning to take place, including the Markov sequence of

single stage tests. Singpurwalla (1991) consider the Bayesian solu-

tion for a two-stage testing problem. Morali and Soyer (2003) dis-

cuss optimal stopping problem in software testing and investigate

the possibility of developing one stage ahead optimal stopping

rules using results from van Dorp, Mazzuchi, and Soyer (1997) . 

2.4. Reliability demonstration test plans 

The goal of reliability demonstration testing (RDT) is to ac-

cumulate enough evidence so that the reliability of the product
nder consideration has achieved or not a given level. This is in

ontrast to optimal testing in which the goal is to reach the op-

imal trade off between further testing and release. Demonstra-

ion testing will typically form part of product development, al-

hough it may also arise when a vendor wishes to convince a buyer

r a regulator that its product meets reliability requirements, in

hich case it has links to adversarial life testing as discussed in

ection 4.2 . 

The formulation of a solution to RDT requires a reliability

odel, a definition of a reliability metric and a pass/reject cri-

erion. A pioneer Bayesian example was in Schafer and Singpur-

alla (1970) , who assumed exponential failure times with mean

, a conjugate inverse gamma prior on θ and meeting a required

ean time to failure θ1 as a reliability criterion. A sequence of

tems was tested and failure times t 1 , t 2 , . . . were observed. After

he failure of each item under test, the test stopped when the pos-

erior probability P (θ > θ1 | t 1 , . . . , t n ) either exceeded 1 − α2 , in

hich case the product was passed, or fell below 1 − α , in which



D.R. Insua, F. Ruggeri and R. Soyer et al. / European Journal of Operational Research 282 (2020) 1–18 7 

c  

0

 

u  

o  

a  

m  

a  

t  

(  

i

 

t  

c  

i  

1  

a  

l

 

i  

b  

b  

F  

e  

t  

t  

a  

t  

r

 

p  

S  

θ  

a  

l  

a

l

f  

t  

c  

c  

u  

 

t  

i  

p  

t

V  

H

w  

t  

s

w  

m

a  

I  

θ  

l  

t  

o  

w  

t  

h  

a  

o  

t  

r

3

 

t  

a  

m  

f  

m  

a  

d  

a  

t  

W

 

g  

c  

a  

m  

m  

r  

t  

s  

v

3

 

p  

u  

g  

s  

n  

i  

i  

a  

s  

p  

t  

t  

s  

s

 

v  
ase the product was rejected, for specified threshold probabilities

 < α2 < α1 < 1. 

Barnett (1972) advanced another important aspect of RDT by

sing a continuous pass/reject criterion, rather than one that could

nly be evaluated after each failure of the items on test. A large

mount of subsequent work in the seventies extended this work in

any ways, nicely reviewed in Martz and Waller (1982) . Higgins

nd Tsokos (1976) showed that RDTs could be very sensitive to

he choice of prior on the reliability metric. Martz and Waller

1979) considered the case in which tests show no failure, extend-

ng work to the case of highly reliable systems. 

Bayesian reliability demonstration tests have largely followed

his format of metric, reliability model, prior specification and ac-

ept/reject criterion, either defined explicitly or based on a util-

ty or loss function. After a hiatus in work in the 1980s and the

990s, there has been an increase of activity in the past 15 years,

nd even Bayesian RDT has now been incorporated into official re-

iability testing standards ( Yates, 2008 ). 

More recent work has had more focus on using decision theory

n the determination of when to stop testing and accept or reject,

ased on a loss function for a product with a given level of relia-

ility, as well as other decisions such as optimal testing strategies.

or example, Rahrouth, Coolen, and Collen-Schrijner (2006) mod-

ls a process of tests and decisions for a system with redundancy,

aking into account the costs of testing as well as adding ex-

ra redundancy versus the benefits of the increased reliability. Jin

nd Matthews (2014) develop an approach to planning optimally

he test, taking into account the costs of testing and measuring

eliability. 

Sun and Berger (1994) is a good example of the Bayesian ap-

roach to RDT. They considered a generalization of Schafer and

ingpurwalla (1970) introducing an additional mature product goal

2 > θ1 such that the product is rejected when the posterior prob-

bility that θ < θ2 exceeds a threshold. They also considered a re-

iability model more general than the exponential, and introduced

 loss function of the form: 

(θ ) = 

{
0 , if θ1 < θ < θ2 , 

l, otherwise , 
(25) 

or some positive loss l > 0. In this case, a closed-form solu-

ion for the accept/reject rule that minimizes the expected loss

an be derived. For example, in the exponential reliability model

ase, a conjugate inverse-gamma prior on the mean time to fail-

re θ with shape parameter a and scale parameter b , p(θ ) =
b a 

�(a ) 
θ−(1+ a ) e −b/θ , can be defined. Then, the posterior of θ after

esting N items to time t , of which n failed at times t 1 , . . . , t n ,

s also inverse gamma with shape parameter b + n and scale

arameter a + V (t) , where V ( t ) is the total time on test to

ime t : 

 (t) = (N − n ) t + 

n ∑ 

i =1 

t i . (26)

ence the accept/reject rule becomes: 

If q ∗(α1 ) > θ1 , stop testing and accept product ;
If q ∗(1 − α2 ) ≤ θ2 , stop testing and reject product ;
Otherwise continue testing , 

here q ∗( α) is the 100 α% quantile of the posterior distribution. As

he inverse gamma is related with the χ2 distribution, it can be

hown that the rule can be written in terms of χ2 values: 

If V (t) + b > 

θ1 

2 

χ2 (2(n + a ) , 1 − α1 ) , 

stop testing and accept product ;
 s  
If V (t) + b > 

θ2 

2 

χ2 (2(n + a ) , α2 ) , 

stop testing and reject product , 

here χ2 ( m , p ) is the 100 p % quantile of the χ2 distribution with

 degrees of freedom. 

Fig. 4 illustrates how this rule works in practice, with V (t) + b

nd the accept and reject thresholds, plotted as a function of time.

t shows two examples with parameters a = 2 , b = 1 . 5 , θ1 = 0 . 5 ,

2 = 1 . 0 , α1 = α2 = 0 . 05 . Ten units are placed on test. On the

eft, all ten units fail without the test stopping. On the right,

he test reaches the accept boundary. Observe that the thresh-

lds are step functions, changing value when a failure is observed,

hile V (t) + b is strictly increasing, and that testing continues un-

il V (t) + b first hits one of the thresholds. Also note that V (0) = 0 ,

ence V (0) + b = b and so it is possible that the test is immedi-

tely passed or rejected at time 0 if b lies above the initial accept

r below the initial reject boundary, further backing up the asser-

ion of Higgins and Tsokos (1976) that the prior plays an important

ole in the outcome of an RDT. 

. Preventive maintenance policies 

Since the seminal work of Barlow and Proschan (1965) , preven-

ive maintenance has become common practice for systems which

re subject to deterioration as a result of usage and aging. The

ain objective of preventive maintenance is to prevent system

ailures to avoid costly service disruptions. Maintenance activities

ay take different forms including repairs, replacements as well

s other practices that could prevent or delay system failure. The

evelopment of maintenance strategies have attracted considerable

ttention in the Operations Research/Management Science litera-

ure; see for example, the review papers by Cho and Parlar (1991) ,

ang (2002) and Shafiee and Chukova (2013) . 

In this section we present the treatment of maintenance strate-

ies from a Bayesian perspective. We first discuss maintenance

oncepts and policies for repairable systems. This is followed by

 discussion of replacement policies, including replacement with

inimal repair, where the Bayesian framework for optimal replace-

ent is introduced. Recent work on parametric and nonparamet-

ic Bayesian replacement strategies is presented, including compu-

ational issues. Finally, sequential maintenance problems are con-

idered and semi Markov decision processes are introduced to de-

elop Bayesian policies. 

