
Heuristics for Packing Semifluids

João Pedro Pedroso

Technical Report Series: DCC-2016-01

Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Rua do Campo Alegre, 1021/1055,
4169-007 PORTO,

PORTUGAL
Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

ar
X

iv
:1

60
7.

04
40

3v
1

 [
cs

.D
S]

 1
5

Ju
l 2

01
6

Heuristics for Packing Semifluids

João Pedro Pedroso

June 2015

Abstract

Physical properties of materials are seldom studied in the context of packing problems. In this work we
study the behavior of semifluids: materials with particular characteristics, that share properties both with
solids and with fluids. We describe the importance of some specific semifluids in an industrial context, and
propose methods for tackling the problem of packing them, taking into account several practical requirements
and physical constraints. Although the focus of this paper is on the computation of practical solutions, it
also uncovers interesting mathematical properties of this problem, which differentiate it from other packing
problems.

Keywords: Packing; Semifluid; Heuristics; Tree search.

1 Introduction
Semifluids are materials having characteristics of both fluids and solids. In the context of this paper, we
will consider materials that cannot flow in one direction, though they are fluid in the other directions. As an
example, consider tubes, which correspond to the industrial origin of this problem. Placed in a container, they
can flow in the directions perpendicular to their length, but not in the direction of their length (see Figure 1).
Assuming the tubes will be positioned perpendicularly to the Cartesian axes, depending on the direction of
their placement they will flow either in the x or in the y dimension. Pipes, having positive radii, are imperfect
semifluids, as they will not fully occupy the space available in the z dimension; however, they approximate a
perfect fluid as the radii becomes smaller. We will consider that the material is a perfect semifluid, and hence
the volume occupied is constant and divisible.

This paper describes several possibilities for packing semifluids in a container, and presents heuristics for
the variant which closer corresponds to an industrial application.

2 Problem description
Even though packing problems may be generalized into a single problem, they are usually divided in two
categories: minimizing the number of bins, and maximizing the load to pack in a bin (see, e.g., [2]). Given
an index set S of semifluid items, with each item i characterized by a fixed length `i and a volume vi, and
dimensions D,W,H of containers, these two variants for the problem of packing a semifluid are:

1. bin packing variant: find the minimum number of containers to accommodate all the items;

2. knapsack variant: given, additionally, a value wi for the available volume vi of each item i, find the
packing of maximum value that can be inserted in a container.

In this paper we will focus on the knapsack variant.

2.1 Semifluid packing problems
There are several possibilities for packing a semifluid orthogonally in a container, as shown in Figure 2. Both
the length ` (corresponding to the length of the tubes) and the volume v occupied by the semifluid are constant;

1

z

y

H

W

x

D

Figure 1: A container accommodating a semifluid: tubes (left); coordinate system used (right).

`

b

a

`

c

d

Figure 2: Two possibilities for accommodating a semifluid in a container.

Figure 3: Packing a semifluid without overflowing another previously packed (left), and overflowing it (right).

in this figure, this means that a× b× ` = c× d× ` = v. Assuming that, except the container itself, there are
no walls, a semifluid will take on all the available horizontal space in the direction where it freely flows. In
the case presented, a would take the depth D of the container, and c would take its width W , and hence the
corresponding heights are b = v

D` and d = v
W` . After a semifluid is placed, others may be put on top of it, but

they must not protrude (as detailed next). Hence, one may think of the space above a semifluid as a “container”,
which can be filled up with the same rules as the original container; in this sense, this is a recursive problem.

Depending on the application, it may be allowed or not that, when packing a semifluid, it overflows
others previously packed, as illustrated in Figure 3. In general, allowing overflow makes packing solutions
more difficult to implement in practice, and brings the problem more difficult to tackle; overflow will not be
considered here. We will focus on packing semifluids by positioning the fixed dimension parallel to the x axis,
as shown in Figure 1. This is the relevant variant when the container must be loaded from a lateral door at
x = D: if the semifluids were rotated and be placed along the y axis, they would flow out of the door.

2

An important, practical packing rule restricts what can be placed on top of what. Indeed, for cargo stability
and for facilitating loading, it is usually acceptable that shorter tubes are placed on top of longer tubes, but not
the inverse; more precisely, there must be no holders protruding with respect to holders below them.

In semifluid packing, any fraction of an item’s available volume may be packed; this is major difference
with respect to other packing problems.

We call the problem of maximizing the value of semifluids packed in the container in these conditions the
basic semifluid packing problem.

2.2 Background
Three-dimensional packing has recently been studied under several different perspectives; a recent survey can
be found in [4]. The problem of allocating a given set of three-dimensional rectangular items to the minimum
number of identical finite bins without overlapping has been addressed with tabu search in [10]: items are
packed in several layers, the floor of the container being the first. A heuristic method for the situation where
there is no requirement for packed boxes to form flat layers, keeping track of empty space seen from different
perspectives and using a look-ahead scheme for positioning, is presented in [9]. However, the nature of the
basic semifluid packing problem is rather different of these three-dimensional packing problems. As will be
seen later, there is more similarity between our problem and two-dimensional cutting. The most closely related
problem is the orthogonal two-dimensional knapsack problem with guillotine patterns. Methods for tackling
this problem are often based on a discretization of possible positions for the rectangles in the Cartesian plane
(see, e.g., [14, 15, 5]). A different approach is proposed in [6], providing an exact algorithm for higher-
dimensional orthogonal packing; the algorithm is based on bounding procedures which make use of dual
feasible functions, within a tree search procedure. With respect to these problems, semifluid packing has the
property that it is not required to pack all the available volume of each item; in rectangle packing, this would
correspond to being able to cut some of the rectangles at the time of packing. Another difference between
semifluid packing and previously studied problems concerns the requirement of no protuberance of items
above others; this requirement is naturally respected in two-staged guillotine cuts, but usually is not enforced
in general guillotine patterns.

