
Shared Processor Scheduling of Multiprocessor Jobs

Dariusz Dereniowski∗

Faculty of Electronics,
Telecommunications and Informatics,

Gdańsk University of Technology,
Gdańsk, Poland

Wiesław Kubiak
Faculty of Business Administration,

Memorial University,
St. John’s, Canada

April 27, 2022

Abstract

We study shared processor scheduling of multiprocessor weighted jobs where each job can be exe-
cuted on its private processor and simultaneously on possibly many processors shared by all jobs in order
to reduce their completion times due to processing time overlap. Each of m shared processors may charge
different fee but otherwise the processors are identical. The total weighted overlap of all jobs is to be
maximized. This problem is key to subcontractor scheduling in extended enterprises and supply chains,
and divisible load scheduling in computing. We prove that, quite surprisingly, synchronized schedules
that complete each job using shared processors at the same time on its private and shared processors
include optimal schedules. We show that optimal α-private schedules that require each job to use its
private processor for at least α = 1/2 + 1/(4(m + 1)) of the time required by the job guarantee more
than an α fraction of the total weighted overlap of the optimal schedules. This gives an α-approximation
algorithm that runs in strongly polynomial time for the problem, and improves the 1/2-approximation
reported recently in the literature to 5/8-approximation for a single shared processor problem. The com-
putational complexity of the problem, both single and multi-shared processor, remains open. We show
however an LP-based optimal algorithm for antithetical instances where for any pair of jobs j and i, if
the processing time of j is smaller than or equal to the processing time of i, then the weight of j is greater
than or equal to the weight of i.

Keywords: discrete optimization, subcontracting, supply chains, extended enterprises, shared proces-
sors

1 Introduction

Quick-response industries are characterized by volatile demand and inflexible capacities. The agents (com-
panies) in such industries need to supplement their private capacity by adapting their extended enterprises
and supply chains to include subcontractors with their own capacity. This capacity of subcontractors how-
ever is often shared between other independent supply chains which can cause undesirable and difficult to
control bottlenecks in those supply chains. A well-documented real-life example of this issue has been re-
ported in Boeing’s Dreamliner supply chain where the overloaded schedules of subcontractors, each working
with multiple suppliers, resulted in long delays in the overall production due dates, see Vairaktarakis [11].

∗Corresponding author. Email: deren@eti.pg.edu.pl

1

ar
X

iv
:1

80
7.

08
01

1v
1

 [
cs

.D
M

]
 2

0
Ju

l 2
01

8

The use of subcontractor’s shared processor (capacity) benefits an agent only if it can reduce the agent’s
job (order) completion time at a competitive enough cost. Hence, the subcontractor’s shared processor
should never be used, and paid for by the agent, as long as the agent’s private processor remains available.
We reasonably assume that the cost of using subcontractor’s processor is higher than this of the agent’s
private processor. Moreover the agent’s private processor should never remain idle as long as the agent’s
job remains unfinished. Therefore, only a simultaneous execution, or overlap, on both private and shared
processors reduces completion time. The total (weighted) overlap is the objective function studied in this
paper. This objective function is closely related to the total completion time objective traditionally used in
scheduling. The total completion time can be reduced by an increase of the total overlap resulting from the
simultaneous execution of jobs on private and shared processors. However, we need to emphasize that the
two objectives exist for different practical reasons. The minimization of total completion time minimizes
mean flow time and thus by Little’s Law minimizes average inventory in the system. The maximization of
the total overlap on the other hand maximizes the total net payoff resulting from completing jobs earlier
thanks to the use of shared processors (subcontractors). This different focus sets the total overlap objective
apart from the total completion time objective, and makes it a key objective in scheduling shared processors,
Dereniowski and Kubiak [5].

The reduction of completion time of a job due to the overlap depends on whether only a single shared
processor or multiple shared processors can be used simultaneously by the job. For instance, an order of
size 12 can be completed in 6 units of time (assuming it takes one unit of time to complete the order of
size one) at the earliest if only a single shared processor is allowed to process the order simultaneously
with private processor. The order is then split in half between the private and the shared processor both
working simultaneously on the job in the time interval (0, 6). The resulting overlap equals 6, and the job
is not executed by any other shared processor in the interval. This constraint has been imposed in the
literature thus far, see Vairaktarakis and Aydinliyim [12], Hezarkhani and Kubiak [8], and Dereniowski and
Kubiak [6], [5]. We refer to the constraint as a single processor (SP) job mode. This paper relaxes the
constraint and permits a job to be processed simultaneously on its private and possibly more than one shared
processor. For instance, the job of size 12 can be completed in 4 units of time by executing it in the interval
(0, 4) on its private processor and simultaneously in the intervals (0, 4), (0, 3) and (1, 2) on three different
shared processors. The resulting total overlap equals 8. We refer to this relaxation as a multiprocessor
(MP) job mode. To our knowledge this mode of execution of jobs has been first studied by Blazewicz,
Drabowski and Weglarz [4] and refereed to as multiprocessor jobs in the literature. The multiprocessor
jobs gained prominence in distributed computing where the processing by the nodes of a shared network
of processors as well as possible communications between the nodes overlap in time so that the completion
time (makespan) for the whole job (referred to as divisible load) is shorter than the processing of the whole
load by a single node, Bharadwaj, Ghose, and Robertazzi [3]. Bharadwaj, Ghose, and Robertazzi [3] and
Drozdowski [7] survey many real-life applications that satisfy the divisibility property.

The shared processors may also charge different fees, ci, and the jobs may have different weights w j.
Then, the contribution to the total payoff of a job piece of length l is l times the difference between its weight
and the shared processors’ fee. Thus, the execution in the interval (0, 4) on one shared processor may cost
the same as the execution in the interval (1, 2) on another shared processor if the latter is four times more
expensive than the former. The shared processors with different costs will studied in this paper. Figure 1
illustrates the difference between the two modes, S P and MP.

It is quite remarkable that regardless of the mode of job execution on shared processors, and job weights
there always exist optimal schedules that are synchronized, i.e., each agent using shared processors has its
job completed on private and shared processors at the same time (for a formal definition of synchronized

2

M1

M2c2 = 5

c1 = 4
time

p1 = 9
p2 = 9
p3 = 5

w1 = 9
w2 = 7
w3 = 5

P2

P3

P1

2
1

3

2 3
0 4.5 4.75

M1

M2

P2

P3

P1

2
1

3

1 2
0 3

1

5

(a) (b)
1 2

total payoff: 4.5(w1 − c2) + 4.5(w2 − c1)
+0.25(w3 − c1) = 31.75

total payoff: 3(2w1 − c1 − c2)
+2(2w2 − c1 − c2) = 37

Figure 1: The example illustrates that allowing jobs to be executed in MP mode simultaneously on several
shared processors (M1 and M2) may be beneficial for some problem instances: (a) an optimal (synchro-
nized) schedule for the SP mode; (b) an optimal (synchronized) schedule for the MP mode. In this input
instance, the shared processors’ fees are c1 = 4 and c2 = 5, the jobs’ processing times are p1 = p2 = 9,
p3 = 5 and their weights are w1 = 9, w2 = 7, w3 = 5.

schedules for the MP mode see Section 1.3). This has been shown for the SP job mode by Vairaktarakis and
Aydinliyim [12], Hezarkhani and Kubiak [8], and Dereniowski and Kubiak [5], and [6]. In this paper we
show it for the MP job mode. We return to the paper outline later in the introduction in Section 1.3 to give
more details.

1.1 Related Work and Applications

The shared processor scheduling problem with a single shared processor has been studied by Vairaktarakis
and Aydinliyim [12], Hezarkhani and Kubiak [8], and Dereniowski and Kubiak [6]. Vairaktarakis and
Aydinliyim [12] consider the unweighted problem with each job allowed to use at most one time interval
on the shared processor. This case is sometimes referred to as non-preemptive since jobs are not allowed
preemption on the shared processor. [12] proves that there are optimal schedules that complete job execution
on its private and the shared processor at the same time, we call such schedules synchronized. It further
shows that this guarantees that sequencing jobs in non-decreasing order of their processing times leads to an
optimal solution for the case. We refer to such schedules as processing time ordered, see [6]. Interestingly,
the processing time ordered schedules guarantee that each job uses exactly one nonempty time interval on
the shared processor. [8] observes that the processing time ordered schedules also give optimal solutions
to the preemptive unweighted problem, where more than one interval can be used by a job on the shared
processor. [6] considers the weighted problem. It observes that for the weighted problem it no longer holds
that each job occupies a non-empty interval on the shared processor in optimal schedules, there may exist
jobs processed on their private processors only in each optimal schedule. It shows that there always exist
optimal schedules that are synchronized, gives a 1

2 - approximation algorithm for the problem, and shows
that the 1

2 bound for the algorithm is tight. It also extends earlier result for the unweighted problem by
proving that the processing time ordered schedules are optimal for antithetical instances, i.e., the ones for
which there exists ordering of jobs that is simultaneously non-decreasing with respect to processing times
and non-increasing with respect to the weights. The complexity status of the weighted problem with a single
shared processor remains open.

Vairaktarakis and Aydinliyim [12], Vairaktarakis [11], and Hezarkhani and Kubiak [8] focus on the

3

tension between the agents and the subcontractor in the decentralized system where each agent strives to
complete its job as early as possible and needs to compete with other agents for the shared processor, and
the subcontractor who strives to have the shared processor occupied as long as possible to maximize its
payoff. The tension calls for coordinating mechanisms to ensure the efficiency. Hezarkhani and Kubiak
[8] show such coordination mechanism for the unweighted problem, and give examples to prove that such
mechanisms do not exist for the problem with weighted jobs.

