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Abstract—In this paper, we consider revenue maximization
problem for a two server system in the presence of heterogeneous
customers. We assume that the customers differ in their cost
for unit delay and this is modeled as a continuous random
variable with a distribution F. We also assume that each server
charges an admission price to each customer that decide to join
its queue. We first consider the monopoly problem where both
the servers belong to a single operator. The heterogeneity of
the customer makes the analysis of the problem difficult. The
difficulty lies in the inability to characterize the equilib rium
queue arrival rates as a function of the admission prices. We
provide an equivalent formulation with the queue arrival rates as
the optimization variable simplifying the analysis for revenue rate
maximization for the monopoly. We then consider the duopoly
problem where each server competes with the other server
to maximize its revenue rate. For the duopoly problem, the
interest is to obtain the set of admission prices satisfyingthe
Nash equilibrium conditions. While the problem is in general
difficult to analyze, we consider the special case when the two
servers are identical. For such a duopoly system, we obtain the
necessary condition for existence of symmetric Nash equilibrium
of the admission prices. The knowledge of the distributionF
characterizing the heterogeneity of the customers is necessary
to solve the monopoly and the duopoly problem. However, for
most practical scenarios, the functional form ofF may not be
known to the system operator and in such cases, the revenue
maximizing prices cannot be determined. In the last part of the
paper, we provide a simple method to estimate the distribution
F by suitably varying the admission prices. We illustrate the
method with some numerical examples.

I. I NTRODUCTION

In many service systems, the quality of service received
is characterized by the queueing delay that is experienced
by the customers in the system. Examples of such service
systems that can be modeled as queueing systems include road
and transport systems, health-care systems, computer systems,
call centers and communications systems. The customers that
receive service in such systems are usually sensitive to the
delay experienced in these system. Further, such customers
have non-identical preferences to the delay experienced. It is
often beneficial for the service system to account for these
heterogeneous preferences in any optimization concerningthe
use of system resources. Many service systems have emerged
that exploit the heterogeneous nature of customers and use it to
their advantage. For example, airlines offer priority boarding
queues for payment of an additional fee. In this paper, we
consider the problem of exploiting the heterogeneous nature
of customers for revenue maximization in parallel server
systems. We model heterogeneity of customers by assuming
that different customers have different cost for a unit delay.

We consider service systems that consist of two parallel,
possibly heterogeneous servers where each server has an
associated queue for the customers to wait. The scheduling
discipline at each server is work conserving and does not dis-
criminate between customers on the basis of their preference
for delay. The servers charge an admission price to every
customer joining its queue. We assume that the queues are
not observable and only the expected delay as a function of
the arrival rate is available. We also assume that the expected
delay at any server is monotone increasing in the arrival rate
of customers to that server. The customers that use the system
are strategic and make an individually optimal queue-join
decision. We assume that customers differ in their cost for
unit delay which is characterized by a random variable with a
continuous distribution denoted byF. For a customer, the cost
at a server is the sum of the admission price and the delay cost
at the server. We assume that customers cannot balk from the
system without obtaining service and such traffic is commonly
seen in cloud-computing, purchase of essential services etc.

In this paper, we consider the problem of revenue maxi-
mization in such a service system by suitably choosing the
admission prices at two parallel servers. Depending on the
objective of each of these servers, we consider two natural
scenarios. In a monopoly, we assume that the two servers
belong to the same operator. The objective here is to maximize
the total revenue rate, i.e., the sum of the revenue rate from
the two servers. In the second scenario, we assume that each
server belongs to separate operators and each server has the
objective of maximizing its individual revenue rate. This is an
example of a duopoly where the service systems compete with
one another to maximize their individual revenue rate.

Now consider the scenario of a monopoly market discussed
above where the service system has two parallel servers. In
the absence of balking, it is not difficult to see that a revenue
maximizing strategy for the monopoly is to keep both the
admission prices at infinity. This is because as customers
cannot balk, they are required to choose one of the server
for service. Therefore one has to consider a more meaningful
model for the monopoly market. Towards this, we assume
that the admission price at one of the server, say Server 2 is
fixed a-priori. This dissuades the service provider from fixing
the admission price at Server 1 to unreasonably high values.
Our interest for this model is to characterize the revenue
maximizing admission price at Server 1 for different examples
of the delay functions at the queue and when customers differ
in their delay cost.

Classical monopoly models have been well studied for the
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case of single server queues. One of the first work to analyze
such a model is Naor [1]. This model considers a single
server queueing system where homogeneous customers obtain
a reward after service completion. The queue is observable
to arriving customers who choose to either join the queue or
balk. For such a system, the revenue maximizing admission
price was first obtained in [1]. Subsequently, there have been
several works analyzing the revenue maximization problem
for various models such as a multiserver queue [2],GI/M/1
queue [3], customers with heterogeneous service valuations
[4] and queue length dependent prices [5]. While the above
models assume that the queue lengths are observable, Edelson
and Hilderbrand [6] were the first to consider the revenue
maximization problem for the case when queues are not
observable. See [7], [8], [9], [10], [11] for some other single
server revenue maximization models.

The key difference of our model with that of the literature
discussed above is as follows. Firstly, in our model, customers
are inelastic in their demand and hence balking is not allowed.
Secondly, the customers have to obtain service at either of the
two servers and the admission price at one of the server is
fixed. Finally, the customers have heterogeneous preference
for the delay experienced in the queue. This feature makes
our model meaningful but also difficult to analyze. For such
parallel server models, the structural properties for the equi-
librium routing have been obtained recently [12], [13]. We use
the structural property of the equilibrium routing to solvethe
the revenue maximization problem for the monopoly.

For the duopoly problem with two competing and identical
servers, we assume that the objective for each server is to
set an admission price that maximizes its revenue rate. We
are interested in studying the existence of Nash Equilibrium
prices that would be set by the two servers. The earliest work
analyzing the duopoly model with heterogeneous customers
was by Luski [14] and Levhari and Luski [15]. Both the
models assume that the customers are allowed to balk. Luski
[14] is interested in knowing whether the revenue maximizing
prices set by the two service systems can be equal. It is
observed that when the parameters of the model are such
that the customers have no incentive to balk, the revenue
maximizing prices set by two identical servers is equal. This
is however not the case when some of the customers prefer to
balk. In this case, the equilibrium revenue maximizing prices
are not equal. Levhari and Luski [15] provide a numerical
analysis for the problem introduced in Luski [14]. Armony
and Haviv [16] analyze this problem for the case when the
customers are from a finite number of classes and each
class has a distinct cost for unit delay. A numerical analysis
of the Nash equilibrium admission prices between the two
competing servers is provided. Chen and Wan [17] consider
the revenue maximization in a duopoly with a single customer
class. The service system is modeled byM/M/1 queues and
the customers are allowed to balk from the system. These
assumptions on the system model allows them to obtain the
sufficient conditions for the existence of Nash equilibrium.
Similar conditions were found in Dube and Jain [18] who
consider anN -player oligopoly with multiclass customers.
The customer classes differ only in their arrival rates and

have the same delay cost per unit time. A differentiated
service model is considered by Dube and Jain [19] where
each player now operates two types of services and each
service is used by a dedicated class of customers. Again,
the key result in [19] is to obtain the sufficient condition
for the Nash equilibrium prices. Mandjes and Timmers [20]
consider a duopoly model with two customer classes differing
in their delay cost. The model assumes a finite number of
customers and the utility of a queue is a decreasing function
of the number of customers using this server. Given the prices
at the servers, they provide an algorithm that determines
the equilibrium number of customers of each class that is
to be allocated to the two servers. While the existence and
uniqueness of such a customer equilibrium is provided, the
existence of Nash equilibrium prices is only conjectured. In
[21], [22] the demand rate at different servers is modeled using
specific functions (known as demand models in such literature)
instead of being calculated from the (Wardrop) equilibrium
conditions [23]. This assumptions make the analysis relatively
simpler. Ayesta et. al. [24] consider the oligopoly pricing
game for a single customer class and obtain the necessary
and sufficient conditions on the Nash equilibrium prices when
the queues have identical delay functions. A best-response
algorithm is then provided to numerically obtain these Nash
equilibrium prices.

Most of the monopoly and duopoly models described above,
make simplifying assumptions on the customer classes to
characterize the underlying Wardrop equilibrium [23]. Addi-
tional simplification of the analysis is obtained by considering
convex and increasing delay functions at the queues. We do
not make any of these assumptions in this paper. We utilize the
structure of the Wardrop equilibrium that was characterized in
[12], [13] to analyze the two problems. This structure on the
equilibrium allows us to provide an equivalent revenue maxi-
mization formulation for both the monopoly and the duopoly
that is simpler to analyze. For the duopoly problem we provide
sufficient conditions on the symmetric Nash equilibrium prices
when the competing servers are identical.