To the best of our knowledge, basic semifluid packing or equivalent problems have not been studied before.

2.3 Mathematical model
We are not aware of previous attempts to formulate the semifluid packing problem as a mathematical optimiza-
tion model, but there are some related problems. Integer programming models for two-dimensional two-stage
bin packing problem have been proposed in [11] and extended by [14] to the three-stage problem. In both
cases, decision variables are related to the assignment of the items to bins, stripes or stacks. Models for the
related cutting stock problem, providing better linear relaxation bounds, are presented in [15], where a set of
small rectangular items of given sizes is to be cut from a set of larger rectangular plates, in such a way that
the total number of used plates is minimized. Despite some similarities, none of these models is adequate for
our problem, mainly for two reasons: in semifluid packing the number of stages is in general much larger, and
items may be partially assigned to a position (i.e., a position may hold a fraction of the available volume of an
item).

The formulation proposed next is not compact, as it requires an exponential number of variables; however,
it hopefully conveys the characteristics of the problem. For the sake of clarity, we start with a simplified model,
and later describe how it could be extended to the general case; the simplification consists of assuming that
only one stack of each item is allowed on each layer. A layer, in this context, is either the floor of the container
or the space above a previously packed item. Figures 5 and 8 may be of help for visualizing the model.

The first set of binary variables indicates which items are packed in the first layer: yi = 1 if item i is
packed directly on the container, yi = 0 otherwise. To each variable yi there is a corresponding continuous
variable 0≤ xi ≤ 1 which represents the fraction of item i being packed at this place. Before introducing more
variables, let us specify a constraint related to the length D of the container, which limits the length of items
packed in this layer:

∑
i
`iyi ≤ D.

3

Variable xi may be positive only if yi = 1:

xi ≤ yi, ∀i.

The height of the first layer is limited by the height of the container:

hixi ≤ H, ∀i,

where hi = vi/W is the total height that item i would take on a container of width W (this will be later be
replaced by a stronger constraint).

We now introduce variables concerning the placement of items j on the second layer, i.e., directly above
some previously packed item i. Variables yi j are the indicators for this, and the corresponding xi j represent the
fraction of j packed at this place. The solution must, therefore, observe:

yi j ≤ yi, ∀i, j,

xi j ≤ yi j, ∀i, j,

∑
j
`i jyi j ≤ `iyi, ∀i,

where the last constraint limits the length of items placed directly above item i. For each pair i, j the height of
the corresponding stack is limited to the height of the container:

hixi +h jxi j ≤ H, ∀i, j.

The fraction of i used in the two first layers is limited by one (this and the previous constraints will later be
extended):

0≤ xi +∑
j

x ji ≤ 1.

We now have all the components to complete the model, by extending the number of layers. Notice that,
as layers cannot protrude and items with identical length should be placed by decreasing value, there may be
at most N layers, where N is the number of items. We may assume that the items are reversely ordered by
length, i.e., `1 ≥ `2 ≥ . . . ≥ `N ; this allows us to define variables with indices i, i′ only for i′ > i. Notice also
that the number of indices indicates the level at which the item corresponding to a variable is being packed:
variables for layer 1≤ K ≤ N will have K indices i, j, . . . ,m,n, with i < j < .. . < m < n. The entire model is
presented in Figure 4.

Equations (2) determines the total quantity of item i packed, which allows determining the total value
packed in (1). Constraints (3) to (4) guarantee that the total length of what is packed on top of the container,
or of a packed item, does exceed the respective lengths. Constraints (5) to (6) allow a positive quantity of an
item to packed only if the corresponding indicator variable is equal to 1. Constraints (7) to (8) allow packing
only on top of previously packed items. Inequalities (9) determines the height of all stacks, and limits it to the
height of the container. Finally, (10) to (11) define the domain for each of the variables.

This model is rather clumsy, but it is not yet complete: it does not take into account the possibility of
packing several stacks of each item on a given layer. For make the model complete one would have to create,
for each layer and each compatible item, a number of variables equal to the number of times that item would
fit in the layer, if it was packed alone. It is obvious that direct usage of this model is implausible, except for a
rather small number of items; realistic usage would require a column generation approach.

3 Heuristic and complete search
For solving the basic semifluid packing problem, we firstly propose a heuristic method — which will later
be improved — for dividing a container into smaller parallelepipeds, which we call holders. Each holder has
a fixed depth, determined by the length of the semifluid it will accommodate. Due to the possibility for the
semifluid to flow downwards, along the z dimension, and also along the y dimension, a semifluid will fully
use the width of the physical container. The height of a filled holder is determined either by the volume of its

4

maximize ∑
i

wix̃i (1)

subject to:

x̃i = xi +∑
j

x ji +∑
k, j

xk ji + . . .+ ∑
n,..., j

xn... ji, ∀i (2)

∑
i
`iyi ≤ D (3)

∑
j
`i jyi j ≤ `iyi, ∀i

. . .

