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Abstract

Computing values in cooperative games is a hard task because, in general, it involves the evalu-
ation of a non-polynomial number of terms. Sampling theory gives alternative ways to approx-
imately compute these values and, at the same time, measures the error of these estimations.
In this paper we present an attempt to estimate values in cooperative games of any number of
players using a probabilistic approximation of a cooperative game. We apply this technique to
several well-known games and report on the computational results of our approximation.
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1. Introduction

Let (N, v) be a cooperative game with set of players N = {1, . . . , n} and characteristic
function v, v(∅) = 0, and let GN denote the class of N -person cooperative games. The main
goal of this class of games is to allocate the grand coalition payoff v(N) among the players in
the game. There exist many allocation rules with a number of different properties and any of
these rules may be considered as a solution concept of the game.

A well-accepted solution concept in cooperative game theory is the concept of value. A value
α : GN → Rn is a n-tuple of real numbers (one per agent in the grand coalition) where the i-th
component is the amount allocated to agent i in the game (N, v).

These values are determined by the properties required to them. Linearity is a desirable
property that has been required to most of the values considered in the literature. Thus, we will
be interested in studying values whose functional form fits into the following formula:

α (v∗) =
∑
S∈U

a(S) ◦ v∗(S), (1)

where ◦ is the Hadamard product of vectors, a(S) = (a1(S), . . . , an(S))t, S ∈ U are real n-
vectors depending only on S, U = 2N the family of all the coalitions of the game and v∗ =
(v∗(S))tS∈U , where v∗(S) := (v1,∗(S, v), . . . , vn,∗(S, v))t are n-vectors of real values depending on
S, the characteristic function of the game and eventually on each player in the game. There are
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puerto@us.es (Justo Puerto)

Preprint submitted to Elsevier February 20, 2018



many examples of these values although the best known may be the Shapley value, the family
of semivalues [4] and least squares values [14].

• The Shapley value of the i-player, for the cooperative game (N, v), is defined as

φi(v) =
∑

S⊆N\{i}

s! (n− s− 1)!

n!
(v(S ∪ {i})− v(S)), (2)

where |S| = s denotes the cardinal of the set S. The Shapley value corresponds to

the form given in (1) with ai(S) equal to s!(n−s−1)!
n! , if i 6∈ S and zero otherwise; and

vi,∗(S) := v(S ∪ {i})− v(S).

• The semivalues, introduced by Dubey et al. [4], are similar to the Shapley values but with
different systems of coefficients:

ψi(v) =
∑

S⊆N\{i}

ps(v(S ∪ {i})− v(S)),

with ps ≥ 0, s = 0, . . . , n − 1, real numbers such that
∑n−1

s=0

(
n−1
s

)
ps = 1. The semivalue

ψ corresponds to (1) with a(S) = ps, for S ⊂ N \ {i}; a(S) = 0 otherwise, and vi,∗(S) :=
v(S ∪ {i})− v(S).

• The family of least squares values introduced by [3] and [14] also fits to this framework
(1). The least squares value for player i is defined as:

xi(v) =
v(N)

n
+

1

nκ
(nami (v)−

∑
j

amj (v)) (3)

where ami (v) =
∑

i∈S⊂N m(s)v(S), |S| = s and κ =
∑n−1

s=1 m(s)
(
n−2
s−1
)
. The reader is

referred to (19) to check that xi(v) can expressed in the form of (1). Indeed, xi(v) =
v(N)
n +

∑
S∈U

ai(S)v∗(S), with ai(S) equal to (n−s)m(s)
nκ , if i ∈ S and − sm(s)

nκ , otherwise; and

vi,∗(S) = v(S), S ∈ U .

In general, computing any value α (v∗) of a cooperative game is NP -hard, since the number
of evaluations needed to obtain it requires the evaluation of some expression for all the coalitions
S ⊆ N which is of the order O(2n). To avoid this inconvenience several authors have proposed
different methodologies. Owen [12] proposed a method to compute the Shapley value via a
probabilistic approximation of the game by a normal distribution. A different approach, using
generating functions, only valid for simple games, is given in Bilbao et al. [1]. A first approach
to approximate Shapley values of cooperative games using sampling can be found in Fernndez
et al [5], [6]. Later, Keinan et al. [10] apply similar techniques to estimate Shapley values of
some neurocontroller games that appear in neuroscience. In [2] the authors rediscover the above
methodology and apply it to some standard cooperative games.

In this paper we present a new method for approximating values of cooperative games.
Rather than computing the exact values we concentrate on providing good estimations of these
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values with their corresponding measure of errors. To this end, we use a general probabilistic
approximation of a cooperative game. On this approximation, we define a probabilistic value
that is seen as an estimator of the actual value of the original game. This estimator is unbiased,
consistent and with controlled quadratic error. Our computational experiments in different
games with large number of players confirm the viability of our approach.

The paper is organized in four sections. After the introduction, the second section defines
the probabilistic approximation of a cooperative game, and proves its main statistical and dis-
tributional properties. In Section 3 we present our family of estimators and their properties.
Finally, in section four we test the above mentioned estimators on four different well-known
classes of cooperative games showing the efficiency of the method.

Through this paper we will assume the usual conventions
∑b

a · = 0 and
(
a
b

)
= 0 if a < b.

2. The probabilistic approximation of a cooperative game

The goal of this section is to define a probabilistic approximation of a game (N, v) that
allows us to estimate its values. The study of probabilistic or stochastic cooperative games is
not new. The reader is referred to [8, 9, 15, 16, 17] for different approaches and further analysis
on this class of games.

Let U = 2N be the family of all the coalitions of the game and let Uτ be the τ -fold cartesian
product of U . Therefore, any element S ∈ Uτ , is a vector S = (S1, . . . , Sτ )t where each Si ⊆ N .
We assume further that we are given a probability distribution p on U . Thus, for any S ∈ U ,
p(S) is the probability of choosing the coalition S. For simplicity, we will assume that p(S) > 0,
for all S ∈ U , although, as we will see later, this condition is not essential. This probability, p,
induces on the space Uτ the natural product probability.

We introduce a set of random vectors ṽ∗(S) := (ṽ1,∗(S), . . . , ṽn,∗(S)) associated with each
coalition of the original game. For each coalition S and player i ∈ N , let us define the random
variable ṽi,∗(S) := ṽi,∗(S; τ, p, S) as

ṽi,∗(S) =
MS(S)

τp(S)
vi,∗(S) (4)

where MS := MS(S) = #{j : Sj ∈ S and Sj = S} is the number of times that coalition S
appears in the random vector of coalitions S. Note that the random vector M = (MS)S∈U
follows a multinomial distribution with parameters τ (number of elements in the sample S) and
p = (p(S))S∈U (vector of probabilities of selection for each possible set in the sample S). We
denote this fact by M ∼M (τ ; p) . We recall now some properties of multinomial vectors that
will be useful in the following:

• EM = τp.