.1. Policies for repairable systems 

In reliability analysis, there is a major difference between re-

airable and non-repairable systems. The latter are to be replaced

pon failure; light bulbs, covers of smart phones and window

lasses are examples of non-repairable systems which lead to a

equence of lifetime distributions which, if i.i.d., give rise to a re-

ewal process. Here we focus mostly on repairable systems which,

n the event of a failure, can be repaired, for example, by replac-

ng a component, and returned to regular operation. In some cases,

fter a “minimal” repair the reliability of a system returns to the

ame state as before the failure. On the other hand, “perfect” re-

airs bring the system reliability back to the state at the start of

he operation. “Imperfect” repair is referred to the case in between

hese two; see Doyen and Gaudoin (2004) . Failures of repairable

ystems are often described by means of non-homogeneous Pois-

on processes (NHPP). 

Consider a NHPP N ( t ) with intensity function λ( t , θ ) and mean

alue (or cumulative intensity) function 
( t , θ ). Suppose we ob-

erve the system up to time τ and let n denote the observed
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Fig. 4. Two examples of the reliability demonstration test of Sun and Berger (1994) . Upper dashed line is the accept threshold; lower dashed line, the reject threshold; solid 

line is V (t) + b. 
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number of failures at times t 1 < t 2 ��� < t n < τ . Then, the likelihood

function of θ is 

L (θ ; D ) = 

n ∏ 

i =1 

λ(t i , θ ) exp { −
(τ, θ ) } , (27)

where D = (t 1 , . . . , t n ) . For example for the intensity function

λ(t, θ ) = θt, with cumulative intensity 
(t, θ ) = θt 2 / 2 , the like-

lihood function (27) becomes 

L (θ ; D ) = θn 
n ∏ 

i =1 

t i exp 

{
−θτ 2 / 2 

}
. 

With a conjugate gamma prior Gam ( α, β) on θ , the posterior dis-

tribution p ( θ | D ) is given by Gam (α + n, β + τ 2 / 2) . 

Consider now a new copy of the system. A natural question to

ask is “how long will it operate with rare chances of failing?” In

terms of the reliability function R ( t ), it means finding the largest T

such 

R (T | D ) = P r(N(T ) = 0 | D ) = 

∫ 
P r(N(T ) = 0 | θ ) p(θ | D ) dθ

= 

{
β + τ 2 / 2 

β + τ 2 / 2 + T 2 / 2 

}α+ n 
> ε, 

where ε is the risk threshold. Such optimal T is given by 

T ∗ = 

√ 

2 

(
β + τ 2 / 2 

)(
ε−1 / (α+ n ) − 1 

)
. 

In this case, R ( T | D ) is seen as a posterior predictive probability.

Similarly, we may consider the reliability of the system after time

τ and the expected number of failures in future intervals, either

for the current or a new copy of the system. 

Relevant applications include Pievatolo and Ruggeri (2004) , who

considered forecasting gas escapes in the steel pipelines of a city

network and showed that making replacements were not finan-

cially viable due to the limited number of gas escapes. Cagno,

Caron, Mancini, and Ruggeri (20 0 0) also considered the problem

of which pipelines of a city gas network were to be replaced first

to reduce the number of gas escapes. Arias, Martin, Ruggeri, and

Suarez-Llorens (2015) took into account the uncertainty in mod-

eling the involved prior distributions in the same problem. Other

relevant work include Pievatolo, Ruggeri, and Argiento (2003) and
ievatolo and Ruggeri (2010) , who used NHPPs to assess if the reli-

bility of underground train doors was compliant with the contract

igned by a manufacturer and a transportation company. More re-

ently, Hermann and Ruggeri (2017) considered replacement deci-

ions in relation with the wear of cylinder liners in ships based

n a stochastic differential equation model and posterior credibil-

ty intervals. 

.2. Optimal replacement 

For most preventive maintenance strategies, a major issue is

he determination of a planned replacement (or maintenance) in-

erval. This is performed in an optimal manner by considering

he trade off between in-service failure and planned replacements

osts. Typically, planned replacement is less expensive than the in-

ervice failure and subsequent service replacement. Two basic re-

lacement protocols are the block and the age replacement poli-

ies. 

Under a block replacement policy, the system in question is re-

laced at times t B , 2 t B , . . . , irrespective of the age of the system; it

s also replaced at the time of a failure. Planned replacements are

pecified in advance, whereas the time of in-service replacement is

nknown. If the cost of planned replacement is c P , the cost of an

n-service failure is c F , with typically c F > c P , and N ( t B ) denotes the

umber of system failures for a time interval of duration t B , the

ost of replacement per unit time is given by 

(t B ) = 

c P + c F N(t B ) 

t B 
. (28)

n (28) , N ( t B ) is a renewal process. The optimal replacement inter-

al t ∗B is obtained by minimizing the expected cost 

[ C(t B )] = 

c P + c F H(t B ) 

t B 
, (29)

here H ( t B ) is the renewal function, Cox (1962) . Here it is assumed

hat after each failure the system is replaced by a new one or the

epair applied to the system is perfect. Thus, this is referred to as

he “good as new” scenario. 

An alternative block replacement strategy is considered in

arlow and Hunter (1960) where the system is assumed to be min-

mally repaired upon failure, but replaced at times t B , 2 t B , . . . ir-

espective of its age. In this case, after each failure it is assumed
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hat the system can be restored to the state just prior to the fail-

re. Thus, it is referred to as the “bad as old” scenario. Block re-

lacement with minimal repair is applicable in those cases where

eplacement of the whole system is more costly than its minimal

epair, due to disruption of service. One such example is the re-

lacement of railroad tracks where replacement of a track which

s of miles in length is very costly compared to the repair, Merrick

nd Soyer (2017) . If we denote the minimal repair (MR) cost by c R ,

hen the cost per time C ( t B ) is given by (28) where c F is replaced

y c R < c P . In the MR case, N ( t B ) is modeled with a NHPP. Similarly

o the “good as new” scenario, the optimal replacement interval is

btained by minimizing the expected cost 

[ C(t B )] = 

c P + c R 
(t B ) 

t B 
, (30)

here 
( t B ) is the cumulative intensity (or mean value) function

f the NHPP. Other extensions of block replacement policies can be

ound in Sheu and Griffith (2002) . 

Under an age replacement policy, it is assumed that a planned

eplacement is performed when the age of the system reaches a

pecified time t A or an in-service replacement is made when the

ystem fails. As in the block replacement policy under the “good

s new” scenario, the cost of in-service failure is assumed to be

arger than the planned replacement cost, that is, c F > c P . However,

n this case, unlike the block replacement policy, the length of the

eplacement cycle is random and is given by min ( t A , T ) where T is

he life time of the system. For an age replacement interval t A , the

ost per unit time is given by 

 ( T , t A ) = 

{
c P /t A , if T ≥ t A 
c F /T , if T < t A . 

(31) 

f F ( t ) denotes the distribution function for T with failure density

 ( t ) and F (t) = 1 − F (t) is the reliability (or the survival) function,

hen the expected cost per unit time can be obtained as 

 [ C(T , t A ) ] = 

∫ t A 

0 

c F 
t 

f (t) dt + 

c P 
t A 

F (t A ) , (32)

nd the optimal interval is obtained by minimizing (32) with re-

pect to t A . Alternatively, the optimal age replacement interval can

e obtained by minimizing the long-run average cost given by 

 (t A ) = 

c P F (t A ) + c F F (t A ) 

t A F ( t A ) + 

∫ t A 
0 t f (t ) dt 

. (33) 

ote that in (33) , the numerator represents the expected cost for

he replacement cycle and the denominator is the expected cy-

le length. Extensions of the basic age replacement policy can be

ound in Chien (2008) . 