For most practical scenarios, the distribution functionF (·)
characterizing the delay cost for a customer may not be
known to the service system. The revenue maximizing strategy
on the other hand depend on the distributionF (·). Without
any knowledge ofF (·), it is not be possible to ascertain a
revenue optimal admission price at the servers and in such
cases, the service system is required estimate this distribution
function. Towards the end of this paper, we shall provide a
simple method to estimate this distributionF (·) by varying the
admission prices and observing the change in the equilibrium
traffic routing. The service system can then use this estimate
to perform the necessary revenue maximization.

The rest of the paper is organized as follows. In the next
section, we shall formalize the notations and provide some
preliminaries. We then formulate the revenue maximization
problems in Section III. In Section IV, we consider the
monopoly problem for revenue optimization followed by the
duopoly problem in Section V. Finally in Section VI, we
illustrate a mechanism based on admission pricing to estimate
the distribution functionF.
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II. PRELIMINARIES

We will first introduce the notations that will be used
throughout this paper. In both the monopoly and the duopoly
model, we assume that the system has two servers. Letcj
denote the admission price at Serverj wherej = 1, 2. The
customers arrive according to a homogeneous Poisson process
with rateλ and have a service requirement that is i.i.d with
exponential distribution and unit mean. LetDj(γj) denote
the delay function associated with queuej when the queue
arrival rate isγj , where j = 1, 2. Note thatγ1 + γ2 = λ.
We assume thatDj is monotone increasing and continuously
differentiable in the interior of its domain with a strictlyposi-
tive derivative. Additionally we assume that the cost function
at the two server satisfies the following two conditions (1)
D1(0) < D2(λ) < ∞ and (2)D2(0) < D1(λ) < ∞.

We associate with each arriving customer a continuous
random variableβ that quantifies a customer’s sensitivity to
delay or congestion. We shall assume that the delay sensitivity
β for a customer is a realization of the random variableβ.
The customer arrivals constitute a marked Poisson process of
intensityλ×F onR×R+. HereF is an absolutely continuous
cumulative distribution function supported on the interval [a, b]
of positive reals. We additionally assume thatF (·) is strictly
increasing and hencef(x) 6= 0 for any x ∈ [a, b] wheref(·)
is the corresponding density function.

We now recall the Wardrop equilibrium conditions [23],
[13] that characterize the individually optimal choice of server
made by the arriving customers. A customer with delay cost
β entering the system must choose a queuej so as to
minimize cj + βDj(γj). Here γj is determined through the
strategies of all customers. We assume that the quantities
λ1, λ2, Dj(·), F (·) and cj , for j = 1, 2 is part of common
knowledge. We also assume that the customers do not have
access to current or past queue occupancies, or the history
of arrival times. The strategy of a customer is restricted to
choosing a server according to a fixed probability distribution
and such joint strategies are represented by a stochastic kernel,
denoted byKW . We interpretKW (β, i) as the probability
that a customer with delay sensitivityβ chooses queuei
at equilibrium. For the two server system, the equilibrium
kernel KW must satisfy the following Wardrop equilibrium
conditions.

KW (β, i) ≥ 0 implies ci + βDi(γi) ≤ c3−i + βD3−i(γ3−i).
(1)

In words, this means that if customers with delay costβ
choose Serveri at equilibrium, then the expected cost for this
customer at Serveri must be at most the expected cost at
Server3 − i for i = 1, 2. For a kernelKW , note that the
arrival rate of customers to Serverj is given by

γj = λ

∫ b

β=a

KW (β, j)dF (β).

We now provide the following theorem that is a restatement
of Corollary 4 in [13]. This theorem characterizes the Wardrop
equilibrium kernel for a system with two parallel servers.

Theorem 1: Define δi as the probability distribution that
puts unit mass oni and suppose that the kernelKW satis-

fies the Wardrop equilibrium condition. Then there exists a
thresholdβ1 with β1 ∈ [a, b] such that

• whenc1 > c2 (resp.c1 < c2),

KW (β, ·) =

{

δ1 (resp.δ2) for β ∈ (β1, b],

δ2 (resp.δ1) for β ∈ [a, β1].
(2)

Further if β1 ∈ (a, b) then,

c1 + β1D1(γ1) = c2 + β1D2(γ2). (3)

• When c1 = c2, K
W is not unique and any kernelK

with γ1 = γ+ is a valid Wardrop equilibrium kernelKW

whereγ+ := {γ1 : D1(γ1) = D2(γ2)} .

Refer Figures 1 and 2 for a representation of the Wardrop
equilibrium kernel for the case whenc1 > c2 and c1 < c2
respectively. Heref(·) denotes the underlying density function
of the random variableβ while the shaded region identifies the
delay cost parameter of those customers that choose Server 1.

Proof: The first part is simply a restatement of Corollary
4 in [13] for the casec1 > c2 and the proof forc1 < c2 is
along similar lines. We now prove the second part. Consider
the case whenc1 = c2 and recall the assumption that
D1(0) < D2(λ) and D2(0) < D1(λ). KW must be such
thatD1(γ1) = D2(γ2). To see why this must be true, suppose
that this is not true and letD1(γ1) 6= D2(γ2). Customers
from the queue with a higher delay cost will have an incentive
to move to the queue with a lower delay cost. This implies
that a KW with D1(γ1) 6= D2(γ2) is not at equilibrium.
Recall the definitionγ+ := {γ1 : D1(γ1) = D2(γ2)} . Since,
D1(0) < D2(λ) andD2(0) < D1(λ), we have0 < γ+ < λ.
Now for any kernelK satisfyingγ1 = γ+, sincec1 = c2, the
cost for any customer at the two servers is equal. Hence there
is no incentive for any customer to deviate from its choice of
the server. The Wardrop equilibrium kernelKW though not
unique must however satisfyλ

∫ b

β=a
KW (β, j)dF (β) = γ+.

III. PROBLEM FORMULATIONS

Having characterized the Wardrop equilibrium kernelKW

for a two server system, we will now formulate the rev-
enue maximization problems for both the monopoly and the
duopoly model. LetRj(cj , γj) := cjγj denote the revenue
rate at serverj when the arrival rate of customers due to
the corresponding kernelKW is γj for j = 1, 2. For the
monopoly model, letRT (c1, γ1) denote the revenue rate for
the monopoly service system. Sinceγ2 = λ − γ1, it suffices
to express the revenue rate as a function of onlyγ1. We have

RT (c1, γ1) := c1γ1 + c2γ2 = c2λ+ (c1 − c2)γ1.

Note from Theorem 1, that the argumentγ1 is determined by
the kernelKW which in turn depends on the admission prices
c1 and c2. This dependence will be made explicit by writing
γ1 asγ1(c1, c2) and the revenue optimization problem for the
monopoly can now be stated as follows.

max
c1

RT (c1, γ1(c1, c2)) = c2λ+ (c1 − c2)γ1(c1, c2)

subject to 0 ≤ c1 ≤ c1

(P1)
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Fig. 1. Representation ofKW whenc1 > c2.
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Fig. 2. Representation ofKW whenc1 < c2.

wherec1 is an arbitrarily large value such thatγ1(c1, c2) = 0.
c1 is a technical requirement to ensure a compact domain and
one could also definec1 := inf {c : γ1(c, c2) = 0} in which
case we haveγ1(c1, c2) = 0 for any c1 > c1. To be able
to solve programP1 using standard optimization techniques,
a closed form expression forγ1(c1, c2) would be convenient.
When c1 > c2, and β1 ∈ (a, b), from Theorem 1 and the
definition of γ1, it can be seen that

γ1(c1, c2) = λ(1− F (β1)) (4)

where

β1 = {β : c1 + βD1(λ(1 − F (β))) = c2 + βD2(λF (β))} .

A similar condition follows whenc1 < c2 and it can be
seen that obtaining an explicit expression forγ1(c1, c2) is
difficult. Note that we have not assumed any functional form
for Dj and F (·) and for certain choice of these functions,
a closed form expression forγ1(c1, c2) may not be possible.
Without an analytic expression forγ1(c1, c2), it is difficult
to solve the revenue maximization problem. Therefore we
require an alternative approach to solve programP1. One
possible alternative is to let the equilibriumγ1 (the value of
γ1 at equilibrium) be the optimization variable and represent
other variables of the system such asc1, c2, β1 as a function
of γ1. With slight abuse of notation, we will usecj(γj) to
denote the admission price at Serverj when the arrival rate
to Serverj at equilibrium isγj wherej = 1, 2. Similarly, we
shall useβ1(γ1) to represent the thresholdβ1 corresponding
to an equilibrium arrival rate ofγ1 to Server1. Note that
c1(γ1) is also a function ofc2. This is because the equilibrium
γ1 depends on the difference(c1 − c2) and not on their
individual values. This is clear from Theorem 1 (Eq. (3)).
Therefore for a givenc2 and γ1 ∈ (0, λ) one can determine
c1 using Eq. (3). We have suppressed this dependence onc2
to simplify notation. For the monopoly modelc2(γ2) = c2 as
c2 is assumed fixed. Thus the equivalent revenue optimization
problem for the monopoly is as follows.

max
γ1

RT (c1(γ1), γ1) = c2λ+ (c1(γ1)− c2)γ1

subject to 0 ≤ γ1 ≤ γ1(c2) ≤ λ
(P2)

whereγ1(c2) determines the domain for the feasible values of
γ1 as a function ofc2. An intuitive explanation for the quantity
γ1(c2) is as follows. Consider the casec1 = c2 = 0. From
Theorem 1, we haveγ1 = γ+ where0 < γ+ < λ. Using the
notationγ1(c1, c2), we haveγ1(0, 0) = γ+. For anyc1 > 0,
γ1(c1, 0) < γ+ since the increase in the admission price
at Server 1 makes the server more costly and decreases the
resultingγ1. Clearly, for anyc1 ≥ 0 andc2 = 0, γ1 /∈ (γ+, λ]
andc1(γ1) in program P2 cannot be defined forγ1 ∈ (γ+, λ].
Therefore whenc2 = 0, the domain for the optimization
variableγ1 should be restricted to[0, γ+]. In general, for an
arbitraryc2, the domain forγ1 in program P2 is defined using
γ1(c2) and this will be characterized formally in Section IV.

