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Abstract

A methodology is presented to rank universities on the basis of the lists of programmes
the students applied for. We exploit a crucial feature of the centralised assignment
system to higher education in Hungary: a student is admitted to the first programme
where the score limit is achieved. This makes it possible to derive a partial preference
order of each applicant. Our approach integrates the information from all students
participating in the system, is free of multicollinearity among the indicators, and
contains few ad hoc parameters. The procedure is implemented to rank faculties in
the Hungarian higher education between 2001 and 2016. We demonstrate that the
ranking given by the least squares method has favourable theoretical properties, is
robust with respect to the aggregation of preferences, and performs well in practice.
The suggested ranking is worth considering as a reasonable alternative to the standard
composite indices.
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1 Introduction
The global expansion of higher education has created an increasing demand for the
comparison of universities and has inspired the development of ranking systems or league
tables around the world (Dill and Soo, 2005; Usher and Savino, 2007). These rankings are
usually based on the composition of various factors, namely, they are indices with a number
of moving parts, which the producer – usually an academic institution, a government, a
magazine, a newspaper, or a website – is essentially free to set. This approach is widely
criticised for its weak theoretical link to quality and serious methodological drawbacks
(Brooks, 2005), as well as for its sensitivity (Liu and Cheng, 2005; Saisana et al., 2011;
De Witte and Hudrlikova, 2013; Safón, 2013; Moed, 2017; Soh, 2017; Johnes, 2018). For
example, Olcay and Bulu (2017) find that there are significant differences even among
indices focusing on the same aspect such as teaching or research output. Therefore, similar
measures have been called “mashup indices” in development economics (Ravallion, 2012).

Nevertheless, college ranking remains a transparent tool of fair evaluation for the public,
which may have a huge impact on higher education institution decision making (Hazelkorn,
2007; Marginson, 2014), so there is a clear need for more robust rankings. It seems that
there exist two separate directions to obtain them.

The first line of research strives to more closely integrate university rankings with multi-
criteria decision making. According to Billaut et al. (2009), the criteria used in the Shanghai
ranking are irrelevant, the whole procedure pays insufficient attention to fundamental
structuring issues, while the absence of basic knowledge of aggregation techniques and their
properties vitiate the evaluation of the institutions. Giannoulis and Ishizaka (2010) use a
three-tier web-system to get a customised ranking of British Universities with ELECTRE
III multi-criteria decision method that reflects personal preferences. This approach is, for
instance, able to reveal any disastrous criterion with the veto threshold or distinguish
between indifference and incomparability in the alternatives. According to Kaycheng
(2015), the indicators of Times Higher Education World University Ranking 2013-2014
tend to correlate with one another, causing a multicollinearity problem, furthermore,
some indicators may contribute little to the overall score. The obvious solution is the
identification and exclusion of redundant indicators, which are non-contributing or even
misinforming. Kunsch and Ishizaka (2018) apply a model where evaluations are given by
performance profile distributions to assess the quality of research in the United Kingdom
since a single numerical score can hardly represent a complex criterion. Corrente et al.
(2019) increase the robustness of the ranking by using a multiple criteria hierarchy process
and the Choquet integral preference model, which generalizes the weighted sum to take
into account the possible negative and positive interactions between the criteria.

The second approach aims to handle the above problems by other methodologies, for
example, through pairwise comparisons. They do not require directly an outright ranking
of all universities studied, which might not be done easily, but only choices between two
universities. Thus universities play virtual matches against each other, and an institution
defeats another if it is preferred by a student to the other. Each applicant provides a
tournament, aggregated into a common preference matrix to derive a ranking. Dittrich
et al. (1998) analyse a survey among the first-year students at the Vienna University
(Austria) to show that preferences are substantially different for different groups of students.
Avery et al. (2013) investigate US undergraduate programs using a national sample of high-
achieving students to obtain a “desirability” ranking of colleges, which implicitly weights
all features by the degree to which the students collectively care about them. Kóczy and
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Strobel (2010) suggest a similar method for journal ranking. Such a ranking is essentially
parameter-free, independent of an arbitrary choice of factors and component weights, and
may reflect all characteristics of a university that are observed by the applicants even if
they are non-measurable.

In this paper, a methodology is presented to derive a higher education ranking from the
lists of programmes the students applied for. We exploit administrative data in Hungary,
a country which has a centralised system of admissions to higher education designed such
that it is relatively straightforward to recover the preferences. The dataset has been used
recently to analyse college choices (Telcs et al., 2015), to identify obvious mistakes of the
applicants in a strategically simple environment (Shorrer and Sóvágó, 2019), or to rank
the universities (Telcs et al., 2016). There exists even a whole research project devoted to
the latter topic (see http://ranking.elte.hu/), led by György Fábri, who has launched
the first Hungarian university ranking in 2001.

Similarly to Dittrich et al. (1998) and Avery et al. (2013), our procedure uses existing
methods of paired comparisons rankings. The main contribution resides in the analysis of
the dataset. While the previous literature has used survey data to obtain the preferences,
our administrative dataset covers every Hungarian student applying for higher education
in their home country across 16 years (2001-2016). In addition, it can be argued that the
applicants have taken substantial efforts to be well-informed before such a high-stakes
decision. On the other hand, the surveys designed by Dittrich et al. (1998) and Avery et al.
(2013) explicitly asked the students to choose between two universities, while we should
devise what a given list of admissions reveal about the preferences of the applicant. Finally,
opposed to these papers, an entire subsection is devoted to the axiomatic comparison
of three paired comparisons-based ranking methods to help their understanding and the
choice among them.

It seems that the suggested methodology can be applied in several other fields where
applicants should reveal some preferences and the centralised allocation mechanism provides
truthfulness such as the student-optimal deferred acceptance algorithm (Gale and Shapley,
1962; Dubins and Freedman, 1981). Besides Hungary (see the detailed discussion in
Section 4), college admission is organised basically along these principles in Chile (Rı́os
et al., 2014), Ireland (Chen, 2012), and Spain (Romero-Medina, 1998). School choice often
shows similar characteristics, too, like in New York, Hungary, Finland, Amsterdam (Biró,
2017). Allocation of graduates according to their preferences in a centrally coordinated
way is typical in certain professions, including residents (junior doctors) in the UK and
the US, teachers in France, or lawyers in Germany (Biró, 2017). Biró (2017) gives a
comprehensive review of matching models under preferences.

Naturally, the question arises what is the advantage of such a ranking based on the
revealed preferences of all applicants. Indeed, probably each student has somewhat different
preferences, so the importance of criteria to be taken into account should be customised.
However, we think the abundance of world university rankings clearly illustrates that there
is a strong demand for unique rankings by the decision-makers and media, even if most
experts are convinced that constructing multiple rankings would be more professional. In
this case, the suggested ranking is worth considering as a reasonable alternative to the
standard composite indices.

The paper proceeds as follows. Section 2 describes the data. The methods used to
derive a ranking from the preferences are detailed in Section 3. Our main theoretical
innovation, that is, recovering the preferences from the data is presented in Section 4.
Section 5 presents the results, while Section 6 offers some concluding thoughts.
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2 Data
In Hungary, the admission procedure of higher education institutions has been organised
by a centralised matching scheme at a national level since 1996 (Biró, 2008, 2011). At
the beginning of the procedure, the students submit their ranking lists over the fields of
studies of particular faculties they are applying for. A single application in a given year
consists of the following data:

∙ Student ID;

∙ Position according to the student’s preference order;

∙ Faculty/School of a higher education institution;

∙ Course;

∙ Level of study (BSc/BA, MSc/MA, Single long cycle);

∙ Form of study (full-time training, correspondence training, evening training);

∙ Financing of the tuition (state-financed: completely financed by the state, student-
financed: partly financed by the student).

For example, the record[︁
158 2 PTE–AOK Medicine 𝑂 𝑁 𝐴

]︁
means that the student with the ID #158 applied at the second place (2) for the faculty
PTE–AOK, course Medicine in level 𝑂 (Single long cycle giving an MSc degree), form 𝑁
(full time), financed by the state (𝐴). In the following, the faculty, course, level of study,
form of study, and financing of the tuition (e.g. PTE–AOK, Medicine, 𝑂, 𝑁 , 𝐴) will be
called a programme.

After that, the students receive scores at each of the programmes they applied for,
based on their final grades at secondary school and entrance exams. The scores of an
applicant can differ in two programmes, for example, when the programmes consider the
grades from different sets of subjects.

Finally, a government organisation collects all ranking lists and scores, and a centralised
algorithm determines the score limits of the programmes. A student is admitted to the
first programme on her list where the score limit is achieved, meaning that it is not allowed
to overwrite this matching by any participant. The score limits are good indicators of
the quality and popularity of the programmes, they highly correlate with the applicants’
preferences and with the job market perspectives of the graduates (Biró, 2011).

Our dataset contains almost all applications between 2001 and 2014: for applicants
who have a list with more than six items, only the first six programmes plus the one where
(s)he is admitted (if there exists such a programme) were recorded. The 2015 and 2016
data do not have this limitation.

3 Methodology
First, the theoretical background of ranking from pairwise comparisons will be presented.
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3.1 Ranking problems and scoring methods
Let 𝑁 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} be the set of objects on which the preferences of the agents are
being expressed, and 𝐴 = [𝑎𝑖𝑗] ∈ R𝑛×𝑛 be the preference matrix such that 𝑎𝑖𝑗 ∈ R is a
measure of how object 𝑋𝑖 is preferred over 𝑋𝑗. 𝑎𝑖𝑖 = 0 is assumed for all 𝑋𝑖 ∈ 𝑁 .

The pair (𝑁, 𝐴) is called a ranking problem. The set of ranking problems with 𝑛 objects
(|𝑁 | = 𝑛) is denoted by ℛ𝑛.

There exists a one-to-one correspondence between preference matrices and directed
weighted graphs without loops: if object 𝑋𝑖 is preferred to object 𝑋𝑗 with an intensity of
𝑎𝑖𝑗, then graph 𝐺 contains a directed edge from node 𝑋𝑖 to node 𝑋𝑗 which has a weight
of 𝑎𝑖𝑗, and vice versa.

The aim is to derive a ranking of the objects from any ranking problem (𝑁, 𝐴), for
which purpose scoring methods will be used. A scoring method 𝑓 : ℛ𝑛 → R𝑛 is a function
that associates a score 𝑓𝑖(𝑁, 𝐴) for each object 𝑋𝑖 in any ranking problem (𝑁, 𝐴) ∈ ℛ𝑛.
It immediately induces a ranking of the objects in 𝑁 (a transitive and complete weak
order on the set of 𝑁 × 𝑁) by 𝑓𝑖(𝑁, 𝐴) ≥ 𝑓𝑗(𝑁, 𝐴) ⇒ 𝑋𝑖 ⪰ 𝑋𝑗, that is, object 𝑋𝑖 is at
least as good as 𝑋𝑗 if its score is not smaller.

A ranking problem (𝑁, 𝐴) has the skew-symmetric results matrix 𝑅 = 𝐴 − 𝐴⊤ ∈ R𝑛×𝑛,
and the symmetric matches matrix 𝑀 = 𝐴 + 𝐴⊤ ∈ R𝑛×𝑛, where 𝑚𝑖𝑗 is the number of
comparisons between 𝑋𝑖 and 𝑋𝑗 whose outcome is given by 𝑟𝑖𝑗.

Let e ∈ R𝑛 denote the column vector with 𝑒𝑖 = 1 for all 𝑖 = 1, 2, . . . , 𝑛.
Perhaps the most straightforward measure for the goodness of the objects is the sum

of their “net” preferences.

Definition 3.1. Row sum: Let (𝑁, 𝐴) ∈ ℛ𝑛 be a ranking problem. The row sum score
𝑠𝑖(𝐴) of object 𝑋𝑖 ∈ 𝑁 is given by s(𝐴) = 𝑅e, that is, 𝑠𝑖(𝐴) = ∑︀𝑛

𝑗=1 𝑟𝑖𝑗 for all 𝑋𝑖 ∈ 𝑁 .

It is clear that the row sum score does not take into account the “popularity” of the
objects which can be a problem as the volatility of row sum for objects with a high number
of comparisons is usually significantly higher than the volatility of row sum for objects
with a low number of comparisons.

This effect can be handled by normalisation. Denote the degree of node 𝑋𝑖 in graph 𝐺
by 𝑑𝑖 = ∑︀

𝑋𝑗∈𝑁 𝑚𝑖𝑗 . Introduce the diagonal matrix 𝐷− =
[︁
𝑑−

𝑖𝑗

]︁
∈ R𝑛×𝑛 such that 𝑑−

𝑖𝑖 = 1/𝑑𝑖

for all 𝑖 = 1, 2, . . . , 𝑛 and 𝑑−
𝑖𝑗 = 0 if 𝑖 ̸= 𝑗.

Definition 3.2. Normalised row sum: Let (𝑁, 𝐴) ∈ ℛ𝑛 be a ranking problem. The
normalised row sum score 𝑝𝑖(𝐴) of object 𝑋𝑖 ∈ 𝑁 is given by p(𝐴) = 𝐷−s = 𝐷−𝑅e, that
is, 𝑝𝑖(𝐴) = ∑︀𝑛

𝑗=1 𝑟𝑖𝑗/𝑑𝑖 for all 𝑋𝑖 ∈ 𝑁 .

In addition, a preference over a “strong” object is not necessarily equal to a preference
over a “weak” object. It can be taken into account by considering the entire structure of
the comparisons.

The Laplacian matrix 𝐿 = [ℓ𝑖𝑗] ∈ R𝑛×𝑛 of the graph 𝐺 is given by ℓ𝑖𝑗 = −𝑚𝑖𝑗 for all
𝑖 ̸= 𝑗 and ℓ𝑖𝑖 = 𝑑𝑖 for all 𝑖 = 1, 2, . . . 𝑛.

