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Abstract

Identifying efficient portfolio diversification strategies subject to stochastic dominance (SD) criteria usually as-

sumes that the state-space of future asset returns can be captured by a fixed sample of equally probable historical

returns. This paper relaxes this assumption by developing SD criteria under incomplete information on state

probabilities. Specifically, we identify portfolios that dominate a given benchmark for any state probabilities in a

given set. The proposed approach is applied to analyze if industrial diversification can be utilized to outperform

the market portfolio. The results from this application demonstrate that the use of set-valued state probabilities

can help to improve out-of-sample performance of SD-based portfolio optimization.

Keywords: decision analysis, finance, stochastic dominance, portfolio diversification, incomplete probability

information

1. Introduction

Stochastic dominance (SD) is a widely used analytical tool for comparing decision alternatives with uncertain

outcomes that does not require exact specification of the decision maker’s (DM’s) utility function (for a compre-

hensive overview see, e.g., Levy 2016). In finance, SD has been used to analyze the efficiency of asset portfolio

diversification strategies. This application area was long dominated by the classical mean-variance models, which

– unlike the SD criteria – consider only two moments of the return distribution (Markowitz 1952). The strength

of mean-variance models lies in their ability to test if the diversification of a benchmark portfolio is efficient in

view of observed asset returns, and if not, identify a diversification strategy that yields an equal mean return with

minimal variance. In contrast, early SD approaches were designed to establish if one empirical return distribution

dominates another (Levy & Hanoch 1970, Aboidi & Thon 1994), and hence using them to confirm whether a

particular portfolio is efficient would require explicit enumeration of all alternative diversification strategies. The

first steps to bridge the gap between mean-variance and SD approaches were taken by Shalit & Yitzhaki (1994).

Their marginal conditional stochastic dominance approach identifies pairs of assets in the benchmark portfolio

such that increasing the weight of one asset while decreasing the weight of the other will result in a dominating

portfolio. Ultimately, the models developed by Post (2003) and Kuosmanen (2004) made it possible to establish

whether a given benchmark portfolio is efficiently diversified in the context of all marketed portfolios. If the
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benchmark is inefficient, these models are also able to identify a dominating portfolio that is itself SD-efficient,

i.e., is not dominated by any marketed portfolio. As a result of these seminal contributions, there is a growing

literature on SD-based portfolio optimization (e.g., Wong 2007, Lozano & Gutiérrez 2008, Egozcue & Wong

2010, Post & Kopa 2013, Longarela 2016, Fang & Post 2017, Bruni et al. 2017, Post & Kopa 2017, Kallio &

Deghan Hardoroudi 2018, Kallio & Hardoroudi 2019, Levy 2019, Huang et al. 2020).

This SD-literature has mainly focused on decision making under risk in which there exists a well-specified

probability distribution captured by a single vector of state probabilities. In particular, many models are based

on using a sample of historical asset returns to represent the state-space of equally likely states. Arguably, this

empirical distribution function (EDF) approach is conceptually sound as observed vectors of asset returns rep-

resent plausible scenarios for future returns (Post et al. 2018). Moreover, if the returns are serially independent

and identically distributed, this approach yields statistically consistent estimates for the portfolios’ return dis-

tributions. Equal state probabilities are also sufficient in applications where stochastic dominance is not used

for investment decisions concerning the future, but to analyze portfolio efficiency in historical return data (e.g.,

market portfolio efficiency; Kuosmanen 2004).

When stochastic dominance is used to support selecting a portfolio in view of an uncertain future, using

historical return observations as equally likely states can be difficult to justify. For instance, practical applications

often have to rely on small data samples, at least relative to the number of base assets, and hence favorable

asymptotic properties do not necessarily imply that the obtained state-space offers a reasonable representation

of future returns. Alternatively, the state space can be generated by sampling some statistical model that

forecasts assets’ future returns in which case the state-space is not restricted to cover only historical return

realizations. Using such models necessitates making assumptions about the model inputs (e.g., economic growth,

inflation) and thus it is advisable to simulate future asset returns using multiple scenarios for the input parameter

values. However, obtaining point-estimate probabilities for the generated states requires specifying point-estimate

probabilities for the chosen input-scenarios, which can be difficult as these scenarios represent different possible

futures.

This paper seeks to extend the SD-based portfolio models beyond decision making under risk with well-

specified probability distributions by introducing models that allow the use of a continuum of probability dis-

tributions to capture Knightian uncertainty. Specifically, this paper relaxes the requirement of point-estimate

state probabilities and develops models that identify a portfolio of marketed assets whose dominance over a given

benchmark portfolio is robust under incomplete probability information. In particular, we introduce optimization

models that identify the return maximizing portfolio that dominates a given benchmark portfolio for all state

probabilities in a possibly non-convex and non-connected set of feasible probability vectors. We show that such a

set can be used to model, for instance, (i) ordinal statements on the state probabilities (e.g., recent observations

are more probable than older ones), (ii) a range of possible sample sizes, and (iii) confidence intervals constructed

around point-estimate state probabilities.

Although our main focus is to develop second-order stochastic dominance (SSD) models, we also consider

first-order stochastic dominance (FSD) under incomplete probability information. While SSD-based models are

more suitable to support rational investment decision as they assume risk aversion or neutrality, models based
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on FSD may be a more suitable criterion for descriptive research, in which decision makers are not assumed to

follow the axioms of Expected Utility Theory (see, e.g., Starmer 2000). Both of these SD-criteria result in linear

programming models for identifying an asset portfolio that dominates a given benchmark under set-valued state

probabilities, but FSD requires the introduction of binary decision variables. The linearity of these models is

beneficial in view of applications, as it allows to deploy powerful off-the-shelf optimization software to solve the

resulting optimization problems.

We apply these models to empirical data on industry portfolio returns and test the out-of-sample performance

of the resulting portfolios. Our results show that portfolios that dominate the market portfolio under incomplete

probability information are more likely to dominate the market portfolio also when comparing the out-of-sample

realized returns of the two portfolios. While these models are developed in view of financial applications, they are

readily applicable for identifying robust solutions in project portfolio selection and project scheduling problems,

where the decision alternatives correspond to the feasible solutions of a mixed integer linear programming model

and uncertainties are captured with a finite state-space (see, e.g., Gustafsson & Salo 2005, Gutjahr 2015, Baptista

et al. 2019).

The developed models also offer a computationally efficient approach for conducting sensitivity analysis for

standard SSD and FSD models based on point estimate probabilities. In particular, analyzing how sensitive

the results obtained from standard models are to variations in the state probabilities requires optimizing the

models repeatedly for multiple state probability vectors. Yet, there are no guarantees that any of these identified

optimal portfolios is robust in the sense that its dominance over the benchmark portfolio holds for a larger set of

state probability vectors. In turn, the models developed here require only a single optimization run to identify a

portfolio whose stochastic dominance over the benchmark is not sensitive to variations in the state probabilities.