.2.1. Bayesian replacement strategies 

As noted in Mazzuchi and Soyer (1996a) , most implementations

f replacement policies in the literature are based on the assump-

ion that the failure characteristics of the system are specified. For

xample, in the block replacement with MR scenario, for the cu-

ulative intensity function 
( t B ) in (30) a parametric form 
( t B ,

) is specified and the parameter θ is assumed to be known. A

ommonly used model is the power law with cumulative intensity

unction 

(t, θ ) = αt β, (34)

here θ = (α, β) and both parameters are positive. The intensity

unction is given by λ(t, θ ) = d 
(t, θ ) /d t = αβt β−1 , where β > 1

mplies deterioration over time. Assuming that α and β are given,

he optimal replacement interval t ∗
B 

is 

 

∗
B = 

(
c P 

c R α(β − 1) 

)1 /β

. 

s  
Under risk neutrality, the Bayesian decision-theoretic approach

equires the uncertainty about θ to be specified probabilistically

ia a prior distribution p ( θ ) and the associated expected cost func-

ion to be minimized, where the expectation is taken with respect

o all unknown quantities including the parameters θ . In the block

eplacement with MR case, this involves the minimization of 

[ C(t B )] = 

c P + c R E θ [
(t B , θ )] 

t B 
, (35)

ith respect to t B , whereas in the age replacement case we focus

n the minimization of 

[ C(T , t A )] = 

∫ 
θ

∫ t A 

0 

c F 
t 

f (t| θ ) p(θ ) d td θ + 

∫ 
θ

c P 
t A 

F (t A | θ ) p(θ ) dθ . 

(36) 

ith respect to t A , where a parametric form F ( t | θ ) is specified for

he system life distribution. When data D is available from previous

eplacement cycles, the uncertainty about θ is revised to obtain

he posterior distribution p ( θ | D ) which replaces p ( θ ) in (35) and

36) to obtain the associated optimal intervals. Similarly, one can

evelop Bayesian block replacement strategies under the “good as

ew” case by making inference over the renewal function H ( t , θ ). 

One of the earliest Bayesian approaches to replacement is due

o Fox (1967) , who considered age replacement policies when the

ailure model is Weibull. Its shape parameter was assumed to be

nown and adaptive optimal policies were developed by updating

ts scale parameter and minimizing the expected discounted cost

ver time. The author obtained asymptotic results for an infinite

lanning horizon. Sathe and Hancock (1973) developed Bayesian

olicies using a Weibull model where both the shape and scale

arameters were treated as unknown quantities. The authors min-

mized the expected long-run average cost (33) . An earlier attempt

or developing Bayesian block replacement policies is by Bassin

1973) who used Bayesian point estimates in the MR scenario by

sing a power law model. 

Mazzuchi and Soyer (1996a) developed Bayesian block and age

eplacement policies minimizing (35) and (36) . A power law model

34) was used for the intensity function and an adaptive policy was

eveloped by revising uncertainty about the parameters θ = (α, β)

s well as the optimal replacement interval after each cycle. In do-

ng so, for a block replacement cycle of length t B , where n minimal

epairs are performed at times t 1 < t 2 < ��� < t n < t B the distribution

f ( α, β) was revised based on the likelihood function 

 (α, β; D ) = 

n ∏ 

i =1 

λ(t i , θ )
(t B , θ ) , (37)

here λ( t i , θ ) is the intensity function of the power law model

valuated at t i and D = (t 1 , . . . , t n ) , Pievatolo and Ruggeri (2004) . 

For the age replacement protocol, Mazzuchi and Soyer

1996a) assumed a Weibull failure model 

 (t| α, β) = e −αt β (38)

nd developed adaptive age replacement policies by revising un-

ertainty about the shape and scale parameters, α and β , respec-

ively, after each cycle. During each age replacement cycle of t A ,

ncertainty about α and β was revised based on the likelihood

unction 

 (α, β; t) = f (t| α, β) I{ t < t A } + F (t A | α, β) I{ t > t A } , (39)

here F (t A | α, β) is given by the Weibull reliability function (38) ,

 ( t | α, β) is the corresponding density, and I { · } is the indicator

unction. Numerical integration methods were used to evaluate the

xpected cost (36) . 

Block replacement under the “good as new” scenario was con-

idered by Mazzuchi and Soyer (1996b) . The renewal function used
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was 

H(t; θ ) = E [ N(t| θ ) ] = 

∞ ∑ 

n =1 

F (n ) ( t| θ ) , (40)

where F ( n ) ( t | θ ) is the n -fold convolution of the failure model F ( t | θ ).

A Weibull model was used as failure model and the renewal func-

tion (40) was approximated using the numerical approach pro-

posed in Smeitink and Dekker (1990) . A Monte Carlo (MC) ap-

proach was used to evaluate the expected cost (29) and determine

the optimal replacement interval. An adaptive strategy was applied

by updating uncertainty about the parameters after each cycle and

obtaining the optimal interval accordingly. Revision of the param-

eters of the Weibull failure model (38) , after a given replacement

cycle of t B , was based on the likelihood function 

L ( α, β; D ) = 

( 

n ∏ 

i =1 

f ( t i − t i −1 | α, β) 

) ( 

n ∏ 

i =1 

F ( t B − t n | α, β) 

) 

(41)

where t 1 < ��� < t n are the failure times (collectively designated as

D ). 

The above adaptive replacement strategies of Mazzuchi and

Soyer (1996a,b) have been generalized to other replacement sce-

narios. Sheu, Yeh, Lin, and Juang (1999) considered age replace-

ment strategies with MR. Dayanik and Gurler (2002) developed

strategies for more general MR protocols considered by Beichelt

(1993) and a related adaptive preventive maintenance approach

was discussed in Juang and Anderson (2004) . Bayesian group

replacement policies were studied by Wilson and Benmerzouga

(1995) and Popova (2004) . 

Advances in computational Bayesian methods, and particu-

larly in MCMC approaches after 1990, have greatly enhanced the

Bayesian analysis of repairable systems as well as the development

of maintenance strategies. As an example, the effect of grinding on

reliability of rail tracks was studied in Merrick, Soyer, and Maz-

zuchi (2005) through modulated Poisson process models and block

replacement strategies. In rail tracks, usage is measured in millions

of gross tons (MGT) traversing on the rail. In order to prevent de-

railments caused by rail fractures that develop with heavy usage,

“the cracked rail can be either ground down, removing the metal

surrounding the crack and leaving only solid metal, or welded,

fusing the crack”. As long as the initial crack does not lead to a

complete fracture of the rail, the resulting repair is considered as

minimal. A modulated Poisson process model (MPPM) is consid-

ered in Merrick et al. (2005) to describe the repair process. This

is achieved by modulating the cumulative intensity function of a

NHPP with a vector of covariates as suggested in Cox (1972a) . More

specifically, for a rail track i , the authors considered a cumulative

intensity function 


i (t, θ, β, Z i ) = 
0 (t, θ ) e −Z ′ 
i 
β, (42)

where Z i is a vector of covariates and β is a regression parameter

associated with Z i . For the MPPM, the baseline cumulative inten-

sity function 
0 ( t , θ ) is modulated by the covariate vector Z i . In

Merrick et al. (2005) , a power law model as in (34) was consid-

ered for the baseline cumulative intensity function and the covari-

ate vector was assumed to be independent of usage. In their set

up, the authors used grinding level as one of the rail specific co-

variates. Bayesian inference for the model was developed using a

Gibbs sampler with adaptive rejection sampling steps, Dellaportas

and Smith (1993) . 

More recent work in Bayesian replacement policies is in Belyi,

Popova, Morton, and Damien (2017) who considered bathtub failure

rates. 

3.2.2. Nonparametric replacement policies 

Relaxations of the parametric assumptions in replacement mod-

els have been considered in the optimal maintenance literature.
ne of the earliest works is by Arunkumar (1972) who considered

onparametric age replacement strategies. Adaptive versions were

eveloped in Frees and Ruppert (1985) . 