• V ar (M) = τΛ, with Λ = diag(p)− ppt.

• M
τ

a.s.−→ p, as τ −→∞.

•
√
τ
(M
τ − p

) d−→ W, as τ −→∞, with W following a 2n-dimensional normal distribution
with mean 0 and variance matrix Λ, i.e., W ∼ N2n (0, Λ).
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From the properties of the multinomial vector M given above, it is not difficult to establish
the following properties for the random elements ṽi,∗ = (ṽi,∗(S))S∈U . For simplicity throughout
this paper we will assume that the characteristic function v (and ṽ) take values in the set of
real numbers. The extension of our results to the case of vectorial characteristic functions is
straightforward [13].

Theorem 1. For all S ∈ U and i ∈ N ,

(a) Eṽi,∗(S) = vi,∗(S).

(b) Var (ṽi,∗(S)) =
1− p(S)

τp(S)
v2i,∗(S)

(c) Cov(ṽi,∗(S), ṽi,∗(T )) = −vi,∗(S) vi,∗(T )

τ

(d) ṽi,∗(S)
a.s.−→ vi,∗(S), as τ −→∞.

(e) Let vi,∗ = (vi,∗(S))S∈U and ṽi,∗ = (ṽi,∗(S))S∈U , then
√
τ (ṽi,∗ − vi,∗)

d−→ Z ∼ N2n (0, ∆),
as τ −→∞, where

∆ := diag

(
v2i,∗(S)

p(S)

)
S∈U

− vi,∗v
t
i,∗

Proof. Recall that M = (MS)S∈U follows a multinomial distribution, then for all S ∈ U ,
MS ∼ Binomial(τ, p(S)), so EMS = τp(S) and Var(MS) = τp(S) (1− p(S)). Also, for S, T ∈ U
with T 6= S, Cov(MS ,MT ) = −τp(S)p(T ).

(a) For all S ⊂ N ,

Eṽi,∗(S) = E

(
vi,∗(S)MS

τp(S)

)
=
vi,∗(S)

τp(S)
EMS = vi,∗(S).

(b) Using standard properties of the variance, we have

Var (ṽi,∗(S)) = Var

(
vi,∗(S)MS

τp(S)

)
=

(
vi,∗(S)

τp(S)

)2

Var (MS) =
1− p(S)

τp(S)
v2i,∗(S).

(c) We have,

Cov(ṽi,∗(S), ṽi,∗(T )) = Cov

(
vi,∗(S)MS

τp(S)
,
vi,∗(T )MT

τp(T )

)
= −vi,∗(S) v∗(T )

τ2p(S)p(T )
Cov (MS , MT )

= −vi,∗(S) v∗(T )

τ
.

(d) It is straightforward from the fact that MS/τ
a.s.−→ p(S), as τ ↑ +∞, for all S ∈ U .
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(e) Observe that ṽi,∗ = diag
(
vi,∗(S)
τp(S) , S ∈ U

)
M, then the asymptotic normality follows from the

asymptotic normality of the multinomial vector M and the limit covariance matrix follows
from (a) and (b).

In the statistical language, we may interpret ṽi,∗(S) as an ‘estimator ’ of the value vi,∗(S)
based on a sample of size τ . So, property (a) in Theorem 1, means that the ‘estimator ’ ṽi,∗(S)
is unbiased for vi,∗(S), for any S ∈ U . Properties (b) and (c) allow us to determine variances
and covariances between these ‘estimators’. Properties (d) and (e) (consistency and asymptotic
normality) show how the ‘estimators’ behave as the sample size increases: they approach the
‘true values’. Note that here, we use ‘estimator ’ rather than estimator, because in the strict
statistical sense an estimator must not depend on the estimated value. Anyway, we believe that
this statistical interpretation is interesting as we will see in the following sections.

3. Estimation of values in a cooperative game

The main practical difficulty with quantities of the form given in (1) is that they are not
easy to compute due to the fact that there are too many terms in the sum (usually 2N−1 or 2N ).
The aim of this section is to provide approximations to these values based on the probabilistic
approximation to the game given in section 2.

Our approach is based on a sample of size τ , S = (S1, . . . , Sτ ) selected according to the
probability scheme described in the previous section. The proposed probabilistic approximation
to α (v) is given by:

α̃ (v∗) := α (ṽ∗) =
∑
S∈U

a(S) ◦ ṽ∗(S) =
∑
S∈U

a(s) ◦ v∗(s)
τp(S)

MS =

(
1

τ

∑
S∈S

ai(S)vi,∗(S)

p(S)

)
i∈N

, (5)

where ◦ is the Hadamard product of vectors and the last equality uses the fact that MS = 0 for
all S /∈ S. The advantage of using this approximation is that it involves a much smaller number
of terms in the summation than the true expression of the value.

Now, we will study some properties of these approximations. In the sequel and for the sake
of presentation we will assume that for any vector x ∈ Rn, its squares x2 = (x21, . . . , x

2
n)t = x◦x,

denotes the Hadamard product of x times itself.

Theorem 2. The approximation α̃ (v∗) = (α̃i (v∗))
n
i=1 satisfies:

(a) Eα̃i (v∗) = αi (v∗) , ∀ i ∈ N.

(b) V ar(α̃i (v∗)) = 1
τ

{∑
S∈U

a2i (S)v2i,∗(S)

p(S)
− α2

i (v∗)

}
:= 1

τ σ
2
i , ∀ i ∈ N.

(c) α̃ (v∗)
a.s.−→ α (v∗), as τ −→∞.

(d)
√
τ
(
α̃i (v∗)− αi (v∗)

)
/σi

d−→ Z ∼ N (0, 1) , ∀ i ∈ N.
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Proof. These results are straightforward from Theorem 1 and the explicit expressions for α (ṽ∗)
given in (5).

We will follow the usual convention 0/0 = 0. With this convention we can assign p(S) = 0 in
those expressions of S with ai(S) = 0. Doing so, expressions like a(S)◦ṽ∗(S) = MSv∗(S)/(τp(S))
and similar ones make sense.

Again, property (a) in Theorem 2 shows that our approximations are unbiased and property
(b) means that as the sample size increases, i.e., τ →∞, the approximation approaches (almost
surely) the true value α (v∗). The vector σ2 = (σ21, . . . , σ

2
n)t, in Theorem 2(b) is related to the

precision of our approximations. Let us write

σ2 := A1 −A2, where A1 :=
∑
S∈U

a2(S) ◦ v∗(S)

p(S)
and A2 := α2(v∗),

and let us define

Ã1 :=
1

τ

∑
S∈S

a2(S) ◦ v2∗(S)

p2(S)
.