Beyond the SD literature described above, this paper intersects with several other strands of research worth

acknowledging. For instance, Dupačová & Kopa (2014) use a contamination analysis to determine if stochastic

dominance between two portfolios holds when the state probabilities are allowed to take any values obtained as

a linear combination of the empirical probability distribution and some fixed contamination distribution. Post &

Pot́ı (2017) measure the inefficiency of a portfolio by analyzing the required divergence from empirical probabilities

that would make the portfolio optimal for some utility function exhibiting decreasing absolute risk aversion. In

stochastic optimization, Dentcheva & Ruszczyński (2010) develop optimality conditions for problems containing

SD constraints that are required to hold for a set of different probability distributions. Decision analysis (DA)

research has a long tradition of using partial orderings of decision alternatives in a setting where only incomplete

information about probabilities and risk preferences is available (Pearman & Kmietowicz 1986, Keppe & Weber

1989, Moskowitz et al. 1993, Liesiö & Salo 2012, Jiang et al. 2018, Vilkkumaa et al. 2018). However, the

methodological focus of this research has been on establishing dominance between fixed pairs of alternatives (cf.

portfolios), whereas the optimization models developed here aim to construct a dominating portfolio from the

available base assets.

This paper is structured as follows. Section 2 introduces the notation and standard definitions related to

SD-based portfolio efficiency analysis, and Section 3 then extends these concepts to account for set-valued state

probabilities. Section 4 develops LP models to identify benchmark dominating portfolios under incomplete
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probability information, and Section 5 applies the developed models to identify industrial diversification strategies

dominating the market portfolio and analyzes their out-of-sample performance. Section 6 concludes. Models

for identifying portfolios with robust dominance over the benchmark in the sense of FSD are presented in the

appendix.

2. Preliminaries

The returns of the m base assets are modeled as non-negative real-valued random variables X1, ..., Xm on the

set of mutually exclusive and collectively exhaustive states S = {s1, ..., sn}. The states can correspond to a sample

of returns obtained from historical observations or to a random sample drawn from a suitable joint distribution

representing future asset returns (multivariate log-normal or GARCH models, for instance). Specification of the

state-space will be discussed in detail in Section 3. The return of the jth asset in the ith state is denoted by

xji = Xj(si) ∈ R+. A portfolio of these assets is characterized by a vector of asset weights λ = (λ1, ..., λm)T

capturing the share of initial capital allocated for each asset. The asset weights belong to the set

Λ =

{

λ ∈ Rm
∣
∣
∣
∣

m∑

j=1

λj = 1

}

, (1)

although additional restrictions may also apply. For instance, short positions may be prohibited by requiring that

the asset weights can take only non-negative values.

The return of a portfolio with weights λ is captured by the random variable X =
∑m

j=1 λjXj whose state-

specific returns are denoted by xi = X(si) =
∑m

j=1 λjxji. The set of all portfolio return distributions thus

corresponds to the set of all random variables obtained as mixtures of the base assets’ returns, i.e.,

X = {
m∑

j=1

λjXj | λ ∈ Λ}. (2)

We use Y and yi = Y (si) to denote the fixed benchmark portfolio and its state-specific returns, respectively. This

benchmark can be some mixture of the base assets (i.e., Y ∈ X ) or it can represent some desired target return

distribution that cannot be replicated using the marketed assets (i.e., Y /∈ X ) .

The state probabilities form a vector p = (p1, ...pn) in the n-dimensional simplex

P 0 =

{

p ∈ [0, 1]n
∣
∣
∣
∣

n∑

i=1

pi = 1

}

. (3)

The return distribution of any portfolio X is clearly dependent on values of the state probabilities p. To make this

link explicit we denote the expectation and cumulative distribution function (CDF) of portfolio X by Ep[X] =
∑n

i=1 pixi and

FX(t; p) = P({si ∈ S|X(si) ≤ t}) =
∑

i∈{1,...,n}
xi≤t

pi, (4)

respectively. Furthermore, we denote the integral of the CDF by

F 2
X(t; p) =

∫ t

−∞
FX(r; p)dr =

∑

i∈{1,...,n}
xi≤t

pi(t− xi). (5)
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Second-order stochastic dominance (SSD) compares these integrals to provide a partial ranking of probability

distribution.

Definition 1. Portfolio X ∈ X weakly dominates portfolio Y ∈ X in the sense of second-order stochastic

dominance, denoted by X �2 Y , if

F 2
X(t; p) ≤ F 2

Y (t; p) ∀ t ∈ R, (6)

where F 2
(·) is given by (5).

If a portfolio dominates another in the sense of SSD, then any expected utility maximizing risk-averse or

-neutral decision maker would prefer the former portfolio over the latter (Hanoch & Levy 1969). This result can

be formally stated as

X �2 Y ⇔ Ep[u(X)] ≥ Ep[u(Y )] for all u ∈ U, (7)

where U is the set of all non-decreasing concave utility functions.

SSD can be used to support portfolio selection by specifying some benchmark portfolio Y and identifying a

portfolio X ∈ X = {
∑m

j=1 λjXj | λ ∈ Λ} that dominates Y in the sense of SSD. There can be multiple dominating

portfolios and selecting the one that maximizes the expected return leads to the optimization problem

max
X∈X
{Ep[X] |X �2 Y }. (8)

Clearly it would be technically possible to use some other objective function in optimization problem (8) instead of

expected portfolio return. However, our choice to use the expected portfolio return stems from the reasoning that

any portfolio dominating the chosen benchmark is acceptable to the DM in terms of risk and thus the choice from

a set of such dominating portfolios can be based on risk-neutral preferences. For instance, the optimal portfolio

X∗ obtained from (8) can be relevant to fund managers whose clients usually have different risk preferences: Any

risk-averse or risk-neutral client maximizing the expected utility would prefer portfolio X∗ to the benchmark

portfolio Y .

3. Stochastic Dominance under Incomplete Probability Information

The state-space for problem (8) is usually constructed by taking a sample of n most recent observations of

assets’ and benchmark portfolio’s state-specific returns (xji, yi, i ∈ {1, ..n}) and assigning an equal probability

(pi = 1/n) to each state. This approach is appealing from a practical stand-point, and it can also be supported by

statistical arguments. In particular, each vector of observed asset returns arguably represents a plausible scenario

of future returns. Moreover, if one assumes the joint distribution of the asset returns does not change over time,

then these scenarios should be assigned equal probabilities. Essentially, this approach corresponds to using the

Empirical Distribution Functions (EDFs) as estimates of the true CDFs of the assets’ returns, and under the

above assumption the EDF converges to the ‘true’ CDF in probability as the sample size n increases.