Now consider the duopoly market with two competing
servers charging admission pricesc1 and c2 to their arriving
customers. The objective of Serverj is to choose an admission
price cj that maximizes its revenue rateRj . For this duopoly,
the revenue optimization problem for Serverj is as follows.

max
cj

Rj(cj , γj) = cjγj(cj , cj−)

subject to 0 ≤ cj ≤ cj

given cj−

(P3)

wherecj− represents the admission price at the server other
thanj, i.e., c1− = c2 andc2− = c1.

For the duopoly market, the aim is to obtain the Nash
equilibrium set of admission prices to be charged at the two
servers. We shall denote the Nash equilibrium prices by the
tuple (c∗1, c

∗

2). Using the notion of the best response function
[25], (c∗1, c

∗

2) can be characterized as follows. LetBi(ci−)
denote the admission price at Serveri that maximizes the
server revenueRi for a given value ofci− for i = 1, 2. Clearly,
Bi(ci−) is the maximizer in program P3 and it is easy to see
that

B1(c2) := {c1 ≥ 0 : c1γ1(c1, c2) ≥ c′1γ1(c
′

1, c2)∀c
′

1 ≥ 0}

B2(c1) := {c2 ≥ 0 : c2γ2(c1, c2) ≥ c′2γ2(c1, c
′

2)∀c
′

2 ≥ 0} .
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and

(c∗1, c
∗

2) = {(c1, c2) : B1(c2) = c1, B2(c1) = c2} .

However as argued earlier, the closed form expression for
γj(cj , cj−) is not easy to obtain. This makes it difficult to
solve program P3 and obtain the best responsesBi(ci−) for
i = 1, 2. As a result, obtaining(c∗1, c

∗

2) is in general not easy.
As in the case of the monopoly program, to obtain(c∗1, c

∗

2), we
need to first reformulate program P3 by lettingγj denote the
optimizing variable. The corresponding optimization problem
is as follows.

max
γj

Rj(cj(γj), γj) := cj(γj)γj

subject to 0 ≤ γj ≤ γj(cj− ) ≤ λ

given cj− .

(P4)

cj(γj) can be interpreted as the admission price at Serverj
that leads to the equilibrium arrival rate ofγj when the other
server chargescj− . Note again thatcj(γj) will be a function
of cj− but we do not make this explicit in the notation. To
lighten notation, we will not make this dependence explicit.
Now let γ∗

1(c2) denote the maximizer in program P4 for a
given value ofc2. Then the best responsec1 is in fact given by
the functionc1(γ∗

1 (c2)). Therefore, once the functionc1(γ1)
is characterized, the best response now denoted byB̂1(c2)
satisfiesB̂1(c2) = c1(γ

∗

1 (c2)). We now have

(c∗1, c
∗

2) =
{

(c1, c2) : B̂1(c2) = c1, B̂2(c1) = c2

}

where B̂i(ci−) = ci(γ
∗

i (ci−)) and as stated earlier,γ∗

i (ci−)
is the maximizer in program P4 fori = 1, 2. It is therefore
clear that(c∗1, c

∗

2) can be obtained once we have characterized
c1(γ1). We shall analyze the programP4 in detail in Section
V and explicitly characterize the functionscj(γj) for j = 1, 2
to be able to obtain(c∗1, c

∗

2).

IV. M ONOPOLY MARKET

In this section, we will analyze the monopoly programP2.
To be able to solve programP2, we need to characterize
c1(γ1) for a fixed value ofc2. This procedure is outlined
below. From Eq. (3) of Theorem 1, we know that when
β1 ∈ (a, b), (and henceγ1 ∈ (0, λ)) we have

c1 − c2 = β1 (D2(γ2)−D1(γ1)) .

We will express the right hand side of the above equation as
a function ofγ1, i.e.,

g1(γ1) := β1(γ1) (D2(λ− γ1)−D1(γ1)) (5)

whereβ1(γ1) represents the thresholdβ1 for a kernelKW that
satisfies Theorem 1 and corresponds to an equilibrium arrival
rate ofγ1. Note thatg1(γ1) characterizes the difference(c1 −
c2) as a function ofγ1. For a fixedc2 and for aγ1 satisfying
0 ≤ γ1 ≤ γ1(c2) ≤ λ (the domain ofγ1 in program P2) we
see thatc1(γ1) = c2 + g1(γ1). We characterizec1(γ1) in the
following manner. We first characterizeβ1(γ1) using Lemmas
1 and 2. Then in Lemma 3, we characterizeg1(γ1). For a
fixedc2, we then obtainγ1(c2) in Lemma 5 that determines the
domain ofc(γ1) . To prove this lemma we need to characterize

the uniqueness of kernelKW for a fixed difference(c1 − c2).
This is part of Lemma 4. Finally we characterizec1(γ1) in
Theorem 2 usingg1(γ1) andγ1(c2).

Recall that we make minimal assumptions on the distri-
bution F (·) and on the delay cost functionDj(·). For our
numerical examples and also to illustrate the properties of
the functionsβ1(·), g1(·) andc1(·), we consider the following
examples forF (·) andDj(·). The distributionF (·) is from
one of the following;

• Uniform distribution over the range[a, b].
• Exponential distribution with meanτ.
• Gamma distribution with shapek and scaleθ.

For the delay cost function, we shall assume one of the
following.

• Dj(γj) =
γj

µj
. This corresponds to the case of linear

delay.
• Dj(γj) = 1

µj−γj
and µj > λ. This corresponds to

M/M/1 type delay cost function.

The distribution and the delay cost functions outlined above
are commonly used to model heterogeneous customers and
congestion costs. (Refer [26], [12], [13], [14], [15])

We now begin with the following lemma that identifies the
necessary and sufficient condition on the equilibriumγ1 when
eitherc1 ≥ c2 or c1 < c2.

Lemma 1: γ1 ∈ [0, γ+] iff c1 ≥ c2 while γ1 ∈ (γ+, λ] iff
c1 < c2.

Proof: See Appendix for proof.
Refer Figure 3 and 4 for an illustration of the lemma.

Next, we express the thresholdβ1 of Theorem 1 as a func-
tion of γ1. Recall from the theorem thatKW is characterized
by β1 when c1 6= c2. We let β1(γ1) to denote the value of
the thresholdβ1 (characterizingKW ) for a givenγ1 such that
γ1 6= γ+. We have the following lemma.

Lemma 2:

β1(γ1) =

{

F−1
(

λ−γ1

λ

)

for 0 ≤ γ1 < γ+,

F−1
(

γ1

λ

)

for γ+ < γ1 ≤ λ.
(6)

where F−1 represents the quantile function or the inverse
function of the distributionF.

Proof: See Appendix for proof.
Note thatβ1(γ1) is not defined in Lemma 2 whenγ1 = γ+.

This is because the Wardrop kernelKW with γ1 = γ+ is not
unique and need not be characterized by a single threshold.
We shall however assume from now on that whenγ1 = γ+

(and hencec1 = c2), the corresponding kernelKW is also
characterized by a single thresholdβ1. Hence forc1 = c2, we
have

KW (β, 1) =

{

δ1 for β ∈ (β1, b],

δ2 for β ∈ [a, β1].
(7)

As a result, we defineβ1(γ
+) = F−1

(

λ−γ+

λ

)

and the

modifiedβ1(γ1) is now as follows.

β1(γ1) =

{

F−1
(

λ−γ1

λ

)

for 0 ≤ γ1 ≤ γ+,

F−1
(

γ1

λ

)

for γ+ < γ1 ≤ λ.
(8)
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Fig. 3. Illustratingγ1 ∈ [0, γ+] andc1 ≥ c2.

1c c2

γ2γ
1

β1

γ
1

λ0 γ+

f

β

λ

<

Fig. 4. Illustratingγ1 ∈ (γ+, λ] andc1 < c2.
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Fig. 5. Illustratingβ1(γ1) when the servers are not identical.