∑
n
`i j...mnyi j...mn ≤ `i j...myi j...m, ∀i, j, . . . ,m (4)

xi ≤ yi, ∀i (5)
xi j ≤ yi j, ∀i, j

. . .

xi j...n ≤ yi j...n, ∀i, j, . . . ,n (6)

yi j ≤ yi, ∀i, j (7)
. . .

yi j...mn ≤ yi j...m, ∀i, j, . . . ,n (8)

hixi +h jxi j + . . .+hnxi j...n ≤ H, ∀i, j, . . . ,n (9)

0≤ x̃i ≤ 1, ∀i (10)
0≤ xi ≤ 1, ∀i
. . .

0≤ xi j...n ≤ 1, ∀i, j, . . . ,n

yi ∈ {0,1}, ∀i
. . .

yi j...n ∈ {0,1}, ∀i, j, . . . ,n (11)

Figure 4: Mathematical optimization model.

5

1

A

B

1

3

2

4

D

C

A

B

Figure 5: Section of a container through the y = 0 plane: open holders (shaded) after placing one item (left),
and after placing four items (right).

semifluid or by the height of the physical container; in the latter case, the semifluid left over will possibly be
packed in a different holder.

In this situation, one may think of the packing process as a division of, say, the container’s wall at y = 0,
into rectangles. Each rectangle corresponds to the volume of a particular item when projected into the y = 0
plane. For example, consider the placement of a semifluid as in Figure 1; a projection of the volume occupied
is represented as a rectangle, alike 1 in the left diagram of Figure 5. Upon placing this item, the container is
divided into three partitions: one where item 1 is held (which is closed, in the sense that it may not be used for
other items), and the open holders above (A) and besides the item (B). Upon placing three more items in this
example, the open holders are A, B, C, D in the right diagram of Figure 5.

3.1 Simple packing
A heuristic method for packing semifluids in these conditions can hence be though of as the process of
choosing an item to pack, and an open holder for putting it (if some is available). For a semifluid of length
`, candidate holders j must have depth D j ≥ `. If the volume of a semifluid does not completely fit in the
selected holder, the full height of the holder will be used (as for item 4 in the right diagram of Figure 5), and
the remaining fluid is left to (possibly) pack later.

Given the characteristics of this problem, one might think of adapting known heuristics for bin packing and
knapsack problems, as has been done for the two-dimensional knapsack problem (see, e.g., [3, 5]); however,
the geometric constraint forbidding longer lengths on top of shorter leads to possibly unexpected performance,
as we will see shortly. Several alternative heuristic rules have been tried:

1. Best fit (BF): select the item/holder pair (i, j) which leads to the minimum difference D j−`i, i.e., which
leads to minimum currently unused space along x;

2. Longest item first, first fit (LFF): select the longest item that can be packed in some open holder (i.e.,
item i with largest `i for which there exists a holder j such that D j−`i ≥ 0), and insert it in the last open
holder where it fits;

3. Longest item first, best fit (LBF): as LFF, but select the smallest open holder in which the item fits;

4. Worthiest item first, first fit (WFF): as LFF, but select most valuable items (per unit volume) first;

5. Worthiest item first, best fit (WBF): as LBF, but select most valuable items first.

These rules are used in the heuristic method detailed in Algorithm 1; we are abusing of notation, by
allowing items and holders to be represented also by indices in their respective sets. The algorithm returns a
map associating each item to the set of holders that contain it (which is empty for items that are not packed).
The heuristic rule to be used is specified in line 5, and holders are created accordingly in the subsequent lines.
The algorithm iterates as long as there is an open holder where some unpacked item fits.

The full description of the computational setup is deferred to Section 4; for the time being, we just present
in Table 1 a comparison of the solutions obtained with these simple rules on a set of 3000 test instances. We
have counted the number of times that heuristic construction with a rule is strictly better than with another, for
all the combinations. The results obtained are rather surprising: rules based on the value of the items, very

6

Algorithm 1: Simple heuristic method for packing semifluids.
Data: instance:

• set S of items to pack

• item’s length `i, volume vi, and value wi, ∀i ∈S

• physical container’s width W , height H, and depth D;

Result:
• set of holders H and their dimensions and position inside the container;

• for each item i, the set xi of holders where it is packed.

