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Abstract—In this paper, we consider revenue maximization ~ We consider service systems that consist of two parallel,
problem for a two server system in the presence of heterogenes possibly heterogeneous servers where each server has an
customers. We assume that the customers differ in their cost 555ncigted queue for the customers to wait. The scheduling
for unit delay and this is modeled as a continuous random discioli t h . K . dd t di
variable with a distribution F. We also assume that each server '.SC'.p Iné at each server Is wor conservmg an _Oes net dis
charges an admission price to each customer that decide toijo ~ Cfiminate between customers on the basis of their preferenc
its queue. We first consider the monopoly problem where both for delay. The servers charge an admission price to every
the servers belong to a single operator. The heterogeneityf o customer joining its queue. We assume that the queues are
the customer makes the analysis of the problem difficult. The not observable and only the expected delay as a function of

difficulty lies in the inability to characterize the equilibrium - . .
queue arrival rates as a function of the admission prices. We the arrival rate is available. We also assume that the ezgect

provide an equivalent formulation with the queue arrival rates as d€lay at any server is monotone increasing in the arrival rat
the optimization variable simplifying the analysis for revenue rate  of customers to that server. The customers that use thexsyste
maximization for the monopoly. We then consider the duopoly are strategic and make an individually optimal queue-join
problem where each server competes with the other server yacigion, We assume that customers differ in their cost for
to maximize its revenue rate. For the duopoly problem, the . L . . .
interest is to obtain the set of admission prices satisfyinghe unit Qelay Wh,'Ch_ IS F:haracterlzed by a random variable with a
Nash equilibrium conditions. While the problem is in genera continuous distribution denoted [y For a customer, the cost
difficult to analyze, we consider the special case when the tw at a server is the sum of the admission price and the delay cost
servers are identical. For such a duopoly system, we obtairhe  at the server. We assume that customers cannot balk from the
necessary condition for existence of symmetric Nash equilium gy stam without obtaining service and such traffic is commonl

of the admission prices. The knowledge of the distributionF' in cloud ti h f tial . t
characterizing the heterogeneity of the customers is necgmy SE€N IN Cloud-computing, purchase of essential Serviees €

to solve the monopoly and the duopoly problem. However, for ~ In this paper, we consider the problem of revenue maxi-
most practical scenarios, the functional form of F may not be mization in such a service system by suitably choosing the
known to the system operator and in such cases, the revenueadmission prices at two parallel servers. Depending on the
maximizing prices cannot be determined. In the last part of he  ypiactive of each of these servers, we consider two natural
paper, we provide a simple method to estimate the distributin .
F by suitably varying the admission prices. We illustrate the SCE€Narios. In a monopoly, we assume that th_e two SErvers
method with some numerical examples. belong to the same operator. The objective here is to magimiz
the total revenue rate, i.e., the sum of the revenue rate from
the two servers. In the second scenario, we assume that each
. INTRODUCTION server belongs to separate operators and each server has the
In many service systems, the quality of service receivadbjective of maximizing its individual revenue rate. Thésain
is characterized by the queueing delay that is experiena@dmple of a duopoly where the service systems compete with
by the customers in the system. Examples of such servimee another to maximize their individual revenue rate.
systems that can be modeled as queueing systems include rodtow consider the scenario of a monopoly market discussed
and transport systems, health-care systems, computensyst above where the service system has two parallel servers. In
call centers and communications systems. The customers tha absence of balking, it is not difficult to see that a reeenu
receive service in such systems are usually sensitive to theximizing strategy for the monopoly is to keep both the
delay experienced in these system. Further, such custormetmission prices at infinity. This is because as customers
have non-identical preferences to the delay experientas. |cannot balk, they are required to choose one of the server
often beneficial for the service system to account for thefmr service. Therefore one has to consider a more meaningful
heterogeneous preferences in any optimization concethi&ng model for the monopoly market. Towards this, we assume
use of system resources. Many service systems have emetedl the admission price at one of the server, say Server 2 is
that exploit the heterogeneous nature of customers and tgse fixed a-priori. This dissuades the service provider fronnfixi
their advantage. For example, airlines offer priority litiag the admission price at Server 1 to unreasonably high values.
queues for payment of an additional fee. In this paper, vi@ur interest for this model is to characterize the revenue
consider the problem of exploiting the heterogeneous aatunaximizing admission price at Server 1 for different exasspl
of customers for revenue maximization in parallel servef the delay functions at the queue and when customers differ
systems. We model heterogeneity of customers by assumingheir delay cost.
that different customers have different cost for a unit @ela  Classical monopoly models have been well studied for the
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case of single server queues. One of the first work to analjzave the same delay cost per unit time. A differentiated
such a model is Naor [1]. This model considers a singkervice model is considered by Dube and Jain [19] where
server queueing system where homogeneous customers olgaicth player now operates two types of services and each
a reward after service completion. The queue is observabkrvice is used by a dedicated class of customers. Again,
to arriving customers who choose to either join the queue thre key result in[[19] is to obtain the sufficient condition
balk. For such a system, the revenue maximizing admissifor the Nash equilibrium prices. Mandjes and Timmérs [20]
price was first obtained i [1]. Subsequently, there havanbeeonsider a duopoly model with two customer classes diffgrin
several works analyzing the revenue maximization probleim their delay cost. The model assumes a finite number of
for various models such as a multiserver queue (2]/M/1  customers and the utility of a queue is a decreasing function
queue [[B], customers with heterogeneous service valumtiaf the number of customers using this server. Given the price
[4] and queue length dependent prices [5]. While the aboae the servers, they provide an algorithm that determines
models assume that the queue lengths are observable, Edeilse equilibrium number of customers of each class that is
and Hilderbrand[[6] were the first to consider the revenue be allocated to the two servers. While the existence and
maximization problem for the case when queues are natiqueness of such a customer equilibrium is provided, the
observable. Seé|[7].][8].[9]._[10]._[11] for some other ding existence of Nash equilibrium prices is only conjectured. |
server revenue maximization models. [27], [22] the demand rate at different servers is modeléagus
The key difference of our model with that of the literaturespecific functions (known as demand models in such litegtur
discussed above is as follows. Firstly, in our model, cust@m instead of being calculated from the (Wardrop) equilibrium
are inelastic in their demand and hence balking is not allbweconditions[[23]. This assumptions make the analysis relbti
Secondly, the customers have to obtain service at eithdreof simpler. Ayesta et. al.[][24] consider the oligopoly pricing
two servers and the admission price at one of the servergame for a single customer class and obtain the necessary
fixed. Finally, the customers have heterogeneous prefereand sufficient conditions on the Nash equilibrium prices mwhe
for the delay experienced in the queue. This feature makbge queues have identical delay functions. A best-response
our model meaningful but also difficult to analyze. For sucalgorithm is then provided to numerically obtain these Nash
parallel server models, the structural properties for thei-e equilibrium prices.
librium routing have been obtained recently|[12].][13]. Weu  Most of the monopoly and duopoly models described above,
the structural property of the equilibrium routing to sotfbe make simplifying assumptions on the customer classes to
the revenue maximization problem for the monopoly. characterize the underlying Wardrop equilibrium][23]. Add
For the duopoly problem with two competing and identicalonal simplification of the analysis is obtained by consicg
servers, we assume that the objective for each server isctmvex and increasing delay functions at the queues. We do
set an admission price that maximizes its revenue rate. Wat make any of these assumptions in this paper. We utilize th
are interested in studying the existence of Nash Equilibriustructure of the Wardrop equilibrium that was characterire
prices that would be set by the two servers. The earliest wdi@], [13] to analyze the two problems. This structure on the
analyzing the duopoly model with heterogeneous customemuilibrium allows us to provide an equivalent revenue maxi
was by Luski [14] and Levhari and Luski_[15]. Both themization formulation for both the monopoly and the duopoly
models assume that the customers are allowed to balk. Lusiat is simpler to analyze. For the duopoly problem we previd
[14] is interested in knowing whether the revenue maxingzinsufficient conditions on the symmetric Nash equilibriuntps
prices set by the two service systems can be equal. Itviken the competing servers are identical.
observed that when the parameters of the model are suclror most practical scenarios, the distribution functiog)
that the customers have no incentive to balk, the revenciearacterizing the delay cost for a customer may not be
maximizing prices set by two identical servers is equal.sThknown to the service system. The revenue maximizing styateg
is however not the case when some of the customers prefeptothe other hand depend on the distributiBt). Without
balk. In this case, the equilibrium revenue maximizing @sic any knowledge ofF'(+), it is not be possible to ascertain a
are not equal. Levhari and LusKi_[15] provide a numericakvenue optimal admission price at the servers and in such
analysis for the problem introduced in Luski [14]. Armonycases, the service system is required estimate this distrb
and Haviv [16] analyze this problem for the case when tHanction. Towards the end of this paper, we shall provide a
customers are from a finite number of classes and eaimple method to estimate this distributiéii-) by varying the
class has a distinct cost for unit delay. A numerical analysadmission prices and observing the change in the equilibriu
of the Nash equilibrium admission prices between the twaaffic routing. The service system can then use this estimat
competing servers is provided. Chen and Wan [17] considerperform the necessary revenue maximization.
the revenue maximization in a duopoly with a single customerThe rest of the paper is organized as follows. In the next
class. The service system is modeledMyM/ /1 queues and section, we shall formalize the notations and provide some
the customers are allowed to balk from the system. Theseeliminaries. We then formulate the revenue maximization
assumptions on the system model allows them to obtain theblems in Sectiod_Ill. In Sectioh_]V, we consider the
sufficient conditions for the existence of Nash equilibriummonopoly problem for revenue optimization followed by the
Similar conditions were found in Dube and Jain|[18] whaduopoly problem in Sectiof V. Finally in Sectidn1VI, we
consider anN-player oligopoly with multiclass customers.illustrate a mechanism based on admission pricing to estima
The customer classes differ only in their arrival rates arttle distribution function?.