Refer Fig. 5 for a numerical evaluation of Eq. (8) for the
case whenF (·) is an exponential distribution withτ = 20.
The delay functions areDj(γj) =

γj

µj
whereµ1 = 3.3 and

µ2 = 4. Fig. 6 corresponds to the case when the two servers
are identical, i.e.,µ1 = µ2 = 4.

Remark 1: Recall our assumption thatF (·) is absolutely
continuous and strictly increasing in its domain. Further,
the support is[a, b] and henceF (·) is a bijective function
whose inverse exists. In factF−1(·) is continuous and strictly
increasing in its domain. SinceF−1(·) is continuous in its
arguments,β1(γ1) is continuous when0 ≤ γ1 < γ+ and
γ+ < γ1 ≤ λ. However atγ1 = γ+, β1(γ1) is in general
not continuous (Refer Fig. 5). For the case when the servers
are identical, i.e.,D1(γ) = D2(γ) = D(γ), we see from the
definition of γ+ that γ+ = λ

2 . For this case, it is easy to see
thatβ1(γ1) is continuous atγ1 = γ+, (but not differentiable).
See Fig. 6.

Having obtainedβ1(γ1), we shall now analyzeg1(γ1) that
was defined in Eq. (5).g1(γ1) will be used later to obtain
c1(γ1). We have the following lemma.

Lemma 3: For 0 ≤ γ1 ≤ λ, g1(γ1) is continuous and
monotonic decreasing inγ1. Further,g1(γ+) = 0.

Proof: See Appendix for proof.
See Fig. 7 for a numerical evaluation ofg1(γ1) whenF (·) is
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Fig. 6. Illustratingβ1(γ1) for the case of identical servers.
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Fig. 7. Illustratingg1(γ1) when the servers are not identical.

an exponential distribution withτ = 20 and when the servers
have a linear delay withµ1 = 3.3 andµ2 = 4.

To determinec1(γ1), we also need to identify the domain
over which it can be defined. As argued earlier, this domain
is determined byγ1(c2) which is characterized in Lemma
5. Before stating Lemma 5, we shall first characterize the
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uniqueness ofβ1, and hence the kernelKW , when c1 6= c2.
While Theorem 1, guarantees existence of aβ1 characterizing
kernelKW , it does not guarantee the uniqueness ofβ1 and
hence the uniqueness of the kernelKW . This result will be
used in the proof of Lemma 5.

Lemma 4: For a given∆ := (c1 − c2), the thresholdβ1

characterizing the kernelKW in Theorem 1 is as follows.

β1 =

{

b if ∆ ≥ g1(0) or ∆ ≤ g1(λ),

β1(γ̂) if g1(λ) < ∆ < g1(0)
(9)

where γ̂ satisfies∆ = g1(γ̂). For a fixed∆, the equilibrium
γ1 and the correspondingβ1 is unique and this implies the
uniqueness ofKW .

Proof: See Appendix for proof.
We now characterizeγ1(c2) in the following lemma.
Lemma 5:

γ1(c2) =

{

λ for c2 ≥ −g1(λ),

γ : g1(γ) = −c2 for c2 < −g1(λ)
(10)

In words, when c2 < −g1(λ) we have γ1(c2) =
{γ : g1(γ) = −c2} and for anyc1 ≥ 0, the equilibriumγ1 /∈
(γ1(c2), λ]. However whenc2 ≥ −g1(λ), we haveγ1(c2) = λ
in which case for suitable choices ofc1, γ1 ∈ [0, λ].

Proof: See Appendix for proof.
The above lemma also implies that, ifc2 ≥ −g1(λ), then for

any c1 ∈ (0, c2 + g1(λ)) the equilibriumγ1 satisfiesγ1 = λ.
On the other hand, if the parameters of the system are such
that c2 + g1(λ) < 0, then for any set of admission pricesc1
at Server 1, we haveγ1 < γ1(c2).

Remark 2: From Lemma 5, whenc2 < −g1(λ), we have
γ1(c2) = γ whereg1(γ) = −c2. From Lemma 3, we know
that g1(γ) < 0 for γ > γ+. Hence whenc2 ≥ 0, we have
γ1(c2) ≥ γ+ with strict equality whenc2 = 0.

Finally, we have the following theorem to expressc1 as a
function of γ1, denoted byc1(γ1).

Theorem 2: c1(γ1) = c2 + g1(γ1) for 0 < γ1 < γ1(c2) ≤
λ. For γ1 = 0, c1(0) must be at least equal toc2 + g1(0),
i.e., c1(0) ≥ c2 + g1(0). Similarly whenγ1(c2) = λ, we have
c1(λ) ≤ c2 + g1(λ).

Proof: First consider a fixedγ1 satisfying γ1 ∈
(0, γ1(c2)) for a fixedc2. (γ1(c2) was characterized in Lemma
5.) The corresponding thresholdβ1 is determined by Eq. (8)
and hence we haveβ1 ∈ (a, b) for γ1 ∈ (0, γ1(c2)). Recall
that Lemma 4 relates the thresholdβ1 with ∆. Sinceβ1 < b,
from Lemma 4,∆ must satisfy∆ = g1(γ1). Therefore for
a fixed c2, the admission pricec1(γ1) resulting in the arrival
rate ofγ1 at Server 1 is given by

c1(γ1) = c2 + g1(γ1).

For the caseγ1 = 0, from Eq. (8), we haveβ1 = b. From
Lemma 4, this implies that∆ ≥ g1(0). From the definition
of ∆, we havec1(0) ≥ c2 + g1(0). Similarly whenγ1 = λ,
from Eq. (8), we haveβ1 = b. From Lemma 4, this implies
∆ ≤ g1(λ) and hencec1(λ) ≤ c2+ g1(λ). This completes the
proof.

In the above theorem,c1(0) and c1(λ) are not uniquely
defined and can take values that satisfyc1(0) ≥ c2+g1(0) and
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3
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R
T
 for F(⋅) ~ uniform [2,6]

R
T
 for F(⋅) ~ exponential with mean 4

R
T
 for F(⋅) ~gamma with k = θ = 2

Fig. 8. RT as a function ofγ1 whenDj(γj) =
γj
µj

c1(λ) ≤ c2+g1(λ) respectively. As convention, we henceforth
definec1(0) = c2 + g1(0) and c1(λ) = c2 + g1(λ). Further
note that the domain forc1(·) is 0 ≤ γ1 ≤ γ1(c2) and for
γ1(c2) < γ1 < λ, c1(γ1) is undefined. The functionc1(γ1)
for 0 ≤ γ1 ≤ γ1(c2) ≤ λ can now be expressed as follows.

c1(γ1) =











c2 + g1(γ1) for 0 < γ1 ≤ γ1(c2) < λ,

c2 + g1(0) for γ1 = 0,

c2 + g1(λ) for γ1 = γ1(c2) = λ,

(11)

Now recall the revenue maximization problemP2. Define
γ∗

1 as the optimizer for this program with the revenue maximiz-
ing admission price given byc1(γ∗

1 ). SinceRT (c1(γ1), γ1) =
c2λ + (c1(γ1) − c2)γ1, γ

∗

1 must be such thatc1(γ∗

1 ) > c2.
From Eq. (11), this implies thatg1(γ∗

1 ) > 0. From Lemma 3
we haveg1(γ1) > 0 for γ1 ∈ (0, γ+) and this implies that
γ∗

1 ∈ (0, γ+). The termc2λ in RT (c1(γ1), γ1) is a constant
and hence we have the following equivalent program for the
revenue maximization problem.

max
γ1

g1(γ1)γ1

subject to 0 ≤ γ1 ≤ γ+
(P4)

whereg1(γ1) is given by Eq. (5).
Note from Lemma 3 thatg1(·) is a continuous function

of its domain. Program P4 involves maximizing a continuous
function over a compact set and hence a maximizerγ∗

1 exists.
The original monopoly program P1 has been significantly sim-
plified to the equivalent program P4. Sinceg1(γ1) is strictly
decreasing (and hence quasi-convex),g1(γ1)γ1 is in fact a
product of two quasi-convex functions. (However product of
quasi-convex functions need not be quasi-convex function).
One can now use standard non-linear optimization techniques
to obtainγ∗

1 . To further understand Program P4, we perform
a numerical evaluation ofg1(γ1)γ1 under a combination of
assumptions on the distribution functionsF and the delay
functionsDj(γj) that were outlined earlier.