Definition 3.3. Least squares: Let (𝑁, 𝐴) ∈ ℛ𝑛 be a ranking problem. The least squares
scores can be obtained via the following least squared errors estimation:

min
q∈R𝑛

∑︁
𝑋𝑖,𝑋𝑗∈𝑁

𝑚𝑖𝑗

[︃
𝑟𝑖𝑗

𝑚𝑖𝑗

− (𝑞𝑖 − 𝑞𝑗)
]︃2

.
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The least squares score 𝑞𝑖(𝐴) of object 𝑋𝑖 ∈ 𝑁 is given by 𝐿q(𝐴) = s(𝐴) = 𝑅e, that is,
𝑑𝑖𝑞𝑖(𝐴) = 𝑠𝑖(𝐴) + ∑︀𝑛

𝑗=1 𝑚𝑖𝑗𝑞𝑗(𝐴) for all 𝑋𝑖 ∈ 𝑁 .

The Laplacian matrix 𝐿 is a singular matrix, its rank equals 𝑛 − 𝑘, where 𝑘 is the
number of (weakly) connected components in the graph 𝐺. Consequently, the system of
linear equations in Definition 3.3 does not have a unique solution. This can be ensured by
adding the equation ∑︀

𝑋𝑖∈𝐾 𝑞𝑖 = 0 for each connected component of nodes 𝐾 ⊆ 𝑁 (Kaiser
and Serlin, 1978; Chebotarev and Shamis, 1999; Bozóki et al., 2010; Čaklović and Kurdija,
2017).

An extensive analysis and a graph interpretation of the least squares method, as well
as an overview of its origin, is provided in Csató (2015).

The procedure is also known as the Potential Method (Čaklović and Kurdija, 2017), or
as the Logarithmic Least Squares Method on the field of pairwise comparison matrices
(Bozóki et al., 2010). Lundy et al. (2017) prove that the least squares scores are equal to
the preference vector calculated from the spanning trees of the network, while Bozóki and
Tsyganok (2019) extend this result to incomplete data. Csató (2018) and Csató (2019a)
provide axiomatic characterizations in the case of complete preference lists.

3.2 An axiomatic comparison
In the following, some axiomatic properties are presented for the ranking of the objects to
illustrate the differences between the three scoring methods.

Axiom 1. Size invariance: A scoring method 𝑓 : ℛ𝑛 → R𝑛 is said to be size invariant if
𝑓𝑖(𝑁, 𝐴) = 𝑓𝑗(𝑁, 𝐴) holds for any ranking problem (𝑁, 𝐴) ∈ ℛ𝑛 which has two different
objects 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 such that 𝑎𝑖𝑘 = 𝛼𝑎𝑗𝑘 and 𝑎𝑘𝑖 = 𝛼𝑎𝑘𝑗 for all 𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗},
furthermore, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0.

Size invariance means that if there exist two objects 𝑋𝑖, 𝑋𝑗 with exactly the same
preference structure against any third object 𝑋𝑘, but one of them is 𝛼 times “larger”, then
they should have the same rank.

Proposition 3.1. The row sum method violates size invariance.
The normalised row sum and least squares methods satisfy size invariance.

Proof. Row sum: It can be checked that 𝑠𝑖 = 𝛼𝑠𝑗 for two different objects 𝑋𝑖, 𝑋𝑗 ∈ 𝑁
such that 𝑎𝑖𝑘 = 𝛼𝑎𝑗𝑘 and 𝑎𝑘𝑖 = 𝛼𝑎𝑘𝑗 for all 𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}, furthermore, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0.

Normalised row sum: 𝑑𝑖 = 𝛼𝑑𝑗 also holds for two different objects 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 such
that 𝑎𝑖𝑘 = 𝛼𝑎𝑗𝑘 and 𝑎𝑘𝑖 = 𝛼𝑎𝑘𝑗 for all 𝑋𝑘 ∈ 𝑁 ∖ {𝑋𝑖, 𝑋𝑗}, furthermore, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0.

Least squares: It follows from 𝑚𝑖𝑘 = 𝛼𝑚𝑗𝑘 for all 𝑋𝑘 ∈ 𝑁 , which holds if there are two
different objects 𝑋𝑖, 𝑋𝑗 ∈ 𝑁 such that 𝑎𝑖𝑘 = 𝛼𝑎𝑗𝑘 and 𝑎𝑘𝑖 = 𝛼𝑎𝑘𝑗 for all 𝑋𝑘 ∈ 𝑁 ∖{𝑋𝑖, 𝑋𝑗},
furthermore, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0.

Size invariance is a desirable property in the context of university rankings because a
method violating this property may favour institutions only because of their size, as we
will see later in the case of row sum.

Definition 3.4. Bridge set: Let (𝑁, 𝐴) ∈ ℛ𝑛 be a ranking problem. An object set
∅ ≠ 𝐵 ⊆ 𝑁 is called bridge set if there exists 𝑁1, 𝑁2 ⊆ 𝑁 such that 𝑁1 ∪ 𝐵 ∪ 𝑁2 = 𝑁 ,
𝑁1 ∩ 𝑁2 = ∅, and 𝑚𝑖𝑗 = 0 for all 𝑋𝑖 ∈ 𝑁1 and 𝑋𝑗 ∈ 𝑁2, furthermore, 𝑚𝑖𝑘 = 𝑚𝑖ℓ for all
𝑋𝑖 ∈ 𝑁1 and 𝑋𝑘, 𝑋ℓ ∈ 𝐵.

7



Remark 3.1. The concept of bridge set is a common generalisation of bridge player (when
|𝐵| = 1) (González-Dı́az et al., 2014) and macrovertex (when 𝑁2 = ∅) (Chebotarev, 1994;
Csató, 2019b).

Axiom 2. Bridge set independence: A scoring method 𝑓 : ℛ𝑛 → R𝑛 is said to be bridge set
independent if 𝑓𝑖(𝑁, 𝐴) ≥ 𝑓𝑗(𝑁, 𝐴) ⇐⇒ 𝑓𝑖(𝑁, 𝐴′) ≥ 𝑓𝑗(𝑁, 𝐴′) holds for all 𝑋𝑖, 𝑋𝑗 ∈ 𝑁1

in the case of any two ranking problems (𝑁, 𝐴), (𝑁, 𝐴′) ∈ ℛ𝑛 with a bridge set 𝐵 such
that 𝑎𝑘ℓ = 𝑎′

𝑘ℓ for all {𝑋𝑘, 𝑋ℓ} ∩ 𝑁1 ̸= ∅.

Bridge set independence means that the order of objects in the set 𝑁1 is independent
of the preferences between the objects outside 𝑁1.
Remark 3.2. Macrovertex independence (Chebotarev, 1994; Csató, 2019b) is a particular
case of bridge set independence when 𝑁2 = ∅.

Axiom 3. Bridge set autonomy: A scoring method 𝑓 : ℛ𝑛 → R𝑛 is said to be bridge
set autonomous if 𝑓𝑘(𝑁, 𝐴) ≥ 𝑓ℓ(𝑁, 𝐴) ⇐⇒ 𝑓𝑘(𝑁, 𝐴′) ≥ 𝑓ℓ(𝑁, 𝐴′) holds for all 𝑋𝑘, 𝑋ℓ ∈
𝐵 ∪ 𝑁2 in the case of any two ranking problems (𝑁, 𝐴), (𝑁, 𝐴′) ∈ ℛ𝑛 with a bridge set 𝐵
such that 𝑎𝑖𝑗 = 𝑎′

𝑖𝑗 for all {𝑋𝑖, 𝑋𝑗} ∩ (𝐵 ∪ 𝑁2) ̸= ∅.

Bridge set autonomy requires the order of objects to remain the same in the set 𝐵 ∪ 𝑁2

if only the preferences inside 𝑁1 change.
Remark 3.3. Bridge set autonomy is an extension of macrovertex autonomy (Csató, 2019b),
which requires that 𝑁2 = ∅.

Proposition 3.2. The row sum and normalised row sum methods satisfy bridge set
independence and bridge set autonomy.

Proof. Bridge set independence: It can be seen that 𝑠𝑖(𝐴) = 𝑠𝑖(𝐴′) and 𝑑𝑖(𝐴) = 𝑑𝑖(𝐴′)
hold for all 𝑋𝑖 ∈ 𝑁1 in the case of any two ranking problems (𝑁, 𝐴), (𝑁, 𝐴′) ∈ ℛ𝑛 with a
bridge set 𝐵 such that 𝑎𝑘ℓ = 𝑎′

𝑘ℓ for all {𝑋𝑘, 𝑋ℓ} ∩ 𝑁1 ̸= ∅.
Bridge set autonomy: It can be checked that 𝑠𝑘(𝐴) = 𝑠𝑘(𝐴′) and 𝑑𝑘 = 𝑑𝑘 hold for

all 𝑋𝑘 ∈ (𝐵 ∪ 𝑁2) in the case of any two ranking problems (𝑁, 𝐴), (𝑁, 𝐴′) ∈ ℛ𝑛 with a
bridge set 𝐵 such that 𝑎𝑖𝑗 = 𝑎′

𝑖𝑗 for all {𝑋𝑖, 𝑋𝑗} ∩ (𝐵 ∪ 𝑁2) ̸= ∅.

Proposition 3.3. The least squares method satisfies bridge set independence and bridge
set autonomy.

Proof. Bridge set independence: Consider the linear equations for an arbitrary object
𝑋𝑘 ∈ 𝐵 and 𝑋𝑔 ∈ 𝑁2, respectively:

𝑑𝑘𝑞𝑘 −
∑︁

𝑋𝑖∈𝑁1

𝑚𝑘𝑖𝑞𝑖 −
∑︁

𝑋ℓ∈𝐵

𝑚𝑘ℓ𝑞ℓ −
∑︁

𝑋ℎ∈𝑁2

𝑚𝑘ℎ𝑞ℎ = 𝑠𝑘; (1)

𝑑𝑔𝑞𝑔 −
∑︁

𝑋ℓ∈𝐵

𝑚𝑔ℓ𝑞ℓ −
∑︁

𝑋ℎ∈𝑁2

𝑚𝑔ℎ𝑞ℎ = 𝑠𝑔. (2)

Note that 𝑚𝑘𝑖 = 𝑚ℓ𝑖 = 𝑚̄𝑖 for all 𝑋𝑖 ∈ 𝑁1 and 𝑋𝑘, 𝑋ℓ ∈ 𝐵 since 𝐵 is a bridge set.
Sum up the |𝐵| equations of type (1) and the |𝑁2| equations of type (2), which leads to:

∑︁
𝑋𝑖∈𝑁1

𝑚̄𝑖

⎛⎝ ∑︁
𝑋𝑘∈𝐵

𝑞𝑘 − |𝐵|𝑞𝑖

⎞⎠ = −
∑︁

𝑋𝑖∈𝑁1

𝑠𝑖. (3)
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Take also the linear equation for an arbitrary object 𝑋𝑖 ∈ 𝑁1:

𝑑𝑖𝑞𝑖 −
∑︁

𝑋𝑗∈𝑁1

𝑚𝑖𝑗𝑞𝑗 −
∑︁

𝑋𝑘∈𝐵

𝑚̄𝑖𝑞𝑘 = 𝑠𝑖. (4)

∑︀
𝑋𝑘∈𝐵 𝑞𝑘 can be substituted from equation (3) into the |𝑁1| equations of type (4).

This system consists of |𝑁1| equations and the same number of unknowns. It should have
a unique solution since it has been obtained by pure substitution of formulas. As the
coefficients of the system do not depend on the preferences outside the object set 𝑁1, the
weights of these objects are the same in the ranking problems (𝑁, 𝐴) and (𝑁, 𝐴′).

Bridge set autonomy: Analogously to the proof of bridge set independence, ∑︀
𝑋𝑘∈𝐵 𝑞𝑘

can be substituted from equation (3) into the |𝑁1| equations of type (4). This system
consists of |𝑁1| equations and the same number of unknowns. It should have a unique
solution, from which 𝑞𝑖(𝐴) and 𝑞𝑖(𝐴′) can be obtained for all 𝑋𝑖 ∈ 𝑁1, respectively.

Introduce the notation Δ𝑞𝑖 = 𝑞𝑖(𝐴′) − 𝑞𝑖(𝐴) for all 𝑋𝑖 ∈ 𝑁 . ∑︀
𝑋𝑖∈𝑁1 𝑠𝑖(𝐴) =∑︀

𝑋𝑖∈𝑁1 𝑠𝑖(𝐴′) holds because only the preferences inside the object set 𝑁1 may change, so
equation (3) implies that

∑︁
𝑋𝑘∈𝐵

Δ𝑞𝑘 =
∑︀

𝑋𝑖∈𝑁1 𝑚̄𝑖Δ𝑞𝑖∑︀
𝑋𝑖∈𝑁1 𝑚̄𝑖

= 𝛽. (5)

It will be shown that Δ𝑞𝑘 = Δ𝑞𝑔 = 𝛽/|𝐵| for all 𝑋𝑘 ∈ 𝐵 and 𝑋𝑔 ∈ 𝑁2. Since the
system of linear equations 𝐿q(𝐴) = s(𝐴) has a unique solution after normalisation, it is
enough to prove that Δ𝑞𝑘 = Δ𝑞𝑔 = 𝛽/|𝐵| satisfies equations of types (1) and (2). The
latter statement comes from 𝑑𝑔 = ∑︀

𝑋ℓ∈𝐵 𝑚𝑔ℓ + ∑︀
𝑋ℎ∈𝑁2 𝑚𝑔ℎ as there are no preferences

between the objects in sets 𝑁1 and 𝑁2.
Take an equation of type (1) and note that 𝑠𝑘(𝐴′) − 𝑠𝑘(𝐴) = 0 because only the

preferences inside the object set 𝑁1 may change:

𝑑𝑘Δ𝑞𝑘 −
∑︁

𝑋𝑖∈𝑁1

𝑚̄𝑖Δ𝑞𝑖 −
∑︁

𝑋ℓ∈𝐵

𝑚𝑘ℓΔ𝑞ℓ −
∑︁

𝑋ℎ∈𝑁2

𝑚𝑘ℎΔ𝑞ℎ = 0. (6)

Since 𝑑𝑘 = ∑︀
𝑋𝑖∈𝑁1 𝑚̄𝑖 + ∑︀

𝑋ℓ∈𝐵 𝑚𝑘ℓ + ∑︀
𝑋ℎ∈𝑁2 𝑚𝑘ℎ, with the use of the assumption Δ𝑞𝑘 =

Δ𝑞𝑔 = 𝛽/|𝐵| for all 𝑋𝑘 ∈ 𝐵 and 𝑋𝑔 ∈ 𝑁2, we get

∑︁
𝑋𝑖∈𝑁1

𝑚̄𝑖
𝛽

|𝐵|
−

∑︁
𝑋𝑖∈𝑁1

𝑚̄𝑖Δ𝑞𝑖 = 0, (7)

which holds due to the definition of 𝛽 in equation (5). This completes the proof.