[1. PRELIMINARIES fies the Wardrop equilibrium condition. Then there exists a

We will first introduce the notations that will be usedhresholds: with 5, € [a,b] such that
throughout this paper. In both the monopoly and the duopolys Whenci > c; (resp.ci < cz),
model, we assume that the system has two serversclet

' . . - . f b

denote the admission price at Seryewhere;j = 1,2. The KY(B,) = {51 (resp.dz) - for 5 € (B, b,
customers arrive according to a homogeneous Poisson groces d2 (resp.o1)  for § € [a, Bu].
with rate_/\ an_d h_ave_ a service _requirement that is i.i.d with gy rther if 81 € (a,b) then,
exponential distribution and unit mean. Lé&,(vy;) denote
the delay function associated with quegiavhen the queue c1+ B1D1(n) = ca + B1Da(72). (3
arrival rate is~;, wherey = 1,2: Note Fha‘wl + 72 = A « Whene, — e, KW is not unique and any kerndt
\é\_/; assgmb? thalt)ﬁ IS rtno_notofn_(ta ngcrea;mg_;nd cto_ntlnuo_usly with v, = 4+ is a valid Wardrop equilibrium kerngt v

ifferentiable in the interior of its domain with a stricthosi- wherey* i= {7 : Di(71) = Da(7s)} .

tive derivative. Additionally we assume that the cost fimmet Refer Figures]l an@ 2 for a representation of the Wardrop
at the two server satisfies the following two conditions (13 A
quilibrium kernel for the case whan > c¢; ande; < ¢

D1(0) < D2()) < 00 and (2)D2(0) < D1 (A) < oo. . respectively. Herg (-) denotes the underlying density function
We associate with each arriving customer a continuou . . o o

. o ) e of the random variablg while the shaded region identifies the

random variable3d that quantifies a customer’s sensitivity to
delay cost parameter of those customers that choose Server 1

delay or congestion. We shall assume that the delay satsitiv Proof: The first part is simply a restatement of Corollary

(8 for a customer is a realization of the random variaBle , . .
. . . 4 in [13] for the case and the proof for is
The customer arrivals constitute a marked Poisson prodess ] Lo P G =

. X . . a%ng similar lines. We now prove the second part. Consider
|nten5|ty_)\><}_7 ODR>§R+' He.reF is an absolutely continuouS 0 ase where; = ¢y and recall the assumption that
cumulative distribution function supported on the intéfvab]

” o o D1(0) < D2(X) and Dy(0) < Di(A). K must be such
of positive reals. We additionally assume ttat:) is strictly - .
increasing and hencg(z) + 0 for any z € [a, b] where () that D1 (y1) = D2(72). To see why this must be true, suppose

: . . . that this is not true and leD D . Customers
is the corresponding density function. 1(1) 7 Da(v2)

S . from the queue with a higher delay cost will have an incentive
[IEY]V(tah ntOV\;] rece':II _thetp]Na_rddrppd eqltullbrltgm lcohnqn|023]to move to the queue with a lower delay cost. This implies
at characterize the Individua ly optimal Choice eheer th[at a K" with Di(y1) # Da(y2) is not at equilibrium.
made by the arriving customers. A customer with delay Cog A ) - :
£ entering the system must choose a queuso as to ecall the definitiom ™ := {y1 : D1(71) = Da(12)} - Since,
. . . D D dD D h + .
minimize ¢; + 8D;(v;). Here~; is determined through the 1(0) < D(3) and D5 (0) < Dy (A), we have < 4% < A

trateoi f all A Wi that th t'tNOW for any kernelK satisfyingy; = vT, sincec; = c3, the
strategies of afl Cusiomers. , ¢ assume that tne quantiigg, oy any customer at the two servers is equal. Hence there
M, A2, D;(+), F(-) and ¢, for j = 1,2 is part of common

is no incentive for any customer to deviate from its choice of
knowledge. We also assume that the customers do not h y

) HE server. The Wardrop equilibrium kerng" though not
access to current or past queue occupancies, or the h'StOrW ue must however satisfyfb KW (8. )dF(8) = 4+
of arrival times. The strategy of a customer is restricted g f=a »J o 7.'

choosing a server according to a fixed probability distidout
and such joint strategies are represented by a stochastielke m
denoted byK". We interpretKV(j3,7) as the probability
that a customer with delay sensitivity chooses queué
at equilibrium. For the two server system, the equilibriu
kernel K" must satisfy the following Wardrop equilibrium
conditions.

)

. PROBLEM FORMULATIONS

Having characterized the Wardrop equilibrium kerigl”
r{{)r a two server system, we will now formulate the rev-
enue maximization problems for both the monopoly and the
duopoly model. LetR;(c;,7v;) := c¢jv; denote the revenue
rate at server; when the arrival rate of customers due to
KW (83,i) > 0 implies ¢; + 8D;(v;) < ca3—i + BD3_;(3—i). the corresponding kemnek™ is ~; for j = 1,2. For the

(1) monopoly model, letRr(c1,v1) denote the revenue rate for

In words, this means that if customers with delay c@st the monopoly service system. Singe = A — 74, it suffices
choose Server at equilibrium, then the expected cost for thiso express the revenue rate as a function of onlyWe have
customer at Servei must be at most the expected cost at

Server3 — i for i = 1,2. For a kernelKW, note that the Rr(er,m) = aam + ey = A+ (e — e
arrival rate of customers to Servgiis given by Note from Theorerfil1, that the argumentis determined by
b the kernelk™ which in turn depends on the admission prices
V= A KY(83,5)dF(B). c1 andc,. This dependence will be made explicit by writing
B=a ~v1 asv (c1, c2) and the revenue optimization problem for the

We now provide the following theorem that is a restatemenionopoly can now be stated as follows.
of Corollary 4 in [13]. This theorem characterizes the Wapdr
equilibrium kernel for a system with two parallel servers. ma

Theorem 1: Define é; as the probability distribution that subjectto 0 < ¢; < ¢!
puts unit mass ori and suppose that the kern&l" satis- (P1)

Rr(er,71(e1,c2)) = cad + (e1 — e2) (e, e2)
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Fig. 1. Representation ok whenc, > co. Fig. 2. Representation dk" whene; < ca.

wherec! is an arbitrarily large value such that(ct,co) = 0.  wherey!(c,) determines the domain for the feasible values of
¢! is a technical requirement to ensure a compact domain apdas a function of;. An intuitive explanation for the quantity
one could also define! := inf {c: v1(c,c2) = 0} in which ~!(cz) is as follows. Consider the casg = co = 0. From

case we havey;(ci,co) = 0 for any ¢; > c'. To be able Theorenll, we have; = v© where0 < ~v* < \. Using the

to solve prograni”]] using standard optimization techniquesnotation~; (c1, c2), we havey;(0,0) = 4+. For anyc; > 0,

a closed form expression for (¢1, c2) would be convenient. v1(¢1,0) < ~T since the increase in the admission price
Whenc¢; > co, and 31 € (a,b), from TheorenJL and the at Server 1 makes the server more costly and decreases the

definition of v, it can be seen that resultingy;. Clearly, for anyc; > 0 andcy =0, 71 ¢ (v+, A
B andc; (1) in progran{ PR cannot be defined for € (v, AJ.

mler,e2) = M1 = F(Br)) ) Therefore whenc, = 0, the domain for the optimization

where variable~y; should be restricted tf,v*]. In general, for an

arbitrarycy, the domain fory; in prograniPP is defined using
Pr=Af:c1+BD1(AL = F(B))) = c2 + BD2(AF(B))} - 41(c,) and this will be characterized formally in Sectiof IV.