The nonparametric Bayesian framework has been proposed in

he reliability literature to provide more flexibility in modeling

ncertainty about the failure model F ( t | θ ) or failure rate λ( t , θ ).

his is achieved by introducing a prior distribution over the class

f failure models or the class of failure rate functions. Although

he seminal work by Ferguson (1973) , on Dirichlet process priors,

nd Antoniak (1974) , on mixtures of Dirichlet processes, have con-

ributed significantly to the development of Bayesian nonparamet-

ics, as pointed out by Singpurwalla, 2006 , (, p. 244), the origins

f Bayesian nonparametrics can be traced back to the works of

amsey (1972) and Kraft and van Eeden (1964) . 

Earlier use of nonparametric methods in reliability modeling

nd survival analysis is presented in Kalbfleisch (1978) who as-

umed a gamma process prior to describe the cumulative failure

ate; Dykstra and Laud (1981) , who considered extended gamma

rocesses for modeling nondecreasing failure rates; and Mazzuchi

nd Singpurwalla (1985) , who proposed using an ordered Dirichlet

rior for monotone failure rates. Although Bayesian nonparametric

pproaches have been used in statistical decision problems, as re-

iewed in Gutierrez-Pena and Walker (2005) , their implementation

n reliability decision problems have started only during the last

fteen years. This is mostly due to the advances in Bayesian com-

uting and the associated MCMC methods which allow for simu-

ation from posterior processes such as mixtures of Dirichlet pro-

esses, for example Escobar and West (1995) , and failure rate pro-

esses, for example Laud, Smith, and Damien (1996) . 

One of the earliest development of nonparametric Bayesian re-

lacement policies is by Merrick, Soyer, and Mazzuchi (2003) who

onsider age and block replacement of machine tools consisting of

ultiple non-repairable components. The authors extend the pro-

ortional hazards model (PHM) for machine tool reliability assess-

ent in Mazzuchi and Soyer (1989) relaxing the parametric base

ine failure rate assumption. More specifically, under the paramet-

ic PHM of Cox (1972b) for T i , the lifelength of machine tool i , the

ailure rate function of the distribution of T i is given by 

i (t, θ, β, Z i ) = λ0 (t, θ ) e −Z ′ 
i 
β (43)

here λ0 ( t , θ ) is the baseline failure rate and Z i is a vector of

ovariates as in (42) . This vector describes the operational envi-

onment of the machine tools including components such as cut-

ing speed, feed rate or depth of cut. A strategy to relax the para-

etric assumptions in (43) is to assume a prior for the baseline

ailure rate function λ0 ( t , θ ) while treating β with a parametric

rior. This yields a semiparametric Bayesian model for the failure

ate. As noted by Merrick et al. (2003) , the covariate vector Z i does

ot capture potential variation in the individual characteristics of

achine tools. To account for such heterogeneity, the authors con-

ider a machine tool specific baseline failure rate λ0 ( t , θ i ) where

i is the vector of unknown parameters associated with machine

ool i and describe uncertainty about the θ i ’s through a prior dis-

ribution G whose form is treated as unknown. Indeed, a Dirichlet

rocess prior is assumed as 

 ∼ DP (G 0 , M) , (44)

here G 0 is a best guess baseline prior for G and M is the strength

f belief , or precision parameter as in Ferguson (1973) . Specifying

0 ( t , θ i ) conditional on θ i gives a conditional parametric model

or T i with density f ( t i | θ i , β , Z i ). The semiparametric Bayes model

pecification is completed by a parametric prior for β . Merrick

t al. (2003) point out that the distribution of T i can be repre-

ented as an unknown mixture given by 

f ( t i | G, β, Z i ) = 

∫ 
f ( t i | θi , β, Z i ) dG (θi ) (45)
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hich provides the nonparametric structure of the model. Since

 follows a Dirichlet process, this is referred to as a Dirichlet

rocess mixed model . Given failure time and covariate data D =
(t 1 , . . . , t n , Z 1 , . . . , Z n ) from n machine tools, the likelihood function

f G and β is obtained as a product of the density functions in

45) , that is, L (G, β; D ) = 

∏ n 
i =1 f (t i | G, β, Z i ) . The posterior analysis

f the model requires a Gibbs sampler with a Metropolis step to

raw posterior samples from β . Since it is difficult to draw from

he posterior full conditional distribution p ( G | β , D ) directly, the

ibbs sampler proposed by Escobar and West (1995) is used to

ample from the full conditionals of θ (n ) = (θ1 , . . . , θn ) and β . Once

osterior samples are drawn from p ( θ ( n ) , β| D ), the expected poste-

ior cost for the age replacement interval t A can be approximated

y the Monte Carlo average 

 [ C(T , t A ) | D, Z i ] = 

1 

S 

S ∑ 

s =1 

∫ t A 

0 

c F 
t 

f 
(
t| θ s 

i , β
s , Z i 

)
dt 

+ 

c P 
t A 

F 
(
t A | θ s 

i , β
s , Z i 

)
(46) 

or machine tool i , where (θ s 
i 
, βs ) are the posterior samples. The

ptimal age replacement interval t ∗
A 

is then obtained by minimizing

46) with respect to t A . 

Following Mazzuchi and Soyer (1989) , a Weibull baseline failure

ate λ0 (t, θi ) = αi γ t γ −1 , where θi = (αi , γ ) , was used by Merrick

t al. (2003) in the semiparametric PHM. The authors show that

uch model fits the failure data better than the parametric one

ased on various model comparison criteria. Optimal age replace-

ent intervals were obtained for different machine tools under

oth models and significant differences were found between both

pproaches, with semiparametric policies providing more conser-

ative results in most cases. 

Nonparametric block replacement policies were also considered

n Merrick et al. (2003) for a group of m machine tools. The au-

hors used a Weibull failure model for the tools as in the age re-

lacement protocol. In this case, the cost under the common block

eplacement interval t B for m tools is defined through 

(t B ) = 

m ∑ 

j=1 

c P + c F N j 

(
t B | θ j , β, Z j 

)
t B 

, (47) 

here the N j ( t B | θ j , β , Z j )’s are (conditionally) independent renewal

rocesses with respective renewal function H j (t B | θ j , β, Z j ) , j =
 , . . . , m . The determination of the optimal block replacement in-

erval t ∗
B 

requires evaluating the expected cost 

 

[
C(t B ) | D, Z (m ) 

]
= 

∫ m ∑ 

j=1 

c P + c F H j 

(
t B | θ j , β, Z j 

)
t B 

p 
(
θ (m ) , β| D 

)
d θ (m ) d β. (48) 

his multi-dimensional integral can be approximated using an

C average as in (46) using draws from the posterior distribu-

ion p ( θ ( m ) , β| D ). Note that the MC average involves evaluation

f the renewal functions H j (t B | θ j , β, Z j ) , j = 1 , . . . , m, for each pos-

erior draw (θ s 
1 
, . . . , θ s 

m 

, βs ) . In Merrick et al. (2003) , the renewal

unctions were estimated by simulating from the (conditionally)

ndependent renewal processes and the optimal nonparametric

ayesian block replacement interval was obtained by minimizing

he MC approximation to (48) . 

A similar nonparametric approach was considered in Merrick

t al. (2005) to relax parametric assumptions in the MPPM

42) and model heterogeneity in rail tracks for developing re-

lacement policies. More specifically, the authors specified a base-

ine cumulative intensity 
0 ( t , θ i ) in (42) . The unknown distribu-

ion G of the θ ’s is assumed to follow a Dirichlet process as in
i 
44) while β is treated parametrically. The resulting semiparamet-

ic MPPM was used to develop nonparametric Bayesian block re-

lacement policies with MR. In their development, Merrick et al.

2005) assumed a power law for 
0 ( t , θ i ), but the proposed ap-

roach can be implemented for other baseline cumulative intensity

unctions. 