Axiom 4. Bridge player independence (González-Dı́az et al., 2014): A scoring method
𝑓 : ℛ𝑛 → R𝑛 is said to be bridge player independent if 𝑓𝑖(𝑁, 𝐴) ≥ 𝑓𝑗(𝑁, 𝐴) ⇐⇒
𝑓𝑖(𝑁, 𝐴′) ≥ 𝑓𝑗(𝑁, 𝐴′) holds for all 𝑋𝑖, 𝑋𝑗 ∈ (𝑁1 ∪ 𝐵) in the case of any two ranking
problems (𝑁, 𝐴), (𝑁, 𝐴′) ∈ ℛ𝑛 with a bridge set |𝐵| = 1 such that 𝑎𝑘ℓ = 𝑎′

𝑘ℓ for all
{𝑋𝑘, 𝑋ℓ} ∩ 𝑁1 ̸= ∅.

According to bridge player independence, in a hypothetical world consisting of two
sets of objects connected only by a single object called bridge player, the relative rankings
within each set of objects are not influenced by the preferences among the objects in the
other set.

Proposition 3.4. The least squares method satisfies bridge player independence.
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Proof. See González-Dı́az et al. (2014, Proposition 6.1).

Similarly to macrovertex independence and macrovertex autonomy, we have attempted
to generalise bridge player independence in a way that the extended property is satisfied
by the least squares method without success.

Bridge set independence, bridge set autonomy, and bridge player independence are
relevant properties for university rankings, although their conditions seldom hold in
practice. Intuitively, these axioms suggest that if two sets of institutions are considered,
then the relative rankings within each set are not much influenced by the preferences
inside the other set (bridge set independence and autonomy). Furthermore, after fixing
the preferences within both sets, the positions of universities from either set in the overall
ranking are mainly determined by the preferences between the two sets. For example, the
relative ranking among the faculties of engineering should be almost independent of the
preferences involving other faculties, and their positions in the overall ranking should not
be influenced by the preferences among the faculties of other fields when all the three
properties are satisfied.

Now an illustration is provided for the three scoring methods and the four axioms.

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

6
12

10
20

6

12
10

20

6

6

7

5

Figure 1: Preferences between the objects in Example 3.1

Example 3.1. Consider the ranking problem (𝑁, 𝐴) ∈ ℛ5 shown in Figure 1, where the
directed edges represent the preferences with their weights written on near the start of the
arrow, and their thickness is proportional to the strength of the preferences.

The preference, the results, and the matches matrices are as follows:

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 6 6 0
0 0 10 10 0
12 20 0 6 7
12 20 6 0 0
0 0 5 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −6 −6 0
0 0 −10 −10 0
6 10 0 0 2
6 10 0 0 0
0 0 −2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , and

𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 18 18 0
0 0 30 30 0
18 30 0 12 12
18 30 12 0 0
0 0 12 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Objects 𝑋1 and 𝑋2 satisfy the conditions of the axiom size invariance, 𝑋2 is 𝛼 = 5/3
times larger than object 𝑋1. It remains true even if the preferences between the other
three objects (the green and black directed edges) change. For the sake of visibility, the
favourable preferences of objects 𝑋1 and 𝑋2 are indicated by blue, and their unfavourable
preferences by red colour.

Objects 𝑋3 and 𝑋4 form a bridge set 𝐵 with 𝑁1 = {𝑋1, 𝑋2} and 𝑁2 = {𝑋5}. It holds
even if the preferences in the object set 𝐵 ∪ 𝑁2 = {𝑋3, 𝑋4, 𝑋5} (the green and black
directed edges) change. In addition, only the sum of total preferences concerning objects
𝑋1 and 𝑋2 should remain the same, that is, weights can be redistributed on the blue and
red edges between the same nodes.

Object 𝑋3 is a bridge player with 𝑁1 = {𝑋1, 𝑋2, 𝑋4} and 𝑁2 = {𝑋5}.

Table 1: Scores of the objects in Example 3.1

Object Row sum Norm. row sum Least squares
𝑋1 −12 −20/60 −1/6
𝑋2 −20 −20/60 −1/6
𝑋3 18 15/60 1/6
𝑋4 16 16/60 1/6
𝑋5 −2 −10/60 0

The scores according to the three methods are shown in Table 1. The row sum and
least squares scores sum to 0, but this condition does not hold for the normalised row sum.

Size invariance implies that objects 𝑋1 and 𝑋2 have the same rank. According to
Proposition 3.1, this is satisfied only by the normalised row sum and least squares methods.
Therefore, it is difficult to argue for the row sum.

According to bridge set independence, the indifference 𝑋1 ∼ 𝑋2 should be preserved
even if the preferences between the other three objects (the green and black directed edges)
change.

Compare the normalised row sum and least squares scores. The first favours object 𝑋4
over 𝑋3, but the sole difference between them is that 𝑋3 has some extra preferences with
object 𝑋5, which seems to be a weak reason to distinguish between the strength of 𝑋3
and 𝑋4. This is provided by the axiom bridge player independence.

Finally, bridge player autonomy ensures that the relative ranking of 𝑋3, 𝑋4, and 𝑋5 is
not influenced by the existence of direct preferences between the objects 𝑋1 and 𝑋2.
Proposition 3.5. The row sum and normalised row sum methods violate bridge player
independence.
Proof. Consider the ranking problem (𝑁, 𝐴) ∈ ℛ5 of Example 3.1.

Let (𝑁, 𝐴′) be the ranking problem such that the preference matrix 𝐴′ is the same as
𝐴 except for 𝑎′

35 = 3 < 7 = 𝑎35. Then 𝑠3(𝐴′) = 14 < 16 = 𝑠4(𝐴′), while 𝑠3(𝐴) = 18 >
16 = 𝑠4(𝐴), showing the violation of bridge player independence by the row sum method.

Let (𝑁, 𝐴′′) be the ranking problem such that the preference matrix 𝐴′′ is the same
as 𝐴 except for 𝑎′′

35 = 10 > 7 = 𝑎35. Then 𝑝3(𝐴′′) = 7/25 > 16/60 = 𝑝4(𝐴′′), while
𝑝3(𝐴) = 15/60 < 16/60 = 𝑝4(𝐴), showing the violation of bridge player independence by
the normalised row sum method.

Table 2 summarises the findings of our concise axiomatic analysis. It turns out that
the least squares method shares the advantages of the other two procedures, while it is the
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Table 2: Axiomatic comparison of scoring methods

Axiom Row sum Normalised row sum Least squares
Size invariance 7 4 4

Bridge set independence 4 4 4

Bridge set autonomy 4 4 4

Bridge player independence 7 7 4

only one satisfying bridge player independence. González-Dı́az et al. (2014) and Čaklović
and Kurdija (2017) discuss some further properties of this method, mainly with positive
conclusions.

Hence, at this stage from theoretical reasons, we suggest applying the least squares
method for ranking in similar problems. However, any other well-known scoring procedures
can be applied to rank the objects (Chebotarev and Shamis, 1998, 1999; Palacios-Huerta
and Volij, 2004; Slutzki and Volij, 2005; González-Dı́az et al., 2014; Kitti, 2016; Bubboloni
and Gori, 2018), keeping in mind that there does not exist a perfect solution (Csató,
2019b).

The least squares method has also a growing list of successful applications, including
ranking historical Go (Chao et al., 2018) and tennis players (Bozóki et al., 2016), teams
in Swiss-system chess tournaments (Csató, 2017), or the participating countries of the
Eurovision Song Contest (Čaklović and Kurdija, 2017). It is used in international price
comparisons by the OECD (Éltető and Köves, 1964; Szulc, 1964), to evaluate movies on a
subset of Netflix data (Jiang et al., 2011), and for obtaining an alternative quality of life
ranking (Petróczy, 2018, 2019).

4 Recovering preferences from the list of applications
Our central assumption is that the applications of a student partially reveal real preferences.
This is far from true in the case of school choice mechanisms in general (Abdulkadiroğlu
and Sönmez, 2003). However, the Hungarian centralised matching scheme applies the
Gale-Shapley algorithm at its core (Biró et al., 2010; Biró and Kiselgof, 2015; Ágoston et al.,
2016), its college-oriented version until 2007, and the applicant-oriented variant since then
(Biró, 2008). In the applicant-oriented Gale-Shapley algorithm (Gale and Shapley, 1962),
students cannot improve their fate by lying about their preferences (Dubins and Freedman,
1981). While the college-oriented version does not satisfy this property, the difference of
the two versions is negligible in practice, and a successful manipulation requires a lot of
information, which is nearly impossible to obtain (Teo et al., 2001).2

Naturally, the whole preference list of an applicant always remains hidden. The exact
rules governing the length of the rankings changed several times between 2001 and 2016. In
the first years, there was no limit on the number of applications from a given student, but
they were charged for each item after the first three. In recent years, it has been allowed
to apply for at most five (six in 2016) places for a fixed price such that the state-financed

2 The actual algorithm is a heuristic that is close to the Gale-Shapley algorithm because of the
existence of some specialities like ties or common quotas (Biró et al., 2010; Biró and Kiselgof, 2015;
Ágoston et al., 2016). Consequently, it remains strategy-proof only essentially, for example, when the
applicants believe they have no chance to influence the score limits.
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and student-financed versions of the same programme count as one.
As a consequence, the applications of a student reveal only a part of her preferences.

In the presence of such constrained lists, Haeringer and Klijn (2009, Proposition 4.2) show
that – when the centralised allocation rule is the student-optimal Gale-Shapley algorithm –
the applicant can do no better than selecting some programmes among the acceptable
ones and ranking them according to the real preferences. Thus, it is assumed for a student
that:

1. (S)he prefers an object to any other object having a worse position on her list of
applications;

2. Her preference between an object on her list of applications and an object not on
her list of applications is unknown;

3. Her preference between two objects not on her list of applications is unknown.

Telcs et al. (2016) do not follow our second and third assumptions, therefore, according
to Haeringer and Klijn (2009, Proposition 4.2), the individual choices derived by them are
not guaranteed to reflect the real preferences of the applicants, in contrast to our model.
For example, unranked objects cannot be legitimately said to be less preferred than any of
the ones on the list, since a student may disregard a programme when (s)he knows that
(s)he has no chance to be admitted there.

Due to the rules of the centralised system, the same object may appear more than once
on the list of a student. For instance, if courses are compared, then both the state-financed
and the student-financed versions of a particular course may be present. Then we preserve
only the first appearance of the given object and delete all of the others. This ensures that
each applicant can have at most one preference between two different objects. Furthermore,
only the preferences concerning the first appearance of a given object reflect the real
preferences of the applicant adequately. Assume that (s)he prefers faculty 𝐴 to 𝐵, so
her list contains a particular programme of faculty 𝐴 in the first place and the same
programme of faculty 𝐵 in the second place. Faculty 𝐴 also offers another programme,
which is not the favourite of the student but (s)he applies for it because, for example,
(s)he can achieve the score limit with a higher probability. Then it cannot be said that
faculty 𝐵 is preferred to faculty 𝐴 in any sense.

However, the financing of the tuition may somewhat distort the picture. Suppose that
an applicant prefers faculty 𝐴 to faculty 𝐵. Both faculties offer the same programme in
state-financed and student-financed forms such that the score limit of the former is above
the score limit of the latter as natural. The applicant knows that (s)he has no chance to be
admitted to the state-financed programme of faculty 𝐴, but (s)he wants to avoid paying the
tuition, therefore her list contains the state-financed programme of faculty 𝐵 in the first
place, the student-financed programme of faculty 𝐴 in the second, and the student-financed
programme of faculty 𝐵 in the third position. Then our technique concludes that faculty
𝐵 is preferred to faculty 𝐴, which is opposite to the real preferences of the applicant.
Consequently, it may make sense to differentiate between the two forms of financing, that
is, to derive preferences for the state-financed and student-financed programmes separately.
Nevertheless, applying for both the state-financed and student-financed versions of the
same programme has no financial costs, so probably few students employ the strategy
presented above.

Following these ideas, the preference matrix of any student can be determined. In
order to aggregate them, a weighting scheme should be chosen. At first sight, it might
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look that all contributions are equal, so each student should have the same weight, which
will be called the unweighted problem. In the unweighted preference matrix 𝐴𝑈𝑊 , the
entry 𝑎𝑈𝑊

𝑖𝑗 gives the number of applicants who prefer object 𝑋𝑖 to object 𝑋𝑗.
On the other hand, some students have a longer list of applications, hence, there is more

information available on their preferences. Then the unweighted version essentially weights
the students according to the number of preferences they have revealed (Čaklović and
Kurdija, 2017). The equal contribution of each applicant can be achieved by introducing
the weight 𝑤𝑖 = 1/𝑘 for student 𝑖 if (s)he has given 𝑘 preferences after the truncation
of objects appearing more than once. This will be called the weighted problem. In the
weighted preference matrix 𝐴𝑊 , each applicant, who has revealed at least one preference,
increases the sum of entries in the (aggregated) preference matrix by one.

Another solution can be the moderately weighted problem when the weight of student
𝑖 is 𝑤𝑖 = 1/(ℓ − 1) if (s)he has given a (truncated) preference list of ℓ objects. In the
moderately weighted preference matrix 𝐴𝑀𝑊 , each applicant, who has revealed at least
one preference concerning object 𝑖, increases the sum of entries in the 𝑖th row and column
of the (aggregated) preference matrix by one.

Finally, with respect to the form of financing, the adjusted unweighted 𝐴𝑈𝑊 , weighted
𝐴𝑊 , and moderately weighted 𝐴𝑀𝑊 preference matrices are introduced, respectively, by
obtaining the state-financed and student-financed unweighted, weighted, and moderately
weighted preference matrices separately as above, and correspondingly aggregating them.