Example 1: In this example we shall assume that the
Dj(γj) =

γj

µj
for j = 1, 2. We assume thatµ1 = 3.3 and

µ2 = 4. Further, the arrival rateλ = 3 and we consider the
following three examples for the distributionF (·). (1) F has a
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µj−γj

uniform distribution with support on[2, 6]. (2) F has an expo-
nential distribution with meanτ = 4 and (3)F has a Gamma
distribution with the scalek and shapeθ parameters2 and2
respectively. Note thatβ with these three distributions have
the same mean. We plotRT (c1(γ1), γ1) = c2λ + g1(γ1)γ1
as a function ofγ1 in Fig. 8 where we assumec2 = 1.
WhenF has the uniform distribution,γ∗

1 = 0.62. The optimal
revenue rateRT (γ

∗

1 ) = 4.306 while the admission price
c1(γ

∗

1 ) maximizingRT is 3.106. The corresponding values for
the exponential distribution areγ∗

1 = 0.44, RT (γ
∗

1 ) = 4.712
and c1(γ

∗

1 ) = 4.89 while the values for gamma distribution
areγ∗

1 = 0.51, RT (γ
∗

1 ) = 4.532 andc1(γ∗

1 ) = 4.
Example 2: In this example, we assume thatDj(γj) =
1

µj−γj
where againµ1 = 3.3 andµ2 = 4. Note thatλ < µj

for j = 1, 2. The choice ofF (·) is as in the previous example.
A plot of RT (c1(γ1), γ1) as a function ofγ1 is provided in
Fig. 9. WhenF has the uniform distribution,γ∗

1 = 0.48. The
optimal revenue rateRT (γ

∗

1 ) = 3.83 while the admission price
c1(γ

∗

1 ) maximizingRT is 2.72. The corresponding values for
the exponential distribution areγ∗

1 = 0.33, RT (γ
∗

1 ) = 4.21
and c1(γ

∗

1 ) = 4.67 while the values for gamma distribution
areγ∗

1 = 0.38, RT (γ
∗

1 ) = 4.04 andc1(γ∗

1 ) = 3.74.
We conclude the analysis of the revenue maximization

problem with the following observations made from the two
examples given above.

• Firstly, we see that for the given examples ofF,
RT (c1(γ1), γ1) is a unimodal function inγ1. For the
three distribution functions, it can be shown thatF−1(·)
is differentiable in its arguments. For such distribution
functions with differentiableF−1(·), this implies that
g1(γ1) and henceRT (c1(γ1), γ1) is differentiable inγ1
when 0 < γ1 < γ+. From Rolle’s Theorem (Theorem
10.2.7 [27]), this implies that there exists aγ1 ∈ (0, γ+)
such that dRT

dγ1
= 0. A γ∗

1 satisfying this equation is
the revenue maximizing arrival rate to server 1. The
admission price corresponding to thisγ∗

1 can now be
obtained using Eq. (11).

• For each of the three distributions, note that we have
E [β] = 4. However, the Revenue rateRT as a function
of γ1 is distinct in all the three cases. This implies that
the revenue rateRT depends on the higher moments of

the distributionF and not just on its mean value.
• Finally, note thatRT depends on admission price through

the addition factor ofc2λ. For different values ofc2, the
correspondingγ∗

1 does not change. However it is easy to
see from Eq. (11) thatc1(γ1) increases linearly inc2.

V. DUOPOLY

In this section, we shall consider program P4 for revenue
maximization in the duopoly system. Much of the analysis
in this section follows from that of the previous section. Let
γj , j = 1, 2 denote the optimization variable and represent
the admission prices at the respective servers as a function
of the arrival rates. Towards this, we continue with the use
of the notationcj(γj) for j = 1, 2. Note that while in the
monopoly case, the admission pricec2 was considered fixed,
in the duopoly of this section, it is the strategy for the second
server and hence will not be a constant. The revenue function
for Serverj is given by

Rj(cj(γj), γj) = cj(γj)γj

where cj(γj) represents the admission price at Serverj
resulting in an equilibrium arrival rate ofγj . As noted in the
previous section,cj(γj) is a function ofcj− , the admission
price at the other server. For a fixed strategyc2 at Server2,
from Eq. (11) the revenue functionR1(c1(γ1), γ1) can be
redefined as

R1(c1(γ1), γ1) = (g1(γ1) + c2) γ1. (12)

It can be argued as in the previous section that for a fixedc1

R2(c2(γ2), γ2) = (g2(γ2) + c1) γ2 (13)

where

g2(γ2) = β1(λ− γ2) (D1(λ− γ2)−D2(γ2)) (14)

where from Eq. (8)β1(λ− γ2) is as follows

β1(λ− γ2) =

{

F−1
(

γ2

λ

)

for λ− γ+ ≤ γ2 ≤ λ,

F−1
(

λ−γ2

λ

)

for 0 < γ2 < λ− γ+.
(15)

It is easy to see thatg2(γ2) is also continuous and strictly
decreasing inγ2. Further,g2(γ2) = 0 whenγ2 = λ−γ+. The
revenue maximization problem for the duopoly is re-stated as
follows.

max
γj

Rj(γj) =
(

gj(γj) + cj−
)

γj

subject to 0 ≤ γj ≤ γj(cj− ) ≤ λ

given cj− .

(P7)

For a givencj− , recall thatγ∗

j (cj−) denotes the maximizer
of program P4 and hence of the above program. Also recall
that B̂j(cj−) denotes the best response admission price at
Serverj in response to the admission pricecj− at the other
facility. Then the Nash equilibrium set of admission prices,
denoted by(c∗1, c

∗

2), is characterized as follows.

(c∗1, c
∗

2) =
{

(c1, c2) : B̂1(c2) = c1, B̂2(c1) = c2

}

, (16)
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whereB̂j(cj−) = gj(γ
∗

j (cj−)) + cj− for j = 1, 2.

We begin the analysis for the duopoly problem by first
identifying that γ∗

j (cj−) lies in the interior of the domain.
We have the following lemma.

Lemma 6: γ∗

j (cj−) /∈
{

0, γj(cj− )
}

.

Proof: See Appendix for proof.
For a givencj− since γ∗

j (cj− ) lies in the interior of the

domain,γ∗

j (cj−) satisfiesdRj

dγj

∣

∣

∣

∣

γj=γ∗

j

= 0 and d2Rj

dγ2
j

∣

∣

∣

∣

γj=γ∗

j

≤

0.

Define Sj(cj−) :=
{

γj :
dRj

dγj
= 0,

d2Rj

dγ2
j

≤ 0
}

. Then

γ∗

j (cj−) is obtained as a solution to the following.

γ∗

j (cj− ) = argmax
γj∈Sj(cj− )

Rj(γj). (P8)

From the above discussion, it should be clear that ob-
taining the closed form expression for(c∗1, c

∗

2) satisfying the
simultaneous equations of (16) is, in general, not easy. Note
that our analysis till now makes minimal assumptions on the
distribution functionF or on the delay functionDj(·). For
certain choices of these functions, it may be difficult to obtain
a closed form expression forγ∗

j (cj−). The objective function
Rj also need not be a concave function. In that case, a brute
force search among all the local maxima points needs to be
carried out to choose the rightγ∗

j (cj− ). Instead of satisfying
ourselves with some numerical examples, in the following
subsection we shall analyze the Nash equilibrium under the
restriction that the two servers are identical i.e., the average
delay at any queue is the same for the same arrival rate. Under
this setting, our interest is to characterize the symmetricNash
equilibrium such thatc∗1 = c∗2.

A. Characterizing a symmetric Nash equilibrium

In this section we shall characterize the necessary conditions
for the existence of a symmetric Nash equilibrium, i.e.,(c∗1, c

∗

2)
wherec∗1 = c∗2 := c∗. A natural scenario where such an equi-
librium is possible is when the two servers have identical delay
functions. In this section, we restrict to this case and assume
that Dj(·) = D(·) for j = 1, 2. As the service systems are
identical in their delay characteristics, it is desirable to identify
conditions for existence of a symmetric Nash equilibrium. We
begin with the following definition. Defineα1, α2 as follows.

α1 = −γ+ dg1(γ1)

γ1

∣

∣

∣

∣

γ1=γ+

α2 = −γ+ dg2(γ2)

γ2

∣

∣

∣

∣

γ2=γ+

(17)

Based on these definitions, we have the following lemma.
Lemma 7: α1 = α2.

Proof: From the definition ofg1(·) in Eq. (5) we have

dg1(γ1)

γ1
= β′

1(γ1) (D2(λ− γ1)−D1(γ1))

+ β1(γ1) (D
′

2(λ− γ1)−D′

1(γ1))

where the partial derivatives on the r.h.s. are w.r.t.γ1. Now
from the definition ofγ+ and from Eq. (8) we have

dg1(γ1)

γ1

∣

∣

∣

∣

γ1=γ+

= F−1

(

λ− γ+

λ

)

(

D′

2(λ− γ+)−D′

1(γ
+)

)

.

Similarly, from the definition ofg2(·) we have

dg2(γ2)

γ2
= β′

1(λ− γ2) (D1(λ− γ1)−D2(γ2))

+ β1(λ− γ2) (D
′

1(λ− γ2)−D′

2(γ2))

where the partial derivatives on the r.h.s are now w.r.tγ2. Note
that sinceγ1 = λ−γ2, we have∂D1(γ1)

∂γ1
= −∂D1(γ1)

∂γ2
. Further

note that since the servers are identical, i.e.,Dj(·) = D(·) for
j = 1, 2 from the definition ofγ+ we haveγ+ = λ

2 . From
Eq. (15) and the fact thatλ− γ+ = γ+, we have

dg2(γ2)

γ2

∣

∣

∣

∣

γ2=γ+

= F−1

(

λ− γ+

λ

)

(

D′

2(λ− γ+)−D′

1(γ
+)

)

.