More recently, Merrick and Soyer (2017) considered an al-

ernative semiparametric MPPM where the cumulative base-

ine intensity function 
0 ( t ) in (42) follows a gamma process

rior 

0 (t) ∼ G (c
∗
0 (t) , c) , (49)

here 
∗
0 
(t) is the mean function of the process and c is the pre-

ision parameter; see Kuo and Ghosh (2001) . The nonparametric

ayesian analysis in their application was complicated by the fact

hat the available rail track failure data were interval censored.

his implies that the posterior for 
0 ( t ) is not a gamma process

nd updating is not straightforward. Therefore, the authors devel-

ped a Gibbs sampler with a data augmentation step to be able

o draw samples from the posterior distribution of 
0 ( t ) and ob-

ained optimal block replacement intervals under the assumption

f MR. 

Damien, Galenko, Popova, and Hanson (2007) proposed a semi-

arametric Bayesian approach for developing optimal maintenance

trategies for nuclear power plants. An important aspect of their

evelopment is the consideration of both preventive (replacement)

nd corrective (repair) maintenance. They also take into account

own time costs. The maintenance policy involves replacing the

tem every T units of time and minimally repairing it upon failure

t a cost c m 

or c d ( c d > c m 

) depending on whether the failure causes

isruption of power generation. The authors use a Bayesian semi-

arametric accelerated failure time (AFT) model assuming a mix-

ures of Polya tree prior for the baseline reliability function F (t) .

he posterior Bayesian analysis is developed using MCMC meth-

ds and optimal replacement intervals are obtained. An alternative

pproach to nonparametric Bayesian failure rate modeling for nu-

lear power plants is introduced in Belyi et al. (2017) who con-

idered the use of extended gamma processes for the failure rate

unctions. 

.3. Preventive maintenance via semi-Markov decision processes 

Continuous Time Homogeneous semi-Markov Processes 

CTHSMP or, simply, SMP) have been extensively used to model

any real and theoretical cases, as outlined in Cinlar (1975) or

oward (2007) . Their flexibility and reasonably tractable math-

matical properties allow for their use in a wide range of

pplications as a powerful modeling tool. A particularly impor-

ant applied area refers to maintenance decisions for hardware

ystems, which has been pervaded by Continuous Time Markov

hain (CTMC) models, see Cano, Moguerza, and Rios Insua (2010) .

MPs provide additional flexibility due to more realistic modeling

ssumptions yet requiring a reasonable computational effort. How-

ver, contributions to SMPs tend to focus on probabilistic aspects,

ith relatively few references devoted to inferential issues, see

hat and Miller (2002) for a description. Moreover, such inferential

ork tends to focus on classical approaches, with comparatively

ittle attention paid to Bayesian methods, which, incidentally, have

ddressed mainly long-term equilibrium properties, see e.g. Marin,

la, and Rios Insua (2005) . Flowgraph models have proved to be

n important tool to deal with SMPs, see Huzurbazar (2005) . 

We focus on the use of Markov and, specially, semi-Markov

ecision processes (SMDP) in reliability and maintenance. White

1993) provides a review of Markov decision processes applica-

ions mentioning numerous ones in maintenance. More recent ex-

mples are in Chen and Trivedi (2005) and Huang and Guo (2011)
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referring to SMDPs. We place special emphasis on the propagation

of uncertainty of the involved parameters, and how it affects the

computation of various quantities relevant for decision making in

reliability. 

We assume that the system evolves according to a SMP

{ X t } t ∈ T with discrete state space { 1 , . . . , m } , with { 1 , . . . , l}
corresponding to ON states and { l + 1 , . . . , m } to OFF ones. The pa-

rameters of the SMP are ( ν, P ) where ν = (ν1 , . . . , νm 

) T are the pa-

rameters of the sojourn times T i , i = 1 , . . . , m and P = (p i j ) , i, j =
1 , . . . , m, where p ij is the transition probability from state i to state

j with 

∑ m 

j=1 p i j = 1 , and p ii = 0 , ∀ i . Inference in SMPs has fre-

quently been dealt with from a classical perspective, neglecting the

relevance of prior knowledge, and/or the uncertainty in parame-

ters, and consequently, in predictions. Besides, SMPs have been of-

ten restricted to provide long-term results, as the transient period

of the process typically entails additional computational complex-

ity depending on the precision of the posterior distributions of the

system parameters. Rios Insua, Ruggeri, and Wiper (2012) provide

various alternative computational strategies. 

We outline here decision making with SMPs under a Bayesian

perspective. We focus the discussion on complex maintenance

cases where we need to go beyond comparing several alternatives

through discrete event simulation and pairwise comparison or

ranking and selection methods, see Henderson and Nelson (2006) .

Assume that when entering state i , a decision maker (DM) will

choose a maintenance action a from a (finite) space A i of alter-

natives, which may depend on state i . The system remains there

for a sojourn time T ia , with parameter ν ia , which depends on the

state and the decision a made. Upon leaving the state, the system

will move to state j with probability p ija ≥ 0, with 

∑ m 

j=1 p i ja = 1 and

p iia = 0 . We assume that we have a prior distribution on the pa-

rameters νa = (νia ) and P a = (p i ja ) , for each action a , leading to a

posterior p ( νa , P a | D ) over the parameters given the observed data

D . For each maintenance decision made, we get a (possibly multi-

objective) consequence c ( i , a , t ia ) which depends on the time t ia 
spent at state i and the action a . We evaluate the consequences

with a utility function u ( c ( i , a , t ia )), which might account for time

effects such as discounting. 

Consider the problem in which we manage the system until

a time T has elapsed. Let a = (a 1 , . . . , a M 

) be the policy or se-

quence of maintenance actions that the DM adopts until time T ;

τ = (t 1 , . . . , t M 

) , the sequence of times spent at various states vis-

ited; x = (x 1 , . . . , x M 

) , the sequence of states visited, and T M−1 =∑ M−1 
i =1 t i . The utility globally obtained will be u ( x , a , τ). The evolu-

tion of the system is described through 

p a ( τ, x | νa , P a ) = 

[ 

M ∏ 

i =1 

p x i x i +1 a i 

] 

×
[ 

M−1 ∏ 

i =1 

f ( t x i | νx i a i ) 

] 

×[ 1 − F ( T − T M−1 | νx M a M ) ] . 

The standard SMDP formulation would fix the ( ν, P ) parameters at

certain estimates ( ̂  ν, ̂  P ) and find the decisions a providing maxi-

mum expected utility through 

max 
a 

∫ ∫ 
∑ 

t i = T 
u (x , a , τ) p a 

(
τ, x | ̂  νa , ̂

 P a 
)

d x d τ. 

Usually, it is assumed that the utility function is separable, that

is, u (x , a , τ) = 

∑ M 

i =1 u (x i , a i , t i ) . Under such conditions, the solu-

tion to SMDPs with fixed parameters typically proceeds through

some variant of dynamic programming, see Howard (2007) and

French and Rios Insua (20 0 0) or Ross (1992) . For approaches based

on Q -learning, see Polson and Sorensen (2011) and references

therein. 

We actually do not require separability. For technical reasons,

without loss of generality, assume that the utility function is posi-
ive. Then we should aim at solving 

max 
a 

∫ ∫ ∫ ∫ 
∑ 

t i = T 
u ( x , a , τ) p a ( τ, x | νa , P a ) p ( νa | D ) p(P a | D ) 

d x d τ d νa d P a . (50)

o evaluate the integral in (50) we may use APS as in the optimal

esign problem of Section 2.2.1 and define an auxiliary distribution

ith density 

(x , a , τ, νa , P a ) ∝ u (x , a , τ) p a (τ, x | νa , P a ) p(νa | D ) p(P a | D ) , 

y treating the decision variable a (the maintenance plan) as a ran-

om quantity. As discussed in Section 2.2.1 , the optimal solution a 

∗

f (50) can be described as the mode of the marginal distribution

f a implied by the auxiliary distribution π ( x , a , τ , νa , P a ). There-

ore, we could implement the approach described in Algorithm 1 ,

ith h = (x , a , τ) , to approximate the mode of the marginal in a

nd, consequently, the optimal policy. 