This procedure allows for the comparison of any types of objects: higher education
institutions (universities or colleges), faculties, courses, etc. It is also possible to present
customised rankings specific to various types of students. In the current paper, the
ranking of Hungarian faculties will be discussed, as collectively revealed by all applicants
participating in the system.

Example 4.1. Consider a student with the following list of applications:⎡⎢⎢⎢⎢⎢⎢⎣
1 SE–AOK Medicine 𝑂 𝑁 𝐴
2 PTE–AOK Medicine 𝑂 𝑁 𝐴
3 DE–AOK Medicine 𝑂 𝑁 𝐾
4 SE–AOK Medicine 𝑂 𝑁 𝐴
5 SE–FOK Dentistry 𝑂 𝑁 𝐾

⎤⎥⎥⎥⎥⎥⎥⎦
Since the objects are the faculties, SE–AOK appears twice, from which the second is
deleted. The preferences of the student over the four faculties are as follows:

SE–AOK ≻ PTE–AOK;
SE–AOK ≻ DE–AOK;
SE–AOK ≻ SE–FOK;

PTE–AOK ≻ DE–AOK;
PTE–AOK ≻ SE–FOK;

DE–AOK ≻ SE–FOK.

Thus the applicant has provided six preferences.
If the state-financed and student-financed forms are treated separately, then there are

only two revealed preferences:

SE–AOK ≻ PTE–AOK; (𝐴)
DE–AOK ≻ SE–FOK. (𝐾)
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The objects are 𝑋1 = SE–AOK, 𝑋2 = PTE–AOK, 𝑋3 = DE–AOK, and 𝑋4 =
SE–FOK. The corresponding unweighted (𝐴𝑈𝑊 ), weighted (𝐴𝑊 ), and moderately weighted
(𝐴𝑀𝑊 ), as well as, adjusted unweighted (𝐴𝑈𝑊 ), weighted (𝐴𝑊 ), and moderately weighted
(𝐴𝑀𝑊 ) preference matrices are

𝐴𝑈𝑊 =

⎡⎢⎢⎢⎣
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎦ , 𝐴𝑊 =

⎡⎢⎢⎢⎣
0 1/6 1/6 1/6
0 0 1/6 1/6
0 0 0 1/6
0 0 0 0

⎤⎥⎥⎥⎦ ,

𝐴𝑀𝑊 =

⎡⎢⎢⎢⎣
0 1/3 1/3 1/3
0 0 1/3 1/3
0 0 0 1/3
0 0 0 0

⎤⎥⎥⎥⎦ , and 𝐴𝑈𝑊 =

⎡⎢⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎦ ,

with 𝐴𝑈𝑊 = 𝐴𝑊 = 𝐴𝑀𝑊 , respectively.

As we have already mentioned, once a preference matrix is obtained, any method of
paired comparisons-based ranking can be used to rank the objects, including the procedures
presented in Section 3.1. In our case, the objects are the faculties, and the row sum gives
the number of “net” preferences, that is, the difference between the favourable and the
unfavourable preferences of the faculty, while the normalised row sum is the ratio of “net”
preferences to all preferences. The more complicated least squares method has no such an
expressive meaning, but it essentially adjusts “net” preferences (row sum) by taking into
consideration the prestige of faculties that are compared with the given one. We will see
that this modification can have a significant impact on the ranking.

5 Results
Figure 2 presents some descriptive statistics of the dataset in the period analysed.3 It can
be realised that the Hungarian higher education admission is a huge system with more
than 150 thousand revealed preferences in each year. It is under constant reform, even the
set of the faculties, the basic units of higher education, changes in almost every year.

Therefore, in the first step, we restrict our attention to the seven Dentistry and
Medicine faculties and to the last recorded year of 2016.4 The calculations are summarised
in Table 3. Table 3.a shows the main characteristics of these faculties, Table 3.b presents
the unweighted preference matrix derived with the methodology described in Section 3,
and Table 3.c provides the scores and rankings.

Because the unweighted matrix does not take the length of preference lists into account,
it is known that 138 students have preferred DE–AOK to DE–FOK, while 146 applicants
have made the opposite choice. In addition, 2939 applicants have revealed a preference
concerning DE–AOK according to the last column of Table 3.c: there are 1175 preferences

3 In the database, the number of faculties in 2016 was originally 191 due to the renaming of some
higher education institutions. After eliminating the ones without a preference from any applicant, only
179 remained.

4 Probably these faculties have the most international students in Hungary. For example, their
ratio is close to 50% at SE–AOK and SE–FOK, representing altogether more than 3000 foreigners
with Germany, Iran, Norway, Italy, and South Korea being the top five countries of origin. See at
http://semmelweis.hu/english/the-university/facts-and-figures/ (downloaded 31 May 2019).
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Figure 2: Descriptive statistics of the dataset, 2001-2016

for this faculty (the sum of the first row in Table 3.b) and 1764 against it (the sum of the
first column in Table 3.b), so the number of “net” preferences, that is, the row sum is
equal to −589. Consequently, normalised row sum will be −589/2939 ≈ −0.2.

The ranking obtained from the row sum and normalised row sum methods coincide,
while the least squares method changes the position of two pairs of faculties. Since these
scores sum up to 0, one can say that all rural faculties are below the average in this
particular set with the exception of the two based at Budapest, the capital of Hungary.

Rankings can be validated not only through their axiomatic properties but by measuring
how they reflect the preferences. One way is to count the number of preferences which are
contradictory with the ranking: ∑︁

𝑋𝑖,𝑋𝑗∈𝑁

𝑎𝑖𝑗 : 𝑗 ≻ 𝑖. (8)

This value is 2195 for the row sum and normalised row sum, which increases to 2253 in
the case of the least squares ranking.5 Nonetheless, the seven faculties form only a small
sample of the entire dataset, so it is premature to state that the theoretically sound least
squares method does not work in practice.

Table 4 shows the (symmetric) Kendall rank correlation coefficients (Kendall, 1938)
between the nine rankings obtained from the unweighted 𝐴𝑈𝑊 , the weighted 𝐴𝑈𝑊 , and
the adjusted unweighted 𝐴𝑈𝑊 preference matrices with the three methods presented in
Section 3. This measure is based on the number of concordant and disconcordant pairs
between the two rankings, its value is between −1 and +1 such that −1 indicates complete

5 This can be seen from the preference matrix in Table 3.b, too: DE–FOK is preferred by more
applicants to DE–AOK than vice versa, and the same holds in the relation of SZTE–FOK and SZTE–AOK.
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Table 3: Comparison of the Hungarian Dentistry and Medicine faculties, 2016

(a) List of Dentistry and Medicine faculties

Faculty City Type
DE–AOK Debrecen Medicine
DE–FOK Debrecen Dentistry
PTE–AOK Pécs Dentistry and Medicine
SE–AOK Budapest Medicine
SE–FOK Budapest Dentistry
SZTE–AOK Szeged Medicine
SZTE–FOK Szeged Dentistry

(b) The unweighted preference matrix 𝐴𝑈𝑊 of Dentistry and Medicine faculties

Faculty F1 F2 F3 F4 F5 F6 F7
DE–AOK (F1) 0 138 506 127 53 308 43
DE–FOK (F2) 146 0 144 21 37 52 76
PTE–AOK (F3) 270 87 0 140 84 273 83
SE–AOK (F4) 634 72 778 0 244 874 68
SE–FOK (F5) 109 178 258 101 0 129 204
SZTE–AOK (F6) 560 58 835 132 49 0 72
SZTE–FOK (F7) 45 137 200 17 32 122 0

(c) Scores of Dentistry and Medicine faculties, unweighted preference matrix 𝐴𝑈𝑊

Faculty Row sum Norm. row sum Least squares Preferences
DE–AOK (−589) 6 (−0.200) 6 (−0.176) 5 (2939) 4
DE–FOK (−194) 5 (−0.169) 5 (−0.202) 6 (1146) 6
PTE–AOK (−1784) 7 (−0.488) 7 (−0.387) 7 (3658) 1
SE–AOK (2132) 1 (0.665) 1 (0.531) 1 (3208) 3
SE–FOK (480) 2 (0.325) 2 (0.301) 2 (1478) 5
SZTE–AOK (−52) 4 (−0.015) 4 (−0.022) 3 (3464) 2
SZTE–FOK (7) 3 (0.006) 3 (−0.045) 4 (1099) 7

Numbers in parentheses indicate the score, bold numbers sign the rank of the faculty

disagreement, while +1 indicates perfect agreement. In order to avoid the adjustment for
ties, the number of preferences has been used as a tie-breaking rule to get strict rankings.

It can be seen that the effect of the ranking method is substantially larger than the effect
of the preference matrix (compare the italic numbers with the other ones). Rankings from
the unweighted 𝐴𝑈𝑊 and adjusted unweighted 𝐴𝑈𝑊 preference matrices are more similar
than rankings from the weighted version 𝐴𝑊 . In addition, the least squares method is more
robust to the choice of the preference matrix than the other two procedures. Therefore, in
the following analysis we will mainly focus on this procedure and the unweighted preference
matrix 𝐴𝑈𝑊 . It is worth noting that the rankings obtained from 𝐴𝑈𝑊 and from the matrix
which considers only the preferences among the state-financed programmes are similar.

Figure 3 illustrates the performance of the three methods by calculating the ratio of
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Table 4: Kendall rank correlation coefficients, 2016

Row sum Norm. row sum Least squares
𝐴𝑈𝑊 𝐴𝑊 𝐴𝑈𝑊 𝐴𝑈𝑊 𝐴𝑊 𝐴𝑈𝑊 𝐴𝑈𝑊 𝐴𝑊 𝐴𝑈𝑊

s
(︁
𝐴𝑈𝑊

)︁
— 0.909 0.953 0.783 0.759 0.771 0.719 0.709 0.705

s
(︁
𝐴𝑊

)︁
— 0.888 0.779 0.797 0.766 0.724 0.730 0.712

s
(︁
𝐴𝑈𝑊

)︁
— 0.764 0.741 0.775 0.705 0.694 0.702

p
(︁
𝐴𝑈𝑊

)︁
— 0.902 0.944 0.831 0.826 0.820

p
(︁
𝐴𝑊

)︁
— 0.882 0.808 0.836 0.798

p
(︁
𝐴𝑈𝑊

)︁
— 0.815 0.815 0.830

q
(︁
𝐴𝑈𝑊

)︁
— 0.932 0.960

q
(︁
𝐴𝑊

)︁
— 0.927

preferences which are contradictory with the appropriate ranking according to formula (8).
The normalised row sum procedure turns out to be better than the simple row sum, but
the least squares method continuously beats both of them. Thus, the message of Table 2 in
favour of the least squares method, which was based on purely theoretical considerations, is
reinforced by its superior performance on a large-scale dataset across more than a decade.

The ratio of preferences that are contradictory with the rankings has increased robustly
between 2001 and 2016. While it is difficult to disentangle the effect of the constantly
changing set of objects, the judgements of the applicants have probably become more
diverse in the period considered.

To investigate the dynamics of the results, eight faculties have been chosen for in-depth
analysis:

∙ BME–GEK: Faculty of Mechanical Engineering, Budapest University of Techno-
logy and Economics (more than 2000 revealed preferences in each year);

∙ BME–GTK: Faculty of Economic and Social Sciences, Budapest University of
Technology and Economics (more than 4500 revealed preferences in each year);

∙ PTE–AOK: Medical School, University of Pécs (more than 2000 revealed prefer-
ences in each year);

∙ SE–AOK: Faculty of Medicine, Semmelweis University (more than 1500 revealed
preferences in each year);

∙ ELTE–AJK: Faculty of Law, Eötvös Lóránd University (more than 4000 revealed
preferences in each year);

∙ ELTE–TTK: Faculty of Science, Eötvös Lóránd University (more than 5500
revealed preferences in each year);

∙ SZTE–BTK: Faculty of Humanities and Social Sciences, University of Szeged
(more than 3500 revealed preferences in each year); and

∙ ZSKF: King Sigismund University (more than 2000 revealed preferences in each
year).
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(a) Unweighted preference matrix 𝐴𝑈𝑊
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(b) Weighted preference matrix 𝐴𝑊
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Figure 3: The ratio of preferences contradictory with the ranking, 2001-2016

Figure 4 shows the least squares scores (Figure 4.a) and ranks (Figure 4.b) of these
faculties. SE–AOK has achieved at least the second position in each year between 2001
and 2016. PTE–AOK has been close to the bottom of the top 10 consistently. On the
other hand, BME–GTK, as well as ELTE–AJK (and, to some extent, SZTE-BTK) have
displayed a declining performance, especially law studies have become less popular among
the applicants in this one and a half decade. The gradual improvement of BME–GEK
demonstrates that an appropriate long-term strategy can yield significant gains. ELTE–
TTK has remained a strong middle-rank faculty with some fluctuations, while ZSKF has
not managed to increase its low prestige.

Tables A.1, A.2, and A.3 in the Appendix present the scores and ranks of the faculties
in 2016, as obtained from the unweighted 𝐴𝑈𝑊 , the weighted 𝐴𝑈𝑊 , and the adjusted
unweighted 𝐴𝑈𝑊 preference matrices, respectively. It is not surprising that some small
faculties have a good position according to the normalised row sum and least squares
methods. Turning to the more popular institutions and concentrating on the suggested
least squares method, all of the seven Dentistry and Medicine faculties are among the top
faculties in Hungary. While the worse faculties of this set (such as DE–AOK, DE–FOK,
or PTE–AOK, see Table 3) do not seem excellent by the two local measures of row sum
and normalised row sum, their performance significantly improves after taking the whole
structure of the network into account because, although they are not favoured by the
applicants over the leading Dentistry and Medicine faculties, they are still preferred to
faculties in other subject areas. Similar causes are behind the relatively better performance
of the four Pharmacy faculties (DE–GYTK in Debrecen, PTE–GYTK in Pécs, SE–GYTK
in Budapest, SZTE–GYTK in Szeged) when the least squares method is applied.