This proves thatα1 = α2.

We now have the following theorem, that characterizes the
necessary condition for a symmetric Nash equilibrium.

Theorem 3: Let c∗1 = c∗2 be a symmetric Nash equilibrium
for the duopoly price competition. Thenc∗1 = c∗2 = α1.

Proof: Recall that the Nash equilibrium is characterized
as

(c∗1, c
∗

2) =
{

(c1, c2) : B̂1(c2) = c1, B̂2(c1) = c2

}

.

where B̂j(cj−) = gj(γ
∗

j (cj−)) + cj− for j = 1, 2. This
implies thatc∗j = gj(γ

∗

j (c
∗

j−
)) + c∗

j−
and sincec∗1 = c∗2, we

have gj(γ
∗

j (c
∗

j−
)) = 0 for j = 1, 2. Now from Lemma 3

and symmetry of the servers, this implies thatγ∗

1 (c
∗

2) = γ+

and γ∗

2(c
∗

1) = λ − γ+. Since the servers are identical, we
have γ+ = λ

2 and henceγ∗

2 (c
∗

1) = γ+. Since γ∗

j (cj−) is
also a solution to program P8,γ∗

j (cj− ) ∈ S(cj−). From the

definition ofS(cj−), this implies thatdRj

dγj

∣

∣

∣

∣

γj=γ+

= 0. Further,

this implies from the definition ofRj(γj) that

dRj

dγj

∣

∣

∣

∣

γj=γ+

= γ+ dgj(γj)

γj

∣

∣

∣

∣

γj=γ+

+ gj(γ
+) + c∗j− (18)

= 0.

We havegj(γ+) = 0 and hence from the definition ofαj for
j = 1, 2 we havec∗

j−
= αj . From Lemma 7, we haveα1 = α2

and hencec∗1 = c∗2 = α1. This completes the proof.
Note that the above theorem only provides a necessary

condition for the Nash equilibrium pair and we shall soon
see that in fact this condition is not sufficient. We shall
now provide a few examples illustrating the occurrence of
symmetric Nash equilibria.

Example 3: In this example, we assume thatDj(γj) =
γj

µj
for j = 1, 2. Let µ1 = µ2 = 4 while the arrival rate is

λ = 3. We suppose that the distributionF (·) has a uniform
distribution with support of[a, b]. We plotR1(γ1) andc1(γ1)
as a function ofγ1 in Fig.10. The aim of this example is
to check whether(c∗1, c

∗

2) = (α1, α1) is a symmetric Nash
equilibrium. For the set of parameters of this example we have
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Fig. 11. R1 and c1(γ1) whenDj(γj ) =
1

µj−γj
andF (·) is exponential

with τ = 4

γ+ = 1.5 and since

α1 = −γ+ dg1(γ1)

γ1

∣

∣

∣

∣

γ1=γ+

we haveα1 = 3. We now setc2 = α1 = 3. Clearly, for
a symmetric Nash equilibrium(c∗1, c

∗

2) = (α1, α1), γ∗

1 (c2) =
γ+ = 1.5 must hold. It is easy to see from Fig. 10 thatR1(γ1)
is indeed maximized whenγ1 = γ+ implying thatγ∗

1 (c2) =
γ+. Further it can be verified that(c1(γ∗

1 (c2)))α1. Clearly,
(c∗1, c

∗

2) = (α1, α1) is a symmetric Nash equilibrium for this
example.

Example 4: With the help of this example, we will illustrate
that the necessary conditions stated in the previous theorem
need not be sufficient. We shall once again assume that
Dj(γj) =

γj

µj
where µ1 = µ2 = 4. As for the choice of

F (·), we consider an exponential distribution withτ = 4. A
plot of R1(γ1) and c1(γ1) as a function ofγ1 is provided
in Fig. 11. For this example we start by settingc2 = α1.
However we observe that the best responseγ∗

1 (c2) 6= γ+ and
hencec1(γ∗

1 (c2)) 6= c2. Both these pointsγ∗

1 (c2), c1(γ
∗

1 (c2)
and (γ+, α1) are represented in Fig. 11. Clearly,(α1, α1) 6=
(c∗1, c

∗

2) and therefore the sufficiency conditions differ from
the necessary ones.

VI. ESTIMATING THE DISTRIBUTION F

Recall thatF denotes the distribution function for the delay
sensitivity of the arriving customers. The knowledge ofF is
necessary to determine the equilibrium kernelKW introduced
in Theorem 1. Further, the kernelKW must be known for the
revenue maximization problems seen in this paper. However in
most practical situations, the distribution functionF may not
be known and due to the unobservable nature of the queues
it may not be possible to even elicit such information from
the arriving systems. In such situations the only alternative
may be to estimate this distribution function. One possible
method to do so is to vary the admission prices at the servers
and then measure the change in the arrival rate of customers
to the different server and then use the Wardrop equilibrium
conditions to estimateF . In this section, we shall describe
a simple procedure to estimate the underlying continuous
distribution functionF. Our proposed method is well suited
for a monopoly system when the single service provider has
access to both the admission prices. In this section, we also
consider the case whenβ is a discrete random variable. In
this case, the customers are divided into finite number of
classes differing in their values ofβ. The aim is to identify
the value ofβ for the different classes along with the Poisson
arrival ratesλi for the classes. Refer [13], [16], [20] for some
examples of service systems where such discrete customer
classes are considered.

Throughout this section, we shall make the following as-
sumptions. We shall assume that the two servers are modeled
asM/M/1 queues with service ratesµ1 andµ2 and admission
pricesc1 and c2 respectively. With this assumption, we have
Dj(γj) = 1

µj−γj
. It goes without saying that our analysis

will also hold for any delay costDj(·) that is monotonic and
strictly increasing in its arguments. We assume that once the
admission pricesc1 and c2 at the servers are announced and
that the Wardrop equilibrium is achieved, each serverj will
accurately determine or measure the equilibrium arrival rate
γj and the mean delay costDj(γj) for j = 1, 2. Hence the
measured valuesγj and Dj(γj) and the the corresponding
quantities at the Wardrop equilibrium will be assumed to be the
same. We also assume that the total arrival rate of customers
to the system denoted byλ is known a priori and thatc1 > c2,
i.e., the admission price at the first server is higher than the
second. Note that since the distributionF (·) is unknown,
the functionsβ1(·), g1(·), c1(·) also cannot be determined and
used for our procedure.

We begin by estimating the distributionsF that belongs
to a parameterized family, say for example the exponential
distribution. Let the parameter for the exponential distribution
be denoted byα. When c1 and c2 at the two servers are
fixed, the equilibriumγ1 and γ2 at the servers is measured
immediately. We choose ac1, c2 such thatγj > 0 for j = 1, 2.
From this, the mean delay costDj(γj) for j = 1, 2 is also
calculated. Since all the quantities (exceptβ1) in Eq. (3) of
Theorem (1) are known, the thresholdβ1 can be determined as
β1 = c1−c2

D2(γ2)−D1(γ1)
. Now increasec1 to c11 wherec11 = c1+δ

for δ > 0. This decreases the equilibriumγ1 to sayγδ
1 . Let

βδ
1 denote the threshold when the arrival rate to Server 1
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is γδ
1 . Again, using the measurements of the arrival rates

and the delay functionsβδ
1 can be determined from Eq.

(3). Sinceγδ
1 < γ1 < γ+, from Lemma 2, we know that

β1(γ
δ
1) > β1(γ1). This implies thatβδ

1 > β1. Clearly, the

ratio γ1−γδ
1

λ
is the probability of an arriving customer with

β ∈ [β1, β
δ
1 ] and hence

∫ βδ
1

β1

αe−xαdx =
γ1 − γδ

1

λ
. (19)

The only unknown quantity is the exponential parameterα
which can now be obtained from the above equation.

Remark 3: Since the exponential distribution has a single
parameter, the parameter could be obtained using only Eq.
(19). For a parameterized distribution withk parameters, we
need k simultaneous equations in terms of the underlying
parameters. These can be obtained by following the procedure
above fork different admission price

{

ck1
}

at Server 1.

We will now describe a numerical method to obtain a
piecewise constant approximation for the density functionf
that is not necessarily from a parameterized family of distribu-
tion functions. As an example, consider a random variableβ

supported on the range[0, 4]. Suppose the distribution function
is

P (β ≤ x) = F (x) =
x2

16
.

The corresponding density function is denoted byf(x) is x/8
for x ∈ [0, 4]. For this example assume that there are two
M/M/1 servers with service ratesµ1 = 5 and µ2 = 5,
admission prices initially set toc1 = c2 = 5 and the total
arrival rate λ = 5. As earlier, we assume that once the
admission prices at the servers are announced, the Wardrop
equilibrium is reached instantaneously and each servers can
accurately determine the aggregate arrival rates and the mean
delay per customer.