Dereniowski and Kubiak [5] consider shared multi-processor problem. They however, contrary to this
paper, assume that each job can only be processed by its private processor and at most one out of many
shared processors, the SP mode. Besides no distinction is made between the shared processors, in particular
the costs of using shared processors are the same for all of them. [5] proves that synchronized optimal
schedules always exist for weighted multi-processor instances. However, the wighted problem is NP-hard
in the strong sense. For the multi-processor problem with equal weights for all jobs, [5] gives an efficient,
polynomial-time algorithm running in time O(n log n).

The motivation to study the shared processor scheduling problem comes from diverse applications.
Vairaktarakis and Aydinliyim [12], [2] consider it in the context of supply chains and extended enterprises
where subcontracting allows jobs to reduce their completion times by using a shared subcontractor’s proces-
sor. Bharadwaj et. al. [3], and Drozdowski [7] use the divisible load scheduling to reduce a job completion
time in parallel and distributed computer systems, and Anderson [1] argues for using batches of poten-
tially infinitely small items that can be processed independently of other items of the batch in scheduling
job-shops. We refer the reader to Dereniowski and Kubiak [5] for more details on these applications.

1.2 Problem Formulation

We are given a set J of n preemptive jobs with non-negative processing times p j and weights w j, j ∈ J .
With each job j ∈ J we associate its private processor denoted by P j. Moreover, m ≥ 1 shared processors
M1, . . . ,Mm are available for all jobs; processorMi has cost ci, i ∈ {1, . . . ,m}. Without loss of generality
we always assume c1 ≤ · · · ≤ cm in this paper.

A schedule S selects for each job j ∈ J :

(i) a (possibly empty) collection of open and pairwise disjoint maximal time intervals I1
i, j, . . . , I

l(i, j)
i, j in

which the job j executes on shared processorMi for each i ∈ {1, . . . ,m}, any Ik
i, j is called a piece of

job j on processor i or simply piece of job j if the processor is obvious from the context, and

(ii) a single time interval (0,CPS(j)) in which j executes on its private processor P j.

In a feasible schedule, the total length of all these intervals (the ones in (i) and the one in (ii)) equals p j:

p j = CPS(j) +

m∑

i=1

l(i, j)∑

k=1

∣∣∣∣Ik
i, j

∣∣∣∣ (1)

for each j ∈ J . Moreover, each shared processor i can execute at most one job at a time, i.e. the unions of
all pieces of different jobs j and j′ on processor i are disjoint for each shared processorMi, i ∈ {1, . . . ,m},
or formally

l(i, j)⋃

k=1

Ik
i, j

 ∩

l(i, j′)⋃

k′=1

Ik′
i, j′

 = ∅, (2)

4

for any two different jobs j and j′ and any shared processorMi, i ∈ {1, . . . ,m}. Without loss of generality
we also assume that

Ik
i, j ⊆ (0,CPS(j)) (3)

for each i, j, and k in a feasible schedule.
We re-emphasize that, contrary to earlier literature on shared multi-processor scheduling [5], we allow

the pieces of the same job not to be disjoint (or simply to overlap) on different shared processors like in the
MP job mode introduced in [4] and used in [3] and [7] for instance. Observe that the private processor P j

can only execute job j but none of the other jobs.

Given a feasible schedule S, for each job j ∈ J we call any pair (Mi, I) an overlap of j onMi if I is a
time interval of maximum length where j executes on both its private processor P j and the shared processor
Mi simultaneously; we say that |I| is the length of the overlap (Mi, I). Note that I ⊆ (0,CPS(j)). Then,
the total overlap ovlpS(j,Mi) of j onMi equals the sum of lengths of all overlaps of j onMi. The total
weighted overlap of S equals

Σ(S) =

m∑

i=1

∑

j∈J
ovlpS(j,Mi)(w j − ci). (4)

To illustrate we give an example in Figure 2. The example also gives some intuitions as to how optimal
schedules look like — for more details see a discussion at the end of the next section.

M1

M2

M3

M4c4 = 6

c3 = 3

c2 = 2

c1 = 1
time

p1 = 5
p2 = 5
p3 = 8
p4 = 10.5
p5 = 13

w1 = 11
w2 = 8
w3 = 6
w4 = 2

w5 = 2 P5

P2

P3

P4

P1

1

1

1

1 2

2

2

2
1

3

3

3

3 4 5

4
5

0 1 2 3.5 7 10

X4 = 3.5 · (2 − 1) = 3.5

X5 = 3

X3 =
∑3

i=1 1.5 · (w3 − ci)

= 1.5 · (3 + 4 + 5) = 18

X2 =
∑3

i=1 1 · (w2 − ci)

= 5 + 6 + 7 = 18

X1 =
∑4

i=1 1 · (w1 − ci)

= 5 + 8 + 9 + 10 = 32

Σ(S) = 74.5

Figure 2: An optimal schedule for an input instance with J = {1, . . . , 5} and 4 shared processors
M1, . . . ,M4. Here X j denotes the contribution of a job j to the total weighted overlap of the schedule,
X j =

∑m
i=1 ovlpS(j,Mi)(w j − ci)

1.3 Outline

The main structural property of optimal schedules proved in this paper is schedule synchronization. We say
that a feasible schedule S is synchronized if there exists a subset of jobs { j1, . . . , jk} ⊆ J such that:

• each job j < { j1, . . . , jk} executes only on its private processor P j in (0, p j) in S,

• there exist m ≥ m1 ≥ m2 ≥ · · · ≥ mk ≥ 1 and 0 = t0 ≤ t1 ≤ · · · ≤ tk such that job ji, i ∈ {1, . . . , k},
executes non-preemptively in time interval (ti−1, ti) on each shared processorMl, l ∈ {1, . . . ,mi}, and
in (0, ti) on P jk in S.

5

Figure 2 gives an example of a synchronized schedule of five jobs where m1 = 4, m2 = m3 = 3, and
m4 = m5 = 1, and t1 = 1, t2 = 2, t3 = 3.5, t4 = 7, and t5 = 10. Observe that the total weighted overlap
equals

Σ(S) =

k∑

i=1

(ti − ti−1)

miw ji −
mi∑

l=1

cl

 ,

for a synchronized S, and by the feasibility of S

ti + mi(ti − ti−1) = p ji .

From these two we get a natural interpretation of the objective function for synchronized S which is sum-
marized in the following formula

Σ(S) =

k∑

i=1

(p ji − ti)
w ji −

∑mi
l=1 cl

mi

 ,

where p ji − ti is the total time ji is executed on the mi cheapest shared processors M1, . . . ,Mmi , and the
(
∑mi

l=1 cl)/mi is the average cost of execution on these processors which must not exceed the weight, w ji , of
the job ji if S is to be optimal. Our main structural result in this paper is as follows.

Theorem 1.1. There always exists an optimal schedule that is synchronized.

The theorem follows immediately from Corollary 4.2 and Lemma 6.8 in Section 6. Though our algo-
rithmic results, both optimization and approximation, do not require the schedule synchronization property
directly, the property comes useful to prove some key properties of the algorithms. Therefore we start with
synchronization here but leave technical details of its proof for Section 6.

The existence of optimal schedules that are synchronized is consistent with earlier results [12, 5, 6, 8]
for the SP job mode. However, the proof for the MP job mode turns out to be more challenging. We note
that both SP and MP modes are equivalent in the single processor case, m = 1.

The computational complexity status of the problem remains a challenging open question. However, we
show in Section 2 that for any given permutation of job completions on private processors, recall that by
definition there is exactly one job on any private processor, an LP can be formulated that finds a schedule
maximizing the total weighted overlap among all schedules that respect this permutation. This result points
at a certain strategy in solving the problem which is to search for the duration each job must be executed
on its private processor. The difficulty in establishing computational complexity status for the problem
however indicates that the optimal durations will be also difficult to find. We therefore propose to relax
the strategy by requiring that each duration be at least α > 1/2 fraction of job processing time, i.e., we
require that the completion of a job j is limited to occur in the interval [αp j, p j]. We naturally refer to
such schedules as α-private since they require that at least α fraction of each job is executed of its private
processor. The optimal α-private schedules can be found in strongly polynomial time by solving a minimum-
cost network flow problem, see Orlin [9] for a strongly polynomial algorithm for the minimum-cost network
flow problem. These schedules are important since they guarantee that their total weighted overlaps are not
less than α of the maximum total weighted overlaps which results in a α-approximation strongly polynomial
time algorithm for the problem. This is shown in Section 3, where we also show that the best α we can find
in this paper is 1

2 + 1
4(m+1) . The α-approximation algorithm improves a 1/2-approximation algorithm for a

single processor [6] to a 5/8-approximation algorithm for m = 1.

6

Section 5 considers antithetical instances where p j ≥ p j′ implies w j ≤ w j′ for each pair of jobs j
and j′. We prove that a permutation of job completions on private processors that coincides with non-
decreasing order of processing times (or equivalently with non-increasing order of weights) is optimal for
the antithetical instances. The LP of Section 2 then finds an optimal schedule for the permutation which
gives a polynomial time algorithm for the antithetical instances. Note that even though the permutation
of job completions on private processors is fixed, the LP still needs to optimally decide how many shared
processors should a job use. In particular, generally using more of them may decrease the job’s contribution
to the total weighted overlap of the schedule since the job uses more costly shared processors, on the other
hand using more shared processors may reduce the job completion time thus allowing jobs that follow it in
the permutation to start earlier and thus to contribute proportionally more to the total weighted overlap of
the schedule. Figure 2 illustrates this tradeoff for an antithetical instance, for example job 1 executed on all
4 shared processors finishes at t1 = 1 and contributes 32 to the total weighted overlap, the same job executed
on the cheapest three shared processors would finish later at t1 = 5

4 however it would contribute 33 3
4 to the

total weighted overlap. The optimal solution for the instance choses the former which speeds up starting
time of the remaining four jobs by 1

4 in comparison to the latter. Generally this tradeoff is optimally handled
by the LP, however it remains open whether an optimal schedule can be found by a more efficient or strongly
polynomial time algorithm different from LP.