Algorithm 1: Decision making with SMDP. 

1. Start from arbitrary values (x 0 , a 0 , τ0 , ν0 
a , P 

0 
a ) = (h 0 , ν0 

a , P 
0 
a ) . 

Set i = 0 . 

Compute u (h 0 ) . 

2. Until convergence, iterate through 

2.1 Generate a history h c from distribution q 1 (·| h i ) 
Compute 

γ1 = min 

{
1 , 

u (x c , a c , τc ) p a c (τc , x c | νi 
a , P 

i 
a ) q 1 (h c | h i ) 

u (x i , a i , τ i ) p a i (τ i , x i | νi 
a , P 

i 
a ) q 1 (h i | h c ) 

}
.

Do 

h i +1 = 

{
h c , with probability γ1 , 

h i , with probability (1 − γ1 ) . 

2.2 Generate P c a from distribution q 2 (·| P i a ) 
Compute 

γ2 = min 

{
1 , 

p a i +1 (τ i +1 , x i +1 | νi 
a , P 

i 
a ) p(P c a | D ) q 2 (P c a | P i a ) 

p a i +1 (τ i +1 , x i +1 | νi 
a , P 

i 
a ) p(P i a | D ) q 2 (P i a | P c a ) 

}
.

Do 

P i +1 
a = 

{
P c a , with probability γ2 , 

P i a , with probability (1 − γ2 ) . 

2.3 Generate νc 
a from distribution q 3 (·| νi 

a ) 

Compute 

γ3 = min 

{
1 , 

p a i +1 (τ i +1 , x i +1 | νc 
a , P 

i +1 
a ) p(νc 

a | D ) q 3 (νc 
a | νi 

a ) 

p a i +1 (τ i +1 , x i +1 | νi 
a , P 

i 
a ) p(νi 

a | D ) q 3 (νi 
a | νc 

a ) 

}
. 

Do 

νi +1 
a = 

{
νc 

a , with probability γ3 , 

νi 
a , with probability (1 − γ3 ) . 

3. Once convergence is detected (say after iteration k ), collect the 

next n sampled decisions (a k +1 , . . . , a k + n ) . 
4. Use the sample { a k +1 , . . . , a k + n } toapproximate the mode of the 

marginal distribution on decisions. 

When posteriors for ( ν, P ) are precise, as in the standard SMDP

pproach, we could suppress steps 2.2 and 2.3 and substitute them

y appropriate estimates ̂ ν, ̂  P throughout. Step 3 collects the sam-

led decision after convergence is detected, possibly with proce-

ures such as thinning to mitigate serial correlation. Step 4 finds

he modes on the marginal distribution on decisions. Its struc-

ure will depend on problem specificities, typically requiring a dis-

retization of policies over time. 

Moreno, Virto, Martin, and Rios Insua (2003) provide a related

pproach when ( ν, P ) are fixed. Hoffman, Kueck, de Freitas, and

oucet (2009) provide an APS approach for Markov decision pro-

esses. The convergence of Algorithm 1 follows arguments similar

o those in Bielza et al. (1999) . An alternative approach may be

ased on using discrete event simulation, combined with an opti-

ization algorithm. 
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. Adversarial settings 

As discussed in previous sections, reliability analysis deals with

redicting how long a system will be functioning under given op-

rational conditions and is useful when making decisions in rela-

ion with the maintenance, replacement, performance, design or

edesign of such system. Many reliability problems, as those pre-

ented earlier, involve a single decision maker and may be ap-

ropriately dealt with at large through decision-theoretic methods.

owever, there are reliability issues that may involve two or more

ctors with competing interests. Examples can be found in areas

uch as acceptance sampling ( Lindley & Singpurwalla, 1991 ), life

esting ( Lindley & Singpurwalla, 1993 ), reliability demonstration

 Rufo, Martin, & Perez, 2014 ) and warranty analysis ( Singpurwalla

 Wilson, 1993 ). Other reliability applications with adversarial

gents in a systems/networks perspective include Hausken (2002) ,

zaiez and Bier (2007) and Wang, Chatterjee, and Kwiat (2009) . 

Warranty analysis, described below, is a typical example of an

dversarial situation where the decision to set the warranty size

f a product is not just a consequence of the product’s reliability,

ut also of the actions of competing manufacturers. The warranty

s used as a marketing tool that signals product reliability, and so

 manufacturer may seek to offer a warranty that differs from that

etermined simply from the reliability of the product. Competitors

ay act likewise. 

These problems with adversarial components can be set up

s games and are typically solved using game theory methods,

ibbons (1992) . A main drawback of such methodology in this ap-

lication area is its underlying common knowledge assumption, as-

essed in e.g. Raiffa, Richardson, and Metcalfe (2002) . Therefore,

e shall also illustrate alternative approaches based on the re-

ent framework of adversarial risk analysis (ARA), Banks, Rios, and

íos Insua (2015) . We first present adversarial issues around war-

anty policies and then analyse comparatively the game theoretic

nd ARA approaches in relation with acceptance sampling. 

.1. Warranty policies 

A warranty is an agreement made between the buyer and the

eller of a good or service. In the case of a product, the seller

grees to rectify any fault through repair or replacement, typically

or a certain amount of time, or usage, or both time and usage, af-

er purchase. In the case of a service, a service level agreement

ay be signed and the warranty compensates the buyer if the

greed level has not been met. Again this typically holds for a de-

ned amount of time or other measure of use from purchase. 

Legal aspects apart ( Priest, 1981 ), from the consumer’s perspec-

ive, a warranty acts as a guarantee of quality. From the seller’s

erspective, it is an important tool to attract and retain customers.

he decision and game theory aspects of this problem are usually

xplored from the point of view of the seller, who is faced with de-

ermining the best type of warranty for the product, given knowl-

dge about its reliability, the costs of repair, the relationship be-

ween sales and warranty size and the actions of other sellers that

re offering competing products. 

Early reviews on warranties from a mathematical perspective

re in Blischke (1990) , Murthy (1990) and Blischke and Murthy

1991) . The latter also looked at variants of the standard warranty,

uch as limited warranties, where repair costs are shared between

uyer and seller, and extended warranties, where the consumer

an pay to prolong the warranty period. Singpurwalla and Wilson

1993) looked at several game and decision-theoretic aspects, in-

luding warranties based on both time and usage. 

The time-limited warranty, where the warranty is valid for a

ime t after purchase with no limit on usage, has received most of

he attention in the literature. A decision-theoretic approach to the
eller’s warranty problem looks for the optimal warranty time t ∗.

he seller has a model for the number N ( t ) of claims that will be

ade against a product by time t , quantified through a probabil-

ty model p t (n | θ ) = P (N(t) = n | θ ) . Typical models are point pro-

esses, such as the Poisson process, or a reliability model for time

o failure, and then the number of failures is the corresponding

enewal process if independent and identically distributed failure

imes are assumed ( Ross, 1996 ). A prior distribution for the seller’s

ncertainty about θ may be assessed, which can be updated with

arranty claim data. As regards the utility, Blischke (1990) sug-

ested a cost model for the seller for a single unit of a product

ith a warranty to time t from purchase of the form S(1 + N(t)) ,

f the item is non-repairable (and so must be replaced if it fails), or

 + CN(t) , if the item is repairable, where S is the cost of making

nd delivering the product to the customer and C is the average

epair cost. A more comprehensive cost model would take into ac-

ount the attractiveness to the consumer of a product at a price p

ith warranty length t . Written as a utility, and following the ideas

n Glickman and Berger (1976) , this could be of the form: 

 ( N(t) , θ, (p, t) ) = π(p, t) 

( 

p − S −
N(t;θ ) ∑ 

i =1 

C i 

) 

, (51)

here π ( p , t ) measures the probability that a consumer buys the

roduct with price p and warranty length t (a non-decreasing func-

ion of t ) and C i is the cost of resolving the i th claim (either a

epair or replacement cost). The expected utility, assuming uncer-

ainty over θ as well as N ( t ), is then: 

 (t) = π(p, t) 

( 

p − S −
∑ 

n 

( 

n ∑ 

i =1 

C i 

) ∫ 
θ

p t (n | θ ) p(θ ) dθ

) 

, 

nd we look for t ∗ = arg max t u (t) . If the claim costs are identically

istributed, then one can take the expectation over the claim costs

o arrive at a simplified expression 

 (t) = π(p, t) 

(
p − S −

∑ 

n 

nE(C) 

∫ 
θ

p t (n | θ ) p(θ ) dθ

)
= π(p, t) ( p − S − E (C) E (N(t)) ) . (52) 

imultaneous maximization over p and t is also possible. 