1 procedure pack(D,W,H,S , `,v,w)
2 xi←{}, ∀i ∈S // initialize holders packing item i as empty sets

3 H ←{holder with dimensions D×W ×H} // open main holder

4 while some item in S fits in an holder in H do
5 (i, j)← h(S ,H , `,v,w) // heuristic choice of item i and holder j
6 let D j,Wj,H j be the current dimensions of holder j
7 z← vi/(`iWj)
8 if z≤ H j then // all volume of i fits

9 vi← 0
10 S ←S \{i}
11 (D j,Wj,H j)← (`i,Wj,z) // adjust j’s dimensions

12 else
13 vi← (vi− `iW jH j) // update volume of i remaining unpacked

14 (D j,Wj,H j)← (`i,W j,H j) // adjust j’s dimensions

15 xi← xi ∪{ j} // add j to set of holders packing i
16 H ←H \{ j} // remove j from open holders

17 if D j > `i then
18 H ←H ∪{holder with dimensions (D j− `i)×Wj×H j} // open holder besides j

19 if H j > z then
20 H ←H ∪{holder with dimensions `i×W j× (H j− z)} // open holder on top of j

21 return x

Table 1: Comparison of simple rules for a data set of 3000 instances. Left table: ni j, the number of times rule
i was strictly better (i.e., found a better solution) than rule j. Right table: ni j−n ji; positive values mean that
rule on line i is better for more instances than the rule in column j.

BF LFF LBF WFF WBF
BF 0 225 51 2526 2397
LFF 338 0 101 2525 2396
LBF 338 237 0 2529 2404
WFF 339 342 336 0 91
WBF 398 401 391 1737 0

BF LFF LBF WFF WBF
BF 0 -113 -287 2187 1999
LFF 113 0 -136 2183 1995
LBF 287 136 0 2193 2013
WFF -2187 -2183 -2193 0 -1646
WBF -1999 -1995 -2013 1646 0

7

effective for the knapsack problem, are clearly outclassed by rules based on the length of the semifluid. The
simple rule of selecting the longest semifluid, independently of its value, and placing it in the open holder that
leads to less used space along the x axis (LBF) has generated the best results. This is the heuristic rule selected
for comparison with more elaborate methods.

3.2 Local ascent

The previous packing algorithm can be easily extended to encompass local ascent, as proposed in Algorithm 2.
The idea is very simple: after finding a packing with the previous heuristics, attempt another construction
forbidding items packed in the current solution, one at a time. As soon as an improving solution is found, it is
adopted as incumbent (first-improve). This process stops when all the neighbors of the current solution have
been attempted, and they all lead to inferior solutions.

Algorithm 2: Local ascent for packing semifluids.
1 procedure ascent(D,W,H,S , `,v,w)
2 x← pack(D,W,H,S , `,v,w)
3 let I be the set of items packed in x
4 T ←{}
5 repeat
6 improved = false
7 for i ∈I \T do
8 T ←T ∪{i}
9 x′← pack(D,W,H,S \{i}, `,v,w)

10 if value of x′ is greater than value of x then
11 x← x′

12 let I be the set of items packed in x
13 improved = true
14 break

15 until not improved
16 return x

This method is simple, and obviously finds a solution which is at least as good as that of Algorithm 1. As
local ascent is still very fast, it is suitable for demanding situations (e.g., interactive processes).

3.3 Complete search

There are two reasons why the previous methods may be unsatisfactory. The first reason concerns some rare,
small instances for which a better solution can easily be found by inspection; the second reason concerns
proving that the solution found is optimal. We next propose some variants for doing complete search, based
on tree search.

Let us start with a caveat. In the packing process we are considering, division of the semifluid occurs
only when it does not fit vertically, and the amount left is possibly packed in another holder. However, it may
be optimal to fill only a part of the available amount of a semifluid. This case is illustrated in Figure 6; if
item 2 is more valuable than 1, it would be optimal to fill all the volume of item 2 over a part of 1, and leave
the remaining 1 unpacked, as shown in the rightmost diagram. However, visited solutions in a complete tree
search are only the leftmost and the one in the center; hence, an “optimum” for tree search many not be truly
optimal for the original problem.

Complete search is an extension of Algorithm 1 where, instead of considering only packing the item chosen
by the heuristic rule in line 5, we consider all the possibilities of placing available items in open containers;
each of these possibilities leads to a new node in the search tree. Notice that the branching factor is very large,
and hence straightforward complete search is prohibitive even for small instances. Next, we present three
relevant tree search alternatives for dealing with this difficulty; a visual insight of the differences between
them is provided in Figure 7.

8

21 2 1

22

1 1

Figure 6: An instance for which complete search does not find the optimum (shown in the rightmost diagram).
A vertical section of the container is represented with a bold line, and the item left over is shown beside it.

Branch-and-bound Breadth-first search with diving Limited discrepancy search

EXPAND

DEQUEUE

ENQUEUE

EXPAND

DEQUEUE

diving queue

ENQUEUE

EXPAND

DEQUEUE

ENQUEUE

Figure 7: Queueing methods: branch-and-bound (left), where nodes in the queue are sorted by their upper
bound; breadth-first search with diving (center), where no information about about the nodes entering the
queue is used (at each expansion, one node generated is the diving node); and limited discrepancy search
(right), where nodes are sorted by discrepancy (at each expansion, nodes are generated in this order).

3.3.1 Branch-and-bound

Branch-and-bound (BB) is the standard method for searching a tree in optimization (see, e.g., [8] for an early
survey). For a maximization problem, the comparison of an upper bound of the objective that can be reached
from a given node, to a known lower bound of the objective, is used to eliminate from consideration parts
of the search tree. The best solution visited so far is commonly used as the lower bound. In the case of the
basic semifluid packing problem, an upper bound can be obtained by sorting the items by decreasing unit
value, and filling the space still available in the container by this order, assuming no shape constraints (this is
similar to the linear relaxation bound for the knapsack problem; see [12]). For a given partial solution, holders
that cannot be filled due to having no unpacked items that fit inside them are withdrawn from the list of open
holders; their volume is subtracted from the space available when computing the corresponding upper bound.