We have

EÃ1 :=
1

τ
E

(∑
S∈S

a2(S) ◦ v2∗(S)

p2(S)

)
=

1

τ
E

(∑
S∈U

a2(S) ◦ v2∗(S)

p2(S)
MS

)

= E

(∑
S∈U

(
a2(S) ◦ v∗(S)

p(S)

)
◦ ṽ∗(S)

)
=
∑
S∈U

a2(S) ◦ v∗(S)

p(S)
◦ Eṽ∗(S) = A1,

then the approximation Ã1 is unbiased for A1 and as an approximation to σ2 we propose

σ̃2 := Ã1 − α̃2(v∗). (6)

In practise, we should determine the sample size τ in such a way that α̃ (v∗) is ‘close enough’
to α (v∗). For that purpose, the normal approximation given in property (d) of the previous
theorem is useful. For instance, suppose that τ will be determined under the condition that

P
(∣∣∣α̃i (v∗)− αi (v∗)

∣∣∣ > ε
)
≤ β

where ε > 0 and β ∈ (0, 1) are given. Using the normal approximation, we obtain

τ ≥
(
σi
ε

Φ−1
(

1− β

2

))2

(7)

where Φ−1 denotes the inverse of the distribution function of a N (0, 1) random variable.
The formula (7) for the sample size may have the drawback that the value of σ2i is not known.

The solution is that we must approximate σ2i using a sample of size τ1 (usually much smaller
that τ). This smaller sample plays here the same role as the pilot samples (or training samples)
frequently used in Statistics to obtain brief estimators of quantities of a secondary interest.
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These brief estimators are used to estimate some other quantities with more precision. As an

approximation to the unknown variance, σ2i , we propose here the use of σ̃2i,τ1 , obtained from the
expression given in (6) by using a pilot or training sample of size τ1. Finally, the sample size, τ ,
is calculated by using (7) with σi replaced by its approximation σ̃i,τ1 .

Also, the normal approximation can be used to obtain an (approximated) (1−β)- confidence
interval for α (v∗)

α̃(v∗)±
σ̃√
τ

Φ−1(1− β/2) (8)

These intervals can be useful to obtain some information about the precision of the procedure
used in the approximation.

To illustrate the above developments we include an easy cooperative game where all the
elements described a in this section can be followed.

Example 3. A worked example: Mean value and Shapley value from symmetric voting Let us
consider the game (N, v) where N = {1, 2, . . . , n} and the characteristic function is v(S) = 1,
if |S| > n/2 and 0 otherwise. Suppose, for simplicity, that n is odd. Let us estimate the mean
value of the characteristic function of all coalitions containing player i, namely,

αi(v) =
1

2n−1

∑
S: i∈S⊂U

v(S). (9)

Observe that in this case we have vi,∗(S) = v(S), for all S ⊆ N and for all i ∈ N . Then, for any
i, it is not difficult to check that αi(v) = 1/2.

For the estimation of (9) we select subsets with uniform probability, p(S) = 2−(n−1), in the
family of sets not containing the i-player, i.e., for S such that i ∈ S and p(S) = 0 otherwise. So,
the approximation proposed in (5) is

α̃i(v) :=
1

τ

∑
S∈S

v(S), (10)

where S = (S1, . . . , Sτ ) is the random sample of size τ of the selected subsets. Using (6), we get

σ̃2i =
1

τ

∑
S∈S

v2(S)− α̃i2. (11)

It is an easy exercise to check that W :=
∑

S∈S v(S) is the number of subsets with cardinal >
n/2 among the τ selected. Clearly W follows a binomial distribution with parameters τ and
parameter of success P (|S| > n/2) = 1/2, that is to say W ∼ Binomial(τ, 1/2).

Using elementary properties of binomial distributions, it is not difficult to obtain directly the

properties established in Theorem 2, for instance, Eα̃i(v) = 1/2; V ar(α̃i(v)) = σ2i /τ with σ2i =

1/4 and also the asymptotic properties α̃i(v)
a.s.−→ 1/2, and 2

√
τ
(
α̃i (v)− 1/2

)
d−→ N (0, 1), as

τ −→∞.

We shall also illustrate the approximation of the Shapley value of this game. In this very
simple game the exact Shapley value is φi = 1/n, for i = 1, . . . , n.
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We take v∗,i(S) = v(S∪{i})−v(S) = 1 if S ⊂ N \{i} and |S| = bn/2c; vi,∗(S) = 0 otherwise.
Under the uniform sampling scheme described above

φ̃i(v) =
1

τ
F and σ̃2i = φ̃i(v)(1− φ̃i(v)),

where F=number of subsets with cardinal equal to bn/2c among the τselected. It is clear

that F ∼ Binomial(τ, 1/n), and again it is immediate to check directly that Eφ̃i(v) = φi,

Var(φ̃i(v)) = σ2i /τ with σ2i = (n − 1)/n2 and the asymptotic properties φ̃i(v)
a.s.−→ 1/n, and

√
τ
(
φ̃i(v)− 1/n

)
d−→ N

(
0, n−1

n2

)
, as τ −→∞.

4. Applications to some distinguished cooperative games

In this section we will apply the concepts presented in the previous sections to some distin-
guished cooperative games: the gloves game, the airport game, the voting game and the linear
production game. For these games we discuss the estimation of mainly two values that capture
the powerfulness and flexibility of our approach: the mean value of the characteristic function of
all coalitions containing player i, and the Shapley and the least square value of the i-th player,
see (2) and (3).

We define the mean value of the characteristic function of all coalitions containing player i
as:

αi(v) =
1

2n−1

∑
S: i∈S⊂U

v(S). (12)

4.1. Sampling strategies

For the estimation of (12) we select subsets with uniform probability, p(S) = 2−(n−1), in the
family of sets containing the i-player, i.e., for S such that i ∈ S and p(S) = 0 otherwise. So, the
approximation proposed in (5) is

α̃i :=
1

τ

∑
S∈S

v(S), (13)

where S = (S1, . . . , Sτ ) is the random sample of size τ of the selected subsets. Using (6), we get

σ̃2i =
1

τ

∑
S∈S

v2(S)− α̃i2. (14)

As we have seen in Section 3, our methodology applies to any sampling scheme, e.g., parame-
ters p(S). Nevertheless, to show our results we have resorted to two more sampling strategies: 1)
Weighted sampling (WSS) and 2) Stratified sampling (SSS). In the following, we briefly describe
these two strategies.
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4.1.1. Weighted Sampling strategy

We select random subsets within the family of coalitions in two stages. Firstly, we choose
the size s with uniform probability and in the second stage we choose at random a subset of
size s with uniform probability within the resulting set of coalitions. Depending on whether we
impose that a given player should belong or not to the corresponding set of coalitions it gives
rise to slightly different probabilities and estimators.