On the other hand, the most prestigious business (BCE–GTK) and economics faculties
(BCE–KTK) are outside the top 20 according to the least squares ranking, despite that
the former is among the best according to row sum, and performs better even with the
normalised row sum method. The unique Veterinary Medicine faculty (SZIE–AOTK)
and the leading Faculty of Architecture (BME–ESZK) are also in the top 10, however,
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(a) Scores, unweighted preference matrix 𝐴𝑈𝑊
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(b) Ranks (logarithmic scale), unweighted preference matrix 𝐴𝑈𝑊
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Figure 4: Least squares scores and ranks of selected Hungarian faculties, 2001-2016

their good positions are still revealed by the normalised row sum method. There is no
substantial difference between the normalised row sum and least squares rankings in the
case of BCE–TK (Faculty of Social Sciences and International Relations at Corvinus
University of Budapest), too. Nonetheless, certain faculties gain (e.g. PPKE–ITK, Faculty
of Information Technology and Bionics at Pázmány Péter Catholic University), or lose
(e.g. ELTE–GYFK, Bárczi Gusztáv Faculty of Special Needs Educations at Eötvös Loránd
University; NKE–RTK, Faculty of Law Enforcement at National University of Public
Service; TE, University of Physical Education) from the use of the least squares method.

Table 5 summarises the ranks of the faculties mentioned above, classified by the three
methods and the three variants of preference matrices. It also reveals that the unweighted
𝐴𝑈𝑊 and adjusted unweighted 𝐴𝑈𝑊 preference matrices lead to almost the same ranking,
that is, separation of preferences with respect to the financing of the tuition has only
marginal effects. On the other hand, there are some remarkable differences between
the rankings obtained from the unweighted 𝐴𝑈𝑊 and weighted 𝐴𝑊 preference matrices,
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Table 5: Ranks of selected Hungarian faculties, 2016

Method → Row sum Norm. row sum Least squares
Faculty ↓ 𝐴𝑈𝑊 𝐴𝑊 𝐴𝑈𝑊 𝐴𝑈𝑊 𝐴𝑊 𝐴𝑈𝑊 𝐴𝑈𝑊 𝐴𝑊 𝐴𝑈𝑊

BCE–GTK 2 1 2 12 12 12 21 21 22
BCE–KTK 30 34 30 28 30 22 22 25 19
BCE–TK 12 13 13 25 27 27 25 32 25
BME–ESZK 22 23 22 6 6 7 10 7 9
BME–TTK 48 115 53 52 112 53 38 51 39
DE–AOK 19 27 19 38 35 39 9 13 8
DE–FOK 40 49 39 42 47 42 8 8 7
DE–GYTK 149 110 153 162 143 165 50 50 51
ELTE–GYFK 13 8 10 15 13 15 31 27 30
NKE–RTK 20 12 21 24 18 24 39 28 41
PPKE–ITK 51 40 50 53 46 52 33 29 32
PTE–AOK 169 144 173 99 109 105 12 14 12
PTE–GYTK 144 128 148 175 173 174 62 94 64
SE–AOK 1 3 1 2 1 2 1 1 1
SE–FOK 10 24 8 8 7 6 2 2 2
SE–GYTK 122 48 135 87 53 91 16 15 18
SZIE–AOTK 16 19 15 3 4 3 4 4 5
SZTE–AOK 7 26 7 22 29 21 3 6 4
SZTE–FOK 32 39 31 32 28 32 5 3 6
SZTE–GYTK 126 94 130 133 113 134 36 37 35
TE 11 5 9 17 16 16 37 36 38

especially for the row sum and normalised row sum methods. The case of GYTKs is
probably explained by the fact that Pharmacy faculties are “substitutes” of Medicine
faculties for several applicants (but not vice versa), so the preference lists of students
with an unfavourable view on pharmacy are inherently longer. The issue of BME–TTK
(Faculty of Natural Sciences, Budapest University of Technology and Economics) remains
to be explored.

Thus the least squares ranking of the faculties has an obvious, intuitive explanation.
Concisely, the dataset reveals that the number of applicants who want to be a doctor but
choose another field if this dream is not achievable is significantly greater than the number
of applicants employing an opposite strategy. Naturally, one can eliminate this effect by
composing separate lists on different subject areas, for example, by considering only an
appropriate submatrix of the whole preference matrix as in Table 3.

However, sometimes there is a demand for a universal ranking. This is what we have
provided here.

6 Conclusions
In this paper, a university ranking has been constructed from the lists of applications,
which can be implemented in any system using centralised admissions. It is clear that
the proposed ranking has a different nature with respect to other university rankings,
and our approach has its own limitations since the preferences are not observed directly
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but derived from the applications, the preferences of the students are determined not
only by the quality of the institutions, and past reputation can increase the inertia of the
ranking. On the other hand, the dataset reflects the collective information of thousands of
applicants at a moment of high-stakes decisions, and this collective wisdom of the crowd
can perhaps be competitive with some composite indices devised by a dozen academics.
To summarise, preference-based rankings do not solve the problems of other methodologies
but can be used as an alternative, for example, to check the robustness of traditional
university rankings.

We have presented a case study by ranking all faculties in the Hungarian higher
education between 2001 and 2016. Three different methods and three variants of preference
matrices have been considered for this purpose. Our results show that the suggested
ranking possesses favourable theoretical properties and performs well in practice: the least
squares method is hardly sensitive to the aggregation of individual preferences, and it
reflects the revealed preferences better than the other procedures discussed.
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Čaklović, L. and Kurdija, A. S. (2017). A universal voting system based on the Potential
Method. European Journal of Operational Research, 259(2):677–688.

Chao, X., Kou, G., Li, T., and Peng, Y. (2018). Jie Ke versus AlphaGo: A ranking
approach using decision making method for large-scale data with incomplete information.
European Journal of Operational Research, 265(1):239–247.

Chebotarev, P. Yu. (1994). Aggregation of preferences by the generalized row sum method.
Mathematical Social Sciences, 27(3):293–320.

Chebotarev, P. Yu. and Shamis, E. (1998). Characterizations of scoring methods for
preference aggregation. Annals of Operations Research, 80:299–332.

Chebotarev, P. Yu. and Shamis, E. (1999). Preference fusion when the number of
alternatives exceeds two: indirect scoring procedures. Journal of the Franklin Institute,
336(2):205–226.

Chen, L. (2012). University admission practices – Ireland. Manuscript.
http://www.matching-in-practice.eu/wp-content/uploads/2012/09/MiP_-
Profile_No.8.pdf.
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Appendix

Table A.1: Rankings of Hungarian faculties, unweighted preference matrix 𝐴𝑈𝑊 , 2016
Numbers in parentheses indicate the score, bold numbers sign the rank of the faculty

Faculty Row sum Norm. row sum Least squares Preferences
ANNYE (21) 43 (0.6) 20 (0.372) 19 (105) 157
AVKF (−383) 159 (0.366) 166 (−0.313) 154 (1431) 93
BCE–ETK (−22) 78 (0.359) 171 (−0.216) 137 (78) 161
BCE–GTK (2913) 2 (0.638) 12 (0.37) 21 (10547) 1
BCE–KERTK (12) 45 (0.579) 26 (0.068) 61 (76) 162
BCE–KTK (207) 30 (0.578) 28 (0.364) 22 (1327) 96
BCE–TAJK (1) 51 (0.516) 47 (0.131) 53 (31) 165
BCE–TK (821) 12 (0.583) 25 (0.32) 25 (4951) 17
BGE–GKZ (−79) 93 (0.432) 124 (−0.204) 134 (577) 140
BGE–KKK (−130) 108 (0.492) 60 (0.025) 68 (8034) 6
BGE–KVIK (202) 31 (0.514) 48 (0.04) 67 (7348) 8
BGE–PSZK (−179) 121 (0.491) 62 (0.024) 69 (9465) 3
BGF–GKZ (1) 51 (0.533) 40 (−0.145) 114 (15) 173
BGF–KKFK (−13) 73 (0.418) 140 (−0.092) 97 (79) 160
BGF–KVIFK (−6) 64 (0.393) 154 (−0.192) 130 (28) 166
BGF–PSZFKBP (−8) 69 (0.468) 81 (−0.042) 83 (124) 156
BKTF (−6) 64 (0.375) 163 (−0.089) 95 (24) 168
BME–EOK (174) 36 (0.557) 35 (0.269) 32 (1526) 88
BME–ESZK (342) 22 (0.717) 6 (0.592) 10 (788) 126
BME–GEK (1366) 4 (0.694) 9 (0.543) 14 (3528) 40
BME–GTK (187) 33 (0.513) 49 (0.163) 51 (7449) 7
BME–KSK (127) 38 (0.524) 44 (0.21) 42 (2599) 51
BME–TTK (3) 48 (0.501) 52 (0.237) 38 (1041) 117
BME–VBK (304) 26 (0.552) 36 (0.302) 28 (2918) 45
BME–VIK (1444) 3 (0.642) 11 (0.481) 15 (5080) 15
BMF–BGK (−452) 163 (0.444) 107 (−0.024) 76 (4024) 29
BMF–KGK (−470) 167 (0.44) 116 (−0.117) 103 (3890) 32
BMF–KVK (176) 35 (0.533) 39 (0.173) 48 (2628) 50
BMF–NIK (235) 29 (0.531) 41 (0.216) 40 (3751) 36
BMF–RKK (−163) 112 (0.429) 128 (−0.065) 88 (1143) 110
DE–AJK (−38) 84 (0.488) 65 (−0.038) 81 (1598) 84
DE–AOK (464) 19 (0.548) 38 (0.643) 9 (4866) 20
DE–BTK (−452) 163 (0.449) 102 (−0.104) 100 (4390) 26
DE–EK (−493) 168 (0.364) 168 (−0.317) 157 (1815) 76
DE–FOK (97) 40 (0.531) 42 (0.684) 8 (1557) 86
DE–GTK (−408) 160 (0.446) 104 (−0.214) 136 (3772) 34
DE–GYTK (−295) 149 (0.378) 162 (0.167) 50 (1209) 103
DE–HPFK (−99) 102 (0.469) 77 (−0.258) 145 (1603) 83
DE–IK (−173) 120 (0.45) 101 (−0.137) 109 (1713) 78
DE–MK (−165) 115 (0.459) 90 (−0.138) 110 (2013) 67
DE–MTK (−334) 154 (0.414) 143 (−0.278) 149 (1944) 69
DE–NK (11) 46 (0.504) 51 (0.003) 72 (1517) 89
DE–TTK (−768) 177 (0.391) 155 (−0.134) 106 (3532) 39
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Table A.1 – continued from the previous page

Faculty Row sum Norm. row sum Least squares Preferences
DE–ZK (−18) 75 (0.477) 74 (0.178) 45 (386) 151
DF (−7) 67 (0.348) 174 (−0.451) 175 (23) 169
DRHE (−15) 74 (0.484) 68 (−0.219) 139 (467) 147
DUE (−466) 166 (0.373) 164 (−0.319) 160 (1838) 72
EGHF (−7) 67 (0.231) 177 (−0.526) 176 (13) 175
EHE (14) 44 (0.85) 1 (0.763) 6 (20) 171
EJF (−121) 107 (0.42) 137 (−0.315) 155 (761) 127
EJFM (−2) 55 (0.438) 118 (−0.451) 174 (16) 172
EJFP (−2) 55 (0.429) 129 (−0.36) 167 (14) 174
EKF–BTK (−235) 138 (0.43) 125 (−0.159) 118 (1681) 81
EKF–CK (−115) 104 (0.411) 147 (−0.38) 172 (643) 135
EKF–GTK (−332) 153 (0.396) 152 (−0.338) 163 (1598) 84
EKF–TKTK (−249) 142 (0.451) 98 (−0.216) 138 (2521) 52
EKF–TTK (−334) 154 (0.442) 114 (−0.169) 125 (2862) 46
ELTE–AJK (915) 9 (0.601) 19 (0.371) 20 (4525) 24
ELTE–BTK (297) 27 (0.518) 46 (0.173) 49 (8073) 5
ELTE–GYFK (799) 13 (0.63) 15 (0.288) 31 (3071) 43
ELTE–IK (478) 18 (0.564) 33 (0.289) 30 (3762) 35
ELTE–PPK (1150) 5 (0.578) 27 (0.267) 35 (7332) 9
ELTE–TATK (−295) 149 (0.464) 85 (0.105) 56 (4143) 28
ELTE–TKK (433) 21 (0.571) 29 (0.268) 34 (3037) 44
ELTE–TOFK (647) 15 (0.567) 31 (0.074) 59 (4813) 21
ELTE–TTK (−247) 140 (0.48) 69 (0.177) 46 (6031) 10
GDF (−293) 146 (0.362) 170 (−0.339) 165 (1065) 113
GFF–PK (−21) 76 (0.49) 64 (−0.171) 127 (1023) 118
GFF–TK (−4) 60 (0) 179 (−0.985) 179 (4) 179
GFF–TSZK (−3) 58 (0.2) 178 (−0.577) 178 (5) 178
GYHF (0) 54 (0.5) 54 (−0.032) 79 (22) 170
IBS (−115) 104 (0.39) 157 (−0.16) 119 (523) 144
KE–ATK (−45) 87 (0.47) 75 (−0.203) 133 (747) 128
KE–CSPFK (−338) 156 (0.399) 151 (−0.279) 150 (1670) 82
KEE (45) 42 (0.742) 4 (0.69) 7 (93) 159
KE–GTK (−41) 85 (0.457) 94 (−0.221) 141 (481) 146
KE–MFK (−194) 129 (0.391) 156 (−0.004) 73 (890) 122
KF–GAMFK (−166) 116 (0.467) 83 (−0.136) 108 (2484) 53
KF–KFK (−88) 97 (0.421) 136 (−0.31) 153 (554) 142
KF–TFK (−248) 141 (0.382) 159 (−0.354) 166 (1054) 115
KJF (−574) 171 (0.381) 161 (−0.318) 159 (2412) 54
KRE–AJK (−436) 161 (0.448) 103 (−0.006) 74 (4198) 27
KRE–BTK (1070) 6 (0.559) 34 (0.212) 41 (9090) 4
KRE–TFK (−71) 92 (0.487) 66 (−0.083) 92 (2833) 47
KRF (−360) 158 (0.395) 153 (−0.363) 169 (1708) 79
LFZE (309) 25 (0.715) 7 (0.55) 13 (719) 130
ME–AJK (−79) 93 (0.467) 82 (−0.092) 96 (1211) 102
ME–BBZI (−37) 82 (0.428) 130 (0.061) 63 (257) 155
ME–BTK (−172) 119 (0.426) 132 (−0.237) 144 (1164) 107
ME–EFK (−294) 147 (0.367) 165 (−0.315) 156 (1104) 112
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Table A.1 – continued from the previous page