Another important factor for having a reasonably effective branch-and-bound concerns avoiding symmet-
ric, or otherwise equivalent solutions. This is done with the following rules:

• items placed at the same horizontal level must have increasing indices in the set S of semifluids to
pack;

• items placed on top of given item i having the same length as i cannot have a larger unit value than i.

The main steps of the branch-and-bound algorithm are outlined in Algorithm 3 (see also Appendix A). The
algorithm is based on the iteration over elements in a queue (Q) until it becomes empty. Nodes whose upper
bound is inferior to the objective value of the best known solution are discarded (line 4). Branching is carried
out in lines 7–10. As all the possible assignments of yet unpacked items to open holders must be considered,
the main limitation of the algorithm concerns the large number of nodes added in these lines.

The algorithm has two parameters, limiting CPU time and the size of the queue. The latter is used when
restricting the number of open nodes is required for keeping memory usage acceptable; in such cases, we
provide the possibility of removing a part of the queue (chopping, lines 11–13). When this occurs, as well
as when the time limit is reached, the solution returned may be not optimal. In the experiment reported in

9

the Section 4, the maximum number of nodes is set to infinity, making CPU time the only factor limiting the
search.

Algorithm 3: Main steps of the branch-and-bound algorithm.

1 create a queue Q with one node (the root relaxation) // Initialization

2 set upper bound UB← ∞, lower bound LB←−∞, optimality flag OPT← true
3 repeat
4 select and remove from Q node k with largest UB // Subproblem selection

5 if UBk ≤ LB or no items fit in open holders then // Pruning and fathoming

6 continue
7 foreach feasible assignment of unpacked items to open holders do // Partitioning

8 add new node n to Q
9 if LBn > LB then

10 update LB← LBn

11 while size of Q is larger than the allowed limit do // Chopping

12 remove from Q node with smallest UB
13 OPT← false
14 if time limit has been reached then // Termination

15 OPT← false

16 until Q = {} or time limit has been reached
17 return solution that yielded LB, with optimality flag OPT

3.3.2 Breadth-first search with diving

As the branching factor is very large, standard branch-and-bound may not be allowed the time and space to
produce a good solution, even for relatively small instances. Indeed, as will be seen in the next session, in a
limited time the solution of branch-and-bound is often worse than that of the simple heuristics. For overcoming
this issue, several alternatives have been proposed in the literature; these are usually based on diving (see, e.g.,
[1, 13]). We firstly propose what we call breadth-first with diving (BFD), which consists of the following:

1. Keep two search queues: the main queue Q and the diving queue R;

2. If R is not empty, at the current iteration explore the last element added to this queue (i.e., explore R in
a last in, first out manner);

3. If R is empty, at the current iteration explore the first element added to Q (i.e., explore Q in a first in,
first out manner);

4. When creating children of the current node, append the one that corresponds to the heuristic rule (LBF)
to the queue R, and the remaining children (generated by decreasing item length) to Q.

Hence, R is searched in a last in, first out fashion, corresponding to the order of the LBF heuristic rule (longest
item first, best fit container); therefore, the first leaf visited is the LBF solution. The exploration of Q in a
breadth-first (first in, first out) fashion introduces diversity in the search, which balances well with the intensive
search of the dive; this is important for time-limited executions, where parts of the tree are left unexplored.
Furthermore, quickly finding solutions of good quality allows pruning more nodes in the search tree. Notice
that as long as the item list is initially sorted by length, we can generate new nodes to add to Q without further
sorting (however, sorting available items by value is required for computing the upper bound of a new node).

Diving does not interact well with the symmetry breaking rules: if the diving item was forbidden for
avoiding symmetry, the first dive would be interrupted, and the corresponding heuristic solution would not be
reached. In order to assure that we reach that solution, rules for avoiding symmetry are not enforced during
diving.

10

In our implementation of BFS we are using the bounds described in Section 3.3.1, which in most cases
allow pruning significant parts of the search tree.

3.3.3 Limited discrepancy search

Another alternative to standard branch-and-bound is limited discrepancy search (LDS), where the tree is
searched by increasing order of the number of violations of the heuristic rule, as proposed in [7]. This method
has been attempted with the LBF heuristic rule, but the computation of discrepancy in this case requires
sorting the moves available, using considerable computational time. A better alternative is to base the search
in the longest item first, first fit rule (LFF); this allows a very quick expansion of nodes at each iteration, and
exploring much larger parts of the tree in a limited time.

As in the standard version of LDS, this method uses a parameter specifying the discrepancy level above
which search is abandoned. This usually allows adjusting the part of the tree that is explored to the resources
available, as an alternative to simply interrupting the execution after a certain time has elapsed. We acknowl-
edge that better solutions are often found with such an adjustment, and that memory usage will make the search
impractical for long-running executions without limiting discrepancy; however, for an easier comparison with
the other methods, we have set the discrepancy limit to infinity. Due to this choice, whenever LDS ends before
reaching the limit CPU time, its solution is optimal.