For the case in which S and S ∪ {i} are to be considered, we choose s ∈ {0, . . . , n − 1},
the size of the subset (possibly empty) that does not contain player-i with uniform probability
(1/n) and in the second stage we choose at random a subset of size s with uniform probability
(1/
(
n−1
s

)
). Then,

p(S) =
1

n
(
n−1
s

) =
s!(n− s− 1)!

n!
, for S such that i /∈ S, (15)

and p(S) = 0 otherwise. We will refer to this strategy as (WSS1).
In the case in which is not required that i should be in S, we choose the size of the subset

s ∈ {1, . . . , n− 1} (excluding ∅ and N) with uniform probability (n− 1)−1. Secondly, we choose

a subset of size s with uniform probability
(
n
s

)−1
. Therefore:

p(S) = p(s) =
1

(n− 1)
(
n
s

) , for S such that i ∈ S, (16)

and p(S) = 0 otherwise. We will refer to this strategy as (WSS2).

4.1.2. Stratified sampling strategy

This strategy selects independent random samples of size τs within the family of coalitions
of size s. If we require, for instance, that player i belongs to each chosen coalition and we draw
uniformly within that collection of coalitions, then

p(S) =
1(
n−1
s−1
) , if i ∈ S and |S| = s,

and 0 otherwise. We will refer to this strategy as (SSS).

4.2. Estimation of the Shapley Value

As we mentioned in the introduction, the Shapley value may be the most important value for
cooperative games. For that reason, we devote this section to derive specific implementations
of the stochastic approximation presented above to the Shapley value. For the estimation of
the Shapley value associated to the i-player, see (2), we will use two different approaches. The
first one is based in its original expression (2) and the second one is based on the least squares
formulas (3). The choice of the estimation motivates different sampling strategies.
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4.2.1. Computing the Shapley value from the standard formula (2)

In order to apply our methodology to estimate the Shapley value using the original expres-
sions (2), we can apply WSS1.

Then, the approximations given in (5) and (6) yield respectively,

φ̃i =
1

τ

∑
S∈S

v∗,i(S) and σ̃2i =
1

τ

∑
S∈S

v2∗,i(S)− φ̃i
2
. (17)

4.2.2. Computing the Shapley Value from the Least Squares formula

To perform the estimation of Shapley value from (3), we first show how to adapt the Least
Squares formula (3) to be applicable within our framework to estimate this value. Then, we will
compare two implementations of the stochastic approximation, relying on different interpreta-
tions of the Least Squares formula that lead to two different sampling strategies: 1) a weighted
sampling; and 2) a stratified sampling.

The Least Squares value of a cooperative game is [14]:

xi(v) =
v(N)

n
+

1

nκ
(nami (v)︸ ︷︷ ︸
1st term

−
∑
j

amj (v))︸ ︷︷ ︸
2nd term

, (18)

where ami (v) =
∑

i∈S⊂N m(s)v(S), |S| = s and κ =
∑n−1

s=1 m(s)
(
n−2
s−1
)
. Formula (18) can be

rewritten as a weighted sum in the form of (1) (in which U are all non empty and proper subsets
of N):

xi(v) =
v(N)

n
+
∑
S∈U

ai(S)v(S). (19)

In equation (19) the weights ai(S) are determined as follows: the values v(S) appear in (18)
for all S ⊂ N . If i ∈ S, the term v(S) appears in the first term with weight nm(s), then in the
second term with weight sm(s) (one for each j ∈ S). If i /∈ S, v(S) appears only in the second
term with weight sm(s). So that:

ai(S) =


(n−s)m(s)

nκ , i ∈ S

− sm(s)
nκ , i /∈ S.

(20)

The Shapley value is then obtained when:

m(s) =
1

n− 1

(
n− 2

s− 1

)−1
and κ = 1. (21)

Therefore, to get the stochastic approximation we must replace in the above expression the
deterministic value v(S) in (19) by the corresponding stochastic terms:

ṽ(S) =
MS(S)

τp(S)
v(S). (22)
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Let S = (S1, . . . , Sτ ) be a random sample of U of size τ , the stochastic approximation of the
Shapley value is:

x̃i(v) =
v(N)

n
+

1

τ

∑
S∈Sτ

ai(s)

p(S)
v(S), ∀i ∈ N. (23)

Next, we discuss two different sampling procedures to be applied to the above approximation
of the Shapley value.

The first one is WSS2. The reason is because we observe that always v(∅) = 0 and that from
expression (20) ai(N) = 0. Therefore, these two sets, namely ∅ and the grand coalition N , can
be excluded from the sampling scheme provided that we estimate via (23).

Therefore, from equation (20), taking advantage that:(
n− 2

s− 1

)−1(n
s

)
=
n(n− 1)

s(n− s)
(24)

we have that:

ai(s)

p(S)
=


(n−1)
s , i ∈ S

−n−1
n−s , i /∈ S.

(25)

These values are used in formula (23) to calculate the estimated x̃i(v). Moreover, they are
used to calculate estimated variance using (6):

σ̃2i = Ã1 − Ã2

where

Ã1 :=
1

τ

∑
S∈S

a2(S)v2(S)

p2(S)
, (26)

Ã2 :=(x̃i(v)− v(N)

n
)2. (27)

Note that the estimated variance in (6) considers values that do not contain the deterministic

value v(N)
n .

The second approach is to apply the Stratified sampling (SSS). In doing that we must de-
compose the summation (18) into separate terms ami (v) and observe that:

ami (v) =
∑

i∈S⊂N
m(s)v(S) =

n−1∑
s=1

∑
S⊂N
|S|=s
i∈S

m(s)v(S)

︸ ︷︷ ︸
ami,s(v)

. (28)

11



Assuming that sample sets of Ui,s of cardinal τs are drawn with uniform probability, we have
1

p(S) =
(
n−1
s−1
)

and as m(s) = 1
n−1
(
n−2
s−1
)−1

results:

ãmi,s (v) = ami,s (υ̃) =
m(s)

p(S)τs

∑
S∈Si,s

υ(S) =
1

τs(n− s)
∑
S∈Si,s

υ(S)

We can use ami,s (υ̃) to estimate ami,s(v), then use the estimated value to calculate estimated
ami (υ̃), and from them calculate the estimated x̃i.

Regarding the standard error computation, we can estimate V ar[ami,s (υ̃)], and then taking
advantage of the deterministic linear combinations:

V ar[ami (υ̃)] =
∑
s

V ar[ami,s (υ̃)] (29)

and then:

V ar[x̃i] =

(
n− 1

n

)2

V ar[ami (υ̃)] +

(
1

n

)2∑
j 6=i

V ar[amj (υ̃)]. (30)

We compare later the two stochastic approximations, that is, the one with weighted and the
one with stratified sampling, letting them evaluate the same sample size τ in different important
classes of games.