2 An LP Formulation

In this section we give an LP formulation that takes as an input an instance of the problem with n jobs
J = {1, . . . , n} having weights w : J → R+, processing times p : J → R+, m shared processors with costs
c1, . . . , cm, and a permutation A = (1, . . . , n) of the jobs inJ . The permutation A provides an order according
to which the jobs finish on their private processors. The LP finds a schedule that maximizes the total
weighted overlap among all A-compatible schedules. We say that, for a permutation of jobs A = (1, . . . , n),
a schedule S is A-compatible if CPS(j) ≤ CPS(j + 1) for each j ∈ {1, . . . , n − 1}.

The variables used in the LP are as follows. For each i ∈ {1, . . . , n}, a variable t j is the completion time
of job j on its private processor. For each j ∈ {1, . . . , n}, k ∈ {1, . . . , j} and i ∈ {1, . . . ,m}, a variable x jik is
the total amount of job j executed on the shared processorMi in the time interval (tk−1, tk).

The LP is as follows:

maximize f =

n∑

j=1

m∑

i=1

j∑

k=1

(w j − ci)x jik (5)

subject to:
t0 = 0 ≤ t1 ≤ · · · ≤ tn, (6)

n∑

j=k

x jik ≤ tk − tk−1, i ∈ {1, . . . ,m}, k ∈ {1, . . . , n}, (7)

m∑

i=1

j∑

k=1

x jik = p j − t j, j ∈ {1, . . . , n}, (8)

x jik ≥ 0, j ∈ {1, . . . , n}, k ∈ {1, . . . , j}, i ∈ {1, . . . ,m}. (9)

For a solution to the LP, we define the following corresponding schedule S. For each job j ∈ {1, . . . , n},
let CPS(j) = t j. For each k ∈ {1, . . . , j} and i ∈ {1, . . . ,m}, execute a piece of job j of duration x jik on shared

7

processorMi in time interval (tk−1, tk). These job pieces are executed in (tk−1, tk) onMi so that there is no
overlap between them.

Lemma 2.1. For each feasible solution to LP the corresponding schedule S is feasible, A-compatible and
such that f = Σ(S), and for each feasible and A-compatible schedule S there is a feasible solution to LP
such that Σ(S) = f .

Proof. Let x jik, j ∈ {1, . . . , n}, k ∈ {1, . . . , j}, i ∈ {1, . . . ,m} and tk, k ∈ {1, . . . , n} be a solution to the LP.
We first prove that a corresponding schedule S is feasible and A-compatible. For each k ∈ {1, . . . , n} and
i ∈ {1, . . . ,m}, executing a piece of job j of duration x jik on shared processorMi in time interval (tk−1, tk) is
feasible since (7) ensures that the duration x jik does not exceed the length of the interval. Also by (7) and
by (9), the length of the interval (tk−1, tk) is sufficient to execute all job pieces of length x jik, j ∈ {1, . . . , n},
on each shared processorMi. Hence (2) is satisfied by S. By (8), the total execution time of all pieces of a
job j on all shared processors equals p j − t j, for each job j ∈ {1, . . . , n}. Since CPS(j) = t j in S, we obtain
that the total length of all pieces of j in S equals CPS(j) + p j − t j = p j as required by (1). This proves that
S is feasible and (6) implies that it is A-compatible. Finally f in (5) equals the total weighted overlap in (4)
since it can be readily verified that

∑ j
k=1 x jik = ovlpS(j,Mi) for each i ∈ {1, . . . ,m}.

Now for an A-compatible feasible schedule S, set t j = CPS(j) for each j ∈ J and set x jik to be the total
execution time of job j ∈ J on shared processorMi, i ∈ {1, . . . ,m}, in time interval (tk−1, tk), k ∈ {1, . . . , n},
where t0 = 0. Since S is A-compatible, (6) is satisfied. The constraint (7) is satisfied since (2) holds in a
feasible S. The constraint (8) is satisfied since by (1) the total execution time of each job in a feasible S
equals its processing time. Finally, (9) follows directly from the definition of x jik’s. Thus the solution is a
feasible solution to LP, and the total weighted overlap of S equals f in (5). �

Theorem 2.2. Given a permutation A of jobs, a feasible and A-compatible schedule that maximizes the total
weighted overlap can be computed in polynomial time.

Proof. By Lemma 2.1, the schedule S corresponding to an optimal solution to LP is feasible and A-
compatible, and it maximizes the total weighted overlap. The optimal solution to LP can be found in
polynomial time, see for instance [10]. �

3 Approximation Algorithm

In this section we show a strongly polynomial α-approximation algorithm for the problem. The idea is to
find a natural class of schedules for each instance of the problem such that optimal schedules in the class
can be found in strongly polynomial time and such that those optimal schedules guarantee the required
approximation α.

To that end we limit ourselves to α-private schedules in this section. In an α-private schedule each job
j executes for at least αp j time on its private processor P j, and in time interval (0, αp j) only on shared
processors. Although the optimal order of completion times of jobs on their private processors in α-private
schedules is still difficult to find, and thus the LP from Section 2 may not be used to find an optimal α-
private, we use another key property of those schedules which is that each job j completes by αp j on all
shared processors in formulating another linear program, we call it LA, to find optimal α-private schedules
in this section. Therefore, each job j must complete by αp j, j ∈ {1, . . . , n}, on all shared processors in
an α-private schedule, and thus the order of these limiting time points is clearly the same as the order of
job processing times p1 ≤ · · · ≤ pn. The completion time of j on its private processor P j will be set to

8

CPS(j) = (1 − α)p j + t̃ j in α-private schedules, where t̃ j ≥ 0 is referred to as the remainder of j. The choice
of α needs to guarantee that αp j ≤ (1 − α)p j + t̃ j so that each piece of job j on shared processors counts
for an overlap in an α-private schedule. This inequality imposes an upper bound on α. On the other hand
we wish α to be as large as possible, in particular greater than a half, to guarantee as good as possible an
approximation offered by α-private schedules. This imposes a lower bound on α. The compromise used in
our LA is α = 2m+3

4(m+1) = 1
2 + 1

4(m+1) . It remains open whether a higher value of α that meets both conditions
can be found. We are now ready to show that the LA with this alpha finds an optimal α-private schedule,
i.e. an α-private schedule that maximizes the total weighted overlap among all α-private schedules. The
variables used in the LA are as follows. For each j ∈ {1, . . . , n}, a variable t̃ j is the reminder of job j to be
executed on its private processor P j. For each j ∈ {1, . . . , n}, k ∈ {1, . . . , j} and i ∈ {1, . . . ,m}, a variable x jik

is the total amount of job j to be executed on the shared processorMi in the time interval (αpk−1, αpk). We
take p0 = 0, and assume the order (1, . . . , n), p1 ≤ · · · ≤ pn in the program.

The LA is as follows:

maximize
n∑

j=1

m∑

i=1

j∑

k=1

(w j − ci)x jik (10)

subject to:
p j

2(m + 1)
≤ t̃ j ≤ αp j, j ∈ {1, . . . , n}, (11)

n∑

j=k

x jik ≤ α(pk − pk−1), i ∈ {1, . . . ,m}, k ∈ {1, . . . , n}, (12)

m∑

i=1

j∑

k=1

x jik = αp j − t̃ j, j ∈ {1, . . . , n}, (13)

x jik ≥ 0, j ∈ {1, . . . , n}, k ∈ {1, . . . , j}, i ∈ {1, . . . ,m}. (14)

For a feasible solution to the LA, we define the following corresponding schedule S. For each job
j ∈ {1, . . . , n}, set the completion time of j on its private processor P j to

CPS(j) = (1 − α)p j + t̃ j. (15)

For each k ∈ {1, . . . , n} and i ∈ {1, . . . ,m}, execute a piece of job j of duration x jik on shared processorMi

in time interval (αpk−1, αpk) in such a way that no two job pieces overlap. We now prove that S is feasible.

Lemma 3.1. For a feasible solution to LA, the corresponding schedule S is feasible, and the value of
objective function of the solution equals the total weighted overlap of S.

Proof. Let S be a schedule corresponding to a solution x jik, j ∈ {1, . . . , n}, k ∈ {1, . . . , j}, i ∈ {1, . . . ,m}
and t̃ j, j ∈ {1, . . . , n}. For each k ∈ {1, . . . , j} and i ∈ {1, . . . ,m}, executing a piece of job j of duration x jik

on shared processorMi in time interval (αpk−1, αpk) is feasible since (12) guarantees that the duration x jik

does not exceed the length of the interval, and by (14) the duration x jik is non-negative. Moreover, again
by (12) and (14), the length of the interval (αpk−1, αpk) is sufficient to execute all pieces of jobs of length
x jik, j ∈ {1, . . . , n}, on each shared processorMi. By (13), the total execution time of all pieces of j on all
shared processors equals αp j − t̃ j, for each job j ∈ {1, . . . , n}. Since CPS(j) = (1 − α)p j + t̃ j, we obtain that
the total length of all pieces of j in S equals p j as required. Moreover, by (12) and (13) all the pieces of job
j that execute on shared processors end by αp j, and thus they end by CPS(j) = (1 − α)p j + t̃ j since by (11),

9

t̃ j ≥ p j/(2(m + 1)), and α = 1
2 + 1

4(m+1) . This proves that S is feasible. Finally, by (15), each job piece of
j on shared processor ends by its completion on the private one which shows that (10) is the total weighted
overlap of S. �

We now show that an optimal solution to the LA gives an α-approximation of the optimum.

Lemma 3.2. For each input instance, the schedule S that corresponds to an optimal solution to LA satisfies
Σ(S) ≥ αΣ(Sopt), where Sopt is an optimal solution.

Proof. Suppose that an input instance consists of n jobs {1, . . . , n} with processing times p1 ≤ · · · ≤ pn,
weights w1, . . . ,wn and m shared processors with costs c1 ≤ · · · ≤ cm. Let Sopt be an optimal schedule for
the instance. By Theorem 1.1 we may assume synchronized Sopt.