In our implementation of LDS we are using the bounds described in Section 3.3.1, which in most cases
allow pruning significant parts of the search tree.

4 Computational results
In order to assess the performance of the methods proposed, we have created a set of instances based on the
characteristics of the real-world application. Practical instances we are aware of are small, as is the number
of different semifluid lengths (tubes are usually cut in standard lengths). Instances with more than 20 items
go beyond the application’s requirement, but are useful for testing the behavior of the different algorithms.
Instances are classified into two main families:

• Easy instances: generated in such a way that in the optimum there are no items left unpacked; for these
instances, an optimal solution completely occupying the container is known.

• Hard instances: no optimum is known in advance; the volume of available items corresponds either to
100% of the container (as for easy instances, though now it is unlikely that all items can be packed), or
to 150% of it.

The number of semifluids considered are 5, 10, 20, 50, and 100. Some instances have just a few distinct item
lengths, other have more diverse lengths. For each combination of these characteristics, 100 different instances
have been generated, totaling 3000 instances. A visualization of instances from the easy and hard subsets, with
corresponding optimal and heuristic solutions, is provided in Figure 8 (details on the instance generator are
available in Appendix A).

Our programs use exact arithmetic for all operations (hence, values in the instance files are written as
fractions). All the executions were limited to 60 seconds of CPU time, and both the maximum number of
nodes and the discrepancy limit were set to infinity.

We start recalling the comparison among simple heuristics (Table 1). Having selected LBF, we now
compare it to more elaborate methods in Table 2. As expected, local ascent is always at least as good as
LBF, being strictly superior for a massive share of instances. As the CPU time limitation is rather severe, local
ascent is also often better than tree search methods. The best results overall have been obtained by limited
discrepancy search.

Figure 9 graphically summarizes the results obtained. On each sub-figure, results for instances of type easy
and hard are separated into two rows. Each bar (or curve, in the bottom sub-figure) represents percentages or
averages considering all the instances of each size. Methods considered are, as before, the simple heuristic
rule (LBF), local ascent based on this rule, branch-and-bound, breadth-first search with diving, and limited
discrepancy search; to each method corresponds a column in the top three sub-figures, and a line in the bottom
sub-figure. The abscissa for the three top sub-figures is the instance size, and for the bottom sub-figure is the

11

Figure 8: An optimal solution (left), and a heuristic solution (right) for instances with ten items: an easy
instance (top) and a hard instance (bottom).

Table 2: Comparison of simple rule (LBF), local ascent (LA), and tree search — standard branch-and-bound
version (BB), breadth-first search with diving (BFD), and limited discrepancy search (LDS) — for a data set
of 3000 instances. Left table: ni j, the number of times method i was strictly better (i.e., found a better solution)
than method j. Right table: ni j− n ji; positive values mean the method on line i is better for more instances
than the method in column j.

LBF LA BB BFS LDS
LBF 0 0 1627 306 42
LA 2041 0 1744 849 187
BB 909 633 0 108 101
BFS 1520 1092 1895 0 329
LDS 2007 1350 1915 1192 0

LBF LA BB BFS LDS
LBF 0 -2041 718 -1214 -1965
LA 2041 0 1111 -243 -1163
BB -718 -1111 0 -1787 -1814
BFS 1214 243 1787 0 -863
LDS 1965 1163 1814 863 0

12

Table 3: Average number of nodes explored, remaining in the queue at the end of the search, and created, for
each of the tree search methods.

Instance Nodes explored Nodes in queue Nodes created
Type Size BB BFS LDS BB BFS LDS BB BFS LDS
easy 5 10. 5. 26. 0. 0. 0. 28. 17. 17.
easy 10 3193. 12. 103. 4379. 0. 0. 13790. 82. 78.
easy 20 8113. 166. 1896. 17431. 999. 3699. 37511. 3349. 5502.
easy 50 1974. 139. 6053. 17811. 6168. 109864. 23526. 8231. 115697.
easy 100 574. 54. 4488. 13400. 7131. 208455. 14545. 7812. 212709.
hard 5 1895. 4691. 9092. 1279. 2831. 4108. 4563. 9965. 12813.
hard 10 5586. 7454. 28896. 7979. 12363. 23271. 20654. 32701. 51551.
hard 20 4951. 3430. 34054. 25272. 22851. 73126. 40220. 40261. 106639.
hard 50 890. 447. 10488. 26710. 16993. 268792. 27603. 18229. 278513.
hard 100 290. 84. 4650. 18535. 7565. 256590. 18825. 7676. 260851.

CPU time used. For each instance we have identified the best solution found by all the methods (which in some
cases is optimal); on the top sub-figure, the ordinate is the percentage of instances for which each method finds
such solution. The next set of plots shows the percentage of instances for which the search tree was completely
explored (for the relevant methods). Follows a plot of the average CPU time used in the solution process, for
all the instances of each size/type; the time for each run was limited to 60 seconds, but in many cases was
smaller. Finally, the sub-figure in the bottom shows the evolution of the average value of the objective for the
best solution found by each method, in terms of the CPU time used; here we can observe how the gap between
the different methods progresses.