However, such asymptotic properties do not guarantee that an EDF is close to the underlying CDF with

small data sets often deployed in applications. Moreover, asset returns can exhibit dynamic patterns such as

price reversals and volatility jumps, which violate the assumption that the joint distribution of asset returns
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remains unchanged over time. In response to these challenges, Post et al. (2018) suggest the use of empirical

likelihood (EL) approach to estimate the state probabilities. In this approach the state probabilities are required

to satisfy some pre-specified constraints (moment conditions) capturing conditioning information on, for instance,

empirical stylized facts about common risk factors in the financial market (Fama & French 1993). Generally, there

exist several state probability vectors that satisfy these constraints, and the EL approach selects the vector that

is closest to equal state probabilities with respect to the Kullback-Leibler distance.

The models developed in this paper take a different approach, which can be seen as a generalization of the

approach suggested by Post et al. (2018): Rather than seeking to specify ‘correct’ values for the state probabilities

in problem (8), we take the alternative approach of accepting the uncertainty in these values and identify a

portfolio X which stochastically dominates the benchmark portfolio Y even if these values vary. Technically, this

is accomplished by relaxing the assumption of a single probability vector p̃ ∈ P 0 and considering instead a set of

feasible probability vectors P ⊆ P 0, where the set of all possible probability vectors P 0 is given by equation (3).

This general definition of probability set P enables to capture several types of parameter uncertainties. For

instance, it can be used to build confidence regions around point-estimate probabilities p̃ obtained either through

the standard EDF approach (i.e., p̃i = 1
n) or the more advanced EL-based approach by Post et al. (2018). In

particular, the set of feasible probabilities

P =

{

p ∈ P 0

∣
∣
∣
∣(1− α)p̃i ≤ pi ≤ (1 + α)p̃i, i ∈ {1, . . . , n}

}

(9)

allows a α% variation in each state probability p̃i. Alternatively, only the lower bounds can be enforced to obtain

the large set of feasible probabilities

P =

{

p ∈ P 0

∣
∣
∣
∣ (1− α)p̃i ≤ pi, i ∈ {1, . . . , n}

}

. (10)

The resulting upper bound for the probability of the ith state is pi ≤ (1 − α)p̃i + α. Figure 1 illustrates the

relationship between sets (9) and (10) in a three-state setting.

Alternatively, the EL approach can be utilized to characterize the entire set of feasible probabilities – not only

the center point of the confidence region as in (9) and (10). For instance, consider an EL model that uses a single

factor f defined as the linear combination f =
∑n

j=1 wjXj of the base asset returns, and suppose the model is

specified to find a probability vector such that the implied expected factor value falls between the 10th and 90th

percentiles of the factor’s historical distribution. Then, the EL estimate p̃ is obtained as the optimal solution to

the optimization problem

min
p̃∈P

D(p̃),

P =

{

p ∈ P 0

∣
∣
∣
∣ L ≤

n∑

i=1

pif(si) ≤ U

}

, (11)

where D(·) denotes the Kullback-Leibler divergence form equal state probabilities, and L and U denote the 10th

and 90th percentiles of the historical distribution, respectively. The model developed here does not require the

use of any single probability vector but can directly utilize probability set (11). Similarly, it is possible to utilize

a set of feasible probabilities obtained by bounding the expected values of multiple factors.
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Figure 1: Top figures illustrate the sets of feasible probabilities (9) (left) and (10) (right), when p̃ = ( 1
3
, 1

3
, 1

3
) and α = 0.2. Left and

right bottom figures illustrate the sets given by (12) (n = 2) and (13) (α = 1/3), respectively.

The set of feasible probabilities P can also be used to capture incomplete information on the sample size, which

is effectively determined by the number of states with strictly positive probabilities. Hence, allowing this number

to vary across the vectors included in set P enables to take into account multiple sample sizes simultaneously.

For instance, the standard EDF approach can be extended to consider multiple sample sizes by deploying a finite

set of probability vectors. Suppose the n states represent the observed asset returns in a temporal order with

i = n corresponding to the most recent observations. Then, allowing sample size to vary between n and n results

in the set of feasible probabilities

P =

{

p ∈ P 0

∣
∣
∣
∣ p = (0, . . . , 0,

1
k
, . . . ,

1
k︸ ︷︷ ︸

k elements

), k ∈ {n, ..., n}

}

. (12)

For long windows of annual data it can be reasonable to assume that recent observations of asset returns are

more informative than remote observations. This assumption can be modeled by deploying the set of probability

vectors that assigns a higher probability to more recent observations

Pα =

{

p ∈ P 0

∣
∣
∣
∣
α

n
≤ pi−1 ≤ pi, i ∈ {2, . . . , n}

}

, (13)

where parameter α ∈ [0, 1] can be used to control the minimum probability across observations.

Although our theoretical results hold for any non-empty closed set P ⊆ P 0, practical implementation of the

optimization problems developed later in Section 4 requires that the convex hull of P has a finite number of
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extreme points. It is worth highlighting that this requirement is not as restrictive as convexity or connectedness

of P : For instance, the set defined by (12) is not convex or continuous, but its convex hull has n− (n−1) extreme

points (cf. Figure 1).

The SD criteria can be extended to settings with set-valued state probabilities by requiring that dominance

holds for all probability vectors in P . Importantly, the resulting robust SD relation inherits the transitivity of

standard SD.

Definition 2. Portfolio X ∈ X dominates portfolio Y ∈ X in the sense of SSD with regard to the set of feasible

probabilities P ⊆ P 0, denoted by X �2
P Y , if

F 2
X(t; p) ≤ F 2

Y (t; p) ∀ t ∈ R, p ∈ P.

Strict dominance X �2
P Y holds if X �2

P Y and ¬(Y �2
P X), and the notation X ∼2

P Y is used when both

X �2
P Y and Y �2

P X hold. Moreover, Definition 1 is obtained as the special cases of Definition 2 when the set

of feasible probabilities consists of a single probability vector, i.e., P = {p}.

This robust SSD can be used to identify portfolios that are not sensitive to parameter uncertainty: If X �2
P Y ,

then X will stochastically dominate the benchmark portfolio Y for all probability vectors in set P in the sense of

SSD. An alternative interpretation for Definition 2 can be established by utilizing expected utility interpretation

of SSD (see equation (7)): X �2
P Y if and only if any risk-averse or -neutral decision maker prefers portfolio X

over Y for the state probabilities contained in set P . Formally, this result can be written as

X �2
P Y ⇔ Ep[u(X)] ≥ Ep[u(Y )] for all u ∈ U, p ∈ P. (14)

In general, the dominance condition in Definition 2 is more restrictive than the standard SSD (Definition

1). In particular, even if one portfolio dominates another in the sense of standard SSD, it is possible that this

dominance does not hold for all probability vectors in set P . Hence, the restrictiveness of the condition can be

controlled through the size of set P . At one extreme the set composes of a single probability vector P = {p} and

thus the dominance condition coincides with standard SSD. At the other extreme P contains all vectors whose

elements are non-negative probabilities that sum up to one. The sets of feasible probabilities (9)-(13) are between

these two extremes.