A similar condition follows whenc, < ¢, and it can be  Now consider the duopoly market with two competing
seen that obtaining an explicit expression far(ci,c2) is  servers charging admission pricesand ¢, to their arriving
difficult. Note that we have not assumed any functional for@ustomers. The objective of Servgis to choose an admission
for D; and F(-) and for certain choice of these functionsprice¢; that maximizes its revenue rafe;. For this duopoly,

a closed form expression fori (c1,c2) may not be possible. the revenue optimization problem for Serveis as follows.
Without an analytic expression foy; (c1,cz), it is difficult
to solve the revenue maximization problem. Therefore we

max Rj(cj,v5) = ¢jv4(cj, ci-
require an alternative approach to solve progf&d One ¢ 1 73) = (s ¢50)
possible alternative is to let the equilibriuma (the value of subjectto 0 <¢; <¢J (P3)
~1 at equilibrium) be the optimization variable and represent given ¢

other variables of the system such@scs, 51 as a function
of 7. With slight abuse of notation, we will use;(y;) ©0  wherec;- represents the admission price at the server other
denote the admission price at Seryewhen the arrival rate thanj je. ¢,- = co andey = ci.

to Serverj at equilibrium isy; wherej = 1, 2. Similarly, we o )

shall usef; (11) to represent the thresholé{ corresponding ~For the duopoly market, the aim is to obtain the Nash
to an equilibrium arrival rate ofy; to Serverl. Note that €quilibrium set of admission prices to be charged at the two
¢1(71) is also a function of,. This is because the equilibriumservers. We shall denote the Nash equilibrium prices by the
v, depends on the differencg; — ¢2) and not on their tuple (¢}, ¢5). Using the notion (_)f the best response function
individual values. This is clear from Theorelh 1 (Ef] (3))25], (¢i,¢3) can be characterized as follows. L&%(c;-)
Therefore for a givernr; andy; € (0, ) one can determine denote the admission price at Sendethat maximizes the

¢; using Eq. [B). We have suppressed this dependence orS€rver revenug; fo_r agiven value of;- fori = 1,2 Clearly,

to simplify notation. For the monopoly mode}(ys) = ¢, as  Bi(ci-) is the maximizer in prograi 3 and it is easy to see
co is assumed fixed. Thus the equivalent revenue optimizatigh'jlt

problem for the monopoly is as follows.

R =2\ —
max r(ci(),m) = A+ (a(n) —c2)n P2 Bl
subject to 0 <1 <7'(ez) < A Bs(c1)

= {c1>0:cmler,e2) > ey, e2)Ve) > 0}
{e2 > 0: coya(er, c2) > cyya(cr, )V > 0}



and the uniqueness of kern& " for a fixed differencec; — c,).

This is part of Lemmal4. Finally we characteriz in

(c1:¢3) = {(e1,¢2) : Bi(ea) = c1, Ba(c1) = e} TheorenpﬂZ usingl(vlgndvl(czg. &)

However as argued earlier, the closed form expression forRecall that we make minimal assumptions on the distri-
7;(cj,c;-) is not easy to obtain. This makes it difficult tobution F(-) and on the delay cost functiof;(-). For our
solve prograni B3 and obtain the best resporisgs; ) for numerical examples and also to illustrate the properties of
i =1,2. As a result, obtainingc;, ¢;) is in general not easy. the functions3; (-), g1(-) ande1 (+), we consider the following
As in the case of the monopoly program, to obtaip c;), we examples forF'(-) and D;(-). The distributionF'(-) is from
need to first reformulate programlP3 by letting denote the one of the following;
optimizing variable. The corresponding optimization geob « Uniform distribution over the rang, b].

is as follows. o Exponential distribution with mean.

max Ri(c; (i), i) = ci(vi)vy o Gamma distribution with shaple and scale).

- . P4 For the delay cost function, we shall assume one of the

subjectto 0 <v; <97(¢;-) <A (P4) following.

given Cj= « Dj(y;) = ;. This corresponds to the case of linear
cj(7;) can be interpreted as the admission price at Sejver ~ delay. _
that leads to the equilibrium arrival rate of when the other  « D;(7;) = ;== and y; > A. This corresponds to
server charges,;-. Note again that:;(v;) will be a function M/M/1 type delay cost function.

of ¢;- but we do not make this explicit in the notation. Torhe distribution and the delay cost functions outlined abov
lighten notation, we will not make this dependence explicitre commonly used to model heterogeneous customers and
Now let v;(c2) denote the maximizer in programlIP4 for aongestion costs. (Refer [26[, [12], [13], [14]. [15])

given value ofco. Then the best responseis in fact given by~ we now begin with the following lemma that identifies the
the functionc, (+7(cz2)). Therefore, once the function (v1) necessary and sufficient condition on the equilibrivimwhen

is characterized, the best response now denotedfly2) eitherc; > ¢y OF ¢1 < co.

satisfiesBi (c2) = c1 (71 (c2)). We now have Lemma 1: v, € [0,~41] iff ¢; > ¢, while 4y € (yF, )] iff
%\ P o ~ . c1 < Ca.
(c1,¢2) = {(Cl’ c2) s Bilez) = 1, By(en) = CQ} Proof: See Appendix for proof. n
where Bi(c;) = e;(vi(c;i)) and as stated earlie; (c; ) Refer Figurd B anfll4 for an illustration of the lemma.
is the maximizer in prografiP4 for= 1,2. It is therefore _ NEXt, we express the threshal of Th%)r_enﬂ as a func-
clear that(c}, ¢5) can be obtained once we have characterizd@" of 1. Recall from the theorem that ™ is characterized

c1(71). We shall analyze the progrdfdlin detail in Section PY A1 whenci # c;. We let 5, (gvl) to denote the value of
land explicitly characterize the functions(,) for j = 1,2 the threshold3; (characterizings""') for a givenv; such that

to be able to obtairfc?, c3). 71L7é ~Tt. V;/e have the following lemma.
emma 2:

IV. MONOPOLY MARKET _[F (A—Aw) for 0 < 1 < 7+,

In this section, we will analyze the monopoly progrm_ Arm) = F (%) for v+ <71 < A\
To be able to solve prograf?2, we need to characterize
c1(71) for a fixed value ofc,. This procedure is outlined where F~! represents the quantile function or the inverse
below. From Eq.[(8) of Theorer] 1, we know that wheffunction of the distributions

(6)

51 € (a,b), (and hencey; € (0, \)) we have Proof: See Appendix for proof. [ |
Note that3 (71 ) is not defined in Lemmia 2 when = ~+.
cr =2 = f1 (D2(%2) = Di(m)) - This is because the Wardrop kerdél” with 4, = v is not
We will express the right hand side of the above equation HBique and need not be characterized by a single threshold.
a function ofyy, i.e., We shall however assume from now on that whgn= ~*
(and hencec; = ¢), the corresponding kerngk™ is also
91(n) := Br1(n) (D2(A = m) = Di(m)) (5)  characterized by a single threshgld Hence fore; = ¢y, we
wherep, (1) represents the threshald for a kernelK ™V that have
satisfies Theoreifn 1 and correspon(_js to an e_quilibrium arriva W [ for B e (Bi,b],
rate ofy,. Note thatg, (y,) characterizes the difference, — K™ (5,1) 5, for B € [, ] )

¢2) as a function ofy;. For a fixede, and for ay; satisfying
0 < < 7'c2) < A (the domain ofy; in program(PR) we g 3 result we defined (1) = F! M) and the
see thate (1) = c2 4+ ¢1(71). We characterize; (v1) in the ’ A

following manner. We first characterizg (y;) using Lemmas
@ and[2. Then in LemmBl 3, we characterizéy;). For a {F1 (%) for 0 < ~1 <+,

modified 31 (y1) is now as follows.

(8)

fixed o, we then obtain/ () in Lemmd that determines the Bi(n) =

X . . -1 (7 +
domain ofc(y1) . To prove this lemma we need to characterize F7 (%) fory™ <m <A
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B1(V1) for an exponential distribution
o with T =20 and a linear delay function DJ.(D]
with Hy =3.3, M, = 4.

Linear delay function Dj(ljlwith My =, = 4.
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Fig. 5. lllustrating 81 (1) when the servers are not identical. Fig. 6. lllustrating 1 (1) for the case of identical servers.

Refer Fig.[® for a numerical evaluation of E] (8) for the 100
case whenF'(-) is an exponential distribution withr = 20. g,(y,) for the exponential distribution
The delay functions aré@;(v;) = 1 wherep; = 3.3 and — with T =20 and a linear delay function

. Hj 50t withp, =3.3and p, = 4. E

1o = 4. Fig.[d@ corresponds to the case when the two servers ! 2
are identical, i.e.py = o = 4.