Faculty Row sum Norm. row sum Least squares Preferences
ME–GEK (−259) 143 (0.444) 106 (−0.145) 113 (2315) 58
ME–GTK (−241) 139 (0.413) 144 (−0.29) 151 (1379) 95
ME–MAK (−41) 85 (0.458) 91 (−0.168) 124 (493) 145
ME–MFK (−4) 60 (0.497) 56 (−0.078) 91 (608) 138
ME–THFTGK (−610) 172 (0.419) 139 (−0.204) 135 (3786) 33
ME–TKMK (−183) 123 (0.461) 88 (0.005) 71 (2323) 56
MKE (183) 34 (0.6) 20 (0.373) 18 (915) 121
MOME (576) 17 (0.649) 10 (0.423) 17 (1930) 70
MTF (71) 41 (0.635) 14 (0.319) 26 (263) 154
MUTF (−314) 152 (0.366) 167 (−0.363) 168 (1168) 106
NKE–HHK (169) 37 (0.62) 16 (0.355) 23 (703) 131
NKE–KTK (327) 23 (0.551) 37 (0.205) 43 (3175) 41
NKE–NETK (319) 24 (0.569) 30 (0.293) 29 (2325) 55
NKE–RTK (456) 20 (0.583) 24 (0.221) 39 (2732) 48
NYE (−886) 179 (0.39) 158 (−0.338) 164 (4024) 29
NYME–AK (−4) 60 (0.423) 134 (−0.326) 161 (26) 167
NYME–BDPK (−231) 137 (0.437) 119 (−0.167) 123 (1835) 73
NYME–BPK (−29) 80 (0.486) 67 (−0.124) 105 (1043) 116
NYME–EMK (−24) 79 (0.469) 78 (−0.149) 117 (386) 151
NYME–FMK (−92) 98 (0.428) 131 (−0.088) 94 (638) 136
NYME–KTK (−117) 106 (0.442) 113 (−0.231) 142 (1003) 120
NYME–MEK (−2) 55 (0.477) 73 (−0.161) 121 (44) 163
NYME–TTMK (−80) 95 (0.439) 117 (−0.193) 132 (652) 133
OE–AMK (−187) 125 (0.429) 127 (−0.14) 111 (1323) 97
PAF (123) 39 (0.611) 18 (0.313) 27 (555) 141
PE–GK (−184) 124 (0.42) 138 (−0.292) 152 (1150) 109
PE–GTK (−208) 131 (0.45) 100 (−0.192) 131 (2096) 63
PE–MFTK (−167) 117 (0.417) 141 (−0.177) 129 (1009) 119
PE–MIK (−153) 110 (0.436) 120 (−0.087) 93 (1193) 104
PE–MK (−164) 113 (0.444) 108 (−0.076) 90 (1456) 92
PHF (−3) 58 (0.364) 169 (−0.264) 147 (11) 176
PPKE–BTK (−747) 176 (0.463) 86 (0.053) 65 (10187) 2
PPKE–ITK (1) 51 (0.5) 53 (0.268) 33 (1949) 68
PPKE–JAK (922) 8 (0.594) 23 (0.321) 24 (4898) 18
PTE–AJK (−98) 101 (0.46) 89 (−0.007) 75 (1230) 101
PTE–AOK (−542) 169 (0.45) 99 (0.553) 12 (5464) 11
PTE–BTK (−823) 178 (0.411) 145 (−0.143) 112 (4635) 23
PTE–ETK (−660) 174 (0.41) 148 (−0.146) 115 (3678) 37
PTE–GYTK (−270) 144 (0.347) 175 (0.064) 62 (880) 125
PTE–KPVK (−215) 133 (0.43) 126 (−0.27) 148 (1531) 87
PTE–KTK (−193) 127 (0.443) 111 (−0.173) 128 (1687) 80
PTE–MIK (−306) 151 (0.433) 123 (−0.108) 102 (2290) 59
PTE–MK (−10) 71 (0.493) 59 (0.173) 47 (742) 129
PTE–TTK (−564) 170 (0.411) 146 (−0.166) 122 (3158) 42
SE–AOK (3162) 1 (0.832) 2 (1.232) 1 (4762) 22
SE–EKK (−69) 91 (0.445) 105 (−0.029) 77 (631) 137
SE–ETK (273) 28 (0.527) 43 (0.178) 44 (5019) 16
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Table A.1 – continued from the previous page

Faculty Row sum Norm. row sum Least squares Preferences
SE–FOK (859) 10 (0.711) 8 (1.083) 2 (2035) 65
SE–GYTK (−181) 122 (0.461) 87 (0.427) 16 (2319) 57
SZAGKHF (3) 48 (0.636) 13 (0.054) 64 (11) 176
SZE–AJK (−95) 100 (0.455) 97 (−0.047) 85 (1059) 114
SZE–AK (−228) 135 (0.457) 93 (−0.121) 104 (2682) 49
SZE–GK (−294) 147 (0.423) 135 (−0.221) 140 (1904) 71
SZE–MÉK (−193) 127 (0.351) 173 (−0.375) 170 (647) 134
SZE–MTK (−459) 165 (0.455) 96 (−0.066) 89 (5137) 14
SZE–PLI (−80) 95 (0.44) 115 (−0.17) 126 (670) 132
SZE–ZMI (−68) 90 (0.414) 142 (0.079) 58 (396) 149
SZF (−225) 134 (0.403) 149 (−0.334) 162 (1161) 108
SZFE (663) 14 (0.721) 5 (0.553) 11 (1497) 90
SZIE–ABPK (−164) 113 (0.434) 121 (−0.235) 143 (1246) 100
SZIE–AOTK (641) 16 (0.743) 3 (0.807) 4 (1317) 98
SZIE–ETK (−37) 82 (0.49) 63 (0.105) 55 (1833) 74
SZIE–GEK (−229) 136 (0.444) 109 (−0.103) 99 (2033) 66
SZIE–GK (−171) 118 (0.403) 150 (−0.318) 158 (881) 124
SZIE–GTK (−359) 157 (0.466) 84 (−0.098) 98 (5349) 13
SZIE–KETK (−50) 88 (0.479) 70 (−0.055) 87 (1184) 105
SZIE–MKK (−132) 109 (0.469) 79 (−0.104) 101 (2116) 62
SZIE–TÁJK (−10) 71 (0.492) 61 (0.074) 60 (600) 139
SZIE–YMEK (−9) 70 (0.496) 57 (0.102) 57 (1123) 111
SSZHF (2) 50 (0.524) 45 (0.127) 54 (42) 164
SZTE–AJK (−92) 98 (0.478) 72 (0.019) 70 (2080) 64
SZTE–AOK (925) 7 (0.595) 22 (0.823) 3 (4875) 19
SZTE–BTK (−282) 145 (0.468) 80 (−0.032) 78 (4422) 25
SZTE–ETSZK (−111) 103 (0.47) 76 (−0.035) 80 (1831) 75
SZTE–FOK (189) 32 (0.567) 32 (0.8) 5 (1407) 94
SZTE–GTK (−21) 76 (0.494) 58 (−0.045) 84 (1751) 77
SZTE–GYTK (−190) 126 (0.426) 133 (0.266) 36 (1276) 99
SZTE–JGYPK (−447) 162 (0.444) 110 (−0.147) 116 (3963) 31
SZTE–MGK (−61) 89 (0.442) 112 (−0.263) 146 (525) 143
SZTE–MK (−195) 130 (0.456) 95 (−0.135) 107 (2203) 60
SZTE–TKK (−6) 64 (0.498) 55 (0.042) 66 (1490) 91
SZTE–TTIK (−726) 175 (0.433) 122 (−0.049) 86 (5454) 12
SZTE–ZMK (−33) 81 (0.458) 92 (0.138) 52 (395) 150
TE (844) 11 (0.618) 17 (0.242) 37 (3576) 38
TPF (−153) 110 (0.323) 176 (−0.542) 177 (431) 148
VHF (−4) 60 (0.479) 71 (−0.161) 120 (94) 158
WJLF (4) 47 (0.507) 50 (−0.039) 82 (284) 153
WSUF (−208) 131 (0.382) 159 (−0.384) 173 (884) 123
ZSKF (−624) 173 (0.355) 172 (−0.375) 171 (2154) 61
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Table A.2: Rankings of Hungarian faculties, weighted preference matrix 𝐴𝑊 , 2016
Numbers in parentheses indicate the score, bold numbers sign the rank of the faculty

Faculty Row sum Norm. row sum Least squares Preferences
ANNYE (12.6) 47 (0.624) 17 (0.38) 18 (50.8) 157
AVKF (−135.27) 157 (0.384) 162 (−0.258) 154 (584.8) 88
BCE–ETK (−13) 87 (0.368) 166 (−0.184) 136 (49.4) 158
BCE–GTK (1274.77) 1 (0.644) 12 (0.357) 21 (4414.5) 1
BCE–KERTK (3.27) 54 (0.534) 41 (0.002) 73 (47.4) 160
BCE–KTK (66.63) 34 (0.559) 30 (0.324) 25 (562.63) 91
BCE–TAJK (0.63) 59 (0.517) 48 (0.176) 43 (18.23) 164
BCE–TK (253.83) 13 (0.573) 27 (0.271) 32 (1746.57) 21
BGE–GKZ (−28.07) 104 (0.444) 121 (−0.177) 134 (251.33) 134
BGE–KKK (−152.13) 162 (0.476) 85 (−0.024) 81 (3122.27) 6
BGE–KVIK (84.23) 29 (0.514) 51 (0.015) 66 (2938.97) 8
BGE–PSZK (−93.67) 147 (0.488) 72 (0.004) 71 (3921.13) 2
BGF–GKZ (0.83) 57 (0.549) 36 (−0.036) 86 (8.5) 171
BGF–KKFK (−9) 83 (0.407) 154 (−0.105) 107 (48.33) 159
BGF–KVIFK (−8.17) 81 (0.247) 177 (−0.46) 173 (16.17) 166
BGF–PSZFKBP (−5.33) 76 (0.469) 92 (−0.023) 79 (86) 156
BKTF (−8.17) 81 (0.198) 178 (−0.379) 170 (13.5) 169
BME–EOK (67.4) 33 (0.558) 32 (0.271) 31 (581.2) 89
BME–ESZK (134.87) 23 (0.703) 6 (0.568) 7 (332.4) 122
BME–GEK (514.47) 2 (0.681) 9 (0.529) 10 (1422.6) 33
BME–GTK (−18.1) 91 (0.497) 63 (0.131) 52 (2943.43) 7
BME–KSK (44.23) 37 (0.523) 44 (0.213) 39 (945.97) 59
BME–TTK (−40.73) 115 (0.454) 112 (0.131) 51 (438.53) 110
BME–VBK (204.87) 16 (0.593) 20 (0.335) 23 (1095.8) 44
BME–VIK (424.97) 4 (0.609) 19 (0.435) 16 (1953.1) 16
BMF–BGK (−157.03) 164 (0.451) 117 (0.002) 72 (1601.57) 27
BMF–KGK (−200.53) 171 (0.431) 135 (−0.139) 122 (1459.6) 31
BMF–KVK (113.23) 25 (0.552) 33 (0.216) 38 (1087.57) 45
BMF–NIK (39.1) 38 (0.514) 50 (0.183) 41 (1354.1) 36
BMF–RKK (−29.5) 106 (0.465) 98 (0.015) 65 (424.7) 113
DE–AJK (6.4) 50 (0.505) 59 (−0.035) 85 (648.73) 84
DE–AOK (101.83) 27 (0.551) 35 (0.493) 13 (1002.9) 52
DE–BTK (−124.2) 156 (0.462) 101 (−0.117) 114 (1649.53) 25
DE–EK (−145.13) 159 (0.408) 152 (−0.232) 148 (788.73) 72
DE–FOK (9.4) 49 (0.518) 47 (0.566) 8 (255.2) 132
DE–GTK (−117.2) 155 (0.468) 93 (−0.173) 130 (1853.27) 18
DE–GYTK (−33.43) 110 (0.424) 143 (0.145) 50 (219.77) 141
DE–HPFK (−28) 103 (0.482) 77 (−0.214) 141 (798) 71
DE–IK (−22.23) 98 (0.486) 74 (−0.07) 96 (785.1) 74
DE–MK (−26.27) 102 (0.486) 73 (−0.076) 98 (938.4) 60
DE–MTK (−144.6) 158 (0.422) 146 (−0.271) 158 (923.27) 62
DE–NK (13.67) 46 (0.512) 54 (0.005) 70 (565.47) 90
DE–TTK (−227.63) 172 (0.418) 150 (−0.108) 108 (1383.83) 34
DE–ZK (−7.77) 80 (0.475) 86 (0.179) 42 (157.83) 150
DF (−5.67) 78 (0.311) 172 (−0.488) 175 (15) 168
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Table A.2 – continued from the previous page