Reducing the set of feasible probabilities will not affect any existing dominance relations: That is, if X �2
P Y ,

then X �2
P ′ Y for any P ′ ⊆ P . This property has an intuitive interpretation that more precise information on

the state probabilities will generally lead to more conclusive ranking of the portfolios. Another property of the

relation �2
P is that extending the set of feasible probabilities P by adding new probability vectors to it does not

affect the dominance between two portfolios, if these new probability vectors fall inside the convex hull of P . In

other words, two different sets whose convex hulls are equal will imply the same dominance relations between

any portfolios. Hence, a sufficient condition for dominance to hold for all probability vectors in P is that it holds

everywhere on the ‘border’ of P ’s convex hull. This property is formally stated by the following theorem, which

uses conv(·) to denote the convex hull and ext(·) to denote the extreme points of a set.
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Theorem 1. Let P ⊆ P 0. Then

X �2
P Y ⇔ F 2

X(t; p) ≤ F 2
Y (t; p) ∀ t ∈ R, p ∈ ext(conv(P )).

A detailed proof of Theorem 1 which is based on directly using Definition 2 is presented in the appendix.

However, an intuitive justification for Theorem 1 can also be derived using the equivalent expected utility definition

of SSD under incomplete probability information (14). In particular, because the expected utility difference

between two portfolios is a linear with regard to the state probabilities, this difference attains its minimum values

at the extreme points of the convex hull of the set of feasible probabilities. At these points the minimum expected

utility difference across the set of utility functions U is non-negative if and only if dominance holds (see equation

(7)).

One consequence of Theorem 1 is that with the largest possible set of feasible probabilities P = P 0, a portfolio

dominates another if it has a greater or equal return in each state. This is because the n extreme points of P 0

are unit vectors in which all but one of the states have zero probability. Hence, comparing CDFs’ integrals in

each of these extreme points reduces to the comparisons of which of the two portfolios has a higher state-specific

outcome. This result is formalized by the following corollary.

Corollary 1. Let P = P 0. Then

X �2
P Y ⇔








x1

...

xn







≥








y1

...

yn







.

A practical implication of Corollary 1 is that in applications some probability information is likely needed in

order to identify benchmark dominating portfolios. In particular, it seems unlikely that in a practical application

there would exist portfolios that yield a greater or equal return than the benchmark portfolio in all states.

4. Identifying Dominating Portfolios under Incomplete Probability Information

Using Definition 2 to identify a portfolio X ∈ X that stochastically dominates a given benchmark portfolio Y

with regard to the set of feasible probabilities P is not straightforward. Although the set of feasible asset weights

Λ is defined through a system of linear constraints, and thus a search over this set can be implemented as an LP

problem, Definition 2 in essence yields an infinite continuum of non-linear constraints between the CDFs’ of X

and Y . However, Theorem 1 offers a solution strategy in which these constraints are enforced only at the extreme

points of the convex hull of P . The challenge thus becomes to establish if dominance holds for all of the extreme

points simultaneously. In what follows, we address this challenge for second-order stochastic dominance, while

that for first-order stochastic dominance is addressed in the appendix.

Throughout this section we assume – without loss of generality – that the states are indexed in an increasing

order of the benchmark portfolio returns, i.e.,

y1 ≤ y2 ≤ · · · ≤ yn. (15)
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For a fixed probability vector p ∈ ext(conv(P )) the integrals of the portfolios’ CDFs are convex and continuous

non-decreasing piecewise-linear functions. Hence, for X to dominate Y it is necessary that F 2
X(·; p) remains below

(or equal to) F 2
Y (·; p) at each point y1, y2, . . . , yn. This condition is also sufficient: If it were the case that F 2

X

is above F 2
Y somewhere inside the interval (yi−1, yi), then F 2

X is greater than F 2
Y also at either yi−1 or yi. This

is because F 2
Y is linear on this interval and F 2

X is convex. Specifically, for fixed i and p this condition can be

formalized as

F 2
Y (yi; p) ≥ F 2

X(yi; p) =
∑

k∈{1,...,n}
xk≤yi

(yi − xk)pk

=
n∑

k=1

max{yi − xk, 0}pk = min
di1,...,din

{ n∑

k=1

dikpk

∣
∣
∣
∣
dik ≥ yi − xk

dik ≥ 0

}

.

Hence, establishing SSD with set-valued probabilities is equivalent to determining if there exists a solution to a

system of linear inequalities as stated by the following theorem.

Theorem 2. X �2
P Y if and only if there exists d ∈ Rn×n+ that satisfies constraints

dik ≥ yi − xk ∀ i, k ∈ {1, ..., n}, (16)
n∑

k=1

dikpk ≤ F 2
Y (yi; p) ∀ i ∈ {1, ..., n}, p ∈ ext(conv(P )). (17)

A similar result for a single probability vector has been presented by Dentcheva & Ruszczyński (2003) (see also

Rockafellar & Uryasev 2000). Theorem 2 can be used to formulate an LP problem, which for a given benchmark

portfolio Y identifies a weakly dominating portfolio X ∈ X . Substituting xk =
∑m

j=1 λjxjk, where λ ∈ Λ, into

constraint (16) and using the expected return Ep̂[X] as the objective function gives

max
λ∈Λ

d∈Rn×n+

n∑

i=1

p̂i

m∑

j=1

λjxji (18)

m∑

j=1

λjxjk + dik ≥ yi ∀ i, k ∈ {1, ..., n} (19)

n∑

k=1

dikpk ≤ F
2
Y (yi; p) ∀ i ∈ {1, ..., n}, ∀p ∈ ext(conv(P )). (20)

Corollary 2. Let p̂ ∈ conv(P ). If there exists X ∈ X such that X �2
P Y , then LP problem (18)–(20) has an

optimal solution (λ∗, d∗) such that Ep̂[
∑m

j=1 λ
∗
jXj ] ≥ Ep̂[Y ].

If the expected return of the optimal portfolio X∗ =
∑

j λ
∗
jXj is strictly greater than that of the benchmark

portfolio Y , then X∗ strictly dominates Y w.r.t. to feasible probability set P (i.e., X∗ �2
P Y ). However, if the

expected returns of the two portfolios are equal, this does not suffice to conclude that a dominating portfolios

is not marketed. It can be the case that Y provides the maximal expected return under probability p̂, but it

remains possible to get the same expected return with less risk using another portfolio whose return distribution

is a mean-preserving anti-spread of Y ’s distribution (see, e.g., Kuosmanen 2004). In practice, such a situation is

not common as numerical impression alone makes it unlikely that Ep̂[X∗] = Ep̂[Y ].
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5. Application to Industrial Diversification

In this section we apply the developed models to empirical data sets. Specifically, these applications seek

to answer the following questions: (i) Do actual markets include the portfolios that stochastically dominate the

market portfolio for multiple state probability vectors, and (ii) if such portfolios exist, does the dominance over

the market portfolio hold also out-of-sample? We also examine how the specification of the state probabilities

and sample size affects these results by running the tests using several different sets of feasible probabilities.