Remark 1. Recall our assumption that(-) is absolutely > ol
continuous and strictly increasing in its domain. Further, &

the support is[a,b] and henceF'(-) is a bijective function
whose inverse exists. In faét—!(-) is continuous and strictly
increasing in its domain. Sinc€~!(-) is continuous in its
arguments,3; (v1) is continuous wherd < v; < ~* and
vt < 71 < A However aty; = 4%, 81(y1) is in general -100 ‘ ‘
not continuous (Refer Fidl] 5). For the case when the servers 0 1 2 3
are identical, i.e.D1(v) = Da(vy) = D(v), we see from the Y1
definition of 4+ thaty* = 3. For this case, it is easy to see
that 5, (71) is continuous aty; = 7+a (but not differentiable). Fig. 7. lllustratingg: (v1) when the servers are not identical.
See Fig[b.
Having obtained3; (1), we shall now analyze; (y;) that
was defined in Eq.L{5)g:(y1) will be used later to obtain an exponential distribution with = 20 and when the servers
c1(71). We have the following lemma. have a linear delay witl; = 3.3 and i, = 4.
Lemma3: For 0 < 71 < A, gi(y1) is continuous and  To determinec; (v;), we also need to identify the domain
monotonic decreasing in,. Further,g,(y") = 0. over which it can be defined. As argued earlier, this domain
Proof: See Appendix for proof. B s determined byy!(cy) which is characterized in Lemma
See FiglY for a numerical evaluation@f(y,) whenF'(-) is [B. Before stating Lemmé]5, we shall first characterize the

_50,




uniqueness of3;, and hence the kernédt"', whenc, # cs.

5
While Theoreni 1L, guarantees existence gf; acharacterizing
kernel K", it does not guarantee the uniquenessspfand | = »~ =
hence the uniqueness of the kerdél”. This result will be R I
used in the proof of Lemmid 5. ~, £,
Lemma 4: For a givenA := (¢; — ¢2), the thresholds,; i’.- 4 :°° o
characterizing the kernét" in Theoren{l is as follows.
o} —RT for F(() ~ uniform [2,6]
. b if A > g1 (O) or A < g1 ()\), 9 3'5;:;' o R, for F(JJ~ exponential with mean 4
ﬂl - ﬁl(ﬁ/) if 91(/\) <A< 91(0) ( ) " - - -R_ for F(J)~gamma with k = 6 = 2
3 ‘ ‘ ‘ ‘ ‘ ‘
where4 satisfiesA = g1(%). For a fixedA, the equilibrium 0 02 04 06 v, 08 ! 1214

~1 and the corresponding; is unique and this implies the

uniqueness ok , , .
Fig. 8. Rr as a function ofy; whenD;(v;) = =2

Proof: See Appendix for proof. ] ny
We now characterize!(cs) in the following lemma.
Lemma 5:
c1(A) < ca+g1(X) respectively. As convention, we henceforth
1 A for co > —gl()\), .
Yer) = (10) definec;(0) = c2 + ¢1(0) andci(X) = c2 + g1 (). Further
Vi91(7) =~ fore; <—gi(A) note that the domain for;(-) is 0 < 1 < v'(c2) and for

Y(ea) < 71 < A, c1(m) is undefined. The function; (v;)

In words, whene, < —gi(\) we have v'(cy) =
: 91N 7 (c2) for 0 < v < v%(e2) < A can now be expressed as follows.

{7:91(7) = —c2} and for anye; > 0, the equilibrium~; ¢
(71 (c2), A]. However wheney > —g1()), we havey!(cy) = A

in which case for suitable choices of, vy, € [0, \]. ca+gi(y1) for0 <y <~l(e) <,
Proof: See Appendix for proof. [ ] () = 2+ g1(0) for v =0, (11)
The above lemma also implies that¢if > —g; (), then for
Vi imph ef > —g1(N), o+ g1(A for v, = v1(ca) = A,

anyc; € (0,ca 4+ g1()) the equilibrium~, satisfiesy; = .
On the other hand, if the parameters of the system are suciNow recall the revenue maximization probl&®l Define
thatcy + g1(\) < 0, then for any set of admission prices +; as the optimizer for this program with the revenue maximiz-
at Server 1, we have; < v!(c2). ing admission price given by (77). SinceRr(c1(y1),11) =

Remark 2: From Lemmdb, whery < —g1()\), we have ¢\ + (c1(71) — c2)y1, i must be such that; (v}) > ca.
Y(c2) = v wheregi(y) = —co. From LemmaB, we know From Eq. [T1), this implies thag; (v;) > 0. From LemmdB
that g1(y) < 0 for v > 4*. Hence whenc, > 0, we have we haveg,(y;) > 0 for v, € (0,4) and this implies that
vt (ca) > ~vF with strict equality whene, = 0. 7§ € (0,7T). The termea ) in Rr(ci(y1),7) is a constant

Finally, we have the following theorem to expressas a and hence we have the following equivalent program for the
function of v1, denoted bye; (711). revenue maximization problem.

Theorem 2: Cl(’}/l) = Cco + 91(71) for 0 < v < ’}/1(02) <
\. For~; = 0, ¢;(0) must be at least equal & + g1(0),
i.e.,c1(0) > ca + ¢g1(0). Similarly wheny!(co) = A, we have
c1(A) <2+ g1(A).

Proof: First consider a fixedy, satisfying 1 € whereg;(v1) is given by Eq.[(b).

(0,71 (c2)) for a fixedes. (v (c2) was characterized in Lemma Note from Lemmd(3 thay,(-) is a continuous function

[Bl) The corresponding threshoff is determined by Eq[18) of its domain. Prograrm P4 involves maximizing a continuous

and hence we havg, € (a,b) for y1 € (0,7'(c2)). Recall function over a compact set and hence a maximizeexists.

that LemmdM4 relates the threshgld with A. Since; < b, The original monopoly programP1 has been significantly sim-

from Lemmal%,A must satisfyA = g1(v1). Therefore for plified to the equivalent programP4. Singg(v:) is strictly

a fixed ¢, the admission price; (1) resulting in the arrival decreasing (and hence quasi-convex),y1)y: is in fact a

rate of~; at Server 1 is given by product of two quasi-convex functions. (However product of

guasi-convex functions need not be quasi-convex function)
a(m)=c+gan) One can now use standard non-linear optimization techsique

For the casey; = 0, from Eq. [8), we have3; = b. From to obtainy;. To further understand Progrdm]|P4, we perform
Lemmal#, this implies that\ > ¢,(0). From the definition a numerical evaluation o§;(v1)y: under a combination of
of A, we havec; (0) > ¢y + g1(0). Similarly wheny; = )\, assumptions on the distribution functiods and the delay
from Eq. [8), we haves; = b. From Lemmd}4, this implies functionsD;(v;) that were outlined earlier.

A < ¢g1(A\) and hence; (A) < ca+¢g1(A). This completes the  Example 1: In this example we shall assume that the
proof. B Dj(vy) = Z—j for j = 1,2. We assume that,; = 3.3 and

In the above theoremy;;(0) and ¢;(\) are not uniquely e = 4. Further, the arrival rate. = 3 and we consider the
defined and can take values that satisf§0) > c2+¢:(0) and following three examples for the distributidn(-). (1) ' has a

max g1 (71)71
7 (P4)
subjectto 0 <y <~



the distributionF' and not just on its mean value.

45 ——
ET IZ: Eg:z:z’:‘:g“:}k*e*z « Finally, note thatk; depends on admission price through
. RI for F(Jl~ exponential with mean 4 the add|t|0r! factor oo \. For different valueslofzg, the
a JECTTITRAN, | correspondingy; does not change. However it is easy to
= $ see from Eq.[(11) that, (v, ) increases linearly ims.
35t 2 ] V. DuoPoLY
or
o In this section, we shall consider programl P4 for revenue
g maximization in the duopoly system. Much of the analysis
% 02 o024 o086 o8 1 12 14 in this section follows from that of the previous sectiont Le
\a vj.3 = 1,2 denote the optimization variable and represent
the admission prices at the respective servers as a function
Fig. 9. Ry as a function ofy whenD;(y;) = —— of the arriva_l rates. Towards this, we continue \(vith_ the use
Y of the notationc;(~y;) for j = 1,2. Note that while in the

monopoly case, the admission pricewas considered fixed,

. L . in the duopoly of this section, it is the strategy for the seto
unlfo_rm qllst_nbu.tlon V\."th support of2, 6. (2) F' has an expo- server and hence will not be a constant. The revenue function
ngnt_lal Q|strlbgt|on with meam = 4 and (3)F' has a Gamma for Server; is given by
distribution with the scalé: and shape parameter® and?2
respectively. Note thaB with these three distributions have R;i(ci(v5):v5) = ¢i(v);
g;e ;i?;ct?;ﬁag%v\llveinp:%ﬂ(g E;rl])e’rzl)we ?siutnilhéhl where c;(y;) represents the admission price at Seryer
When F' has the uniform distributiony; = 0.62. The optimal resu!tmg inan eqwhbngm arnval_rate of;. As noted n t_he
revenue rateRy(v;) = 4.306 while the admission price P'cV'0US sectiong;(7;) is & function ofc; -, the admission
c1(vF) maximizing Ry is 3.106. The corresponding values fo rce Et the othe;]r SEIver. FO; a f|>.<e; strategyat Serveri),
the exponential distribution arg; = 0.44, Ry () = 4.712 rreoerfinga ES:L) the revenue functioy (ci(m),m) can be
and ¢ () = 4.89 while the values for gamma distribution

areyf = 051, RT(’}/T) = 4.532 andcl(ﬁ) =4, Rl(cl('}/l)a'}/l) = (91(’71) + 02)'}/1, (12)
Example 2: In this example, we assume that;(v;) = . . . .
#]l : where again, = 3.3 and s = 4. Note that < s It can be argued as in the previous section that for a fixed

for j = 1,2. The choice ofF'(-) is as in the previous example. Ra(ca(72),72) = (g2(72) + 1) 12 (13)