For Sopt, let y jik be equal to the total execution time of job j on shared processor i in time interval
(pk−1, pk) for each j ∈ {1, . . . , n}, i ∈ {1, . . . ,m} and k ∈ {1, . . . , j}, where p0 = 0. Denote for brevity

e j =

m∑

i=1

j∑

k=1

y jik

to be the total amount of job j executed on all shared processors in Sopt. From the synchronization we
observe

0 ≤ e j ≤
mp j

(m + 1)
. (16)

We assign values to the variables in the LA as follows:

x jik = αy jik, j ∈ {1, . . . , n}, k ∈ {1, . . . , j}, i ∈ {1, . . . ,m}, (17)

t̃ j = α(p j − e j), j ∈ {1, . . . , n}. (18)

We prove that this assignment gives a feasible solution to the LA. By (16) and α > 1
2 , we have (11) satisfied.

For each shared processorMi and each interval (pk−1, pk), the total execution time of all job pieces executed
in this interval on Mi in the schedule Sopt is

∑n
j=1 y jik. Thus, since Sopt is feasible (and in particular we

use the fact that no job j executes on a shared processor after time point p j in Sopt), we have for each
i ∈ {1, . . . ,m}

n∑

j=k

y jik ≤ pk − pk−1.

This proves, by (17), that (12) holds. The total amount of a job j that executes on all shared processors in
Sopt is e j and hence

e j =

m∑

i=1

j∑

k=1

y jik =
1
α

m∑

i=1

j∑

k=1

x jik,

which by (18) gives (13). Finally, (14) follows directly from (17) and the feasibility of Sopt.
Let S be the schedule corresponding to the above LA solution. By Lemma 3.1, S is indeed a feasible

schedule, and the total weighted overlap of S equals by (17):

Σ(S) =

n∑

j=1

m∑

i=1

j∑

k=1

x jik(w j − ci) =

n∑

j=1

m∑

i=1

j∑

k=1

αy jik(w j − ci) = αΣ(Sopt),

which completes the proof since Σ(S∗) ≥ Σ(S), where S∗ is the schedule that corresponds to an optimal
solution to the LA. �

10

We now argue that the LA can be recast as a minimum-cost network flow problem which can be solved
more efficiently than a general linear program, see Orlin [9]. The directed flow network D = (V, A) can be
constructed as follows. For each i ∈ {1, . . . ,m} and k ∈ {1, . . . , n} introduce two nodes vik, v′ik. For each job
j ∈ {1, . . . , n}, introduce a node u j, and let s and t be the source and sink nodes in the network. We add the
following arcs to D:

(a) for each j ∈ {1, . . . , n}, let (s, u j) ∈ A be an arc of capacity cap((s, u j)) =
mp j

2(m+1) and cost cost((s, u j)) =

0,

(b) for each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and k ∈ {1, . . . , j}, let (u j, vik) ∈ A be an arc of capacity
cap((u j, vik)) = +∞ and cost cost((u j, vik)) = w j − ci,

(c) for each i ∈ {1, . . . ,m} and k ∈ {1, . . . , n}, let (vik, v′ik) ∈ A be an arc of capacity cap((vik, v′ik)) =

α(pk − pk−1) and cost cost((vik, v′ik)) = 0,

(d) for each i ∈ {1, . . . ,m} and k ∈ {1, . . . , n}, let (v′ik, t) ∈ A be an arc of capacity cap((v′ik, t)) = +∞ and
cost cost((v′ik, t)) = 0.

Suppose that f is an s-t flow in D. We define a feasible LA solution by taking x jik = f (u j, vik) for each
j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, k ∈ {1, . . . , j} and t̃ j = αp j − f (s, u j) for each j ∈ {1, . . . , n}. Constraint (11) is
satisfied because cap((s, u j)) =

mp j
2(m+1) . Constraint (12) follows directly from cap((vik, v′ik)) = α(pk − pk−1)

since the flow through the arc (vik, v′ik) equals
∑n

j=k f (u j, vik) =
∑n

j=k x jik. For (13) we have for each j ∈
{1, . . . , n},

m∑

i=1

j∑

k=1

x jik =

m∑

i=1

j∑

k=1

f (u j, vik) = f (s, u j) = αp j − t̃ j.

Then, (14) is due to the fact that the flow is non-negative. Since all arcs except for (u j, vik)’s have cost zero,
we obtain that the objective function in (10) equals the total cost of the flow f . The construction leading
from an LA solution to a flow in D is straightforward and analogous and hence we skip its description.

We have proved the following.

Theorem 3.3. For any input instance with m ≥ 1 processors, there exists a strongly polynomial approxima-
tion algorithm with approximation ratio α = 1

2 + 1
4(m+1) . �

Observe that by Lemma 3.2 the LA is 5
8 - approximation for a single shared processor problem, m = 1,

which improves the 1
2 - approximation in [6] but at a cost of computational complexity which however still

remains strongly polynomial.

4 Processor-descending and sequential schedules

As a stepping stone towards the proof of Theorem 1.1 and towards the algorithm for antithetical instances we
show that there always exist optimal schedules that are processor-descending and sequential in this section.

For a given scheduleS, we say that an interval I is a segment inS if I is a maximal interval such that each
shared processor is either idle in I or has no idle time in I. We say that a job is present in a segment if some
non-empty part of the job executes in this segment. We then say that a segment I is sequential if each job j is
either not present in I or there exists an interval I′ ⊆ I, called the interval of j in I, such that each processor
that is not idle in I executes j exactly in the interval I′. If each segment in a schedule is sequential, then
the schedule is called sequential. We say that a schedule is processor-descending if each shared processor

11

has no idle times between any two job pieces it executes, and for any two processors Mi and Mi′ with
ci < ci′ it holds thatMi completes executing all job pieces not later thanMi′ . A job j is synchronized in a
processor-descending and sequential schedule S if the last piece of j ends on shared processors at CPS(j).

We now describe a simple schedule modification that, without increasing the total weighted overlap,
arrives at a schedule that is processor-descending and sequential (see Figure 3 for an illustration). We name
this transformation as a procedure as it will be used later.

Procedure MakeSequential(S)
Input: A feasible schedule S.
Output: A processor-descending and sequential schedule S′ with Σ(S′) ≥ Σ(S).
(M1) As long as there exists a processorMi and an idle time (a, b) (take this idle time to have maximum

duration) followed by a piece (a′, b′) of a job j do the following: move the piece of j to be executed
in time interval (a, a + b′ − a′).

(M2) For each segment I in S do the following:
(M2a) Let jI

1, . . . , jI
l(I) be the jobs present in segment I sorted according to non-decreasing order of their

completion times on private processors, CPS(jI
1) ≤ · · · ≤ CPS(jI

l(I)). Let aI
i be the total amount of

job jI
i ∈ { jI

1, . . . , jI
l(I)} executed in the segment I. Let m′ be the number of processors used by I

in S.
(M2b) Replace the segment I in S with one in which the job jI

t , t ∈ {1, . . . , l(I)}, executes in time
interval L +

1
m′

t−1∑

t′=1

aI
t′ , L +

1
m′

t∑

t′=1

aI
t′

on all these m′ shared processors, where L is the left endpoint of I.

jI1

jI1

jI2 jI3

jI4

jI4 jI2 jI3

L

L′ = L+ 18

jI1 jI2 jI3

jI4

L

L′

→
jI4

jI4

jI3

jI3

jI2

jI2

jI1

jI1

L+ 4

L+ 5

L+ 10 L+ 13

L+ 11

L+ 6

L+ 10

L+ 15

m′ = 3
shared

processors

Figure 3: Transformation performed in Step (M2) for a segment I = (L, L′) with total job executions times
in this segment being aI

1 = 18, aI
2 = 12, aI

3 = 15, aI
4 = 9

Lemma 4.1. Procedure MakeSequential transforms an input schedule S into a schedule that is processor-
descending, sequential and has the same total weighted overlap.

Proof. Note that Step (M1) of Procedure MakeSequential makes S to be processor-descending because
after this transformation, each shared processor is busy in a single time interval that starts at 0. Recall
that, if in a given segment of the new schedule it holds that m′ shared processors are used, then since they
are ordered according to their costs, we may without loss of generality assume that these processors are
M1, . . . ,Mm′ .

12

Consider now Step (M2) of Procedure MakeSequential. The fact that the total execution time of
each job on shared processors does not change within the segment follows directly from the formula in
Step (M2b). We need to prove that for each t ∈ {1, . . . , l(I)}, the job jI

t completes its piece in segment I in
the output schedule S′ not later than its completion time on its private processor:

CPS′(jI
t) ≥ L +

1
m′

t∑

t′=1

aI
t′ = et (19)

since this implies that Σ(S′) = Σ(S). For each t ∈ {1, . . . , l(I)}, if there exists a shared processorMi such
that a piece of jI

t ends onMi in S at et or later, then we are done. Suppose for a contradiction that (19) does
not hold, i.e., CPS′(jI

t) < et for some t. Since CPS(jI
t) = CPS′(jI

t), we have that the job jI
t completes before et

on each shared processor in S. Thus, since there is no idle time in interval (L, et) in S′, there exists 1 ≤ t̄ < t
such that the job jI

t̄ completes on some shared processor at time ē, after the time point et in S, ē > et. But
according to the job ordering picked in Step (M2a), CPS(jI

t̄) ≤ CPS(jI
t). By assumption CPS(jI

t) = CPS′(jI
t) < et.

This gives that ē > CPS(jI
t̄), which violates (3) and gives the required contradiction since S is feasible. This

proves (19) and completes the proof of the lemma. �

Thus we conclude.