The analysis of warranty costs has been well documented in the

iterature, e.g. the recent work by Liu, Wu, and Xie (2015) or the

eview by Shaomin (2012) , and so typically the seller has good in-

ormation on the distribution of the C i ’s. The consumer response to

he warranty size, appearing as the function π ( p , t ) in (51) , is more

ifficult to quantify. Jindal (2015) looked at what drives the pur-

hase of extended warranties and derives a utility from the con-

umer’s perspective. Chu and Chintagunta (2009) is more useful as

t looks at a demand model for warranties from the seller’s point

f view. 

Fig. 5 illustrates the approach with a simple example, using

he utility function in (51) with p = 2 , S = 1 and E(C) = 0 . 1 . A lo-

istic function is used for the probability of purchase, π(p, t) =
 . 5 exp (−0 . 01 p + (t − 2)) / (1 + exp (−0 . 01 p + (t − 2)) , so that the

aximum chance of purchase is 0.5, and N ( t ) is modelled as a

oisson process with mean value function E(N(t)) = (1 + t) θ − 1 .

hen θ = 1 , we have the homogeneous Poisson process, and so

he times between successive claims have the same distribution,

s might be expected if the claim was resolved by a replacement

roduct or a repair that returns the product to an as-new state. If

> 1, there is an increasing rate of claims as the product ages, cor-

esponding to a situation where a claim is resolved by an imperfect

epair and there is an increasing rate of claims over time. The fig-

re shows the optimal warranty period for fixed θ , which shortens

s θ increases, reflecting the fact that the seller wishes to avoid

he increasing claim rate that is implied by θ > 1. Two-dimensional
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Fig. 5. Optimizing the warranty length t using the utility function of (51) . Clockwise from top left: expected number of claims as a function of t for different θ ; probability 

of buying product as a function of t ; expected utility of a warranty of length t for different θ ; optimal warranty length as a function of θ . 
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warranties, where the warranty period covers up to a time t and

usage m , are common in some markets, e.g. automobiles. The op-

timal warranty specification now looks to define the optimal pair

( t ∗, m 

∗). One approach is to map ( t , m ) to a single index and opti-

mise with respect to it; Oakes (1995) or Gertsbakh and Kordonsky

(1998) provide examples. Alternatively, a bivariate model for time

and usage can be defined. Mercer (1961) was an early attempt to

do this. Eliashberg, Singpurwalla, and Wilson (1997) modelled us-

age as a logistic function of time, while Singpurwalla and Wilson

(1998) defined a model where usage was a stochastic process in-

dexed by time. In the latter, the model was applied to the optimal

two-dimensional warranty problem. More recently, Su and Wang

(2016) proposed a bivariate Weibull model for time and usage to

failure with survival function 

R (t, m ) = exp 

( 

−
{(

t 

αT 

)βT /δ

+ 

(
m 

αM 

)βM /δ
}δ

) 

, 
here δ models their dependence. Two-dimensional renewal the-

ry can be used to derive a distribution for N ( t , m ), the num-

er of claims by time t and usage m Hunter (1974) . Singpurwalla

nd Wilson (1994) suggested a seller’s utility function for a two-

imensional warranty that is an extension of (51) but where now

he probability of purchase and number of claims depend on both

ime and usage, 

 ( N(t, m ) , θ, (t, m ) ) = π(p, t, m ) 

( 

p − S −
N(t,m ;θ ) ∑ 

i =1 

C i 

) 

. (53)

hen ( t ∗, m 

∗) are found by taking the expected utility with respect

o N ( t , m ) and θ , then maximising with respect to t and m . 

Game theoretic aspects of warranties have also been explored.

mons (1988) looked at the moral hazard problem, where buyers

ake less care of a product if it has a warranty, leading to an ad-

ersarial interaction between the buyer and seller. The seller must

ssess the reduction in reliability due to the buyer’s actions. 
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Singpurwalla and Wilson (1993) discuss the interaction be-

ween a consumer and a producer by making the probability π ( p ,

 , m ) of (51) depend on the buyer’s utility for purchasing the prod-

ct. All these require common knowledge assumptions that are

hen used to compute Nash equilibria and related refinements.

e explore this and alternative approaches in the related prob-

em of adversarial acceptance sampling. As mentioned earlier, the

dversarial aspect of warranty analysis comes from consideration

f a competitor’s actions. If a competitor sets a larger warranty

hen, in response, the manufacturer may propose a warranty that

s larger than the optimal size that is based on considerations of

eliability alone. In Singpurwalla and Wilson (1993) , it is assumed

hat each manufacturer has a set of potential price and warranty

ombinations for consideration. The utility for each manufacturer,

ver each combination of price-warranty choices, is then specified.

hese utilities are assumed to be as in (51) but with the probability

f purchase π ( p , t , m ) now dependent on the actions of the com-

etitors. These utilities specify a non-zero sum game, from which

he usual machinery of game theory may be used to determine the

xistence of equilibrium solutions. It is assumed that the manu-

acturers are non-cooperative. Singpurwalla and Wilson (1993) dis-

uss how π ( p , t , m ) may be specified as a function of competitors’

ctions and also on whether an equilibrium solution actually pro-

ides a stable solution for each manufacturer. 

.2. Adversarial acceptance sampling 

We first formulate the general adversarial problem for accep-

ance sampling as in Lindley and Singpurwalla (1991) who deal

ith it from a game-theoretic perspective. As a motivation, con-

ider a case with a manufacturer M (she) and a consumer C (he).

n order to convince the consumer, the manufacturer offers sam-

le products to the consumer who, based on the perceived quality,

laces an order or not. Thus, M needs to decide about n , the sam-

le size that will be offered to the consumer. The outcome of the

nspection is described through the data D , which depends on a

arameter θ characterising product quality, say the failure rate in a

ife testing context. The decision of C refers to accept ( A ) or reject

 R ) the batch, which will be based on the observed sample data

 , eventually used by C to revise his uncertainty about θ . The util-

ty function of C depends on his decision and the quality parame-

er θ . The utility function of M depends on her decision, the con-

umer’s decision and the quality parameter θ . The problem may be

escribed through a bi-agent influence diagram (BAID), Koller and

ilch (2003) or Banks et al. (2015) , represented in Fig. 6 , where

ircular nodes refer to random events, square nodes refer to deci-

ions and hexagonal nodes refer to evaluations. White nodes be-

ong to M , grey nodes to C and striped nodes are shared by both

gents. Arcs pointing to decision nodes indicate that such decisions

re made knowing the values of the antecessor variables; those

ointing to chance nodes indicate probabilistic dependence; finally,

hose pointing to value nodes indicate that the utilities depend on
he values of the antecessors. We model the problem from the per-

pective of the manufacturer. We illustrate first the game theoretic

pproach and then the ARA perspective. 