A plot of Ry(c1(71),71) as a function ofy; is provided in
Fig.[d. WhenF has the uniform distributiony; = 0.48. The
optimal revenue rat&,(v;) = 3.83 while the admission price 92(72) = Bi1(A = 72) (D1(A — 72) — Da(v2)) (14)

c1(yf) maximizing Ry is 2.72. The corresponding values for _
the exponential distribution are? = 0.33, Rp(y7) = 4.21 Where from Eq.[B) (A — 72) is as follows

where

and ¢ (7)) = 4.67 while the values for gamma distribution F1 (%) for A — 4+ < e < A\,
arey; = 0.38, Rp(7f) = 4.04 and ¢ (77) = 3.74. Bi(A—72) = FJ(kW) for 0 D)
We conclude the analysis of the revenue maximization A S SATT

problem wit.h the following observations made from the twq g easy to see thajs(12) is also continuous and strictly
examples given above. decreasing iny,. Further,go(72) = 0 wheny, = A—~*. The
o Firstly, we see that for the given examples &t revenue maximization problem for the duopoly is re-stated a
Rr(c1(71),7) is a unimodal function imy;. For the follows.
three distribution functions, it can be shown that?(-)

is differentiable in its arguments. For such distribution H;?X Rj(v;) = (95(v;) +¢5-) v
functions with differentiableF’~*(-), this implies that ; ;
N S bjectto 0 <, <7(c;-) < A (P7)
91(71) and henceRr(c1(y1),71) is differentiable iny, S%J jectto 0 <5 <97(¢j-) <
given cj-.

when0 < v; < ~T. From Rolle’s Theorem (Theorem

10.2.7 [27]), this implies that there existsya € (0,77) For a givenc;-, recall thaty? (c;- ) denotes the maximizer

such that%®z = 0. A ~; satisfying this equation is of programP% and hence of the above program. Also recall

the revenue maximizing arrival rate to server 1. Thghat B;(c, ) denotes the best response admission price at

admission price corresponding to thig can now be gerver; in response to the admission pricg at the other

obtained using Eq[(11). facility. Then the Nash equilibrium set of admission prices
« For each of the three distributions, note that we haygnoted by(ct, ¢;), is characterized as follows.

E [3] = 4. However, the Revenue rafeé; as a function

of ~1 is distinct in all the three cases. This implies that R R

the revenue rat&; depends on the higher moments of (¢1,¢3) = {(01702) : Bi(c2) = c1, Ba(c1) = 02} . (16)



Wherij(cjf) =g;(7i(¢;-)) +¢;- for j =1,2. where the partial derivatives on the r.h.s. are wyt. Now
We begin the analysis for the duopoly problem by firdtom the definition ofy™ and from Eq.[(B) we have

identifying that~;(c;-) lies in the interior of the domain. ; ot
g1(71) -1 ()‘ B > ’ + s
- =F (D2(/\—’Y ) — Dily ))
y=y"

We have the following lemma.

* 1 Y1
Lemma 6: 77 (c;-) ¢ {0,97(c;-)} - - .
Proof: See Appendix for proof. m Similarly, from the definition ofg2(-) we have
For a givenc;- since~!(c;-) lies in the interior of the d
i i 92000 _ g3~ 32) (Du(A 1) — Do)
domam,y;‘(cjf) satisfies T =0 and dv; < V2
. T = 7 ly=n; + Bi(A = 2) (DY(A = 72) = Dy(72))
Define S.(c.. — ARy 0, d’R; <o\, Then where the partial derivatives on the r.h.s are now wa.tNote
H(c;-) is Ojb(t;in)ed as a s&tti;gjto the ?gﬁov;in that sincey, = A — 92, we haveZ; (171) - _aDﬁl(:l)' Further
VG- g note that since the servers are identical, @(3 = D(-) for
) L N
(oo ) = aremax R, j = 1,2 from the definition ofy™ we havey* = 5. From
() We%j(cj,) 1(33) (P8) Eg. (I8) and the fact that — v© = v, we have
From the above discussion, it should be clear that olg2(72) _ 1 ()\—7+> (Dy(r ") = Dy(v"))
taining the closed form expression f@f}, ¢5) satisfying the V2 |yt 2 ! '

simultaneous equations df {16) is, in general, not easye Nolt
that our analysis till now makes minimal assumptions on th
distribution functionF' or on the delay functionD;(-). For " ; .
certain choices of these functions, it may be difficult toadit necessary C(_)nd't'or: for f symmetric Na_sh eqwhbnqr_n. _

a closed form expression foy: (c;- ). The objective function Theorem 3: Let ¢f = ¢} be a symmetric Ngsh equilibrium
R; also need not be a concave function. In that case, a br{Rs the duopoly price competition. Thefj = c; = . _
force search among all the local maxima points needs to be Proof: Recall that the Nash equilibrium is characterized
carried out to choose the right'(c;-). Instead of satisfying @S

ourselvgs with some numerical examples,. in .the following (e, ) = {(01702) - Bi(es) = c1, Ba(cr) = 02}.
subsection we shall analyze the Nash equilibrium under the

restriction that the two servers are identical i.e., theraye \yhere E,-(cjf) = g;(7}(¢;-)) + ¢;- for j = 1,2. This
delay at any queue is the same for the same arrival rate. Ungigplies thatc’; =g (7}‘(0}') + ¢*_ and sincec! = ¢35, we

this setting, our interest is to characterize the symmétesh payve gi(vi () = 0 for j = i 9. Now from LemmalB
INTIT e

his proves thaty; = as. [ |
e now have the following theorem, that characterizes the

equilibrium such thatf = ¢;. and symmeiry of the servers, this implies thatc;) = v+
and v;(ct) = X —~T. Since the servers are identical, we
o . o haveyt = % and hencey;(cj) = y*. Sincev;(c;-) is
A. Characterizing a symmetric Nash equilibrium also a solution to prografi P8; (c;-) € S(c;-). From the
In this section we shall characterize the necessary comditi definition of S(c;- ), this implies tha@ = 0. Further,
for the existence of a symmetric Nash equilibrium, i(e;, c3) ' N Po—

wherect = ¢} := ¢*. A natural scenario where such an equithis implies from the definition of2;(v;) that
librium is possible is when the two servers have identicidyle dR. da: (v

. ) . ) . J o +ag; (7.7)
functions. In this section, we restrict to this case and mgsu o = 7 T
that D;(-) = D(-) for j = 1,2. As the service systems are P =t !
identical in their delay characteristics, it is desiraloédentify = 0.

conditions for existence of a symmetric Nash equilibriune Wp/e haveg,(y*) = 0 and hence from the definition of; for
begin with the following definition. Define;, o, as follows. ; — 1 2 we havec* = aj. From Lemmdl’, we have; = as

+9;(v") +¢j-(18)

Y=yt

Ldgi(m) and hence’} = ¢5 = ay. This completes the proof. |
ar = =7 R Note that the above theorem only provides a necessary
dga(12) ey condition for the Nash equilibrium pair and we shall soon
oy = —7+M see that in fact this condition is not sufficient. We shall
72 =yt now provide a few examples illustrating the occurrence of

(17)  symmetric Nash equilibria.