In the following, we present our application to four classes of games. In the first two cases
that we analyze no approximation is needed at all because the quantities of interest can be
easily calculated exactly. Anyway, we will use the procedure described in Section 3 to illustrate
how our approximations work in these simple cases. In the last example, we will concentrate
only in the Shapley and the least square value. There, we apply our methodology to a case
in which it is harder (and almost impossible for moderate or large n) to evaluate the required
value. Nevertheless, we will be able to use our approach to estimate the Shapley value of large
size Voting and Linear Production games.

To better illustrate the possibilities and flexibility of our stochastic approximations we have
followed different sampling mechanisms in the applications. In the first two games, the Shapley
value has been estimated using the original expression (2) and thus, we have applied WSS1. In
the last two games, the estimation has been done using the Least squares formulas. Hence in
this cases we have resorted to WSS2 and SSS to compare experimentally their performance.

Note that the computation of most values in cooperative game theory involve, in general,
the calculation of 2n−1 terms. With our approximation, we only need τ terms. As a measure
of the gain thus obtained, we propose the sampling ratio, f = τ/2n−1, which is also reported in
the following examples.
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4.3. The Gloves game

Suppose a game (N, v) with set of players N = {1, . . . , n1, n1 + 1, . . . , n1 + n2}, where the
first n1 elements represent left hand gloves and the remaining n2 are right hand gloves. Let
n = n1 + n2. For any subset S ⊆ N , we consider v(S) = min {|Sleft| , |Sright|}, where

Sleft = S ∩ {1, . . . , n1} andSright = S ∩ {n1 + 1, . . . , n1 + n2} .

It can be checked that, for i = 1, . . . , n1 the mean value defined in (12) is

αi(v) =

min{n1,n2}∑
k=0

kpk

where

pk =
1

2n−1


(
n2
k

) n1∑
j=k+1

(
n1 − 1

j − 1

)
+

(
n1 − 1

k − 1

) n2∑
j=k+1

(
n2
j

)
+

(
n1 − 1

k − 1

)(
n2
k

) , (31)

for k = 0, . . . ,min{n1, n2}. (A similar formula for αi(v) with i = n1 + 1, . . . , n can be obtained
by interchanging n1 and n2 in (31)).

Under the uniform sampling, in the set of coalitions containing the player i, the approxima-
tions given in (13) and (14) result in

α̃i =
1

τ

min{n1,n2}∑
k=0

kWk and σ̃2i =
1

τ

min{n1,n2}∑
k=0

k2Wk − α̃2
i ,

with Wk =number of subsets with min {|Sleft| , |Sright|} = k among the τ selected. Note that
W =

(
W0, . . . ,Wmin{n1,n2}

)
is a random vector following a multinomialM

(
τ, p1, . . . , pmin{n1, n2}

)
distribution.

For instance, in the case n1 = 30 and n2 = 15 we illustrate our approximation with a sample
size τ = 1000 for the mean value of players i = 1 and i = 31. The results are presented in the
following table

Player Exact (αi) α̃i σ̃2i 95%-confidence interval

1 7.4925 7.482 3.6957 (7.4782, 7.4858)

31 7.9812 7.949 3.1444 (7.9455, 7.9525)

These results show that the estimation is rather accurate even for a very small sampling
fraction f = 1000/244 = 5, 68× e− 11.

The Shapley value
We also consider the Shapley value of this game. For i = 1, . . . , n1, and S such that i /∈ S,

we consider

vi,∗(S) = v(S ∪ {i})− v(S) =

{
1, |Sleft| < |Sright|
0, |Sleft| ≥ |Sright|

13



and the number of coalitions of size s = |S| = {1, . . . , n − 1} with i /∈ S and |Sleft| < |Sright| is∑
t<s/2

(
n1−1
t

)(
n2

s−t
)
, then the corresponding Shapley value is

φi(v) =

n−1∑
s=1

s!(n− s− 1)!

n!

∑
t<s/2

(
n1 − 1

t

)(
n2
s− t

)
.

Under the sampling strategy WSS1 described in (15), the approximations given in (17) are

φ̃i =
1

τ
Ui and σ̃2i = φ̃i(1− φ̃i),

with Ui =number of coalitions sampled for which |Sleft| < |Sright| (recall that the sampling is
performed in the set of coalitions not containing player i). We have that Ui is a binomial

random variable, namely Ui ∼ Binomial(τ, pi), where pi = 1
n

∑n−1
s=1

∑
t<s/2

(n1−1
t )( n2s−t)
(n−1
s )

. Again,

the properties stated in Theorem 2 can be checked directly and for instance, we have

Eφ̃i = pi = φi and V ar(φ̃i) =
1

τ
φi(1− φi).

As a numerical example, suppose again that n1 = 30 and n2 = 15. Firstly, we run a pilot

sample of size 500 and we obtained σ̃21 = 0.0529. This approximation to the variance was used
in formula (7) along with the values ε = 0.01 and β = 0.05, so that we obtain a sample size
τ = 2033 (f = 2033/244 = 1.15e − 10) and for this sample size we report the results presented
in the following table

Player Exact (φi) φ̃i σ̃2i 95%-confidence interval

1 0.04475 0.0497 0.0472 (0.04949, 0.04991)

31 0.91050 0.9134 0.0787 (0.91363, 0.91417)

As compared with the previous estimates for the mean value, doubling the sample size, we
get an improvement of the results of the standard errors of one order of magnitude.

4.4. The Airport game

Let (N, v) be an airport game, with N = {1, . . . , n}, see [11]. The characteristic function is
defined as follows. Consider integers 0 = n0 < n1 < · · · < nk = n and 0 = c0 < c1 < · · · < ck.
For i ∈ N , define c(i) = cr, if i ∈ Ar; = {nr−1 + 1, . . . , nr}. For S ⊂ N the characteristic
function is v(S) = max{c(i) : i ∈ S}.

Elementary combinatorial arguments show that

#{S ⊂ N : i ∈ S and v(S) = c(j)} =


2nr−1, if j = r

2nj−1 − 2nj−1−1−, if j > r

then, the mean value, (12), is

14



αi(v) =
k∑
j=r

c(j)p
(i)
j , (32)

with

p
(i)
j =


1

2n−nr
, if j = r

1

2n−nj
− 1

2n−nj−1
, if j > r.