Faculty Row sum Norm. row sum Least squares Preferences
DRHE (−19.7) 93 (0.452) 115 (−0.261) 156 (206.23) 143
DUE (−147.9) 160 (0.406) 155 (−0.236) 149 (785.43) 73
EGHF (−3) 72 (0.263) 176 (−0.464) 174 (6.33) 175
EHE (2.8) 55 (0.688) 8 (0.494) 12 (7.47) 174
EJF (−42.4) 118 (0.443) 126 (−0.239) 152 (369.87) 120
EJFM (−2) 69 (0.375) 164 (−0.552) 178 (8) 172
EJFP (0.67) 58 (0.538) 38 (−0.129) 117 (8.67) 170
EKF–BTK (−114.1) 152 (0.417) 151 (−0.195) 139 (687.57) 82
EKF–CK (−28.87) 105 (0.456) 106 (−0.261) 155 (328.07) 123
EKF–GTK (−149.13) 161 (0.392) 159 (−0.353) 166 (688.87) 81
EKF–TKTK (−90.87) 142 (0.459) 103 (−0.189) 137 (1114.53) 43
EKF–TTK (−105.67) 150 (0.457) 105 (−0.123) 116 (1232.47) 38
ELTE–AJK (226.83) 15 (0.573) 26 (0.291) 26 (1559.03) 28
ELTE–BTK (182.17) 17 (0.528) 43 (0.153) 47 (3198.03) 5
ELTE–GYFK (314.1) 8 (0.635) 13 (0.281) 27 (1159.1) 41
ELTE–IK (145.47) 21 (0.551) 34 (0.258) 34 (1425.2) 32
ELTE–PPK (182.03) 18 (0.535) 40 (0.153) 48 (2602.83) 9
ELTE–TATK (−169.7) 166 (0.438) 132 (0.023) 62 (1360.5) 35
ELTE–TKK (151.87) 20 (0.581) 22 (0.261) 33 (938.27) 61
ELTE–TOFK (321.17) 6 (0.581) 23 (0.105) 55 (1990.17) 15
ELTE–TTK (−21.77) 96 (0.495) 66 (0.17) 45 (2191.9) 13
GDF (−116.73) 153 (0.363) 168 (−0.334) 164 (426.4) 111
GFF–PK (15.1) 45 (0.516) 49 (−0.085) 102 (473.3) 104
GFF–TK (−1.33) 66 (0) 179 (−0.963) 179 (1.33) 179
GFF–TSZK (−1.67) 68 (0.273) 175 (−0.504) 176 (3.67) 178
GYHF (−0.93) 64 (0.442) 129 (−0.177) 132 (8) 172
IBS (−32.87) 109 (0.404) 156 (−0.14) 123 (170.47) 147
KE–ATK (−7.37) 79 (0.49) 70 (−0.168) 129 (371.23) 119
KE–CSPFK (−117.1) 154 (0.419) 148 (−0.231) 147 (723.1) 79
KEE (24.33) 42 (0.766) 2 (0.714) 5 (45.67) 161
KE–GTK (−11.43) 85 (0.478) 83 (−0.177) 133 (254.23) 133
KE–MFK (−174.53) 167 (0.303) 174 (−0.122) 115 (441.93) 107
KF–GAMFK (−24.67) 100 (0.489) 71 (−0.082) 99 (1084.73) 46
KF–KFK (−36.57) 112 (0.425) 142 (−0.286) 160 (244.23) 136
KF–TFK (−100.97) 149 (0.393) 158 (−0.308) 163 (472.57) 105
KJF (−234.93) 174 (0.378) 163 (−0.34) 165 (961.6) 58
KRE–AJK (−182.6) 170 (0.44) 130 (−0.044) 89 (1531.87) 29
KRE–BTK (307.47) 10 (0.548) 37 (0.151) 49 (3199.87) 4
KRE–TFK (−38.33) 114 (0.484) 76 (−0.07) 95 (1196.93) 40
KRF (−167.67) 165 (0.39) 160 (−0.377) 168 (765.6) 75
LFZE (141.3) 22 (0.716) 5 (0.535) 9 (326.97) 124
ME–AJK (−4.6) 75 (0.496) 65 (−0.07) 97 (511.2) 96
ME–BBZI (−12.07) 86 (0.443) 125 (0.1) 56 (105.4) 155
ME–BTK (−42.37) 117 (0.456) 107 (−0.191) 138 (479.9) 103
ME–EFK (−64.13) 125 (0.423) 144 (−0.213) 140 (416.87) 114
ME–GEK (−41.63) 116 (0.48) 80 (−0.062) 92 (1057.37) 48
ME–GTK (−77.97) 135 (0.444) 124 (−0.223) 145 (690.17) 80
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ME–MAK (−22) 97 (0.454) 111 (−0.15) 127 (237.4) 137
ME–MFK (1.77) 56 (0.504) 60 (−0.041) 88 (250.97) 135
ME–THFTGK (−241.2) 176 (0.418) 149 (−0.221) 144 (1474.8) 30
ME–TKMK (−71.9) 131 (0.465) 99 (0.008) 69 (1031.77) 49
MKE (71.27) 32 (0.578) 25 (0.331) 24 (455.93) 106
MOME (247.43) 14 (0.627) 14 (0.369) 20 (977.03) 56
MTF (46) 36 (0.661) 10 (0.342) 22 (142.53) 153
MUTF (−91.2) 143 (0.396) 157 (−0.308) 162 (440.47) 109
NKE–HHK (75.97) 31 (0.626) 15 (0.402) 17 (302.63) 126
NKE–KTK (80.8) 30 (0.538) 39 (0.174) 44 (1066.6) 47
NKE–NETK (90.3) 28 (0.559) 31 (0.257) 35 (762.63) 76
NKE–RTK (271.1) 12 (0.612) 18 (0.28) 28 (1212.63) 39
NYE (−328.57) 178 (0.419) 147 (−0.269) 157 (2036.77) 14
NYME–AK (−3.5) 74 (0.387) 161 (−0.378) 169 (15.5) 167
NYME–BDPK (−92.63) 145 (0.444) 123 (−0.138) 121 (820.17) 69
NYME–BPK (−1.03) 65 (0.499) 62 (−0.084) 101 (501.23) 98
NYME–EMK (3.97) 52 (0.512) 55 (−0.058) 91 (169.3) 148
NYME–FMK (−19.53) 92 (0.465) 97 (−0.011) 75 (282) 130
NYME–KTK (−66.1) 127 (0.433) 134 (−0.236) 151 (495.97) 99
NYME–MEK (−2.13) 70 (0.446) 120 (−0.227) 146 (19.73) 163
NYME–TTMK (−14.03) 88 (0.474) 89 (−0.092) 103 (271.7) 131
OE–AMK (−70.73) 129 (0.426) 140 (−0.135) 118 (480.6) 102
PAF (46.43) 35 (0.645) 11 (0.371) 19 (160.5) 149
PE–GK (−81.37) 138 (0.427) 139 (−0.276) 159 (554.9) 92
PE–GTK (−54.67) 121 (0.472) 90 (−0.143) 124 (973.87) 57
PE–MFTK (−47.97) 120 (0.444) 122 (−0.149) 126 (425.43) 112
PE–MIK (−42.53) 119 (0.458) 104 (−0.036) 87 (507.13) 97
PE–MK (−30.77) 107 (0.475) 87 (−0.012) 76 (619.97) 85
PHF (−0.83) 62 (0.407) 153 (−0.175) 131 (4.5) 177
PPKE–BTK (−393.4) 179 (0.44) 131 (−0.023) 80 (3292.4) 3
PPKE–ITK (27.7) 40 (0.523) 46 (0.278) 29 (610.77) 86
PPKE–JAK (305.83) 11 (0.586) 21 (0.275) 30 (1775.23) 20
PTE–AJK (−32.63) 108 (0.467) 95 (−0.03) 82 (488.03) 101
PTE–AOK (−92.07) 144 (0.455) 109 (0.469) 14 (1028.87) 50
PTE–BTK (−233.83) 173 (0.43) 136 (−0.144) 125 (1671.43) 24
PTE–ETK (−237.23) 175 (0.426) 141 (−0.115) 112 (1608.5) 26
PTE–GYTK (−67.47) 128 (0.304) 173 (−0.064) 94 (171.93) 146
PTE–KPVK (−87.23) 141 (0.442) 128 (−0.236) 150 (756.63) 77
PTE–KTK (−64.23) 126 (0.46) 102 (−0.137) 119 (809.63) 70
PTE–MIK (−76.6) 134 (0.462) 100 (−0.032) 83 (1020.8) 51
PTE–MK (−9.57) 84 (0.484) 75 (0.17) 46 (303.83) 125
PTE–TTK (−174.73) 168 (0.434) 133 (−0.116) 113 (1318.6) 37
SE–AOK (504.07) 3 (0.786) 1 (1.085) 1 (882.07) 63
SE–EKK (−20.37) 95 (0.454) 110 (−0.016) 78 (223.63) 139
SE–ETK (308.83) 9 (0.579) 24 (0.204) 40 (1948.23) 17
SE–FOK (134.17) 24 (0.695) 7 (0.998) 2 (344.17) 121
SE–GYTK (9.67) 48 (0.513) 53 (0.44) 15 (379.53) 118
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SZAGKHF (0.33) 61 (0.529) 42 (−0.138) 120 (5.67) 176
SZE–AJK (5.3) 51 (0.506) 58 (0.021) 63 (410.9) 115
SZE–AK (−74.67) 132 (0.467) 94 (−0.099) 105 (1138.53) 42
SZE–GK (−113.87) 151 (0.442) 127 (−0.179) 135 (989) 54
SZE–MÉK (−81.43) 139 (0.356) 169 (−0.361) 167 (282.1) 129
SZE–MTK (−92.83) 146 (0.48) 79 (−0.003) 74 (2363.1) 10
SZE–PLI (−25.43) 101 (0.456) 108 (−0.113) 111 (287.37) 128
SZE–ZMI (−37.93) 113 (0.372) 165 (0.042) 60 (148.07) 151
SZF (−79.9) 137 (0.422) 145 (−0.296) 161 (512.77) 95
SZFE (316.17) 7 (0.734) 3 (0.518) 11 (675.57) 83
SZIE–ABPK (−75.63) 133 (0.43) 137 (−0.22) 142 (539.5) 93
SZIE–AOTK (177.1) 19 (0.729) 4 (0.718) 4 (386.1) 117
SZIE–ETK (0.4) 60 (0.5) 61 (0.082) 58 (587.2) 87
SZIE–GEK (−84.03) 140 (0.452) 114 (−0.064) 93 (880.03) 65
SZIE–GK (−55.87) 122 (0.429) 138 (−0.254) 153 (394.67) 116
SZIE–GTK (−155.43) 163 (0.466) 96 (−0.11) 109 (2271.77) 11
SZIE–KETK (−3.33) 73 (0.497) 64 (−0.051) 90 (493.6) 100
SZIE–MKK (−35.33) 111 (0.482) 78 (−0.093) 104 (995.73) 53
SZIE–TÁJK (3.87) 53 (0.51) 57 (0.091) 57 (188.27) 144
SZIE–YMEK (−5.57) 77 (0.494) 67 (0.117) 54 (440.9) 108
SSZHF (−0.87) 63 (0.475) 88 (0.012) 68 (17.4) 165
SZTE–AJK (−15.23) 90 (0.491) 68 (0.012) 67 (844.3) 68
SZTE–AOK (109.83) 26 (0.563) 29 (0.692) 6 (874.1) 66
SZTE–BTK (−71.2) 130 (0.479) 81 (−0.035) 84 (1704.93) 22
SZTE–ETSZK (19.97) 43 (0.513) 52 (0.023) 61 (754.17) 78
SZTE–FOK (29.4) 39 (0.566) 28 (0.732) 3 (221.4) 140
SZTE–GTK (18.67) 44 (0.511) 56 (−0.012) 77 (880.2) 64
SZTE–GYTK (−20.13) 94 (0.453) 113 (0.245) 37 (215.47) 142
SZTE–JGYPK (−181.03) 169 (0.45) 118 (−0.11) 110 (1812.03) 19
SZTE–MGK (−24.13) 99 (0.448) 119 (−0.221) 143 (234.27) 138
SZTE–MK (−59) 123 (0.47) 91 (−0.101) 106 (980.47) 55
SZTE–TKK (24.77) 41 (0.523) 45 (0.077) 59 (539.37) 94
SZTE–TTIK (−95.97) 148 (0.478) 82 (0.016) 64 (2206.7) 12
SZTE–ZMK (−14.13) 89 (0.451) 116 (0.125) 53 (144.27) 152
TE (419.77) 5 (0.625) 16 (0.252) 36 (1683.1) 23
TPF (−60.47) 124 (0.337) 171 (−0.533) 177 (185.93) 145
VHF (−1.63) 67 (0.476) 84 (−0.161) 128 (33.97) 162
WJLF (−2.23) 71 (0.491) 69 (−0.083) 100 (120.5) 154
WSUF (−78.53) 136 (0.368) 167 (−0.432) 172 (298) 127
ZSKF (−251.1) 177 (0.353) 170 (−0.405) 171 (854.37) 67
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Table A.3:
Rankings of Hungarian faculties, adjusted unweighted preference matrix 𝐴𝑈𝑊 , 2016
Numbers in parentheses indicate the score, bold numbers sign the rank of the faculty