5.1. Data

We use daily returns of the Fama/French 49 value-weighted industry portfolios to represent the base assets

X1, . . . , X49 and the CRSP all-share index as the benchmark market portfolio Y 1. The data sample includes

all daily return observations from the first registered trading day in January 1927 (Jan 3rd 1927) to the last one

in December 2015 (Dec 31st 2015), spanning a time horizon of 89 years (i.e., 356 quarters and 23487 trading

days). The industry-specific daily mean returns vary from 0.029% to 0.075% with an industry-specific standard

deviation ranging from 0.92% to 3.30%. The benchmark has a daily mean return of 0.041% along with a standard

deviation of 1.07%. A detailed presentation of descriptive statistics of the data set can be found in Table 1.

Table 1: Descriptive Statistics of the 49 Industry Portfolios and the Benchmark Market Portfolio

SIC Mean Std. Skew. Kurt. Min Max SIC Mean Std. Skew. Kurt. Min Max

Agric 0.043 1.51 0.61 18.57 -15.27 23.69 Guns 0.055 1.39 -0.05 10.92 -19.49 14.92

Food 0.044 0.92 -0.06 24.73 -16.04 15.54 Gold 0.042 2.26 0.45 10.26 -23.38 25.56

Soda 0.056 1.40 -0.28 14.05 -19.22 11.68 Mines 0.043 1.53 0.21 17.24 -17.91 19.85

Beer 0.054 1.47 0.01 22.79 -24.06 19.91 Coal 0.042 2.09 0.32 15.88 -19.34 27.31

Smoke 0.052 1.20 0.16 16.18 -13.99 16.22 Oil 0.046 1.28 0.08 17.07 -19.50 19.27

Toys 0.046 2.15 0.59 29.56 -26.75 39.74 Util 0.038 1.10 0.29 26.44 -15.26 17.92

Fun 0.052 1.81 0.18 15.61 -24.11 20.81 Telcm 0.039 1.03 0.20 21.01 -16.69 15.98

Books 0.041 1.56 0.85 28.22 -19.34 33.40 PerSv 0.044 2.03 0.32 28.17 -30.99 30.61

Hshld 0.041 1.17 -0.15 34.71 -21.46 25.87 BusSv 0.050 1.98 5.29 242.90 -37.41 61.56

Clths 0.040 1.14 -0.15 26.37 -18.51 20.49 Hardw 0.054 1.54 -0.02 18.81 -23.52 21.65

Hlth 0.044 1.54 -0.19 12.89 -15.45 17.39 Softw 0.043 2.40 0.64 13.63 -20.76 24.19

MedEq 0.053 1.60 13.05 1067.48 -53.62 111.82 Chips 0.051 1.76 0.16 26.22 -30.57 37.90

Drugs 0.049 1.15 -0.24 20.24 -18.70 16.70 LabEq 0.049 1.44 -0.05 12.13 -18.78 15.93

Chems 0.046 1.28 -0.14 18.89 -18.91 16.86 Paper 0.075 3.30 8.55 303.65 -45.65 150.00

Rubbr 0.054 1.68 0.58 28.00 -19.79 26.32 Boxes 0.048 1.26 -0.18 14.25 -21.43 12.59

Txtls 0.041 1.31 0.12 19.00 -18.40 19.50 Trans 0.039 1.36 0.12 15.25 -17.56 18.49

BldMt 0.042 1.26 0.06 21.20 -17.96 22.97 Whlsl 0.040 1.63 3.12 187.53 -44.44 66.92

Cnstr 0.048 2.02 0.69 18.48 -23.81 29.35 Rtail 0.045 1.14 0.00 16.93 -18.00 17.81

Steel 0.038 1.67 0.59 29.54 -23.94 30.39 Meals 0.047 1.35 -0.03 12.88 -15.48 19.40

FabPr 0.029 1.48 -0.13 8.88 -15.45 11.44 Banks 0.052 1.48 0.31 25.88 -20.43 23.05

Mach 0.044 1.38 0.31 22.60 -18.06 26.16 Insur 0.044 1.38 0.35 21.83 -17.15 18.93

ElcEq 0.052 1.57 0.20 16.65 -19.70 24.44 RlEst 0.038 2.13 1.13 25.17 -21.23 36.78

Autos 0.047 1.58 0.36 17.92 -19.72 27.88 Fin 0.047 1.58 0.05 28.19 -28.65 23.28

Aero 0.062 1.79 0.49 22.16 -19.29 32.00 Other 0.033 1.49 -0.05 15.39 -20.26 16.84

Ships 0.042 1.52 0.09 10.72 -13.20 16.62 Bench 0.041 1.07 -0.12 19.64 -17.41 15.76

1All data were accessed and downloaded in June 2016 from the data library of Kenneth R. French at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. The industry portfolios have been formed by grouping

each NYSE, AMEX, and NASDAQ stock according to its 4-digit Standard Industrial Classification (SIC) code. The Center for

Research in Security Prices (CRSP) index is a proxy of the value-weighted return of all common stocks incorporated in the US and

listed on the NYSE, AMEX, and NASDAQ exchanges.
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5.2. Investment Strategy and Empirical Test Setup

We employ a standard buy-hold trading strategy with no short positions, a 12-month formation period and

rebalancing after a 1-month holding period. This choice is motivated by prior research insights into industry

momentum: Moskowitz & Grinblatt (1999) document the profitability of industry level momentum 2 is strongest

in intermediate 6- to 12-month historical horizons for portfolio formation with relatively short holding periods.

Nevertheless, our preliminary tests showed that using a 12-month historical formation period outperforms its

6-month counterpart in all portfolio performance measures. Moreover, a 12-month formation period has been

commonly used to test SD models (see, e.g., Hodder et al. 2015; Post & Kopa 2017).

With this investment strategy our data sample yields 1056 overlapping formation periods (Jan 1927 – Dec 1927,

Feb 1927 – Jan 1928, . . . , Dec 2014 – Nov 2015). The daily returns within each 12-month formation period are

used as the state-space in problem (18)–(20), which implies that the number states varies between n ∈ [226, 302].

The optimal portfolio λ∗(t) for each period t ∈ {1, . . . , 1056} is solved using different sets of feasible probabilities

P . The expectation in the objective function (18) is evaluated under equal (i.e., empirical) state probabilities

(i.e., p̂ = ( 1
n , . . . ,

1
n)). The out-of-sample performance of each optimal portfolio λ∗(t) is evaluated using daily

returns from subsequent 1-month holding period, which results in a total of 1056 out-of-sample observations (Jan

1928, Feb 1928, . . . , Dec 2015).