Corollary 4.2. There exists an optimal processor-descending and sequential schedule. �

5 Antithetical Instances

An instance J is antithetical if for any two jobs j and j′ it holds: p j ≤ p j′ implies w j ≥ w j′ . Our main goal
in this section is to show a polynomial time algorithm for antithetical instances. The algorithm relies on the
LP given in Section 2 which however requires an optimal job order to produce an optimal solution. We prove
that the ascending order of processing times is such an order, and that all jobs occur on shared processors
in optimal schedules produced by the algorithm. The proof relies on a transformation, called j-filling, of
a schedule which we now define. The transformation may produce schedules which are not synchronized
even if applied to a synchronized schedule, however those schedules must then be processor-descending and
sequential with synchronized suffixes inherited from the original synchronized schedule.

For a synchronized schedule S we say that it is processing-time ordered if p j1 ≤ · · · ≤ p jk , where
j1, . . . , jk are the jobs that appear, in S in this order, on the shared processors. We then for brevity say that
(j1, . . . , jk) is the ordering of jobs in S. Consider an arbitrary processor-descending and sequential schedule
S. We say that a suffix (j1, . . . , jk), is processing-time ordered and synchronized in S if p j1 ≤ · · · ≤ p jk ,
there exists a time point t such that exactly the jobs j1, . . . , jk execute in time interval (t,+∞) in this order,
and the jobs j1, . . . , jk are synchronized. The synchronization and processing-time ordering are thus not
required for the entire schedule but only for some suffix of S.

Consider a processor-descending and sequential schedule S such that there exists a job j which satisfies
one of the following.

(1) j is present on the shared processors, j is not synchronized, and j is followed by a processing-time
ordered synchronized suffix (j1, . . . , jk) in S.

(2) j is not present on the shared processors, and S has a processing-time ordered synchronized suffix
(j1, . . . , jk) that starts at time t1 < p j.

13

Let t1 and t′1 be such that the piece of the job j1 executes in (t1, t′1) on the shared processors. We define
an operation of j-filling in S as follows (see Figure 4(a)): for some t, t1 < t ≤ t′1, the part of j1 executing
in time interval (t1, t) is moved from each shared processorMz, z ∈ {1, . . . ,m′} to its private processor P j1 ,
and it is replaced onMz by j so that the completion time of j on P j decreases by m′(t − t1), where m′ is the
number of shared processors used in the interval (t1, t′1). The t ∈ (t1, t2] is chosen to be maximum to ensure
that the completion time of j on shared processors, which equals t, is smaller than or equal to the completion
time of j on P j. We remark that if t < t′1, then the job j becomes synchronized as a result of j-filling —

t1 t′1

j

(a)

Pj

j1 j2 . . .

j

S
h
a
re
d
p
ro
c.

j

Pj

j1 j2 . . .

j

S
h
a
re
d
p
ro
c.

Pj1 j1

Pj1 j1

t x x′

ji−1

(b)

Pji−1

ji . . .

ji−1

S
h
a
re
d
p
ro
c.

Pji ji

t

→

ji−1

Pji−1

ji . . .

ji−1

S
h
a
re
d
p
ro
c.

Pji ji

Figure 4: (a) j-filling for the case when j is present on the shared processors; (b) changing the order of jobs
ji−1 and ji on the shared processors when p ji−1 > p ji

informally speaking this follows from observation that further increase of t is not possible due to the fact
that there is not enough of j in time interval (t1,CPS(j)) on private processor P j in S to fill out the interval
(t1, t + ε) on the shared processors for any ε > 0 (this case is depicted in Figure 4(a)). On the other hand, if
t = t2, then j may not be synchronized as a result of j-filling.

Note that the definition of j-filling is valid, it suffices to observe that the maximum t selected indeed
satisfies t1 < t. This follows from the assumption that p j > t1 when j is not present on the shared processors,
and from the fact that j is not synchronized and directly precedes j1 on the shared processors otherwise. Note
that w j ≥ w j1 is sufficient to ensure that as a result of j-filling the total weighted overlap does not decrease
in comparison to S. Since the execution of jobs j2, . . . , jk does not change as result of j-filling, we obtain:

Observation 5.1. Suppose that a schedule S and j satisfy the assumptions (1) or (2) of j-filling, and w j ≥
w j1 . The operation of j-filling gives a feasible schedule S′ such that Σ(S′) ≥ Σ(S), the job j1 is either not
synchronized in S′ and present on the shared processors (this holds when t < t′1), or the job j1 executes on
P j1 only and CPS′(j1) > t′1 (this holds when t = t′1) and the suffix (ji+1, . . . , jk) is processing-time ordered and
synchronized in S′. �

14

We are now ready to prove the main result of this section.

Theorem 5.2. For any antithetical instance, there exists an optimal schedule that is processing-time ordered
and each job is present on the shared processors. Moreover, it can be computed in polynomial time.

Proof. Consider an optimal schedule S for an antithetical instance. By Theorem 1.1 we may assume that
S is synchronized. Let (j1, . . . , jk) be the ordering of jobs in S. We first argue that S is processing-time
ordered. We prove this by contradiction: take the largest index i such that p ji−1 > p ji . Swap the jobs ji−1
and ji on the shared processors as follows (see Figure 4(b)): Suppose that ji−1 and ji occupy the interval
(x, x′) on the shared processors in S. Find the t, x < t ≤ x′, so that when replacing ji−1 by ji in time interval
(x, t) on each shared processor and executing ji in (0, t) on its private processor results in ji having the total
execution time equal to p ji . Thus, ji remains synchronized. Finally execute ji−1 in time interval (t, x′) on
each shared processor on which ji−1 or ji was initially present, and execute the remainder of ji−1 on its
private processor. The fact that p ji−1 > p ji implies that this swap gives a feasible schedule and that ji−1 is no
longer synchronized. By the maximality of j, the suffix (ji+1, . . . , jk) in the resulting schedule is processing-
time ordered and synchronized (as nothing in the suffix has changed with respect to S). Perform ji−1-filling
to S, and then for each i′ := i + 1, . . . , k − 1 (in this order) apply ji′-filling, obtaining a final schedule S′. By
Observation 5.1, S′ is feasible, Σ(S′) ≥ Σ(S) and the job jk is either not synchronized or not present on the
shared processors in S′. In both cases we obtain that S′ is not optimal (observe that jk completes later on
its private processor than the last job completes on shared processors in S′ which is obviously not optimal
since some part of jk can be moved to the cheapest shared processor and thus increase the overlap), which
contradicts the optimality of S. Thus, we have proved that S is processing-time ordered.

We now prove that J = { j1, . . . , jk}, i.e, all jobs are present on the shared processors in S. By contra-
diction, let j < { j1, . . . , jk}. If p j ≥ p jk , then S is not optimal and we immediately obtain a contradiction.
Otherwise, since S is processing-time ordered and synchronized, as we showed earlier in the proof, there
is a suffix (ji, . . . , jk) of S for which the condition (2) of j-filling is satisfied (i is the maximum index such
that p j > p ji). Perform the j-filling and then iteratively for i′ := i, . . . , k− 1 (in this order) perform ji′-filling
obtaining the final S′. Again by Observation 5.1, S′ is feasible, Σ(S′) ≥ Σ(S) and jk is either not present
on shared processors or is not synchronized, giving us the required contradiction.

Finally, the LP (see Theorem 2.2) gives the optimal processing-time ordered schedule in polynomial
time. �

6 Structure of Optimal Schedules

This section proves Theorem 1.1 that was announced earlier in the paper. By Corollary 4.2 we can limit our-
selves to processor-descending and sequential schedules S. Those schedules may not be synchronized for a
number of reasons: a job may appear in more than one segment of S, we call this a split of the job, or even
if each job appears in at most one segment of S some jobs may not be synchronized by finishing on shared
processors earlier than on their private processors. We need to show how to remove these undesirable con-
figurations from processor-descending and sequential schedules to produce synchronized schedules without
decreasing the total weighted overlap in the process. This removal affects schedules and their total weighted
overlaps in a quite complicated way that requires sometimes delaying parts of the schedules whereas at other
times their advancing in order not to reduce the total wighted overlap. We describe the main building block
of the transformation, we call it modification, and its key properties in the next subsection. The modification
will be used in Subsection 6.2 to remove the splits, and in Subsection 6.3 to synchronize jobs.

15

6.1 Towards Schedule Synchronization

Let S be a processor-descending and sequential schedule. Suppose S has ` segments, S 1, . . . , S ` and the
i-th segment executes jobs ji,1, . . . , ji,l(i) in time intervals (si,1, ei,1), . . . , (si,l(i), ei,l(i)), respectively. Define
T (S) = {si,k, ei,k : i = 1, . . . , `; k = 1, . . . , l(i)} to be the set of all time points t such that some piece of
a job starts or ends at t on a shared processor. Let mi,k be the number of shared processors used by S in
the interval (si,k, ei,k). Observe that this number remains the same for each interval in a segment i thus we
denote it by mi and we refer to it as the width of the interval (si,k, ei,k). We define the factor m+

i,k and the
radius ri,k of the interval (si,k, ei,k) as follows. Let a job ji,k execute in an interval (si,k, ei,k), if ei,k = CPS(ji,k),
then m+

i,k = mi + 1 and ri,k = min{ei,k − si,k, p ji,k − ei,k}. Otherwise, if ei,k < CPS(ji,k), then m+
i,k = mi and

ri,k = min{ei,k − si,k,CPS(ji,k) − ei,k}.
In this section we define a transformation of S that would be used to make it synchronized. The trans-

formation is multi-step which in each step is defined as a function ξ that takes a schedule S, a time point
t ∈ T (S) and a shift ε ∈ R as an input, and produces a schedule S′ and a new shift ε′ as output.

Before giving its formal description, we start with some informal intuitions. We consider three basic
steps that make up the whole transformation. The first step is the base step of our transformation: this case
simply moves the endpoint of the last job piece of the entire schedule, i.e., the piece that ends at e`,l(`). If
ε > 0, then this piece is moved to the right (i.e., it completes later in S′ than in S), and if ε < 0, then this
piece advances in S′ with respect to S.