As can be seen in Figure 9, “standard” branch-and-bound (taking the node with the highest upper bound
at each iteration) quickly becomes very limited, when the instance size increases; this is due to the very high
branching factor. Crossing information on that figure with that of Table 3, we see that when instance size
increases, a very large number of nodes are open, but, due to the time limitation, only a small part of them
can be explored. This can be observed for all except smallest, easy instances. For finding good solutions in
a limited time, methods fully exploiting the heuristics (LA, BFS and LDS) have a much better performance.
Note that, for larger values of the CPU limit, the number of open nodes may have to be limited for avoiding
memory overflow.

We have seen in Table 2 that the method that is able to find strictly better solutions than the others for
more instances is limited discrepancy search. This is corroborated by the evolution over time of the average
solution, for all instances of a given size, presented at the bottom of Figure 9. The general tendency is to
have LDS finding good solutions more quickly than the other tree search methods; however, near the CPU
limit imposed, LDS is closely followed by BFD (e.g., for hard instances of size 50). In terms of the ability
to complete the search, and hence to prove optimality, BFD and LDS are roughly equivalent; these methods
appear to be considerably better than BB for easy instances, though slightly inferior for hard instances.

The main factor for LDS to be able to explore much more nodes than BFD is the ability to easily keep
nodes organized by increasing discrepancy; for technical details, please consult the implementation code (see
Appendix A).

Another interesting observation concerns the performance of local ascent. For small instances, LA quickly
finds the best solution (often proven optimal by tree search); however, LA is outclassed by tree search methods
for mid-sized instances, to regain a relative good performance for large instances, as can be seen in the top
graphic of Figure 9. This is because local ascent is very fast, and hence the time constraint is not limiting it in
our experiment, even for large instances.

5 Conclusions
Semifluids are materials having both fluid and solid characteristics. In this paper, we studied the problem
of packing a particular type of semifluid which cannot flow in one direction, though it is fluid in the other
directions; this is the case when tubes of a small diameter are packed in parallel. In this context, a packing
item — a semifluid — is a set of identical tubes. Different items have different length and/or value, and any

13

0

20

40

60

80

100

e
a
sy

simple heuristics local ascent branch-and-bound breadth-first limited discrepancy

5 10 20 50 100
0

20

40

60

80

100

h
a
rd

5 10 20 50 100 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

Percentage of runs finding the best solution

0

20

40

60

80

100

e
a
sy

simple heuristics local ascent branch-and-bound breadth-first limited discrepancy

5 10 20 50 100
0

20

40

60

80

100

h
a
rd

5 10 20 50 100 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

Percentage of runs proven optimal

10-2

10-1

100

101

102

e
a
sy

simple heuristics local ascent branch-and-bound breadth-first limited discrepancy

5 10 20 50 100

10-2

10-1

100

101

102

h
a
rd

5 10 20 50 100 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

CPU time used

0.1

0.2

0.3

0.4

0.5

e
a
sy

size: 5 items size: 10 items size: 20 items size: 50 items size: 100 items

10-1 100 101

0.1

0.2

0.3

0.4

0.5

h
a
rd

10-1 100 101 10-1 100 101 10-1 100 101 10-1 100 101

limited discrepancy

breadth-and-dive

branch-and-bound

local ascent

Solution quality as a function of CPU usage

Figure 9: Overall aperçu of the methods’ performace: percentage of best solutions found (top), percentage of
optimal executions (upper-center) and CPU time (lower-center) used, in terms of type (easy/hard) and number
of items of the instance (measures are percentages/averages considering all instances of each size/type).
Bottom: evolution of the average of the objective value for all the instances of given size/type in terms of
CPU time.

14

fraction of an item may be used, with the objective of obtaining the maximum value packed.
Given the assumption of continuity, i.e., that one may arbitrarily divide a given volume, the problem of

packing a set of tubes of different lengths in a container is surprisingly difficult. This paper presents heuristics
and complete search for the variant which closer corresponds to the industrial application: all the semifluids
must be packed in the same direction, and a semifluid placed on top of another must not protrude. In this
paper, we have considered divisions of the volume of an item only when it reaches the ceiling of the container.

Several methods, from simple heuristics to complete search, are proposed. The choice among them
depends on the application. Simple heuristics are very quick, but often fail to find good solutions. Local
ascent based on simple heuristics often finds very good solutions, and is likely to be the best method for large
instances and limited CPU time. Among tree search methods, limited discrepancy search is often superior to
the others, finding solutions of very good quality and frequently proving them optimal.

Semifluid packing under assumptions not considered in this paper is an interesting subject for future
research; in particular, exploring different packing directions and the possibility of overflow. The complexity
class of this problem is unknown; determining it is an interesting research topic. Another interesting research
direction concerns developing compact mathematical models for optimization, taking full consideration of
the possibility of packing fractions of each item. The proposed heuristics could be extended and refined, in
particular for taking into account the possibility of diversifying the point of division of an item into several
packing places, further than the top of the container. Yet another unexplored possibility for improvement
concerns using the objective value of a heuristic solution as a lower bound, at the root node.