5.3. Confidence Region around Equal State Probabilities

The first test uses a set of feasible probabilities that allows variations around the vector of equal state

probabilities p = ( 1
n , . . . ,

1
n). Specifically, we use the set of feasible probabilities

P Tα =

{

p ∈ P 0

∣
∣
∣
∣pi ≥

α

n
, ∀i ∈ {1, . . . , n}

}

, (21)

where α ∈ [0.9, 1] determines the lower bound for the probability in each state. Thus, P T1 = {( 1
n , . . . ,

1
n)} is the

smallest set corresponding to equal state probabilities. Decreasing the lower bound increases the size of set ( 21)

and preliminary tests on the data indicated that problem (18)–(20) becomes infeasible when α exceeds the value

of 0.9.

Figure 2 provides an overview on the performance of the optimized portfolios compared to the benchmark.

Table 2 presents details on the out-of-sample performances of the optimal portfolios for all probability sets P Tα , for

α ∈ {1.00, 0.98, . . . , 0.90}. The top panel describes excess portfolio returns over the benchmark. The annualized

mean excess return (Mean) and standard deviation (Std. dev.) exhibit a consistent pattern of diminishing

returns and risk with respect to the size increase of the probability set. Notably, increasing the size of the

probability set leads to a substantial reduction of active risk (i.e., the standard deviation of excess returns) by

8.32%. Moreover, this also improves the skewness of mean excess returns, which is alternatively characterized by

2The findings of Moskowitz & Grinblatt (1999) suggest that (i) the industry momentum effect is considerably stronger at interme-

diate formation horizons (up to 24-month) with short holding periods, and (ii) industry momentum returns are primarily generated

by longing winner industries instead of shorting loser industries.
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Figure 2: The solid line shows the development of benchmark portfolio value between January 2000 and December 2015. The dashed

lines show the values of the portfolios optimized using probability sets PT1.0 (black) and PT0.9 (grey).

the remarkably lower downside risk for large negative returns with a significantly improved expected shortfall 3

(CVaR5%) of 13.13%. The certainty equivalent (CE) and risk premium (RP) 4 are evaluated using a logarithmic

utility function ln(·). Not surprisingly, both the CE and RP decrease rapidly. In addition, the risk-adjusted

(return-to-variability) ratios (Sortino and Information) 5 imply that each unit of portfolio risk earns higher excess

return as a result of increasing the size of the probability set. Portfolio turnover decreases and the average

number of industries included in the optimal portfolio (# of industries) increases when the size of the probability

set increases. Clearly, using a larger set P Tα leads to a broader diversification across the base asset span. Moreover,

a larger set also results in lower transaction costs as observed from the declining portfolio turnovers, which in

essence indicate more cost-efficient portfolio rebalancing.

Since the objective of our model is to identify portfolios that dominate the benchmark in the sense of SSD

for multiple state probability vectors in-sample, it is interesting to analyze if SSD between the two portfolios also

holds when examining the realized returns during the holding period. For this purpose the bottom panel in Table

3Expected shortfall, also known as Conditional Value at Risk (CVaR), is the expected return conditional that the realized return

belongs to the worst α%-tail of the distribution.
4Certainty equivalent (CE) is a certain return that yields the same expected utility as the optimal portfolio does. Risk premium

(RP) is the difference between the expected portfolio return and the certainty equivalent.
5Sortino ratio (SR) is the ratio between the optimal portfolio’s excess return over the risk-free rate and the semi-deviation of

the return. Information ratio (IR) is the ratio the optimal portfolio’s excess return over the benchmark portfolio and the standard

deviation of the return.
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Table 2: Out-of-Sample Portfolio Performance with 1-month Holding Period and Set of Feasible Probabilities PTα . The top panel

shows the mean, standard deviation, skewness, CVaR5%, certainty equivalent, risk premium and Sortino and Information ratios,

of annualized excess returns to the benchmark portfolio. The middle panel reports two portfolio diversification measures, portfolio

turnover and average number of industries included in the optimal portfolio. The bottom panel presents two dominance measures,

almost-SSD and full SSDs over the benchmark, as well as the percentiles of distribution of p-values obtained from deploying the

dominance test of Davidson (2009) in each out-of-sample period.

Measures P T1.00 P T0.98 P T0.96 P T0.94 P T0.92 P T0.90

Excess returns over benchmark

Mean (%) 6.11 5.82 5.40 4.82 4.61 4.13

Std. dev. (%) 15.38 12.82 11.66 10.48 8.82 7.06

Skewness 0.89 0.89 0.98 1.13 1.10 1.10

CVaR5%(%) -18.67 -15.62 -13.52 -12.21 -7.84 -5.54

CE (%) 5.07 5.09 4.79 4.33 4.26 3.90

RP (%) 1.04 0.73 0.61 0.49 0.35 0.23

Sortino ratio 1.00 1.22 1.26 1.29 1.76 2.22

Information ratio 0.40 0.45 0.46 0.46 0.52 0.58

Portfolio diversification

Turnover 0.76 0.75 0.73 0.71 0.69 0.64

# of industries 5.14 6.27 7.47 9.17 11.53 14.32

Dominance over benchmark

ε-ASSD (ε) 0.288 0.214 0.171 0.149 0.118 0.107

# of SSDs (%) 14.20 21.50 25.38 27.46 29.55 31.75

p-values of dominance test

1st percentile 0.000 0.000 0.000 0.000 0.000 0.000

5th percentile 0.002 0.000 0.000 0.000 0.000 0.000

10th percentile 0.018 0.006 0.004 0.000 0.000 0.000

25th percentile 0.070 0.052 0.044 0.030 0.019 0.014

50th percentile 0.180 0.168 0.145 0.118 0.107 0.070

75th percentile 0.266 0.268 0.251 0.218 0.208 0.183

2 reports the share of out-of-sample holding periods in which the optimal portfolio dominates the benchmark in

the sense of SSD (# of SSDs). Because SSD is a binary measure (either dominance holds or not), it does not

indicate how close the empirical CDFs are to satisfying the SSD condition (see Definition 1). Hence, the bottom

panel in Table 2 also reports the minimum ε-value for which almost second-order stochastic dominance (ε-ASSD;

Tzeng et al. 2013; see also Tsetlin et al. 2015) holds.

The results show that increasing the size of P Tα leads to higher likelihood of obtaining full dominance by

SSD over the benchmark out-of-sample. Specifically, with equal state probabilities P = P T1.00 out-of-sample

dominance over the benchmark is obtained only in 14.20% of all holding periods. In contrast, using the largest
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set P = P T0.90 yields out-of-sample dominance over the benchmark in 31.75% of all holding periods. This finding

is also supported by the ε-ASSD metric, since the average ε-values decrease as the size of the probability set

increases6.