The main step is subdivided into two subcases. In the first subcase we consider a piece of a job j that
ends earlier on shared processors than on the private processor. Note that if this is the last piece of j, then it
implies that j is not synchronized. However, it may also happen that this is not the last piece of j but j itself
is synchronized as there may be another piece of j in one of the subsequent segments of S. In this situation
the endpoint of the piece of j is just moved (on each shared processor) to the right or to the left (according
to whether ε > 0 or ε < 0, respectively).

In the second subcase we consider the last piece of a job j that is synchronized. Then, we shift both
the endpoint of the piece of j on shared processors and, by the same amount, the endpoint on the private
processor. In this way the job remains synchronized.

For each step we define a payoff value that tells how much the total weighted overlap of the schedule
changes by doing the step. We need to keep in mind the multi-step nature of the entire transformation.
Typically the transformation starts with some S, time point t = ei,b and ε, then it will subsequently trigger
changes for the same parameter S, subsequent time points

ei,b+1, . . . , ei,l(i), . . . , ei+1,1, . . . , ei+1,l(i+1), . . . , e`,1, . . . , e`,l(`),

and different values of ε.
We now give a description of these three steps and then an example that depicts all of them follows (see

Figure 5). The changes introduced to S in each of these steps are referred to as one step modifications.
Base Step. The assumption of this step is that t = e`,l(`), i.e., t is the end of the last job j`,l(`) of the last
segment of S. We call this job the job of the modification and denote by j for convenience. We may assume
without loss of generality that j is synchronized and hence t = CPS(j). The modification is doable if

ε ∈
[
−m+

`,l(`)r`,l(`),m
+
`,l(`)r`,l(`)

]
. (20)

For the doable modification, we set the completion time of j on processorsM1, . . . ,Mm` and P j in S′ to

e`,l(`) +
ε

m+
`,l(`)

. (21)

16

This transformation is denoted by ξ(S, t, ε) and its payoff equals

payoff(ξ(S, t, ε)) =
ε

m+
`,l(`)

m∑̀

z=1

(w j − cz). (22)

This completes the description of the base step.
In the two remaining steps, we assume t = ei,b where i < ` or b < l(`) and use some common notation

for both. Let for brevity j = ji,b. Note that the interval that immediately follows (si,b, ei,b) is either (si,b+1 =

ei,b, ei,b+1) when b < l(i), i.e., when j is not the last in the segment S i or (si+1,1 = ei,b, ei+1,1) when b = l(i),
i.e., j is last in the segment S i. Let m′ = mi in the former case, and m′ = mi+1 in the latter case. Finally, let
j′ be the job in the interval that immediately follows (si,b, ei,b).

Main Step I. The assumption of this step is that ei,b < CPS(j). We say that the modification is doable if

ε ∈
[
−m+

i,bri,b,m+
i,bri,b

]
, (23)

For the doable modification set the completion time of j on processorsM1, . . . ,Mmi equal to the start time
of j′ on shared processorsM1, . . . ,Mm′ to

t′ = ei,b +
ε

m+
i,b
, (24)

and denote next(ε) = ε m′
m+

i,b
. The payoff is

payoff(ξ(S, t, ε)) =
ε

m+
i,b

mi∑

z=1

(w j − cz) −
m′∑

z=1

(w j′ − cz)

 . (25)

Main Step II. The assumption of this step is:

ei,b = CPS(j). (26)

We say that the modification is doable if

ε ∈
[
−m+

i,bri,b,m+
i,bri,b

]
(27)

For the doable modification set the completion time of j on processors M1, . . . ,Mmi and P j equal to the
start time of j′ on shared processorsM1, . . . ,Mm′ to

t′ = ei,b +
ε

m+
i,b
, (28)

and denote next(ε) = ε m′
m+

i,b
. The payoff is then

payoff(ξ(S, t, ε)) =
ε

m+
i,b

mi∑

z=1

(w j − cz) −
m′∑

z=1

(w j′ − cz)

 . (29)

This completes the description of all cases of our transformation — see Figure 5 for an example.

17

p
ri
v
a
te

p
ro
ce
ss
o
rs

→

M1

Mmi−2

Mmi−1

Mmi

...

ji,1 ji,2 ji,3
ji+1,1 ji+1,2

ji,1

ji,2

ji,3

ji+1,1

ji+1,2

M1

Mmi−2

Mmi−1

Mmi

...

ji,1 ji,2 ji,3
ji+1,1 ji+1,2

ji,1

ji,2

ji,3

ji+1,1

ji+1,2p
ri
v
a
te

p
ro
ce
ss
o
rs

S0

S4

Main Step II:
Main Step I:

Base Step:
t0 t1 t2

t3 t4

ε
m′+1

εm′
(m′+1)2

εm′
(m′+1)2

εm′
(m′+1)2

εm′(m′−2)

(m′−1)(m′+1)2

ξ(S0, t0, ε0)
ε0 = ε

ξ(S1, t1, ε1)

ε1 = εm′
m′+1

ξ(S2, t2, ε2)

ε2 = εm′2
(m′+1)2

ε3 = εm′(m′−2)

(m′+1)2

ξ(S3, t3, ε3)

ε4 = εm′(m′−2)

(m′+1)2

ξ(S4, t4, ε4)

Figure 5: In this example we consider two consecutive segments, which have three and two job pieces,
respectively. We consider executing ξ(Si, ti, εi) for i = 0, . . . , 4, where ε0 = ε is positive. All five mod-
ifications are doable but note that the job ji,3 is synchronized in S4 but is not synchronized in S. Hence,
according to Condition (23) of Main Step I that handles this modification, this is the maximum ε > 0 for
which all five modifications are doable.

Let t0 < t1 < · · · < tq, q ≥ 0, be the last q + 1 end points in the sequence e1,1 < · · · < e`,l(`) of the
schedule S. Let I1 = (t0, t1), . . . , Iq = (tq−1, tq) be the last q intervals of S. Let ji, mi, m+

i , and ri be the job,
the width, the factor, and the radius of the interval ending at ti, i = 0, . . . , q. The q + 1 step modification
starts with S0 = S, t = t0 and an ε = ε0 such that

0 < |ε| < min
i=0,...,q

{miri/2}, (30)

and recursively builds schedules S1, . . . ,Sq+1 using the one step modifications just described such that

18

Si = ξ(Si−1, ti−1, εi−1), where each subsequent value of εi is computed on the basis of the previous one as
follows: εi = next(εi−1) for each i ∈ {1, . . . , q + 1}. Finally, the Sq+1 = ξ(Sq, tq, εq) is always the Base Step.
We say that the q+1 step modification is doable if all its one step modifications are doable, i.e. all ε0, . . . , εq

satisfy appropriate condition in (20), (23) and (27). We later show that the initial choice of ε0 that meets
(30) guarantees that the q + 1 step modification is doable. Observe that by definition

εi = next(εi−1) = εi−1
mi

m+
i−1
. (31)

Therefore the points t0, t1, . . . , tq and the shifts ε0, . . . , εq can be readily calculated from S and ε. We
summarize this in the following corollary.

Corollary 6.1. Consider a doable q + 1 step modification that starts with S0 = S, t = t0 and ε = ε0. Then,

εi = ε

i∏

z=1

mz

m+
z−1

for each i ∈ {1, . . . , q}. �

We remark that we will use later the fact that each εi is linearly dependent on the ε.

For a doable q + 1 step modification that starts with S0 = S, t = t0 and ε = ε0, by (22), (25) and (29) the
payoff can be written as follows

∆(S0, t0, ε0) =

q∑

k=0

payoff(ξ(Sk, tk, εk)) =

q∑

i=0

εi

m+
i

mi∑

z=1

(w ji − cz) −
mi+1∑

z=1

(w ji+1 − cz)

 , (32)

where mq+1 = 0. We conclude from (32) the following.

Corollary 6.2. For a doable q + 1 step modification that starts with S0 = S, t = t0 and ε = ε0 it holds

∆(S0, t0, ε0) =
ε0

m+
0

m0∑

z=0

(w j0 − cz) +

q∑

i=1

(
εi

m+
i
− εi−1

m+
i−1

) mi∑

z=1

(w ji − cz).

�

Motivated by Corollaries 6.1 and 6.2, we introduce the following function for each t ∈ T (S):

R(S, t) =
1

m+
0

m0∑

z=1

(w j0 − cz) +

q∑

i=1

1

m+
i

i∏

z=1

mz

m+
z−1
− 1

m+
i−1

i−1∏

z=1

mz

m+
z−1

mi∑

z=1

(w ji − cz),

which we call the rate of a doable q + 1 step modification that starts with S0 = S, t = t0 and ε = ε0. We
stress out that the rate is the same regardless of the value of ε chosen for the modification. In other words,
the function R depends only on the schedule S and the time point t ∈ T (S). By Corollaries 6.1 and 6.2 we
obtain:

Corollary 6.3. For a doable q+1 step modification that starts with S0 = S, t = t0 and ε = ε0, ∆(S0, t0, ε0) =

ε · R(S0, t0). �

19

Note that a doable q + 1 step modification that starts with S0 = S, t = t0 and ε = ε0 does not produce
a feasible schedule S′. More precisely, the schedule S′ is not feasible since the total amount of the job j0
equals p j0 +ε (note that this is the job ji,1 in the example from Figure 5) in S′. We summarize the properties
of S′ in the following lemmas.

Lemma 6.4. Let S be a processor-descending and sequential schedule. A doable q + 1 step modification
that starts with S0 = S, t = t0 and ε = ε0 that meets (30) results in S′ that satisfies the following conditions:

(i) the completion time of each job j on each shared processor is smaller than or equal to CPS′(j),

(ii) the total execution time of each job j , j0 equals p j in S′ ,

(iii) the total execution time of j0 in S′ is p j0 + ε,

(iv) no two pieces of jobs overlap in S′.
Proof. Assume ε0 > 0 in the proof, the proof for ε0 < 0 is similar and thus will be omitted. The ends of the
interval Ii = (si, ei) change to (s′i , e

′
i) = I′i as a result of the q + 1 step modification as follows:

s′i = si +
εi−1

m+
i−1

and e′i = ei +
εi

m+
i

(33)

for i = 1, . . . , q. Thus
e′i − s′i = ei − si +

εi−1

m+
i−1

(
mi

m+
i
− 1). (34)

For m+
i = mi, we have e′i − s′i = ei − si > 0. For m+

i = mi + 1, we have

e′i − s′i = ei − si − εi−1

m+
i−1m+

i
. (35)

Since ε > εi−1
m+

i−1
, and by (30) m+

i (ei−si) > ε, we have e′i−s′i > 0 for ε > 0. Thus, by the one step modifications,
(iv) holds.