Sampling τ coalitions with uniform probability in the set of coalitions containing the i-player,
and using the approximations given in (13) and (14), we obtain

α̃i =
1

τ

k∑
j=r

c(j)W
(i)
j and σ̃2i =

1

τ

k∑
j=r

c2(j)W
(i)
j − α̃

2
i

with W
(i)
j =number of selected coalitions with v(S) = c(j) among the τ selected. Note that

W (i) =
(
W

(i)
r , . . . ,W

(i)
k

)
∼ M

(
τ ; p

(i)
r , . . . , p

(i)
k

)
. It is well known, that under multinomial

sampling the proportion W
(i)
j /τ is unbiased of its expected value, p

(i)
j , then α̃i is unbiased for

(32), in agreement with Theorem 2(a).
As a numerical example, we consider n = 45 players, cr = r, for r = 1, . . . , 10 and nr given

in the following table:

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
10 20 28 34 38 40 42 43 44 45

We run a training sample of size τ0 = 500, obtaining an estimate of the variance of the mean

value of the first player, σ̃21 = 1.1184. This value along with ε = 0.05 and β = 0.05 were used to
determine the sample size τ = 14036 (f = 7.98e − 10), see (7). For this sample size we obtain
the results shown in the next table

Player Exact (αi) α̃i σ̃2i 95%-confidence interval

1 9.0854 9.0968 1.3322 (9.0966, 9.0969)

11 9.0854 9.0649 1.3528 (9.0647, 9.0651)

21 9.0854 9.0754 1.3277 (9.0753, 9.0756)

29 9.0854 9.0948 1.3251 (9.0947, 9.095)

35 9.0859 9.0726 1.352 (9.0724, 9.0728)

39 9.0938 9.089 1.2751 (9.0888, 9.0891)

41 9.125 9.1225 1.1196 (9.1224, 9.1227)

43 9.25 9.239 0.6977 (9.2389, 9.2391)

44 9.5 9.497 0.25 (9.4969, 9.4971)

45 10.0 10.0 0.0 (10.0, 10.0)
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Estimation of the Shapley value of the player i ∈ Ar = {nr−1 + 1, . . . , nr}.
Given a coalition S ⊂ N \ {i}, let us define `(S) = max{j : S ∩ Aj 6= ∅} (for convenience,

max ∅ = 0, so that `(∅) = 0). Then,

vi,∗(S) = v(S ∪ {i})− v(S) =


0, if `(S) ≥ r

c(r)− c(`(S)), if `(S) < r

and for 0 ≤ j < r

#{S : S ⊂ N \ {i}, |S| = s and `(S) = j} =

(
nj
s

)
−
(
nj−1
s

)
, s ≥ 0,

(for convenience, n−1 = −1) then, after some algebra, the exact Shapley value is

φi := φi(v) =
∑

S⊆N−{i}

s! (n− s− 1)!

n!
vi,∗(S) =

n−1∑
s=0

s! (n− s− 1)!

n!

r−1∑
j=0

∑
S⊂N−{i}
|S|=s
`(S)=j

(c(r)− c(j))

=
n−1∑
s=0

s! (n− s− 1)!

n!

r−1∑
j=0

(c(r)− c(j))
{(

nj
s

)
−
(
nj−1
s

)}

=
n−1∑
s=0

s! (n− s− 1)!

n!

r−1∑
j=0

(
nj
s

)
(c(j + 1)− c(j)) .

For the estimation of φi, for i ∈ Ar, we can take advantage of the fact that vi,∗(S) = 0 if `(S) ≥ r,
so that instead of the sampling scheme given in (15), we propose the following probability on
the set of coalitions not containing player i,

p(S) =


1

(nr−1 + 1)
(
nr−1

s

) , if `(S) ≤ r − 1 and |S| = s ∈ {0, . . . , nr−1}

0, otherwise

(33)

which can be seen as a two stages sampling such that in the first stage the size of the coalition
(not containig player i), s, is selected with equal probability among {0, . . . , nr−1} and in the
second stage a coalition is selected with uniform probability within the set of coalitions of size
s with `(S) ≤ r− 1. Define the random variables Ws,j =number of coalitions with `(S) = j and
|S| = s among the τ selected. Then, the approximations given in (5) and (6) yield, respectively

φ̃i =
(nr−1 + 1)!

τ n!

nr−1∑
s=0

(n− s− 1)!

(nr−1 − s)!

r−1∑
j=0

(c(r)− c(j))Ws,j ,

σ̃2i =
1

τ

(
(nr−1 + 1)!

n!

)2 nr−1∑
s=0

(
(n− s− 1)!

(nr−1 − s)!

)2 r−1∑
j=0

(c(r)− c(j))2Ws,j − φ̃2i .

16



Similarly as in the previous example, we run a training sample of size τ0 = 1000 and obtained

σ̃245 = 2.341. For β = 0.01 and ε = 0.01, we determined the sample size τ = 278581 (f =
1.58e− 8). For this sample size we obtained the following results

Player Exact (φi) φ̃i σ̃2i 99%-confidence interval

1 0.0222 0.0222 0.0 (0.0222, 0.0222)

11 0.0508 0.0509 0.0195 (0.0509, 0.0509)

21 0.0908 0.0915 0.0918 (0.0915, 0.0915)

29 0.1496 0.1492 0.244 (0.1492, 0.1493)

35 0.2405 0.2402 0.5169 (0.2402, 0.2402)

39 0.3834 0.3842 0.952 (0.3841, 0.3842)

41 0.5834 0.5827 1.5167 (0.5826, 0.5827)

43 0.9167 0.918 2.4164 (0.918, 0.918)

44 1.4167 1.4116 3.3844 (1.4116, 1.4116)

45 2.4167 2.4142 4.2718 (2.4142, 2.4142)

4.5. The Simple Voting Game

The Simple Voting Game is defined as G := (q, wi, i = 1, . . . , n) where q is the quota and wi
is the weight given to the i− th voter (player). The implementation of WSS2 follows from the
straightforward calculation of (19). When we apply stratified sampling (SSS), it can be readily
seen that we have two indexes, k1 and k2 such that:

• For all S such that |S| < k1, v(S) = 0;

• For all S such that |S| > k2, v(S) = 1.

Therefore, since v(S) = 1 for all |S| > k2, we can replace estimated values ami,s (υ̃) with exact
values ami,s (υ) = 1 to obtain:

ami (υ̃) = (n− 1− k2)/(n− 1) +

k2∑
s=k1

ami,s (υ̃)

Furthermore, estimation can be improved observing that the Shapley value of different play-
ers should be equal whenever the associated voting weights are the same. So one can improve the
estimated Shapley value φ̃ projecting it on the feasible set x by solving the quadratic program:

min
x∈Rn

‖x− φi(ṽ)‖ :
n∑
i=1

xi = 1 and xi = xj whenever wi = wj .

The first experiment considers a small size game with 17 players. Let

G = {quota = 45; w = [11, 11, 9, 9, 8, 8, 5, 5, 4, 4, 3, 3, 3, 1, 1, 1, 1]},
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Figure 1: Sum of approximation errors with respect to v evaluation in the Simple Voting Game (expressed as
ratio). Dotted line: Weighted sampling, Broken line: Stratified sampling, Continuous line: Stratified sampling
and quadratic correction.

here we can calculate the exact Shapley value φi for all i = 1, . . . , n, and then we can compare it
to the approximations given the two sampling schemes. Their performance is compared using as
an approximation index the overall summation of absolute differences among true and estimated
values:

n∑
i=1

|φi − φi(ṽ)|.