To evaluate the statistical significance of the observed dominance relations, we apply the dominance test

by Davidson (2009). This test can deal with correlated sample distributions under the null hypothesis of non-

dominance, and its bootstrap algorithm requires only modest computational efforts for moderate sample sizes

(n ≈ 250). Specifically, in our setting the null hypothesis is that the optimal portfolio does not dominate the

benchmark portfolio 7, i.e., H0 :
∑49

j=1 λ
∗
jXj �2 Y . Intuitively, rejecting the null implies that the alternative

hypothesis H1 :
∑49

j=1 λ
∗
jXj �2 Y holds. We test each out-of-sample dominance, and the bottom panel of Table 2

reports percentiles of the obtained distribution of p-values from the dominance test by Davidson (2009). Indeed,

the p-values exhibit a consistent pattern of decline as the size of the probability set is increased.

5.4. Probability Ranking

The second test applies a set of feasible probabilities that assigns higher probabilities to the states corre-

sponding to more recent return observations. By indexing the states in a temporal order, this type of set can be

formally defined as

PRα =

{

p ∈ P 0

∣
∣
∣
∣pi ≥ pi−1 ≥

α

n
, ∀i ∈ {2, . . . , n}

}

, (22)

where parameter α ∈ [0, 1] determines the lower bound for the probability in each state. The smallest set PR1

consists of a single probability vector that assigns an equal probability 1
n to each state, i.e., PR1 = {( 1

n , . . . ,
1
n)}. In

turn, the largest set PR0.0 has n extreme points corresponding to the state probabilities (0, 0, ...., 0, 1), (0, 0, ..., 0, 1
2 ,

1
2),

(0, 0, ...0, 1
3 ,

1
3 ,

1
3), . . . , ( 1

n , . . . ,
1
n).

Tables 3 represents the out-of-sample performance of the optimal portfolios obtained from problem (18)–(20)

using probability sets PRα , for α ∈ {1.0, 0.8, . . . , 0.0}. Again, increasing the size of the probability set leads to a

decrease in both mean excess returns and active risk. However, unlike P Tα , using PRα results in only a moderate

active risk decrease of 4.86%, with a slight improvement of 4.63% in the downside. Surprisingly, the Sortino and

Information ratios stay roughly around 1 and 0.40, respectively. One possible explanation is that excess returns

and risks (both active and downside) decline approximately at the same rate as the size of the probability set is

increased.

Both portfolio turnover and the average number of industries in the optimal portfolio increase with regard

to the size increase of PRα . On average, using the largest set PR0.0 requires a diversification involving two or three

6 We use the almost SSD formulation by Tzeng et al. (2013): Let [t, t] ⊂ R be an interval containing the outcomes of portfolios X

and Y . Then X dominates Y in the sense of ε-ASSD if E[X] ≥ E[Y ] and
∫
t∈S [F 2

X(t) − F 2
Y (t)]dt ≤ ε

∫
t∈[t,t]

|F 2
X(t) − F 2

Y (t)|dt, where

S = {t ∈ [t, t] | F 2
Y (t) < F 2

X(t)}.
7Although there are several statistical tests for stochastic dominance (see, among others, Davidson 2009; Scaillet & Topaloglou

2010; Linton et al. 2014, Post 2017, Ng et al. 2017), not all of them are well suited to deal with large pairwise correlated samples.

Moreover, many tests use a null hypothesis which in our setting would be that the optimized portfolio dominates the benchmark

portfolio, i.e., H0 :
∑49
j=1 λ

∗
jXj �

2 Y . Rejecting such a null hypothesis would imply either H1 : Y �2 ∑49
j=1 λ

∗
jXj or

∑49
j=1 λ

∗
jXj ∼

2 Y .

To avoid difficulties in interpreting the test results, we deploy the statistical test by Davidson (2009), which offers a straightforward

interpretation in our test setting.
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Table 3: Out-of-Sample Portfolio Performance with 1-month Holding Period and Set of Feasible Probabilities PRα

Measures PR1.0 PR0.8 PR0.6 PR0.4 PR0.2 PR0.0

Excess returns over benchmark

Mean (%) 6.11 5.41 5.32 4.97 5.00 4.51

Std. dev. (%) 15.38 13.40 12.32 11.71 11.10 10.52

Skewness 0.89 0.74 0.64 0.40 0.33 0.40

CVaR5%(%) -18.67 -17.77 -16.05 -16.07 -14.82 -14.04

CE (%) 5.07 4.60 4.63 4.34 4.43 4.00

RP (%) 1.04 0.81 0.69 0.63 0.57 0.51

Sortino ratio 1.00 0.98 1.12 1.02 1.11 1.04

Information ratio 0.40 0.40 0.43 0.42 0.45 0.43

Portfolio diversification

Turnover 0.76 0.89 0.97 1.01 1.04 1.07

# of industries 5.14 5.95 6.51 7.02 7.49 7.91

Dominance over benchmark

ε-ASSD (ε) 0.288 0.253 0.224 0.218 0.206 0.204

# of SSDs (%) 14.20 17.23 19.51 19.03 19.22 20.83

p-values of dominance test

1st percentile 0.000 0.000 0.000 0.000 0.000 0.000

5th percentile 0.002 0.000 0.000 0.000 0.000 0.000

10th percentile 0.018 0.018 0.008 0.005 0.005 0.002

25th percentile 0.070 0.061 0.055 0.041 0.044 0.034

50th percentile 0.180 0.161 0.169 0.152 0.143 0.141

75th percentile 0.266 0.263 0.270 0.243 0.239 0.249

more industries, which gives rise to a much greater portfolio turnover of 1.07. Additionally, with the largest set

PR0.0 out-of-sample dominance over the benchmark is obtained in 20.83% of all holding periods.

5.5. Varying Sample Size

The third test utilizes a set of feasible probabilities that assigns an equal probability to the states corresponding

to the k most recent return observations while allowing k to vary between a fixed minimum sample size n and

the full sample size n. Formally, this set is defined by

PSn =

{

p ∈ P 0

∣
∣
∣
∣ p = (0, . . . , 0,

1
k
, . . . ,

1
k︸ ︷︷ ︸

k elements

), k ∈ {n, ..., n}

}

, (23)

where n ∈ {1, ..., n} is the minimum sample size. Thus, increasing n decreases the size of the feasible probability

set, and when n = n, the set consists of a single vector of equal state probabilities, i.e., PSn = {( 1
n , . . . ,

1
n)}.
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Table 4: Out-of-Sample Portfolio Performance with 1-month Holding Period and Set of Feasible Probabilities PSn