By (33) the execution of ji is reduced (this does not happen for j0 for which the reduction is 0) by

εi−1
mi

m+
i−1

= εi, (36)

and it increases by
εi

mi

m+
i

(37)

on shared processors. For m+
i = mi the two are equal, and for m+

i = mi + 1, the private processor P j0 of job
j0 gets εi

1
m+

i
of that job. Thus (ii) and (iii) hold.

In Base Step, the job j` is synchronized due to (21). Similarly, in Main Step II, also ji completes both
on shared processor and on its private processor at the same time according to (28). In Main Case I, the
completion time of j is set in (24) and this does not exceed CPS′(j) by definition of ri in the right hand side
inequality in (23). For all remaining jobs their completion times on all processors remain unchanged, which
proves (i). �

20

The second lemma shows a sufficient condition for ε to make q + 1 step modification that starts with
S0 = S, t = t0 and ε0 = ε doable. Recall that S′ produced by the q + 1 step modification is not feasible
however, by Lemma 6.4, the only reason for that is that the total execution time of the job j0 is incorrect in
S′, i.e., it equals p j0 + ε instead of p j0 . For this reason we introduce notation S′− j, for a job j, to denote a
schedule obtained from S′ by removing all pieces of j from shared processors and by removing the private
processor of j. Note that S′− j is then a feasible schedule for the instance J \ { j}. Hence, the second lemma
also shows the difference between the total weighted overlap Σ(S′− j) of S′− j, which gives the sum of total
overlaps of all jobs in S′ except of j, and the total weighted overlap Σ(S) of S.

Lemma 6.5. Let S be a processor-descending sequential schedule. Let ε meet (30). Then, both q + 1 step
modification that starts with S0 = S, t = t0 and ε0 = −ε and q + 1 step modification that starts with S0 = S,
t = t0 and or ε0 = ε are doable, and we have

Σ(S′− j0) = Σ(S) + ∆(S0, t0, ε0) −
m∑

i=1

ovlpS(j0,Mi)(w j0 − ci) − ε

m+
0

m0∑

z=1

(w j0 − cz), (38)

for the resulting schedule S′.
Proof. Assume ε0 > 0 in the proof, the proof for ε0 < 0 is similar and thus will be omitted. We first prove
that

m+
i (e′i − s′i) > εi (39)

for i ∈ {1, . . . , q}. This holds for m+
i = mi since then ei − si = e′i − s′i and by ε ≥ εi. Suppose m+

i = mi + 1.
By (35) and (39) we need to show

m+
i (ei − si) > εi +

εi−1

m+
i−1m+

i
. (40)

To that end we observe that

εi−1m+
i

m+
i−1

> εi +
εi−1

m+
i−1m+

i
=
εi−1mi

m+
i−1

+
εi−1

m+
i−1m+

i
. (41)

Thus it suffices to show that

m+
i (ei − si) >

εi−1m+
i

m+
i−1

, (42)

or equivalently
ei − si >

εi−1

m+
i−1
. (43)

By multiplying both sides of the last inequality by mi we get

mi(ei − si) >
εi−1mi

m+
i−1

= εi. (44)

This last inequality holds since ε ≥ εi and (30) holds for ε. We also prove, a similar proof for m+
i CPS(j)−e′i >

εi will be omitted, that
m+

i (p j − e′i) > εi. (45)

Since m+
i ≥ mi, it suffices to show that

mi(p j − ei) > εi + εi
mi

m+
i
. (46)

21

The last inequality holds since mi(p j − ei) ≥ 2(miri/2) > 2ε ≥ εi by (30). This completes the proof of the
first part of the lemma. Observe that εi does not reach neither end of doable intervals.

For the proof of the second part, let for brevity J ′ = { j0, j1, . . . , jq}. We have

Σ(S′− j0) =
∑

j∈J\{ j0}

m∑

i=1

ovlpS′− j0
(j,Mi)(w j − ci)

=
∑

j∈J\J ′

m∑

i=1

ovlpS(j,Mi)(w j − ci) +
∑

j∈J ′\{ j0}

m∑

i=1

ovlpS′− j0
(j,Mi)(w j − ci).

(47)

Consider any ji ∈ J ′ \ { j0}. The total weighted overlap of ji is the same in S− j0 as in S except for the shift
in its piece performed by the i-th and (i − 1)-st modifications (see also Corollary 6.2):

m∑

z=1

ovlpS− j0
(ji,Mz)(w ji − cz) =

m∑

z=1

ovlpS(ji,Mz)(w ji − cz)

+

(
εi

m+
i
− εi−1

m+
i−1

) mi∑

z=1

(w ji − cz).

(48)

By (47) and (48) applied to all jobs in J ′ \ { j0} = { j1, . . . , jq} we obtain

Σ(S′− j0) = Σ(S) −
m∑

i=1

ovlpS(j0,Mi)(w j0 − ci)

+

q∑

i=1

(
εi

m+
i
− εi−1

m+
i−1

) mi∑

z=1

(w ji − cz).

(49)

By Corollary 6.2, (49) and ε0 = ε,

Σ(S′− j0) = Σ(S) −
m∑

i=1

ovlpS(j0,Mi)(w j0 − ci)

+ ∆(S0, t0, ε0) − ε

m+
0

m0∑

z=1

(w j0 − cz).

(50)

which proves (38) and completes the proof of the lemma. �

6.2 Splits

Suppose that S is a processor-descending and sequential schedule. We say that a job j has a (I, I′)-split if I
and I′ are two pieces of j executing in two different segments. We assume that I′ is to the right of I. Given
that S has such a job j with a (I, I′)-split, we introduce the following schedule transformation that we call a
(I, I′, ε)-transfer. Although this modification works for an arbitrary split, we will be particularly interested
in our analysis in the case when the (I, I′)-split is the rightmost. Let q ≥ 0 be the number of intervals (job
pieces) to the right of I′ in S. Consider ε such that

0 < |ε| < min
{
|I|, |I′|

1 + 1/m+
0
, min

i=0,...,q
{miri/2}

}
(51)

where m+
0 is the factor of interval I′ = (s0, e0). Let m0 be the width of I′. The modification is composed of

the following steps.

22

(T1) Obtain a schedule S′ by performing q + 1 step modification with S, t = e0, and ε.

(T2) If ε > 0, then change in S′ the completion time of the piece in I of the job j from y to y − ε on the
processorMm0+1, where y is the right endpoint of I.

(T3) If ε < 0, then add a piece of the job j of length |ε| to the shared processor Mm0+1 in time interval
(s0, s0 + |ε|).

(T4) Call MakeSequential(S′) to make each segment of the new schedule sequential, and return S′.
The (I, I′)-transfer is illustrated in Figure 6.

→ M1

Mm0

I

ε

I ′

l′ r′

. . .

M1

Mm0

. . .

ε < 0

here changes made
by q + 1 step modif.

j j

jj

M1

Mm0

I

ε

I ′

l′ r′

. . .

M1

Mm0

. . .

ε > 0

here changes made
by q + 1 step modif.

j j

jj

(a) (b)

S
te
p
s
(T

1
)
a
n
d
(T

3
) . .
.

. .
.

. .
.

. .
.

→

S
te
p
s
(T

1
)
a
n
d
(T

2
)

Figure 6: A (I, I′, ε)-transfer: (a) if ε < 0, then Steps (T1) and (T3) modify the schedule shown on top to the
one on bottom; (b) if ε > 0, then Steps (T1) and (T2) are applied.

Lemma 6.6. If S is an optimal processor-descending and sequential schedule with a job j having the right-
most (I, I′)-split, then both the q + 1 step modification that starts with S0 = S, t0 = e0, ε0 = ε, and the q + 1
step modification that starts with S0 = S, t0 = e0, ε0 = −ε, where ε satisfies condition (51), are doable and
produce a processor-descending and sequential schedule S′. Moreover, for ε < 0 we have S′ shorter than
S.

Proof. In Step (T2), ε must not exceed |I| as this is the length of the piece of j executing in the interval I.
By (21), (24) and (28) in Step (T3), we need |ε| ≤ |I′| − |ε| /m+

1 . Thus, we obtain a condition

|ε| ≤ |I′|
1 + 1/m+

0
.

By Lemma 6.5 both q + 1 step modifications are doable since (51) implies (30). Moreover, for ε < 0 we
have S′ shorter that S due to Base Step of the modification. �

Lemma 6.7. Suppose that S is a processor-descending and sequential schedule with a job j having the
right-most (I, I′)-split and consider any ε that meets (51). Then, the processor-descending and sequential
schedule S′ resulting from the (I, I′, ε)-transfer satisfies

Σ(S′) = Σ(S) + ε · (R(S, t) − w j + cm0+1),

23

where m0 is the width of the interval I′ = (s′, e′ = t) in S. Moreover, for an optimal S,

R(S, t) − w j + cm0+1 = 0.

Proof. Consider first an arbitrary ε that meets (51). By Lemma 6.6, the (I, I′, ε)-transfer is doable. Let j
be the job with (I, I′)-split modified in Step (T2) of Procedure Transfer. We first calculate the sum of
ovlpS′(j,Mi) taken over all shared processors Mi. This value is similar to that in S, except for the two
changes introduced to j in Steps (T1), (T2) and (T3) of Procedure Transfer. In Steps (T2) and (T3), the
total weighted overlap of j changes by

−ε(w j − cm0+1).