Based on these definitions, we have the following lemma. _ Example 3: In this example, we assume tha;(v;) =
Lemma 7: ay = as. Z—i for j = 1,2. Let uy = puo = 4 while the arrival rate is
Proof: From the definition o, (-) in Eq. [8) we have A = 3. We suppose that the distributiafi(-) has a uniform
distribution with support ofa, b]. We plot Ry (1) andeq (1)
dgi () = Bl(m) (D2h —71) — Di(m1)) as a function ofy; in Fig[Id. The aim of this example is

M to check whether(c}, c3) = (a1,1) is a symmetric Nash
+  Bi(n) (DA =) — Di(m)) equilibrium. For the set of parameters of this example weshav
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8r V1. ESTIMATING THE DISTRIBUTION F

amn Rl(yl) forc2=cx1

Recall thatF’ denotes the distribution function for the delay
sensitivity of the arriving customers. The knowledgefofis
necessary to determine the equilibrium kerfié!’ introduced
--------- . in TheorentL. Further, the kern&l"™ must be known for the

_C1(y1) for C, =0y

* (v,(c,)c,(, () = v'ay)

‘ revenue maximization problems seen in this paper. However i
most practical situations, the distribution functiGhmay not
2r Wo=w,=4A=3 be known and due to the unobservable nature of the queues
IERTT it may not be possible to even elicit such information from
0," the arriving systems. In such situations the only altemeati

0 0.5 1 %15 2 25 3 may be to estimate this distribution function. One possible
method to do so is to vary the admission prices at the servers
. N N and then measure the change in the arrival rate of customers
g’gé}lo' P andex(yr) when D; (1) = 7 and () is Uniform over "y different server and then use the Wardrop equilibrium
conditions to estimate”. In this section, we shall describe
a simple procedure to estimate the underlying continuous
distribution functionF. Our proposed method is well suited

. b= = A2 ---Ry(y) forc, = q, for a monopoly system yvhgn the_ single se.rvice provider has
. D) =V —c,(y)forc,=a, access to both the admission prices. In this section, we also
ol ;(Ea;ixponemialwith * (v,(c,).c,(v,(c,)) consider the case whefi is a discrete random variable. In

+ (va) this case, the customers are divided into finite number of

classes differing in their values @. The aim is to identify

the value of3 for the different classes along with the Poisson
arrival rates)\; for the classes. Refer [113], [1L6], [20] for some
examples of service systems where such discrete customer
classes are considered.

Throughout this section, we shall make the following as-
sumptions. We shall assume that the two servers are modeled
asM /M /1 queues with service rates andus and admission
pricesc; andc, respectively. With this assumption, we have

,
25

Fig. 11. R; andci(y1) whenDj(vy;) = and F(-) is exponential

1
Hj =75

with = — 4 Dj(v;) = Miv, It goes without saying that our analysis
will also hold for any delay cosD;(-) that is monotonic and
strictly increasing in its arguments. We assume that onee th
admission prices; andcs at the servers are announced and
v+ = 1.5 and since that the Wardrop equilibrium is achieved, each seryaevill

Ldgi(m) accurately determine or measure the equilibrium arrived ra
I v ~; and the mean delay cof?;(v;) for j = 1,2. Hence the
measured values; and D;(v;) and the the corresponding
we havea; = 3. We now setc; = a; = 3. Clearly, for guantities at the Wardrop equilibrium will be assumed totee t

et 1=+

a symmetric Nash equilibriuntei, ¢3) = (a1, 1), 7i(c2) = same. We also assume that the total arrival rate of customers
vt = 1.5 must hold. It is easy to see from Fig]10 that(v1) tothe s i iori

v hno : _ ystem denoted byis known a priori and that; > c»,

is indeed maximized when; = ~* implying thatv;(c2) = j.e., the admission price at the first server is higher than th

~v*. Further it can be verified thaci (77 (c2)))es. Clearly, second. Note that since the distributidfy(-) is unknown,
(c1,¢3) = (a1, 1) is @ symmetric Nash equilibrium for thisthe functions3, (-), g1 (-), c1(-) also cannot be determined and
example. used for our procedure.

Example 4: With the help of this example, we will illustrate  We begin by estimating the distributior’s that belongs
that the necessary conditions stated in the previous theort® a parameterized family, say for example the exponential
need not be sufficient. We shall once again assume tlistribution. Let the parameter for the exponential disttion
Dj(v;) = :—; where 1 = pe = 4. As for the choice of be denoted byn. Whenc; and c; at the two servers are
F(-), we consider an exponential distribution with= 4. A  fixed, the equilibriumy; and . at the servers is measured
plot of Ry(y1) and¢;(v1) as a function ofy; is provided immediately. We choosea, c; such thaty; > 0 for j = 1,2.
in Fig. 1. For this example we start by setting = ;. From this, the mean delay cof;(v;) for j = 1,2 is also
However we observe that the best respomsg:) #~y+ and calculated. Since all the quantities (excéh) in Eq. (3) of
hencecy (v:(cz)) # ca. Both these points/: (cz), c1(vi(c2) Theorem[(l) are known, the threshgigdcan be determined as
and (v+,a1) are represented in Fig111. Clearlyi, 1) # A1 = 5,555=p5- Now increase:; to ci whereci = ¢1+46
(cf,c3) and therefore the sufficiency conditions differ fronfor § > 0. This decreases the equilibrium to say~?. Let
the necessary ones. ¢ denote the threshold when the arrival rate to Server 1
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is 7¢. Again, using the measurements of the arrival rates 05

and the delay functiongs! can be determined from Eq. @)
@). Sincey{ < y1 < T, from Lemmal®2, we know that 04— estimate of f(B) “_r'd/
B1(v) > Bi(y1). This implies that3] > B;. Clearly, the
5
ratio % is the probability of an arriving customer with 0.3
B € [B1,3]] and hence e
0.2
B8] _ A8
/ ae~®dy = AN (29) 01
. A
The only unknown quantity is the exponential parameter 00"' : 5 .

N

which can now be obtained from the above equation.

Remark 3: Since the exponential distribution has a single
parameter, the parameter could be obtained using only E@. 12. Comparing the estimate ¢f-) with the true density function.
(19). For a parameterized distribution withparameters, we
need k£ simultaneous equations in terms of the underlying
parameters. These can be obtained by following the proeedurUsing the earlier notation, we observe from the table that
above fork different admission pricgc}} at Server 1. asc; increases to, say; + d, v1 decreases tg) while the
We will now describe a numerical method to obtain #hresholds; increases (t3}). As earlier, we have
piecewise constant approximation for the density functfon 35 s
that is not necessarily from a parameterized family of digtr (z)dx = n-—m
tion functions. As an example, consider a random varigble B1 A
supported on the range, 4. Suppose the distribution functionwhere the density functiorf(x) is to be estimated. Assume
is 9 for all z € (81,/?) that f(z) = z, where z is a constant.
P(B<z)=F(z) = T By assuming this, we are approximating the density function
16 f(z) for x € (B1, B¢) by a horizontal line of magnitude and
The corresponding density function is denotedfty) is #/8  thus approximating (z) by a piecewise constant function. As

for z € [0,4]. For this example assume that there are twg—; 0, the approximation should converge to the true density
M/M/1 servers with service rateg; = 5 and u2 = 5, function. We now have

admission prices initially set te; = ¢ = 5 and the total =S
arrival rate A\ = 5. As earlier, we assume that once the z= )\1571 (20)
admission prices at the servers are announced, the Wardrop (BY = Br)-

equilibrium is reached instantaneously and each servars dadie value ofz for a fixed¢; andc; 4+ 6 can be viewed as an
accurately determine the aggregate arrival rates and tlaa mestimate for the density functiof{z) and obviously: — f(z)
delay per customer. asé — 0. These values of for different values ot are given

Increasec; by § > 0 and for the admission price vectorin Tablell.
(c1+9, c2), measure the equilibrium arrival rates and the mean
delay in the queues and calculate the corresponding thcesho
31 using Eq. [(B). Repeat this for a finite number of times, > 5.2 0.37
each time increasing; from its previous value by. This 52| 54 0.39

experiment is denoted in Tadlk I. 54| 5.6 0.41
56| 5.8 0.42

581 6.0 0.44

cl c1+0 |z

cr |2 m b1

505 [ 198] 264 R B

525 | 1.69]| 3.04 64166 0.46

54 |5 | 144 3.20 66168 047

56 |5 | 1.23] 3.33

58] 5 1.05) 3.44 THE ESTIMATESz CAN BEK;?IA_E\JIEID FROMEQ. (20) FROM THE

6.0| 5 0.89 | 3.53 SUCCESSIVE CHANGES IN THE ADMISSION PRICES AND THE

6.2 5 0.75| 3.60 CORRESPONDING MEASUREMENTS OF THE ARRIVAL RATES

6.4|5 | 0.63]| 3.67

6.6|5 | 052] 3.37

6.8| 5 | 0.43] 3.78 A plot comparing the true density function and the estimate
TABLE | is given in Fig.[IR. The plot shows that the estimate of

THE TABLE INDICATES THE PRICE VECTOR(c1, ¢2), THE MEASURED the density function is reasonably accurate and for better
VALUE OF 71 AND THE THRESHOLD/ OBTAINED FROMEQ. (3). estimation, one naturally required more of such measuremen
points.