Controlling for f , the results are reported in Fig 1. It can be seen that the approximation
error of the stratified sampling SSS is much better than the weighted sampling WSS2. Moreover,
the improvement through the quadratic correction is substantial. This can also be viewed in
Figure 2, in which Figure 1 is zoomed to appreciate the quadratic improvement. On average,
after having used the quadratic projection, the approximation error decreased more than 30%.
This behavior motivates that in our tables we only report data from the SSS estimation since
they are much better that those corresponding to WSS2.

In Table 1, the computational results of the approximation calculated with τ = 5000 (f =
0.076) are reported. Column exact is the real Shapley value, column SSS reports the Stratified
Sampling approximation, column SSS + QP reports the approximation when the quadratic
correction is applied and column SD reports the standard error of SSS. There it can be seen
how close the approximations are to the actual Shapley value, to the point that the resulting
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standard error are sufficiently small to detect the correct power ranking of players.

Figure 2: Sum of approximation errors with respect to v evaluation in the small Simple voting game (expressed
as ratio). Zooming Figure 1. Broken line: Weighted sampling, Continuous line: Stratified sampling and quadratic
correction.

Then we repeat the experiment to the large size voting game G, with n = 40 players. Game
players’ weight are described in the second column of Table 2, the quota is 102. In this case we
cannot calculate the exact Shapley value and the approximation quality is evaluated through the
standard error (SD). All the results are reported in Table 2. We run the stochastic approximation
with stratified sampling SSS and τ = 5000, which implies a sampling fraction f = 9.09e−09. As
it can be seen, the standard error is so small that the approximation seems a reliable estimate
of the true and unknown Shapley value.

4.6. The Linear Production Game

Linear production games were introduced by Owen [12]. In these games each agent i ∈ N
owns a resource bundle bi ∈ Rq+. The resources can be used to produce m types of goods
according to some technological matrix A ∈ Rq×m which can be sold at prices p1, . . . , pm. When
a coalition S is formed its members pool their resources so as to maximize the market value
of their products. This class of games has become very popular and important among game
theoretician by its implications in the cost sharing field and its equivalence to the class of all
balanced games. In spite of that, it is well-known the difficulty to compute values of these games.
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player weight Exact SSS SSS+QP SD 95% interval

1 11 0.1323 0.1329 0.1313 0.0057 (0.1218 , 0.1440)
2 11 0.1323 0.1298 0.1313 0.0056 (0.1187 , 0.1408)
3 9 0.1052 0.1038 0.1074 0.0060 (0.0921 , 0.1156)
4 9 0.1052 0.1109 0.1074 0.0058 (0.0995 , 0.1223)
5 8 0.0924 0.0918 0.0957 0.0058 (0.0806 , 0.1031)
6 8 0.0924 0.0996 0.0957 0.0057 (0.0884 , 0.1108)
7 5 0.0557 0.0569 0.0557 0.0059 (0.0454 , 0.0683)
8 5 0.0557 0.0544 0.0557 0.0059 (0.0429 , 0.0660)
9 4 0.0440 0.0384 0.0406 0.0059 (0.0268 , 0.0500)
10 4 0.0440 0.0428 0.0406 0.0059 (0.0312 , 0.0544)
11 3 0.0327 0.0335 0.0334 0.0058 (0.0221 , 0.0448)
12 3 0.0327 0.0371 0.0334 0.0058 (0.0258 , 0.0484)
13 3 0.0327 0.0295 0.0334 0.0058 (0.0180 , 0.0409)
14 1 0.0107 0.0055 0.0097 0.0059 (-0.0060 , 0.0170)
15 1 0.0107 0.0090 0.0097 0.0057 (-0.0023 , 0.0202)
16 1 0.0107 0.0125 0.0097 0.0057 (0.0013 , 0.0237)
17 1 0.0107 0.0117 0.0097 0.0058 (0.0004 , 0.0230)

Table 1: Exact and approximate value of the Shapley Value to the Small Simple Voting Game n = 17 and
τ = 5000.

The characteristic function is given by:

v(S) = max
{ m∑
j=1

pjxj : Ax ≤
∑
i∈S

bi, x = (x1, . . . , xm) ≥ 0
}
.

Our goal in this section is to give a procedure to obtain good estimates of the Shapley value
of this class of games of any size.

The first experiment considers n = 15 players, m = 12 products, q = 5 production con-
straints. All data for A, B, p are random (0-1)-uniform values. The implementation of weighted
sampling WSS2 follows from the straightforward calculation of (19). When we apply stratified
sampling (SSS), it can be readily seen that coefficients ami,s(v) are the sum of

(
n
s

)
terms, so that,

for small or large values of s, ami,s(v) can be conveniently calculated rather than estimated. In
our implementation, this is done for s = 2 and for s = n− 1. This implies some gain in the final
precision.

For n = 15 it is still possible to compute the exact Shapley value of this game since the
number of linear programs that have to be solved, for the evaluation of each φ terms, is bounded
above by 212. We run the weighted and stratified sampling, WSS2 and SSS, respectively, with
different sampling fraction f and we calculate the sum of the absolute value of the errors (the
difference between the actual and the estimated Shapley value). The comparison is reported in
Figure 3, where it can be seen that the stratified sampling SSS strongly outperforms WSS2, as
observed in the voting game.

In Figure 4 the same figure is zoomed to observe how the stratified sampling error decreases.
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It can be seen that for sampling fraction values greater than 20% the gains of further samples
are modest as the approximation is quite close to the real Shapley value.

In Table 3 we report the comparison between the exact and the approximate Shapley value
for τ = 10000, considering interval estimate too. As it can be seen, the approximation error is
one order of magnitude smaller than the value.

The quality of the approximation depends on the standard error, that in turn depends on
the sample size τ and not on the population size 2n. In the following example, we report the
stratified sampling approximation, SSS, for a large production game in which this property is
more evident.

Random data are generated as before, but the number of players is now n = 40. We run two
simulations, one with τ = 10000 and another one with τ = 360000, giving rise to sample sampling
fractions, respectively, of f = 1.82e− 08 and f = 6.55e− 07. Running the algorithm in R with
the freeware (non-commercial) linear solver lpSolve, it results in one minute of computation for
τ = 360000 and negligible times for τ = 10000. Results are reported in Table 4. When we are
interested to determine the Shapley value, we can see that τ = 10000 is sufficient. Here, the
Shapley values are of unitary order, while the standard errors are of order 10−2, namely two
orders of magnitude lower.

If we were interested in determining the players’ ranking with respect to the Shapley value,
we can see that the difference between players’ Shapley values is of order 10−2. Therefore we
must increase τ to decrease the standard error. As it can be seen, with τ = 360, 000, the standard
error is of order 10−3, small enough to determine estimation intervals that do not overlap with
each other so that these estimates can clearly determine meaningful players’ ranking.

5. Conclusions

We proposed a methodology to calculate values of cooperative games that relies on the
concept of stochastic approximation.