In Step (T1), it changes by
ε

m+
0

m0∑

z=1

(w j − cz),

where m0 and m+
0 are the width and the factor of I′. Indeed, this follows from the fact that the transformation

changes only the right endpoint of the piece of j executing in I′ = (s′, e′), and due to (21), (24) and (28) this
value changes, on each machineM1, . . . ,Mm1 , by ε/m+

1 since this is done in the first step of the q + 1 step
modification that starts with S0 = S, t0 = e′, and ε0 = ε. Thus we obtain

m∑

z=1

ovlpS′(j,Mz)(w j − cz) =

m∑

z=1

ovlpS(j,Mz)(w j − cz)

− ε(w j − cm0+1) +
ε

m+
0

m0∑

z=1

(w j − cz).

(52)

The total weighted overlap of S′ can be expressed as

Σ(S′) = Σ(S′− j) +

m∑

z=1

ovlpS′(j,Mz)(w j − cz).

By Lemma 6.5 (where j0 is taken to be j) and (52),

Σ(S′) = Σ(S) + ∆(S, t0, ε) − ε(w j − cm′+1).

By Corollary 6.3,
Σ(S′) = Σ(S) + ε · (R(S, t0) − w j + cm′+1).

Note that the value of the expression R(S, t0)−w j + cm0+1 depends only on the schedule S and the point
e′, where I′ = (s′, e′ = t0). If this value is negative, then by Lemma 6.6, (I, I′, ε < 0)-transfer is doable and
results in a feasible schedule S′, which satisfies by Lemma 6.7: Σ(S′) > Σ(S). Thus, a contradiction. If this
value is positive, then again by Lemma 6.6, (I, I′, ε > 0)-transfer is doable and results in a feasible schedule
S′, which satisfies by Lemma 6.7 again the desired inequality: Σ(S′) > Σ(S). Thus, again a contradiction.
If, however this value equals 0, then we can arbitrarily perform either (I, I′, ε > 0)-transfer or (I, I′, ε < 0)-
transfer and Lemmas 6.7 and 6.6 guarantee that we obtain some schedule S′ with Σ(S′) = Σ(S). This proves
the lemma. �

Lemma 6.8. There exists an optimal schedule that is processor-descending, sequential and has no job splits.

24

Proof. Consider an optimal schedule S that is processor-descending and sequential. Without loss of gen-
erality we may assume that S has the minimum makespan among all optimal processor-descending and
sequential schedules. Suppose for a contradiction that (I, I′) is the rightmost split in S. By Lemma 6.7,
the processor-descending and sequential schedule S′ resulting from the (I, I′, ε < 0)-transfer satisfies
Σ(S′) = Σ(S). However, since ε < 0, S′ is shorter than S which contradicts our choice of S. �

6.3 Synchronization

Consider a processor-descending and sequential schedule S that has no splits and let j be the last job in S
that is not synchronized, i.e., the job that has the greatest completion time on shared processors among jobs
that are not synchronized. Suppose that j is present on m0 ≥ 1 shared processors. Since S is sequential, j
starts and ends onM1, . . . ,Mm0 at time points s and e, respectively. Let q be the number of intervals to the
right of the interval I = (s, e) in which the piece of j executes. Define

0 < |ε| < min
{

m0(e − s),
m0

m0 + 1

(
CPS(j) − e

)
, min

i=0,...,q
{miri/2}

}
(53)

The following operation that we call a j-synchronization, performs a transition from S to a schedule S′.
(S1) If R(S, t = e) > 0, then let ε > 0 and otherwise let ε < 0, where ε satisfies (53).

(S2) Perform q + 1 step modification that starts with S, e, and ε.

(S3) Obtain S′ by setting the completion time of j on the private processor to CPS′(j) := CPS(j) − ε.

Lemma 6.9. Suppose S is an optimal processor-descending and sequential schedule with no splits, and
with job j which is not synchronized and done in I = (s, e) on shared processors. Then R(S, t = e) = 0

Proof. By Lemma 6.5, the q+1 step modification called by the j-synchronization is doable since (53) implies
(30). Also no more than m0(e − s) > |ε| of j can be moved from the m0 shared processors in the interval
I = (s, e) to the job’s private processor, and no more than m0

m0+1

(
CPS(j) − e

)
> |ε| can be moved from the job’s

private processor to the mo shared processors. Thus the choice of ε guarantees that S′ is feasible. For each
shared processor i ∈ {1, . . . ,m0}, the execution time of j onMi changes by ε/m0 (if ε < 0, then the execution
time decreases, otherwise it increases). Hence, for each such i, ovlpS′(j,Mi) = ovlpS(j,Mi) + ε/m0. We
can hence represent the total weighted overlap of S′ as follows:

Σ(S′) = Σ(S′− j) +

m0∑

i=1

ovlpS′(j,Mi) · (w j − ci)

= Σ(S′− j) +

m0∑

i=1

ovlpS(j,Mi) · (w j − ci) +
ε

m0

m0∑

i=1

(w j − ci).

By Lemma 6.5,
Σ(S′) = Σ(S) + ∆(S, t, ε).

Note that in the above ovlpS(j,Mi) = 0 for each i > m0 and hence
∑m

i=1 ovlpS(j,Mi)(w j − ci) =∑m0
i=1 ovlpS(j,Mi) · (w j − ci). Thus, by Corollary 6.3, Σ(S′) = Σ(S) + εR(S, t). By definition of j-

synchronization we have R(S, t) = 0 since otherwise Σ(S′) > Σ(S) which contradicts our choice of S.
This proves the lemma. �

25

We are now ready to complete the proof that there exist optimal schedules that are synchronized.

Proof of Theorem 1.1. Consider an optimal schedule S that is processor-descending, sequential and with-
out splits. Without loss of generality we may assume that S has minimum makespan among all optimal
processor-descending, sequential schedules and without splits. Suppose for a contradiction that S is not
synchronized. Let j be the last job that is not synchronized, and let a piece of j be executed in the interval
I = (s, e) on shared processors in S. By Lemma 6.9, R(S, t = e) = 0. Do the j-synchronization with ε < 0
and meeting the condition (53). For the resulting schedule we have Σ(S′) = Σ(S) according to Corollary 6.3.
Moreover, S′ is processor-descending, sequential schedule and without splits. However, since ε < 0, S′ is
shorter than S which contradicts our choice of S. �

7 Conclusions and Open Problems

Our first open problem regards the complexity of the problem. The complexity question remains open even
for the single machine case, i.e., the m = 1 case [6]. Note however that the problem with SP jobs mode
(recall that this is the problem variant where each job may use at most one shared processor) is NP-complete
in the strong sense [5], and no approximation algorithm with guaranteed worst case ratio is know for the
problem. The structural characterization shown in this paper for the MP job mode (recall that this is the
problem variant where each job may use many, possibly all, shared processor simultaneously) indicates,
intuitively speaking, that in this mode schedules for m > 1 shared processors ‘resemble’ schedules on a
single shared processor in the sense that in both cases the jobs that appear on the shared processors have
certain ordering: once one job finishes on all shared processors it uses, another job starts exclusively using all
shared processors it requires. However the numbers of shared processors used by the jobs may be different
since the jobs later in the sequence may consider some shared processor too expensive to use. Therefore,
with respect to that the SP and MP modes behave very differently.

Our approximation ratio of 1
2 + 1

4(m+1) obtained for arbitrary number m ≥ 1 of shared processors improves
the previously known approximation ratio, see [6], from 1

2 to 5
8 in the single shared processor case. We leave

an open question whether the approximation ratio provided by Theorem 3.3 is the best possible, both for
multiple shared processors and for a single shared processor.

Acknowledgements

This research has been supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) Grant OPG0105675.

References

[1] E. J. Anderson. A new continuous model for job–shop scheduling. International Journal of System
Science, 12:1469–1475, 1981.

[2] T. Aydinliyim and G.L. Vairaktarakis. Planning Production and Inventories in the Extended Enterprise,
chapter Sequencing Strategies and Coordination Issues in Outsourcing and Subcontracting Operations,
pages 269–320. Springer, 2011.

26

[3] V. Bharadwaj, D. Ghose, and T.G. Robertazzi. Divisible load theory: A new paradigm for load schedul-
ing in distributed systems. Cluster Computing, 6:7–17, 2003.

[4] J. Blazewicz, M. Drabowski, and Weglarz J. Scheduling multiprocessor tasks to minimize schedule
length. IEEE Trans. Comput., C-35:389–393, 1986.

[5] D. Dereniowski and W. Kubiak. Shared multi-processor scheduling. European Journal of Operational
Research, 261(2):503–514, 2017.

[6] D. Dereniowski and W. Kubiak. Shared processor scheduling. Journal of Scheduling,
doi.org/10.1007/s10951-018-0566-0, 2018.

[7] M. Drozdowski. Scheduling for parallel processing. Springer, 2009.

[8] B. Hezarkhani and W. Kubiak. Decentralized subcontractor scheduling with divisible jobs. J. Schedul-
ing, 18(5):497–511, 2015.

[9] J.B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations Research, 41:338–
350, 1993.

[10] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[11] G. L. Vairaktarakis. Noncooperative games for subcontracting operations. Manufacturing and Service
Operations Management, 15:148–158, 2013.

[12] G.L. Vairaktarakis and T. Aydinliyim. Centralization versus competition in subcontracting operations.
Technical Memorandum Number 819, Case Western Reserve University, 2007.

27

	1 Introduction
	1.1 Related Work and Applications
	1.2 Problem Formulation
	1.3 Outline

	2 An LP Formulation
	3 Approximation Algorithm
	4 Processor-descending and sequential schedules
	5 Antithetical Instances
	6 Structure of Optimal Schedules
	6.1 Towards Schedule Synchronization
	6.2 Splits
	6.3 Synchronization

	7 Conclusions and Open Problems