Faculty Row sum Norm. row sum Least squares Preferences
ANNYE (26) 41 (0.638) 13 (0.441) 16 (94) 157
AVKF (−380) 163 (0.362) 168 (−0.33) 161 (1376) 92
BCE–ETK (−22) 75 (0.359) 170 (−0.219) 138 (78) 159
BCE–GTK (2606) 2 (0.64) 12 (0.385) 22 (9296) 2
BCE–KERTK (12) 43 (0.579) 25 (0.073) 61 (76) 161
BCE–KTK (198) 30 (0.589) 22 (0.4) 19 (1114) 104
BCE–TAJK (4) 46 (0.571) 29 (0.278) 31 (28) 164
BCE–TK (688) 13 (0.577) 27 (0.315) 25 (4476) 21
BGE–GKZ (−69) 95 (0.429) 131 (−0.219) 139 (485) 143
BGE–KKK (−171) 125 (0.487) 64 (0.031) 70 (6721) 7
BGE–KVIK (−34) 82 (0.497) 55 (0.033) 69 (6052) 9
BGE–PSZK (−296) 154 (0.482) 70 (0.022) 72 (8116) 4
BGF–GKZ (1) 50 (0.533) 41 (−0.119) 103 (15) 172
BGF–KKFK (−14) 73 (0.41) 150 (−0.092) 94 (78) 159
BGF–KVIFK (−7) 66 (0.37) 166 (−0.205) 132 (27) 165
BGF–PSZFKBP (−6) 63 (0.475) 75 (−0.029) 77 (122) 156
BKTF (−4) 60 (0.167) 178 (−0.489) 175 (6) 177
BME–EOK (157) 34 (0.553) 35 (0.265) 36 (1491) 83
BME–ESZK (326) 22 (0.713) 7 (0.59) 9 (764) 123
BME–GEK (1352) 4 (0.695) 8 (0.549) 13 (3464) 34
BME–GTK (208) 29 (0.516) 49 (0.174) 48 (6662) 8
BME–KSK (111) 38 (0.522) 47 (0.212) 43 (2517) 48
BME–TTK (0) 53 (0.5) 53 (0.237) 39 (1016) 113
BME–VBK (291) 24 (0.551) 36 (0.301) 28 (2871) 43
BME–VIK (1426) 3 (0.643) 10 (0.488) 15 (4978) 13
BMF–BGK (−408) 164 (0.446) 106 (−0.015) 75 (3756) 29
BMF–KGK (−427) 165 (0.438) 117 (−0.108) 100 (3431) 36
BMF–KVK (133) 36 (0.526) 43 (0.164) 52 (2513) 49
BMF–NIK (163) 33 (0.523) 46 (0.214) 42 (3527) 33
BMF–RKK (−161) 121 (0.425) 137 (−0.065) 85 (1069) 106
DE–AJK (−54) 91 (0.481) 71 (−0.054) 83 (1398) 90
DE–AOK (447) 19 (0.546) 39 (0.645) 8 (4821) 16
DE–BTK (−373) 162 (0.453) 94 (−0.099) 98 (3971) 25
DE–EK (−490) 169 (0.36) 169 (−0.328) 160 (1756) 68
DE–FOK (94) 39 (0.531) 42 (0.69) 7 (1540) 79
DE–GTK (−316) 156 (0.453) 95 (−0.204) 131 (3364) 38
DE–GYTK (−288) 153 (0.379) 165 (0.171) 51 (1194) 99
DE–HPFK (−95) 105 (0.469) 80 (−0.266) 146 (1555) 78
DE–IK (−152) 115 (0.453) 92 (−0.126) 106 (1624) 74
DE–MK (−159) 119 (0.459) 86 (−0.137) 109 (1945) 61
DE–MTK (−318) 157 (0.415) 144 (−0.277) 150 (1864) 64
DE–NK (12) 43 (0.504) 50 (0.002) 73 (1458) 86
DE–TTK (−769) 177 (0.386) 161 (−0.141) 111 (3383) 37
DE–ZK (−7) 66 (0.491) 59 (0.23) 40 (369) 150
DF (−2) 54 (0.444) 108 (−0.227) 141 (18) 169
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DRHE (−10) 72 (0.489) 60 (−0.216) 136 (452) 145
DUE (−484) 168 (0.352) 173 (−0.358) 165 (1638) 72
EGHF (−7) 66 (0.231) 175 (−0.527) 176 (13) 174
EHE (15) 42 (0.895) 1 (0.87) 3 (19) 168
EJF (−115) 113 (0.418) 142 (−0.335) 162 (705) 127
EJFM (−2) 54 (0.438) 119 (−0.407) 173 (16) 171
EJFP (−2) 54 (0.429) 132 (−0.314) 158 (14) 173
EKF–BTK (−231) 138 (0.428) 133 (−0.163) 118 (1595) 76
EKF–CK (−103) 110 (0.416) 143 (−0.378) 170 (613) 134
EKF–GTK (−286) 152 (0.4) 155 (−0.339) 163 (1428) 88
EKF–TKTK (−243) 145 (0.449) 99 (−0.226) 140 (2397) 51
EKF–TTK (−334) 159 (0.439) 114 (−0.177) 124 (2754) 44
ELTE–AJK (900) 6 (0.618) 17 (0.4) 20 (3804) 26
ELTE–BTK (287) 25 (0.519) 48 (0.176) 47 (7549) 5
ELTE–GYFK (749) 10 (0.627) 15 (0.279) 30 (2959) 41
ELTE–IK (464) 17 (0.565) 31 (0.3) 29 (3556) 31
ELTE–PPK (1066) 5 (0.577) 26 (0.264) 37 (6908) 6
ELTE–TATK (−254) 147 (0.466) 82 (0.112) 56 (3710) 30
ELTE–TKK (431) 20 (0.574) 28 (0.271) 34 (2931) 42
ELTE–TOFK (625) 14 (0.568) 30 (0.065) 63 (4619) 19
ELTE–TTK (−276) 149 (0.476) 74 (0.174) 49 (5866) 10
GDF (−83) 99 (0.434) 122 (−0.236) 142 (627) 133
GFF–PK (−32) 80 (0.484) 67 (−0.193) 127 (986) 115
GFF–TK (−2) 54 (0) 179 (−0.995) 179 (2) 179
GFF–TSZK (−3) 58 (0.2) 177 (−0.584) 178 (5) 178
GYHF (2) 47 (0.55) 37 (0.065) 62 (20) 167
IBS (−39) 87 (0.438) 115 (−0.076) 89 (317) 151
KE–ATK (−36) 84 (0.475) 76 (−0.201) 130 (716) 125
KE–CSPFK (−324) 158 (0.399) 156 (−0.287) 153 (1606) 75
KEE (6) 45 (0.667) 9 (0.496) 14 (18) 169
KE–GTK (−40) 88 (0.453) 93 (−0.238) 143 (426) 146
KE–MFK (−177) 128 (0.391) 158 (0.024) 71 (813) 121
KF–GAMFK (−215) 136 (0.453) 97 (−0.163) 119 (2281) 53
KF–KFK (−82) 98 (0.422) 140 (−0.319) 159 (526) 141
KF–TFK (−240) 144 (0.383) 162 (−0.366) 168 (1022) 111
KJF (−159) 119 (0.447) 103 (−0.2) 128 (1487) 84
KRE–AJK (−438) 167 (0.436) 120 (−0.027) 76 (3440) 35
KRE–BTK (736) 11 (0.544) 40 (0.191) 45 (8284) 3
KRE–TFK (−97) 107 (0.482) 69 (−0.104) 99 (2695) 46
KRF (−369) 161 (0.382) 164 (−0.388) 172 (1559) 77
LFZE (303) 23 (0.722) 5 (0.585) 10 (683) 129
ME–AJK (−59) 93 (0.472) 78 (−0.09) 93 (1041) 110
ME–BBZI (−37) 85 (0.423) 138 (0.079) 60 (241) 154
ME–BTK (−163) 122 (0.427) 135 (−0.238) 144 (1119) 103
ME–EFK (−278) 150 (0.369) 167 (−0.313) 157 (1060) 108
ME–GEK (−278) 150 (0.438) 116 (−0.153) 114 (2234) 55
ME–GTK (−173) 127 (0.425) 136 (−0.271) 148 (1155) 101
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ME–MAK (−38) 86 (0.46) 84 (−0.166) 122 (478) 144
ME–MFK (−6) 63 (0.495) 56 (−0.081) 91 (584) 137
ME–THFTGK (−98) 108 (0.48) 72 (−0.096) 97 (2486) 50
ME–TKMK (−31) 78 (0.489) 62 (0.034) 68 (1353) 93
MKE (169) 32 (0.602) 20 (0.397) 21 (825) 120
MOME (463) 18 (0.642) 11 (0.435) 17 (1631) 73
MTF (60) 40 (0.628) 14 (0.304) 27 (234) 155
MUTF (−132) 114 (0.413) 146 (−0.272) 149 (760) 124
NKE–HHK (150) 35 (0.618) 17 (0.356) 23 (634) 132
NKE–KTK (257) 26 (0.547) 38 (0.196) 44 (2743) 45
NKE–NETK (224) 28 (0.555) 34 (0.271) 33 (2034) 58
NKE–RTK (392) 21 (0.583) 24 (0.222) 41 (2368) 52
NYE (−890) 179 (0.382) 163 (−0.358) 166 (3766) 28
NYME–AK (−5) 61 (0.4) 154 (−0.386) 171 (25) 166
NYME–BDPK (−236) 141 (0.432) 125 (−0.178) 125 (1744) 70
NYME–BPK (−31) 78 (0.485) 66 (−0.134) 108 (1011) 114
NYME–EMK (−30) 77 (0.46) 85 (−0.168) 123 (376) 149
NYME–FMK (−86) 102 (0.429) 128 (−0.083) 92 (608) 136
NYME–KTK (−94) 104 (0.449) 100 (−0.217) 137 (920) 118
NYME–MEK (−7) 66 (0.405) 153 (−0.284) 152 (37) 163
NYME–TTMK (−85) 101 (0.433) 123 (−0.21) 133 (635) 131
OE–AMK (−202) 133 (0.419) 141 (−0.156) 116 (1248) 96
PAF (127) 37 (0.617) 19 (0.323) 24 (543) 140
PE–GK (−187) 131 (0.414) 145 (−0.307) 155 (1091) 105
PE–GTK (−223) 137 (0.44) 113 (−0.214) 135 (1855) 65
PE–MFTK (−171) 125 (0.412) 148 (−0.188) 126 (969) 116
PE–MIK (−156) 118 (0.433) 124 (−0.093) 95 (1158) 100
PE–MK (−165) 123 (0.442) 111 (−0.081) 90 (1421) 89
PHF (−5) 61 (0.222) 176 (−0.534) 177 (9) 175
PPKE–BTK (−815) 178 (0.457) 89 (0.043) 67 (9509) 1
PPKE–ITK (1) 50 (0.5) 52 (0.275) 32 (1909) 62
PPKE–JAK (698) 12 (0.587) 23 (0.305) 26 (4016) 24
PTE–AJK (−83) 99 (0.461) 83 (−0.009) 74 (1069) 106
PTE–AOK (−584) 173 (0.446) 105 (0.551) 12 (5406) 11
PTE–BTK (−730) 176 (0.413) 147 (−0.147) 112 (4188) 22
PTE–ETK (−657) 174 (0.408) 152 (−0.153) 115 (3555) 32
PTE–GYTK (−273) 148 (0.342) 174 (0.057) 64 (863) 119
PTE–KPVK (−206) 134 (0.429) 127 (−0.277) 151 (1460) 85
PTE–KTK (−155) 116 (0.448) 101 (−0.162) 117 (1493) 82
PTE–MIK (−312) 155 (0.429) 130 (−0.116) 102 (2196) 56
PTE–MK (−17) 74 (0.488) 63 (0.186) 46 (711) 126
PTE–TTK (−537) 172 (0.41) 149 (−0.165) 121 (2993) 40
SE–AOK (3128) 1 (0.832) 2 (1.238) 1 (4704) 18
SE–EKK (−66) 94 (0.441) 112 (−0.034) 79 (564) 139
SE–ETK (227) 27 (0.524) 45 (0.172) 50 (4817) 17
SE–FOK (860) 8 (0.715) 6 (1.099) 2 (1998) 59
SE–GYTK (−207) 135 (0.455) 91 (0.419) 18 (2281) 53
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SZAGKHF (1) 50 (0.556) 33 (−0.123) 104 (9) 175
SZE–AJK (−95) 105 (0.449) 98 (−0.067) 86 (939) 117
SZE–AK (−237) 143 (0.453) 95 (−0.131) 107 (2523) 47
SZE–GK (−236) 141 (0.429) 129 (−0.211) 134 (1662) 71
SZE–MÉK (−180) 129 (0.353) 172 (−0.375) 169 (612) 135
SZE–MTK (−505) 171 (0.448) 102 (−0.075) 88 (4841) 14
SZE–PLI (−70) 96 (0.446) 104 (−0.165) 120 (652) 130
SZE–ZMI (−70) 96 (0.41) 150 (0.098) 58 (390) 147
SZF (−234) 139 (0.389) 159 (−0.364) 167 (1052) 109
SZFE (602) 16 (0.729) 4 (0.585) 11 (1316) 94
SZIE–ABPK (−155) 116 (0.436) 121 (−0.244) 145 (1203) 98
SZIE–AOTK (623) 15 (0.742) 3 (0.81) 5 (1287) 95
SZIE–ETK (−45) 89 (0.487) 65 (0.102) 57 (1767) 67
SZIE–GEK (−235) 140 (0.438) 118 (−0.11) 101 (1885) 63
SZIE–GK (−169) 124 (0.395) 157 (−0.341) 164 (805) 122
SZIE–GTK (−501) 170 (0.445) 107 (−0.126) 105 (4593) 20
SZIE–KETK (−51) 90 (0.477) 73 (−0.057) 84 (1125) 102
SZIE–MKK (−100) 109 (0.475) 77 (−0.094) 96 (1972) 60
SZIE–TÁJK (−6) 63 (0.495) 57 (0.084) 59 (568) 138
SZIE–YMEK (−3) 58 (0.499) 54 (0.12) 55 (1019) 112
SSZHF (2) 47 (0.524) 44 (0.12) 54 (42) 162
SZTE–AJK (−25) 76 (0.493) 58 (0.044) 66 (1749) 69
SZTE–AOK (893) 7 (0.592) 21 (0.824) 4 (4831) 15
SZTE–BTK (−247) 146 (0.469) 81 (−0.034) 78 (4025) 23
SZTE–ETSZK (−104) 111 (0.471) 79 (−0.035) 80 (1786) 66
SZTE–FOK (176) 31 (0.563) 32 (0.803) 6 (1390) 91
SZTE–GTK (−34) 82 (0.489) 61 (−0.05) 81 (1510) 81
SZTE–GYTK (−181) 130 (0.427) 134 (0.269) 35 (1243) 97
SZTE–JGYPK (−435) 166 (0.443) 110 (−0.152) 113 (3791) 27
SZTE–MGK (−57) 92 (0.443) 109 (−0.267) 147 (501) 142
SZTE–MK (−190) 132 (0.455) 90 (−0.14) 110 (2120) 57
SZTE–TKK (2) 47 (0.501) 51 (0.049) 65 (1446) 87
SZTE–TTIK (−725) 175 (0.432) 126 (−0.052) 82 (5307) 12
SZTE–ZMK (−33) 81 (0.458) 88 (0.158) 53 (389) 148
TE (789) 9 (0.621) 16 (0.25) 38 (3259) 39
TPF (−87) 103 (0.358) 171 (−0.472) 174 (307) 152
VHF (−7) 66 (0.459) 87 (−0.2) 129 (85) 158
WJLF (−8) 71 (0.484) 68 (−0.068) 87 (246) 153
WSUF (−107) 112 (0.423) 139 (−0.294) 154 (691) 128
ZSKF (−338) 160 (0.389) 160 (−0.313) 156 (1518) 80
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