Acknowledgements

This work is partly funded by FCT Fundação para a Ciência e a Tecnologia (Portuguese Foundation for
Science and Technology) within project UID/EEA/50014/2013. We would like to thank Benjamin Müller,
from Zuse Institute Berlin, for important suggestions. We would also like to thank three anonymous reviewers
for their constructive comments on a previous version of this paper.

A Supplementary programs and data
Supplementary programs and data associated with this article can be found online at http://www.dcc.fc.
up.pt/~jpp/code/semifluid. That page contains an implementation of all the algorithms described in this
paper and the program used for generating the instances, as well as the generated data.

In the real-world application of this problem the number of different tube lengths in catalog is small. To
a smaller extent, this is also true for other numeric values in the required data. We simulate this by limiting
the number of digits in the random numbers generated: 3 digits in general, 2 or 3 digits for tube lengths. All
the values are normalized, so that the container dimensions are 1× 1× 1. As we use exact arithmetic for all
operations, values generated and stored in the files are fractions. The combinations of parameters used for
instance generation are summarized in Table 4.

Table 4: Characteristics of benchmark instances used: for each set of parameters 100 independent random
instances have been generated, totaling 3000 instances.

Type Number of items Digits in `i Volume of items (% of D×W ×H) Total
easy 5, 10, 20, 50, 100 2, 3 100% 1000 instances
hard 5, 10, 20, 50, 100 2, 3 100%, 150% 2000 instances

For hard instances no optimum is known in advance. These instances have been generated by simply
drawing random numbers for lengths and volumes with the required number of digits, and afterwards updating
the volumes so that the total volume will be the desired factor of the container’s volume (in our data set, 1 or
3/2).

Easy instances have the space of the container completely filled. This is done by successive divisions of
the container, as shown in Algorithm 4. To each holder generated this way there will correspond a different
item. Using this procedure, the total volume of items will always equal the volume of the container.

15

http://www.dcc.fc.up.pt/~jpp/code/semifluid
http://www.dcc.fc.up.pt/~jpp/code/semifluid

Instances closer to the real-world application that motivated this paper are hard instances with 10 to 20
items, two digits in `i and items occupying 100% to 150% of the container’s volume.

Algorithm 4: Main steps for generating an easy instance.

1 create a holder h with the size of the container
2 H ← [h]
3 repeat
4 randomly select a holder h from H
5 randomly select r with uniform distribution in [0,1]
6 if r < 1/2 then // With 50% probability

7 if h has no other holders on top then
8 divide h vertically
9 replace h by the two newly created holders

10 else
11 divide h horizontally
12 replace h by the two newly created holders

13 until number of holders is equal to the number of desired items

References
[1] Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: A new approach

to integrate CP and MIP. In: Proceedings of the 5th International Conference on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR’08, pp.
6–20. Springer-Verlag, Berlin, Heidelberg (2008)

[2] Baldi, M.M., Crainic, T.G., Perboli, G., Tadei, R.: The generalized bin packing problem. Transportation
Research Part E: Logistics and Transportation Review 48(6), 1205 – 1220 (2012)

[3] Coffman, Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented
two-dimensional packing algorithms. SIAM Journal on Computing 9(4), 808–826 (1980)

[4] Crainic, T., Perboli, G., Tadei, R.: Recent advances in multi-dimensional packing problems. In:
C. Volosencu (ed.) New technologies — trends, innovations and research. InTech (2012)

[5] Dolatabadi, M., Lodi, A., Monaci, M.: Exact algorithms for the two-dimensional guillotine knapsack.
Computers & Operations Research 39(1), 48 – 53 (2012). Special Issue on Knapsack Problems and
Applications

[6] Fekete, S.P., Schepers, J., van der Veen, J.C.: An Exact Algorithm for Higher-Dimensional Orthogonal
Packing. Operations Research 55(3), 569–587 (2007)

[7] Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August
20-25 1995, 2 Volumes, pp. 607–615. Morgan Kaufmann (1995)

[8] Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Operations Research 14, 699–719
(1966)

[9] Lim, A., Rodrigues, B., Wang, Y.: A multi-faced buildup algorithm for three-dimensional packing
problems. Omega 31(6), 471 – 481 (2003)

[10] Lodi, A., Martello, S., Vigo, D.: Heuristic algorithms for the three-dimensional bin packing problem.
European Journal of Operational Research 141(2), 410 – 420 (2002)

16

[11] Lodi, A., Martello, S., Vigo, D.: Models and bounds for two-dimensional level packing problems. Journal
of Combinatorial Optimization 8(3), 363–379 (2004)

[12] Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. John Wiley &
Sons, Chichester (1990)

[13] Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer (2006)

[14] Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing.
European Journal of Operational Research 183(3), 1304–1327 (2007)

[15] Silva, E., Alvelos, F., de Carvalho, J.V.: An integer programming model for two- and three-stage two-
dimensional cutting stock problems. European Journal of Operational Research 205(3), 699–708 (2010)

17

	1 Introduction
	2 Problem description
	2.1 Semifluid packing problems
	2.2 Background
	2.3 Mathematical model

	3 Heuristic and complete search
	3.1 Simple packing
	3.2 Local ascent
	3.3 Complete search
	3.3.1 Branch-and-bound
	3.3.2 Breadth-first search with diving
	3.3.3 Limited discrepancy search

	4 Computational results
	5 Conclusions
	A Supplementary programs and data