=0 a>cf @2@=0  wherem > k. Further sincen > k, we have

ci(large) ¢y =0 ¢
@ Q Q Q Q p Q B2 (D2(73") = D1(7")) < B (D2(73) — D1(77)) -

A el Ba B 3 and hence for all such thatt <1 < m, we have

% . Bu Ba(Da(ag) = Di(v) < e < By (D2(0h) - Divh).

i M

B‘M This means that for any, satisfyinge} < ¢} < ¢, 44 and~}
remain unchanged. Clearly in this case= +!. Fig.[13, part

(a) (b) () (c) represents the fact that for any > ci*, Class 2 customers
use both the servers at Wardrop equilibrium. Continue this
Fig. 13. Estimating the discrete distributidn process till all the)\;, 5; as well as the number of customer

classeslM is determined. It should be noted that the accuracy
of our method increases as— 0. A downside of a smalb is

There is however a limitation to this method. Note that whehat the procedure may take a very long time to discover the
¢1 = co, the corresponding value ¢f, = 2.84. Any increase SySteém parameters.
or decrease in either, or ¢ cannot result in &, such that
B1 < 2.84. This is because, for the underlying distribution we
have from Eq.[{(B) thaB; (yv") = 2.84 and for anyy € [0, \] VII. SUMMARY AND FUTURE WORK
with v # T, we havepsi(y) > Bi(y1). As a result, the

) . ! In this paper, we have considered the problem of revenue
density functionf(z) cannot be estimated far < 2.84.

maximization in parallel server systems. We specializen wit
the case of two servers and first assume the case when both
the servers belong to the same service provider. The admissi

A. Estimating Discrete Distribution price at one of the server is required to be fixed and the
service system can change the admission price at the other

is a discrete distribution with\/ point masses. Thus, thereSerVer to maximize its revenue. The Wardrop equilibriummvhe

are M customer classes and we will assume that for eaEHSIOMers are heterogeneous and strategic has already been
Classi, the associated waiting cost and the arrival rate characterized in our earlier paper. We use this charaat@iz

); are unknown. Furthefd, > s ... > . See [13] for the to simplify the revenue maximization program to make it

analysis of Wardrop equilibrium of such a model. We contin80r€ a@menable to analysis. The equivalent program is easy to

with the assumption that there are two servers each chargiﬂ _rpr_et_, enal_y_ze and prowd_es more insight into the = n’_bl
an admission price, and c,. We begin by settingss — 0 ile it is intuitive that for a fixed:, the revenue maximizing

and ¢, to an arbitrarily large value such thai = 0 while ¢i Should always be greater thap, the program enables to

~2 = A. This is represented in part (a) of FigJ13. It goegharacterize the revenue maximizingas a fuuction ofco.
without saying that the necessary assumption is that . In the second part of the paper, we consider the duopoly
Now start decreasing; in steps of sizej and stop at the Model where each server competes with the other one to
first instance wheny, increases to an arbitrarily small valugn@ximize its revenue. This is a standard game-theoretic
e. We use the notation] and+/ to denote the admission priceProblem and the aim is to identify the Nash equilibrium
and the arrival rate at Servérwhenc, is decreased times Set of prices. We see however that since the customers are
by 6, i.e., whenc] = ¢; — jé. y1 = ¢ implies that the most heterogeneous, the first order necessary conditions are not
sensitive delay clas$; must now be using Server 1 along®@sy 0 solve. Instead, we characterize this Nash equilibri
with Server 2. Since the delay function at each queue can 96 @ simplified case when the two servers are identical in
measureds; can be easily determined from the correspondirffeir delay characteristics. In this case we are interestéue

We shall now consider the case where the distributfon

Wardrop condition symrr_i_etric Nas_h equilibrium prioes. We provide_t_he_ne_cqssar
, , , condition for this case and identify the Nash equilibriurices
a1+ AiDi(v) = Br1D2(3)- for different distributionsF” and delay cost function®(-).

We will now determine\; corresponding to thig;. Continue In both these problems problems and also in the social

decreasinge;. The proportion of Classl customers using Velfare maximization problem of our previous paper, an
Serverl keeps increasing till all Class customers use only Important assumption is that the distribution functiéhis
Server 1. When this happens, the corresponding Wardrdﬁ‘own- We relax this assumption in Sect[od VI and provide a

equilibrium condition for somé: > j satisfies procedure to estir_na_te this distribution. The proposed ateth
. i i is of course preliminary and assumes that one is allowed
i < B (D2(v5) — D1(77)) to change admission price any number of time to measure

and this is represented by part (b) in Figl 13. For a Clag%e change in the equilibrium arrival rate. Further, we have

2 customer to start using Server 1, the Wardrop equilibriuﬁ’?Sumed _th‘fﬂ there is no cost to rnaking such m_easur_e_ments. A
condition is more realistic method incorporating these practical Etdns

may make the problem more relevant and this is part of future
' = B2 (D2(73") = D1(71")) work.



13

APPENDIX Now f1(y1) defined as the value of threshold when the

Lemmall equilibrium arrival rate to Server 1 ig; can be represented
as follows.
Proof: We first prove thaty; € [0,7"] impliesc; > co. E fb AF(B) =71 for0 <~y <At
o N B - "B - 21
Recall the definition ofy* that 1(71) B: [PAAF(B) = for v+ < < (¢

+_ . _
7" = {1 Diln) = Do)} Now as seen earlief;(-) is absolutely continuous and strictly
Since D;(vy;) is monotonic and increasing ip; for j = 1,2 increasing in its domain. Further, the support[isb] and
and thaty, = A\ — v, we haveD;(vy;) < Da(v2) for v, € henceF(-) is a bijective function whose inverse exists. In fact
[0,7T]. Now lety; = 0. Since no customer uses Server 1 att—1(-) is continuous and strictly increasing in its domain. The

equilibrium, this implies that; + 3D1(0) > c2 + D2 (\) for ~ statement of the lemma now follows. [
all 5. Since D1(0) < D»(\) (assumption); > c; must be [ emma[3
true.

— i — i _ : :
s \I{lvcnetr;gé : ew » We anvm?gvcthitc; cz._SuEpiorﬁe"teh;s Proof: Recall our assumption thdd;(;) is continuous
 WETL = L7 .y =77 IMP and monotone increasing in; wherej = 1,2. Sincey, =

D1(71) = Da(72). As ¢1 # co, customers have an |ncent|ve)\_%7 (Da(A— ") — Di(71)) is monotone decreasing in

to move from the server Wl_th_a h|gher admlsstcr)r? price to tr}ce)r 0 < 7, < \ Recall Eq.[(®) that determings (71 ). For
one with a lower price. This implies that = ~* is not an m : . : .
I o . 0 <~ <+, Bi(y) is continuous and strictly decreasing.
equilibrium and this is a contradiction. L Y . i
. : The continuity follows from that off"—'(-). Since F—!(.) is
Now considery; € (0,7") whereD;(v1) < Da(vy2). From ) _ T Ay
Theoren{lLy, € (0,7") implies 31 € (a,b) and hence:; + strictly increasing in its argumentd;~" ( = ) = B1(71)
B1D1(71) = co+B1D2(72). SinceD; (1) < Da(v2) we have is decreasing iny;. Clearly, ¢1(y1) is monotone decreasing
c1 > co. when~; is such that) <, <™.
We now prove that ife; > c3, theny; € [0,7F]. We first  when+, is such thaty™ < 4, < A, from the definition of
show that wherr; = c,, we havey; = y*. Suppose that y+ we have(Ds(\ — 1) — Di(71)) < 0. In this range of
whenec; = ¢z, 71 # y*. From the definition oh™ we have it can be seen from Eq[](8) that (1) is continuous and

Di(y1) # D2(2) and hence customers have an incentive {acreasing iny,. This again implies thag; (11) is continuous
move from the server with higher expected delay to the oecreasing when, satisfiesy™ < v < .

with lower expected delay. This implies that when= ¢,
~v1 # vt is not an equilibrium.