For the game theoretic solution, due to the sequential nature

f the decisions, the consumer sees the manufacturer decision

nd does not need her judgments. But the manufacturer needs to

now the consumer beliefs and preferences, which is the common

nowledge condition in this problem. Then, the consumer should

ave available, and these should be available to the manufacturer,

 C ( θ ), which describes his beliefs about the product quality θ ;

 C ( d | θ , n ), which describes his beliefs about the experiment results

 given the quality θ and the decision n of M ; and his utility func-

ion, u C ( c , θ ). If so, he proceeds, for each d and n , by: 

1. Inverting the arc θ − D and computing, by Bayes’ formula, 

p C (θ | d, n ) ∝ p C (θ ) p C (d| θ, n ) . (54)

2. Computing the expected utilities, to eliminate node �, 

ψ C (n, d, c) = 

∫ 
u C (c, θ ) p C (θ | d , n ) d θ . 

3. Computing the optimal decision c , given d and n , to reduce

node C 

c ∗(d, n ) = argmax 
c∈{A , R} 

ψ C (d, n, c) . (55)

The manufacturer knows this and, consequently, solves her

roblem. For this, she should have available p M 

( θ ), describing her

eliefs about the quality θ ; p M 

( d | θ , n ), reflecting her beliefs about

he experiment results given the quality θ and his decision n ; and

er utility function u M 

( c , n , θ ). In this case, the manufacturer pro-

eeds by: 

1. Assessing the utilities of the attained results (the consumer

decision) 

ψ M 

(n, d, θ ) = u M 

(c ∗(d, n ) , n, θ ) . 

2. Computing the expected utilities, to eliminate node D 

ψ M 

(n, θ ) = 

∫ 
ψ M 

(n, d, θ ) p M 

(d| θ, n ) dd. 

3. Computing the expected utilities, to reduce node �

ψ M 

(n ) = 

∫ 
ψ M 

(n, θ ) p M 

(θ ) dθ . 

4. Finally, computing her optimal decision through 

n 

∗ = argmax ψ M 

(n ) . (56)

Then ( n ∗, { c ∗( d , n ∗)} d ) is a subgame perfect equilibrium, Gibbons

1992) . 

We move now to the ARA approach, avoiding common knowl-

dge assumptions. Basically, we run a decision analysis problem for

he manufacturer, which requires input coming from a simulation

ver the consumer’s problem. We thus consider first the manu-

acturer’s decision problem. Our development follows the frame-

ork presented in Rios Insua et al. (2018) . To solve the problem, M

hould have available, as before, p M 

( θ ), p M 

( d | θ , n ) and u M 

( c , n , θ ),

ut also p M 

( c | d , n ), which describes her beliefs about the customer

ecision c (accept, reject) given the experiment results d and her

ecision n . Then, the manufacturer proceeds by first: 

1. Computing the expected utilities, 

ψ M 

(n, d, θ ) = 

∑ 

c∈{A , R} 
u M 

(c, n, θ ) p M 

(c| d, n ) , 

nd, then, performing steps 2, 3 and 4, as before. However, in the

bove, p M 

( c | d , n ) is nonstandard, since it entails strategic elements

bout the behavior of the consumer. To facilitate its assessment,

e may actually consider his problem and simulate from it. 
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Fig. 7. Acceptance sampling. Consumer vision. 
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The consumer problem is shown in Fig. 7 . To solve it, the con-

sumer should have available, as stated above, p C ( θ ), p C ( d | θ , n ),

and u C ( c , θ ). He does not need p C ( n ), since his decision is con-

tingent upon seeing the manufacturer decision n at M . In this

case, the consumer proceeds, for each d and n , as above, not

being necessary to remove nodes D and M from the consumer

ID. However, since we do not assume the common knowledge

condition, we do not have the required elements u C ( c , θ ), p C ( θ ),

p C ( d | θ , n ). We may model our uncertainty around them, through

random utilities and probabilities, which we designate by F =
(U C (c, θ ) , P C (θ ) , P C (d| θ, n )) . Since we do not need the denominator

in Bayes’ formula (54) for optimisation purposes, we may actually

proceed, for each d and n , by 

2’ Computing the random functional 

�∗
C (n, d, c) = 

∫ 
U C (c, θ ) P C (θ ) P C (d | θ, n ) d θ . 

3’ Computing the random optimal alternative, given d and n , 

C ∗(d, n ) = argmax 
c∈{A , R} 

�∗
C (d, n, c) . (57)

We, then, set p M 

(c| d, n ) = P r(C ∗(d, n ) = c) which feed into the

manufacturer’s problem. 

Estimation of C ∗( d , n ) would typically proceed by MC simula-

tion, by sampling from the random utilities and probabilities, com-

puting the corresponding optimal decisions, and then estimating

through the MC frequencies. In general, P C ( θ ), P C ( d | θ , n ) could be

based on p M 

( θ ), p M 

( d | θ , n ) with some uncertainty around them. In

discrete cases, these could be Dirichlet distributions, whereas, in

continuous cases, these could be Dirichlet processes. With regards

to U C ( c , θ ), we may have information about the consumer interests

and use a parametric form for the utility function. Finally, we de-

rive a distribution over the parameters. Banks et al. (2015) provide

details on assessment of the probability distributions of the con-

sumer and the utility function U C ( c , θ ). The ARA framework pre-

sented above has been used by Rios Insua et al. (2018) in Bernoulli

acceptance sampling and exponential life testing. 

5. Concluding remarks 

This article has provided a review of Bayesian methods for mak-

ing decisions in reliability. This is a major aspect of reliability

analysis frequently ignored by statisticians and applied probabilists

whose main focus is often on modeling, inference and prediction

of reliability. It is desirable to integrate decision making and statis-

tics in many reliability problems and the Bayesian paradigm pro-

vides a coherent framework to do this. The primary objective of

this review was to illustrate how the Bayesian decision-theoretic

approach is applied in a variety of problems such as life testing,

design of experiments, reliability certification, preventive mainte-

nance, warranties and acceptance sampling and discuss recent ad-

vances in these areas. 
Section 2 has presented Bayesian design of life tests includ-

ng accelerated tests, stopping rules and reliability demonstration.

ue to space limitations, design of burn-in tests is excluded. In

eliability, burn-in testing is used to distinguish between “weak”

nd “strong” items so that weak ones are eliminated and not re-

eased to consumers. One of the earliest Bayesian papers in burn-

n testing design is by Clarotti and Spizzichino (1990) . A more re-

ent work is by Perlstein, Jarvis, and Mazzuchi (2001) . Reliability

ased optimal design is another area which is not discussed since

ost of this work appear in engineering journals and the Bayesian

pproach has been considered in comparatively few articles, such

s Gunawan and Papalambros (2006) . Our discussion of preven-

ive maintenance in Section 3 has not included condition-based

aintenance policies which is an area also with limited Bayesian

ork; see for example, the recent review paper by Olde-Keizer,

lapper, and Teunter (2017) . Another area where the development

f Bayesian maintenance policies has not been considered is the

irtual age or imperfect repair models of Zhang, Gaudoin, and Xie

2015) . 

The distinguishing feature of this review article is its emphasis

n the Bayesian decision framework and application of the frame-

ork to a variety of decision problems discussed in Sections 2 and

 . Besides its focus on Bayesian decision making, this article dif-

ers from the other reviews in reliability due to its consideration

f adversarial issues discussed in Section 4 . As noted by Rios In-

ua et al. (2018) , the ARA approach discussed here can be ex-

ended to other areas such as warranty policies and software test-

ng which include more than two adversaries. For example, Ruggeri

nd Soyer (2018) point out that the optimal release problem in

oftware engineering, which has been considered from a game the-

retic viewpoint by Zeephongsekul and Chiera (1995) , can be for-

ulated using the ARA framework. Another potential area for ex-

ension is adversarial life testing with multiple stages. The solution

f such sequential testing is challenging and will require the de-

elopment of new computational methods. Last, but not least, it

ould be relevant to consider security issues in relation with re-

iability when adversaries attempt to reduce the reliability of the

ystems in question. 
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