Increasec1 by δ > 0 and for the admission price vector
(c1+δ, c2), measure the equilibrium arrival rates and the mean
delay in the queues and calculate the corresponding threshold
β1 using Eq. (3). Repeat this for a finite number of times,
each time increasingc1 from its previous value byδ. This
experiment is denoted in Table I.

c1 c2 γ1 β1

5.0 5 1.98 2.84
5.2 5 1.69 3.04
5.4 5 1.44 3.20
5.6 5 1.23 3.33
5.8 5 1.05 3.44
6.0 5 0.89 3.53
6.2 5 0.75 3.60
6.4 5 0.63 3.67
6.6 5 0.52 3.37
6.8 5 0.43 3.78

TABLE I
THE TABLE INDICATES THE PRICE VECTOR(c1, c2), THE MEASURED

VALUE OF γ1 AND THE THRESHOLDβ OBTAINED FROM EQ. (3).

0 1 2 3 4
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f(β)
estimate of f(β)

Fig. 12. Comparing the estimate off(·) with the true density function.

Using the earlier notation, we observe from the table that
as c1 increases to, sayc1 + δ, γ1 decreases toγδ

1 while the
thresholdβ1 increases (toβδ

1). As earlier, we have
∫ βδ

1

β1

f(x)dx =
γ1 − γδ

1

λ

where the density functionf(x) is to be estimated. Assume
for all x ∈ (β1, β

δ
1) that f(x) = z, where z is a constant.

By assuming this, we are approximating the density function
f(x) for x ∈ (β1, β

δ
1) by a horizontal line of magnitudez and

thus approximatingf(x) by a piecewise constant function. As
δ → 0, the approximation should converge to the true density
function. We now have

z =
γ1 − γδ

1

λ(βδ
1 − β1).

(20)

The value ofz for a fixedc1 andc1 + δ can be viewed as an
estimate for the density functionf(x) and obviouslyz → f(x)
asδ → 0. These values ofz for different values ofc1 are given
in Table II.

c1 c1 + δ z
5 5.2 0.37
5.2 5.4 0.39
5.4 5.6 0.41
5.6 5.8 0.42
5.8 6.0 0.44
6.0 6.2 0.44
6.2 6.4 0.45
6.4 6.6 0.46
6.6 6.8 0.47

TABLE II
THE ESTIMATESz CAN BE OBTAINED FROM EQ. (20) FROM THE

SUCCESSIVE CHANGES IN THE ADMISSION PRICES AND THE
CORRESPONDING MEASUREMENTS OF THE ARRIVAL RATES.

A plot comparing the true density function and the estimate
is given in Fig. 12. The plot shows that the estimate of
the density function is reasonably accurate and for better
estimation, one naturally required more of such measurement
points.
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Fig. 13. Estimating the discrete distributionF

There is however a limitation to this method. Note that when
c1 = c2, the corresponding value ofβ1 = 2.84. Any increase
or decrease in eitherc1 or c2 cannot result in aβ1 such that
β1 < 2.84. This is because, for the underlying distribution we
have from Eq. (8) thatβ1(γ

+) = 2.84 and for anyγ ∈ [0, λ]
with γ 6= γ+, we haveβ1(γ) > β1(γ

+). As a result, the
density functionf(x) cannot be estimated forx ≤ 2.84.

A. Estimating Discrete Distribution

We shall now consider the case where the distributionF
is a discrete distribution withM point masses. Thus, there
are M customer classes and we will assume that for each
Class i, the associated waiting costβi and the arrival rate
λi are unknown. Further,β1 > β2 . . . > βM . See [13] for the
analysis of Wardrop equilibrium of such a model. We continue
with the assumption that there are two servers each charging
an admission pricec1 and c2. We begin by settingc2 = 0
and c1 to an arbitrarily large value such thatγ1 = 0 while
γ2 = λ. This is represented in part (a) of Fig. 13. It goes
without saying that the necessary assumption is thatµ2 > λ.
Now start decreasingc1 in steps of sizeδ and stop at the
first instance whenγ1 increases to an arbitrarily small value
ǫ. We use the notationcj1 andγj

1 to denote the admission price
and the arrival rate at Server1 when c1 is decreasedj times
by δ, i.e., whencj1 = c1 − jδ. γ1 = ǫ implies that the most
sensitive delay classβ1 must now be using Server 1 along
with Server 2. Since the delay function at each queue can be
measured,β1 can be easily determined from the corresponding
Wardrop condition

cj1 + β1D1(γ
j
1) = β1D2(γ

j
2).

We will now determineλ1 corresponding to thisβ1. Continue
decreasingc1. The proportion of Class1 customers using
Server1 keeps increasing till all Class1 customers use only
Server 1. When this happens, the corresponding Wardrop
equilibrium condition for somek > j satisfies

ck1 < β1

(

D2(γ
k
2 )−D1(γ

k
1 )
)

and this is represented by part (b) in Fig. 13. For a Class
2 customer to start using Server 1, the Wardrop equilibrium
condition is

cm1 = β2 (D2(γ
m
2 )−D1(γ

m
1 ))

wherem > k. Further sincem > k, we have

β2 (D2(γ
m
2 )−D1(γ

m
1 )) < β1

(

D2(γ
k
2 )−D1(γ

k
1 )
)

.

and hence for alll such thatk < l < m, we have

β2 (D2(γ
m
2 )−D1(γ

m
1 )) < cl1 < β1

(

D2(γ
k
2 )−D1(γ

k
1 )
)

.

This means that for anycl1 satisfyingck1 < cl1 < cm1 , γl
1 andγl

2

remain unchanged. Clearly in this caseλ1 = γl
1. Fig. 13, part

(c) represents the fact that for anyc1 > cm1 , Class 2 customers
use both the servers at Wardrop equilibrium. Continue this
process till all theλi, βi as well as the number of customer
classesM is determined. It should be noted that the accuracy
of our method increases asδ → 0. A downside of a smallδ is
that the procedure may take a very long time to discover the
system parameters.

VII. SUMMARY AND FUTURE WORK

In this paper, we have considered the problem of revenue
maximization in parallel server systems. We specialize with
the case of two servers and first assume the case when both
the servers belong to the same service provider. The admission
price at one of the server is required to be fixed and the
service system can change the admission price at the other
server to maximize its revenue. The Wardrop equilibrium when
customers are heterogeneous and strategic has already been
characterized in our earlier paper. We use this characterization
to simplify the revenue maximization program to make it
more amenable to analysis. The equivalent program is easy to
interpret, analyze and provides more insight into the problem.
While it is intuitive that for a fixedc2, the revenue maximizing
c1 should always be greater thanc2, the program enables to
characterize the revenue maximizingc∗1 as a function ofc2.

In the second part of the paper, we consider the duopoly
model where each server competes with the other one to
maximize its revenue. This is a standard game-theoretic
problem and the aim is to identify the Nash equilibrium
set of prices. We see however that since the customers are
heterogeneous, the first order necessary conditions are not
easy to solve. Instead, we characterize this Nash equilibrium
for a simplified case when the two servers are identical in
their delay characteristics. In this case we are interestedin the
symmetric Nash equilibrium prices. We provide the necessary
condition for this case and identify the Nash equilibrium prices
for different distributionsF and delay cost functionsD(·).

In both these problems problems and also in the social
welfare maximization problem of our previous paper, an
important assumption is that the distribution functionF is
known. We relax this assumption in Section VI and provide a
procedure to estimate this distribution. The proposed method
is of course preliminary and assumes that one is allowed
to change admission price any number of time to measure
the change in the equilibrium arrival rate. Further, we have
assumed that there is no cost to making such measurements. A
more realistic method incorporating these practical limitations
may make the problem more relevant and this is part of future
work.
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APPENDIX

Lemma 1

Proof: We first prove thatγ1 ∈ [0, γ+] implies c1 ≥ c2.
Recall the definition ofγ+ that

γ+ = {γ1 : D1(γ1) = D2(γ2)} .

SinceDj(γj) is monotonic and increasing inγj for j = 1, 2
and thatγ2 = λ − γ1 we haveD1(γ1) ≤ D2(γ2) for γ1 ∈
[0, γ+]. Now let γ1 = 0. Since no customer uses Server 1 at
equilibrium, this implies thatc1+βD1(0) > c2+βD2(λ) for
all β. SinceD1(0) < D2(λ) (assumption)c1 > c2 must be
true.

When γ1 = γ+, we will show thatc1 = c2. Suppose this
is not true, i.e.,γ1 = γ+ while c1 6= c2. γ1 = γ+ implies
D1(γ1) = D2(γ2). As c1 6= c2, customers have an incentive
to move from the server with a higher admission price to the
one with a lower price. This implies thatγ1 = γ+ is not an
equilibrium and this is a contradiction.

Now considerγ1 ∈ (0, γ+) whereD1(γ1) < D2(γ2). From
Theorem 1,γ1 ∈ (0, γ+) implies β1 ∈ (a, b) and hencec1 +
β1D1(γ1) = c2+β1D2(γ2). SinceD1(γ1) < D2(γ2) we have
c1 ≥ c2.