Now let ¢; > co. From Theoreni]l we have eith@i = a
or f1 = bor B € (a,b). The caseB; = a corresponds to
the case when all customers choose Server 2 at equilibriurﬂemmaIZI
and this cannot happen! This is because while> ¢, we

g1(yT) = 0 follows from the definition ofy* where
D;(vT) = Day(A—~T). The continuity aty* is obvious from
the fact thatg, (v*) = 0 andlim., .+ g1(71) =0. [

have also assumeld; (\) > D, (0). K" with 8, = a will be Proof: SupposeA > ¢1(0). From the definition ofA and
possible only if from Eq. [®), this implies that

C1 —C2 S /B(DQ(O) — Dl()\)) C1 — Co Z b (DQ()\) - Dl(O))
for all 5 € [a,b]. Now this is not possible as the left hand > B(D2(A) — D1(0))

side_ is positive while the right hand side is negative. It ig), g 3 € [a,b]. From the Wardrop equilibrium condition,
straightforward to sef that whe®y = b, we havey; = 0 pig implies thatk™ (3, ) = &, for 3 € [a,b]. This implies
and hencey, € [0,7"]. When 8, € (a,b) we haveci +  that~, — 0 and from Eq.[2) we havé; = b. Similarly when,
B1D1(m1) = ¢2 + Fi1Da(72). Again, sincec, > ¢z, we have A < ¢,()\) < 0 we have

D1(v) < Da(v2) and this requires; € (0,7™). The proof -

for 71 € (yT, ] follows along similar lines and will not be ca—cz < b(D2(0) — Di(N))
provided. This completes the proof. [ | < B(D2(0) — D1(N))
Lemma[2

where § € [a,b]. Again, from the Wardrop equilibrium

Proof: From LemmdlLy € [0,~") implies thate, > ¢,  condition, this implies that<™ (8, ) = 4, for 8 € [a,b].
while y; € (y*, \] implies ¢; < co. Now from Theorenill, Hencey: = A and from Eq.[(R), we havé; = b.

whene; > ¢o, we have Now supposey; () < A < ¢1(0) where we know that
b g1(0) > 0 and g;(\) < 0. From LemmdB, we know that
1= A 1dF(B) = A1 — F(B1)). g1(71) is monotonically decreasing in;. Therefore there

B exists a uniquey with 0 < v < X such thatA = g;(v).

Similarly, whenc; < ¢2 we have This proves the uniqueness of. To see hows; = 51(v)

6 note thatA = ¢, () implies that
m= A/0 1AE(B) = A(E(5)). ¢1 — 2= f1(7) (Da(A =) — Da(2)).
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Now if v < ~* we haveDs (A —~) > D;1(v). In this case,

c1—c2 < B(D2(A—7) — Di(v))

for 8 € [a,1(7)]. This means tha&k" (3,-) = 4§, for all
B € la, B1(7)]. Similarly, we have

c1—c2 > B(D2(A—7) — Di(v)) (22)

and KW (8,-) = 6, when € [31(v),b]. Similar arguments
hold wheny > ~* and hence?; = 3;1(y) wheng; (0) < A <
g1(A).

From Theoreni]1,K" is characterized by3; and for a
fixed A, 3, is unique. This implies uniqueness A" . It is
important to mention thak™™ is unique whem\ = 0 because
of the assumptions made to ensute(~;) well defined at
n=7" u

Lemmald

(2]

(3]
(4]

(5]
(6]
(7]
(8]
El

[20]
[11]

Proof: Supposecs satisfiesca < —g1(A). Assume that
¢ = 0 so that we haveA > g¢;(\). From Lemma# this
implies that the equilibriumy;, satisfiesg;(v1) = A = —eo.
Let us label thisy; as4. Now increase:; from ¢; = 0 by a
smalle > 0 such that there existg that satisfied\ = ¢—cy =
91(71). Now from the monotonicity ofj; (-) it is clear that the
equilibrium~; is decreasing ad increases. This implies that
a higher A caused by increasing; will only lead to a~v; [16]
satisfyingy; < 4. Clearly, for any choice of; > 0, we have [17]
v1 ¢ [%, A] and hence for this case'(c;) = 4.

Now suppose thatc, < g1(\). Whene, = 0, this implies
A < g1(A\) and from Lemmdl4 this implie§; = b with the
correspondingy; satisfyingy, = A. As we increase’;, the
equilibrium v, decreases and henege satisfiesy; € [0, Al.
The compact representation now follows. [ |

Lemmalg

[12]

[13]

[14]

(18]
[19]
[20]

Proof: To reduce the notations, we represefjt(c;-) [21]

by ~; in the proof of the lemma. We shall prove thatzz]
vi ¢ {0,~'(c2)} and the proof fory; ¢ {0,7%(c1)} is along
similar lines. Suppose; € {0, A} . Then from the requirement
that~v; = A —~3, we have either (1) = 0 and~; = X or
(2) v; = X and~; = 0. First consider the case wherf =0
and~; = A. This implies thatR, (¢;(0),0) = 0 and hence the
revenue made by Server 1 at equilibrium is zero. Furtheesings)
this is an equilibrium, there is no incentive for the sener t
change the admission price and increase its revenue. We s
now show that this is not true. From Theor&in 2, we knoy7]
that for a givencs, the admission price at Servérmust be

at leastcs + ¢1(0) > 0. Now we know that setting; = ¢

will result in 47 = 4. Now due to the assumption that (1)
D;(0) < Dy(X) and (2)D2(0) < D1(X), there exists an > 0

such that setting; = co + ¢ will result in v, € (0,4T). The
revenue earned is non-zero and there is clearly an incetative
deviate from any value greater than+ g;(0). This implies
that~; = 0 and~; = X is not possible. The proof foy; = A
and~; = 0 is along the same lines. [ |

[23]

[24]

REFERENCES

[1] P. Naor, The regulation of queue size by levying tollspemetrica 37
(1969) 15-24.

15] D. Levhari, I.

N. Edelson, D. Hilderbrand, Individual and social opiation in a
multiserver queue with a general cost benefit structure n@oetrica
40 (1972) 515-528.

U. Yechiali, On optimal balking rules and toll chargesthe GI/M/1
queue, Operations Research 19 (1971) 349-370.

C. Larsen, Investigating sensitivity and the impact oformation on
pricing decisions in an M/M/b models, International Journal of
Production Economics (1998) 365-377.

H. Chen, M. Frank, State dependent pricing with a quelie,Transac-
tions 33 (10) (2001) 847-860.

N. Edelson, D. Hilderbrand, Congestion toll for Poissqureuing pro-
cesses, Econometrica 43 (1975) 81-92.

H. Mendelson, Pricing services: queueing effects, Camications of
the ACM 28 (5) (1985) 312-321.

H. Mendelson, S. Whang, Optimal incentive-compatibi@fity pricing
for the M/M/1 queue, Operations Research 38 (5) (1990) 888-8
R. M. Bradford, Incentive compatible pricing and rogirpolicies
for multi-server queues, European Journal of OperatioreseBrch 89
(1996) 226-236.

Y. Masuda, S. Whang, Dynamic pricing for network seeviequilibrium
and stability, Management Science 45 (1999) 857-869.

H. Chen, M. Frank, Monopoly pricing when customers qjelE
Transactions 36 (6) (2004) 569-581.

T. Bodas, A. Ganesh, D. Manjunath, Load balancing andimg games
with admission price, in: Proceedings of the IEEE Confeeerumn
Decision and Control, 2011.

T. Bodas, A. Ganesh, D. Manjunath, Tolls and welfaremjaation for
multiclass traffic in multiqueue systems, arXiv preprinKiar1409.7195.
I. Luski, On partial equilibrium in a queuing system kitwo servers,
The Review of Economic Studies 43 (1976) 519-525.

Luski, Duopoly pricing and waiting linesEuropean
Economic Review 11 (1978) 17-35.

M. Armony, M. Haviv, Price and delay competition betwe®vo service
providers, European Journal of Operation Research 1473J28®-50.
H. Chen, Y. Wan, Price competition of make-to-order 8friE Trans-
actions 35 (9) (2003) 817-832.

P. Dube, R. Jain, N-player Bertrand-Cournot games eues: Existence
of equilibrium, in: Proceedings of the 46th Annual Allert@onference
on Communication, Control, and Computing, 2008, 2008, 91-—498.
P. Dube, R. Jain, Diffserv pricing games in multi-claggeueing network
models, in: Proceedings of International Teletraffic Cesgr(ITC-22),
2010.

M. Mandjes, J. Timmer, A duopoly model with heterogengo
congestion-sensitive customers, European Journal of afipeal Re-
search 3 (2007) 445-467.

G. Allon, A. Federgruen, Service competition with gealequeueing
facilities, Operations Research 56 (2008) 827—-849.

G. Allon, A. Federgruen, Competition in service indies, Operations
Research 55 (2007) 37-55.

J. G. Wardrop, Some theoretical aspects of road traffsearch com-
munication networks, Proceedings of Industrial and Civigieering 1
(1952) 325-378.

U. Ayesta, J. Anselmi, A. Wierman, Competition yieldfi@ency in
load balancing games, in: Proceedings of the IFIP PerfocemaR011,
pp. 968-1001.

M. J. Osborne, An Introduction To Game Theory, Oxfordivénsity
Press, USA, 2003.

] T. Bodas, D. Manjunath, On load balancing equilibria nmultiqueue

systems with multiclass traffic, in: Proceedings of NETGGDQ011.
T. Tao, Analysis (Volume 1), Hindustan Book Agency, B0O



	I Introduction
	II Preliminaries
	III Problem Formulations
	IV Monopoly Market
	V Duopoly
	V-A Characterizing a symmetric Nash equilibrium

	VI Estimating the distribution F
	VI-A Estimating Discrete Distribution

	VII Summary and Future work
	References