The idea is to replace the exponential number of terms of the value formula summation
with just a sample of them. Applying probability concepts to the sample and to the reduced
sum, we can prove that the expectation of the estimate is the actual value of the game and
that its standard error keeps under control the difference between the estimate and the actual
value. We proved the viability of our approach calculating values of different games with dif-
ferent sampling strategies, and we found that the sample size needs not to be large to obtain
good approximations. Successful applications depend on the sampling strategy and the game
characteristic function. Therefore, future research should consider different sampling strategies,
such as different stratifications, and different classes of games, as for instance network games.
Moreover, while the theoretical properties of many cooperative games are often well-understood,
we are somewhat missing their economic applications. To date, one reason to this could have
been the time complexity to calculate values, which has prevented the analysis of games whose
number of players is more than minimal. We hope that the stochastic approximation will be
the technique to foster new empiric analysis.
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Figure 3: Sum of approximation errors with respect to v evaluation (expressed as ratio) in the small Linear
production game n = 12: Broken line: Weighted sampling, Continuous line: Stratified sampling.
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player weight SS SS+QP SD

1 12 0.05529 0.05830 0.00478
2 12 0.06072 0.05830 0.00479
3 12 0.05796 0.05830 0.00492
4 12 0.05535 0.05830 0.00505
5 12 0.06218 0.05830 0.00488
6 8 0.03706 0.03984 0.00503
7 8 0.04310 0.03984 0.00484
8 8 0.03919 0.03984 0.00508
9 8 0.03732 0.03984 0.00488
10 8 0.04124 0.03984 0.00500
11 8 0.04045 0.03984 0.00496
12 8 0.04203 0.03984 0.00491
13 8 0.03881 0.03984 0.00512
14 8 0.03933 0.03984 0.00512
15 5 0.02843 0.02502 0.00495
16 5 0.02278 0.02502 0.00505
17 5 0.02225 0.02502 0.00505
18 5 0.01889 0.02502 0.00504
19 5 0.02971 0.02502 0.00508
20 5 0.02466 0.02502 0.00498
21 5 0.02349 0.02502 0.00490
22 5 0.02843 0.02502 0.00493
23 5 0.02395 0.02502 0.00498
24 5 0.02988 0.02502 0.00519
25 5 0.02281 0.02502 0.00505
26 1 0.00594 0.00498 0.00499
27 1 0.00648 0.00498 0.00503
28 1 0.00753 0.00498 0.00503
29 1 0.00098 0.00498 0.00492
30 1 0.00766 0.00498 0.00495
31 1 0.00109 0.00498 0.00492
32 1 0.00444 0.00498 0.00501
33 1 0.00206 0.00498 0.00498
34 1 0.00115 0.00498 0.00479
35 1 0.00460 0.00498 0.00488
36 1 0.00757 0.00498 0.00509
37 1 0.00770 0.00498 0.00488
38 1 0.00384 0.00498 0.00505
39 1 0.00876 0.00498 0.00499
40 1 0.00492 0.00498 0.00501

Table 2: Approximate value of the Shapley Value to the Large Voting Game

25



Player Shapley (exact) Shapley (est.) Standard Error 95% Interval

1 0.65720 0.65480 0.01171 (0.63186, 0.67774)
2 0.76555 0.76888 0.01178 (0.74579, 0.79197)
3 0.89288 0.88795 0.01112 (0.86616, 0.90975)
4 0.65340 0.65763 0.01068 (0.63670, 0.67857)
5 0.77422 0.77437 0.01105 (0.75271, 0.79603)
6 0.55946 0.55941 0.01145 (0.53696, 0.58186)
7 1.26183 1.26547 0.00872 (1.24837, 1.28256)
8 1.20149 1.20770 0.01034 (1.18743, 1.22797)
9 0.79972 0.79589 0.01016 (0.77598, 0.81580)
10 1.02142 1.01826 0.01107 (0.99656, 1.03995)
11 0.83565 0.84304 0.01137 (0.82075, 0.86532)
12 0.98868 0.99305 0.01027 (0.97293, 1.01317)
13 0.88628 0.88933 0.01139 (0.86700, 0.91166)
14 0.66389 0.65436 0.01056 (0.63367, 0.67506)
15 0.82248 0.81404 0.01136 (0.79178, 0.83630)

Table 3: Exact and Approximate value of the Shapley Value to the Small Linear Production Game with SSS and
τ = 10000
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player Shapley-τ1 Standard Error-τ1 Shapley-τ2 Standard Error-τ2

1 0.7483 0.0357 0.73390 0.00444
2 0.6847 0.0356 0.70440 0.00444
3 1.0573 0.0347 1.05924 0.00433
4 0.7285 0.0353 0.72841 0.00439
5 0.7155 0.0356 0.70573 0.00442
6 0.6124 0.0358 0.61362 0.00441
7 1.1820 0.0348 1.21112 0.00433
8 1.2689 0.0345 1.26939 0.00430
9 0.7121 0.0356 0.70259 0.00438
10 0.8738 0.0356 0.87206 0.00443
11 0.9221 0.0352 0.93731 0.00439
12 0.8161 0.0356 0.80896 0.00442
13 0.8658 0.0356 0.87550 0.00442
14 0.4787 0.0343 0.44231 0.00432
15 0.9798 0.0355 0.97659 0.00438
16 0.3927 0.0346 0.38779 0.00428
17 0.3125 0.0339 0.28079 0.00420
18 1.0755 0.0355 1.08252 0.00437
19 0.9878 0.0353 1.02532 0.00438
20 1.2855 0.0350 1.28415 0.00436
21 0.8044 0.0360 0.80236 0.00444
22 0.5266 0.0345 0.51503 0.00434
23 1.1500 0.0350 1.14763 0.00435
24 0.6329 0.0358 0.64333 0.00441
25 0.8860 0.0355 0.88368 0.00438
26 1.1240 0.0347 1.14455 0.00434
27 1.2671 0.0353 1.27387 0.00432
28 0.9598 0.0357 0.95851 0.00445
29 1.0255 0.0354 1.03748 0.00442
30 1.1549 0.0347 1.17000 0.00433
31 0.9550 0.0358 0.97016 0.00443
32 1.0790 0.0357 1.08852 0.00441
33 1.1030 0.0351 1.07281 0.00440
34 1.1603 0.0353 1.16440 0.00436
35 0.2951 0.0339 0.27580 0.00421
36 1.4138 0.0340 1.40480 0.00426
37 0.5357 0.0353 0.55060 0.00438
38 0.4943 0.0346 0.47902 0.00432
39 0.5537 0.0356 0.56209 0.00441
40 1.1802 0.0348 1.15496 0.00435

Table 4: Approximate value of the Shapley Value for the Large Linear Production Game with SSS and τ = 10000
(Shapley-τ1) and τ2 = 360000 (Shapley-τ2)
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