We now prove that ifc1 ≥ c2, thenγ1 ∈ [0, γ+]. We first
show that whenc1 = c2, we haveγ1 = γ+. Suppose that
when c1 = c2, γ1 6= γ+. From the definition ofγ+ we have
D1(γ1) 6= D2(γ2) and hence customers have an incentive to
move from the server with higher expected delay to the one
with lower expected delay. This implies that whenc1 = c2,
γ1 6= γ+ is not an equilibrium.

Now let c1 > c2. From Theorem 1 we have eitherβ1 = a
or β1 = b or β1 ∈ (a, b). The caseβ1 = a corresponds to
the case when all customers choose Server 2 at equilibrium
and this cannot happen! This is because whilec1 > c2, we
have also assumedD1(λ) > D2(0). K

W with β1 = a will be
possible only if

c1 − c2 ≤ β(D2(0)−D1(λ))

for all β ∈ [a, b]. Now this is not possible as the left hand
side is positive while the right hand side is negative. It is
straightforward to see that whenβ1 = b, we haveγ1 = 0
and henceγ1 ∈ [0, γ+]. When β1 ∈ (a, b) we havec1 +
β1D1(γ1) = c2 + β1D2(γ2). Again, sincec1 > c2, we have
D1(γ1) ≤ D2(γ2) and this requiresγ1 ∈ (0, γ+). The proof
for γ1 ∈ (γ+, λ] follows along similar lines and will not be
provided. This completes the proof.

Lemma 2

Proof: From Lemma 1,γ1 ∈ [0, γ+) implies thatc1 > c2
while γ1 ∈ (γ+, λ] implies c1 < c2. Now from Theorem 1,
whenc1 > c2, we have

γ1 = λ

∫ b

β1

1dF (β) = λ(1− F (β1)).

Similarly, whenc1 < c2 we have

γ1 = λ

∫ β1

0

1dF (β) = λ(F (β1)).

Now β1(γ1) defined as the value of thresholdβ1 when the
equilibrium arrival rate to Server 1 isγ1 can be represented
as follows.

β1(γ1) =

{

β :
∫ b

β
λdF (β) = γ1 for 0 ≤ γ1 < γ+,

β :
∫ β

a
λdF (β) = γ1 for γ+ < γ1 < λ.

(21)

Now as seen earlier,F (·) is absolutely continuous and strictly
increasing in its domain. Further, the support is[a, b] and
henceF (·) is a bijective function whose inverse exists. In fact
F−1(·) is continuous and strictly increasing in its domain. The
statement of the lemma now follows.

Lemma 3

Proof: Recall our assumption thatDj(γj) is continuous
and monotone increasing inγj wherej = 1, 2. Sinceγ2 =
λ− γ1, (D2(λ− γ1)−D1(γ1)) is monotone decreasing inγ1
for 0 ≤ γ1 ≤ λ. Recall Eq. (8) that determinesβ1(γ1). For
0 ≤ γ1 < γ+, β1(γ1) is continuous and strictly decreasing.
The continuity follows from that ofF−1(·). SinceF−1(·) is

strictly increasing in its arguments,F−1
(

λ−γ1

λ

)

= β1(γ1)

is decreasing inγ1. Clearly, g1(γ1) is monotone decreasing
whenγ1 is such that0 ≤ γ1 < γ+.

Whenγ1 is such thatγ+ < γ1 ≤ λ, from the definition of
γ+, we have(D2(λ − γ1) − D1(γ1)) < 0. In this range of
γ1, it can be seen from Eq. (8) thatβ1(γ1) is continuous and
increasing inγ1. This again implies thatg1(γ1) is continuous
decreasing whenγ1 satisfiesγ+ < γ1 ≤ λ.

g1(γ
+) = 0 follows from the definition ofγ+ where

D1(γ
+) = D2(λ−γ+). The continuity atγ+ is obvious from

the fact thatg1(γ+) = 0 and limγ1→γ+ g1(γ1) = 0.

Lemma 4

Proof: Suppose∆ ≥ g1(0). From the definition of∆ and
from Eq. (5), this implies that

c1 − c2 ≥ b (D2(λ)−D1(0))

≥ β (D2(λ) −D1(0))

for all β ∈ [a, b]. From the Wardrop equilibrium condition,
this implies thatKW (β, ·) = δ2 for β ∈ [a, b]. This implies
thatγ1 = 0 and from Eq. (2) we haveβ1 = b. Similarly when,
∆ ≤ g1(λ) < 0 we have

c1 − c2 ≤ b (D2(0)−D1(λ))

≤ β (D2(0)−D1(λ))

where β ∈ [a, b]. Again, from the Wardrop equilibrium
condition, this implies thatKW (β, ·) = δ1 for β ∈ [a, b].
Henceγ1 = λ and from Eq. (2), we haveβ1 = b.

Now supposeg1(λ) < ∆ < g1(0) where we know that
g1(0) > 0 and g1(λ) < 0. From Lemma 3, we know that
g1(γ1) is monotonically decreasing inγ1. Therefore there
exists a uniqueγ with 0 < γ < λ such that∆ = g1(γ).
This proves the uniqueness ofγ1. To see howβ1 = β1(γ)
note that∆ = g1(γ) implies that

c1 − c2 = β1(γ) (D2(λ− γ)−D1(γ)) .
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Now if γ ≤ γ+ we haveD2(λ− γ) > D1(γ). In this case,

c1 − c2 ≤ β (D2(λ− γ)−D1(γ))

for β ∈ [a, β1(γ)]. This means thatKW (β, ·) = δ2 for all
β ∈ [a, β1(γ)]. Similarly, we have

c1 − c2 ≥ β (D2(λ− γ)−D1(γ)) (22)

andKW (β, ·) = δ1 whenβ ∈ [β1(γ), b]. Similar arguments
hold whenγ > γ+ and henceβ1 = β1(γ) wheng1(0) < ∆ <
g1(λ).

From Theorem 1,KW is characterized byβ1 and for a
fixed ∆, β1 is unique. This implies uniqueness ofKW . It is
important to mention thatKW is unique when∆ = 0 because
of the assumptions made to ensureβ1(γ1) well defined at
γ1 = γ+.

Lemma 5

Proof: Supposec2 satisfiesc2 < −g1(λ). Assume that
c1 = 0 so that we have∆ > g1(λ). From Lemma 4 this
implies that the equilibriumγ1 satisfiesg1(γ1) = ∆ = −c2.
Let us label thisγ1 as γ̂. Now increasec1 from c1 = 0 by a
smallǫ > 0 such that there existsγ1 that satisfies∆ = ǫ−c2 =
g1(γ1). Now from the monotonicity ofg1(·) it is clear that the
equilibriumγ1 is decreasing as∆ increases. This implies that
a higher∆ caused by increasingc1 will only lead to a γ1
satisfyingγ1 < γ̂. Clearly, for any choice ofc1 ≥ 0, we have
γ1 /∈ [γ̂, λ] and hence for this caseγ1(c2) = γ̂.

Now suppose that−c2 ≤ g1(λ). Whenc1 = 0, this implies
∆ ≤ g1(λ) and from Lemma 4 this impliesβ1 = b with the
correspondingγ1 satisfyingγ1 = λ. As we increasec1, the
equilibrium γ1 decreases and henceγ1 satisfiesγ1 ∈ [0, λ].
The compact representation now follows.

Lemma 6

Proof: To reduce the notations, we representγ∗

j (cj−)
by γ∗

j in the proof of the lemma. We shall prove that
γ∗

1 /∈
{

0, γ1(c2)
}

and the proof forγ∗

2 /∈
{

0, γ2(c1)
}

is along
similar lines. Supposeγ∗

1 ∈ {0, λ} . Then from the requirement
that γ∗

1 = λ − γ∗

2 , we have either (1)γ∗

1 = 0 andγ∗

2 = λ or
(2) γ∗

1 = λ andγ∗

2 = 0. First consider the case whenγ∗

1 = 0
andγ∗

2 = λ. This implies thatR1(c1(0), 0) = 0 and hence the
revenue made by Server 1 at equilibrium is zero. Further since
this is an equilibrium, there is no incentive for the server to
change the admission price and increase its revenue. We shall
now show that this is not true. From Theorem 2, we know
that for a givenc2, the admission price at Server1 must be
at leastc2 + g1(0) > 0. Now we know that settingc1 = c2
will result in γ1 = γ+. Now due to the assumption that (1)
D1(0) < D2(λ) and (2)D2(0) < D1(λ), there exists anǫ > 0
such that settingc1 = c2 + ǫ will result in γ1 ∈ (0, γ+). The
revenue earned is non-zero and there is clearly an incentiveto
deviate from any value greater thanc2 + g1(0). This implies
thatγ∗

1 = 0 andγ∗

2 = λ is not possible. The proof forγ∗

1 = λ
andγ∗

2 = 0 is along the same lines.
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