Measures PS1 PS0.75 PS0.5 PS0.25

Excess returns over benchmark

Mean (%) 6.11 5.81 5.44 4.90

Std. dev. (%) 15.38 14.95 13.94 12.32

Skewness 0.89 0.91 0.89 0.62

CVaR5%(%) -18.67 -18.38 -16.60 -16.62

CE (%) 5.07 4.83 4.57 4.20

RP (%) 1.04 0.98 0.87 0.70

Sortino ratio 1.00 0.97 0.99 0.95

Information ratio 0.40 0.39 0.39 0.40

Portfolio diversification

Turnover 0.76 0.75 0.76 0.81

# of industries 5.14 5.49 5.83 6.32

Dominance over benchmark

ε-ASSD (ε) 0.288 0.263 0.249 0.222

# of SSDs (%) 14.20 16.29 18.37 20.27

p-values of dominance test

1st percentile 0.000 0.000 0.000 0.000

5th percentile 0.002 0.002 0.000 0.000

10th percentile 0.018 0.018 0.009 0.008

25th percentile 0.070 0.073 0.071 0.067

50th percentile 0.180 0.179 0.166 0.170

75th percentile 0.266 0.263 0.245 0.263

Table 4 reports the out-of-sample portfolio performance of problem (18)–(20) using probability sets PSn , for

n ∈ {1, 0.75, . . . , 0.25}. Compared with P Tα and PRα , using PSn offers only modest improvements with regard

to active risk as well as to downside risk, 3.06% and 2.05%, respectively. Applying a larger set PSn fails to

outperform the smallest set PS1 in terms of risk-adjusted returns evaluated by the Sortino and Information ratios.

Nevertheless, increasing the size of the probability set results in a higher chance of dominating the benchmark

portfolio out-of-sample.

5.6. Sensitivity Analysis

To analyze how the length of the holding period affects the results, we replicated the tests by using both a 3-

month and a 6-month holding period, resulting in a total of 352 and 176 out-of-sample observations, respectively.

The tests were carried out using all three types of probability sets (P T , PR, P S). The probability set based

on the confidence region around state probabilities (P T ) continues to produce portfolios with the best overall
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out-of-sample performance, and for brevity we report the results based on this probability set only. The out-

of-sample performance of the optimal portfolios obtained from problem (18)–(20) using 3-month and 6-month

holding periods is presented in Tables 5 and 6, respectively.

Table 5: Out-of-Sample Portfolio Performance with 3-month Holding Period and Set of Feasible Probabilities PTα

Measures P T1.00 P T0.98 P T0.96 P T0.94 P T0.92 P T0.90

Excess returns over benchmark

Mean (%) 7.08 6.17 5.39 4.59 4.14 3.87

Std. dev. (%) 14.98 13.35 11.56 10.05 8.94 7.16

Skewness 1.10 1.10 1.13 1.25 1.08 1.22

CVaR5%(%) -15.44 -16.13 -11.93 -10.47 -9.61 -6.84

CE (%) 6.12 5.39 4.81 4.14 3.77 3.64

RP (%) 0.96 0.78 0.58 0.45 0.37 0.23

Sortino ratio 1.48 1.35 1.37 1.34 1.32 1.85

Information ratio 0.47 0.46 0.47 0.46 0.46 0.54

Portfolio diversification

Turnover 1.15 1.11 1.09 1.06 1.03 0.97

# of industries 5.18 6.21 7.43 9.11 11.46 14.28

Dominance over benchmark

ε-ASSD (ε) 0.364 0.269 0.203 0.173 0.147 0.121

# of SSDs (%) 8.52 15.34 19.32 22.16 23.01 25.28

p-values of dominance test

1st percentile 0.000 0.001 0.000 0.000 0.000 0.000

5th percentile 0.004 0.007 0.002 0.001 0.002 0.000

10th percentile 0.011 0.012 0.016 0.017 0.010 0.002

25th percentile 0.079 0.074 0.096 0.055 0.039 0.029

50th percentile 0.210 0.181 0.169 0.155 0.123 0.112

75th percentile 0.339 0.268 0.307 0.259 0.218 0.207

The 3-month holding strategy with the smallest set P T1 (i.e., equal state probabilities) earns the highest mean

excess return of roughly 7%, which is consistent with the empirical findings of Post & Kopa (2017). Rebalancing

the portfolio at the end of every 3 months, instead of 6 months, yields better performance with regard to risk-

adjusted return measures (Sortino and Information ratios) when using a small- or medium-sized probability set

(until P T0.94). However, longer holding periods reduce the share of periods in which the optimal portfolios dominate

the benchmark. Regardless of the length of the holding period, increasing the size of the probability set increases

the likelihood that the optimized portfolio will dominate the benchmark in out-of-sample comparison. Hence, the

main finding, i.e., incomplete probability information can help in identifying portfolios whose dominance over the

benchmark is robust, is not particularly sensitive to the specification of the holding period.
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Table 6: Out-of-Sample Portfolio Performance with 6-month Holding Period and Set of Feasible Probabilities PTα

Measures P T1.00 P T0.98 P T0.96 P T0.94 P T0.92 P T0.90

Excess returns over benchmark

Mean (%) 5.79 5.80 4.85 4.45 3.95 3.71

Std. dev. (%) 14.56 13.58 11.80 10.78 9.61 7.67

Skewness 1.26 1.53 1.19 1.07 0.82 1.00

CVaR5%(%) -15.13 -13.19 -15.25 -15.04 -13.49 -8.70

CE (%) 4.89 5.02 4.23 3.93 3.53 3.44

RP (%) 0.90 0.78 0.62 0.52 0.42 0.27

Sortino ratio 1.17 1.38 1.14 1.08 1.00 1.40

Information ratio 0.40 0.43 0.41 0.41 0.41 0.48

Portfolio diversification

Turnover 1.45 1.42 1.37 1.35 1.32 1.22

# of industries 5.16 6.14 7.41 9.09 11.47 14.25

Dominance over benchmark

ε-ASSD (ε) 0.386 0.264 0.213 0.159 0.160 0.137

# of SSDs (%) 6.25 14.20 14.20 18.75 22.16 26.14

p-values of dominance test

1st percentile 0.015 0.027 0.007 0.001 0.000 0.000

5th percentile 0.022 0.044 0.025 0.003 0.003 0.000

10th percentile 0.056 0.050 0.030 0.005 0.004 0.001

25th percentile 0.174 0.101 0.057 0.024 0.021 0.017

50th percentile 0.228 0.179 0.185 0.092 0.072 0.092

75th percentile 0.324 0.281 0.327 0.276 0.246 0.220

6. Discussion and Conclusions

In this paper we have developed models to identify portfolios whose stochastic dominance over the benchmark

portfolio is not sensitive to the specification of state probabilities. The key idea was to allow state probabilities to

take any values within a set of feasible probabilities. We then showed that as long as the convex hull of this set has

a finite number of extreme points, a portfolio that dominates a given benchmark portfolio for all probabilities can

be identified by solving an LP problem. Hence, powerful commercial implementations of LP solution algorithms

can be utilized to identify such optimal portfolios. Furthermore, the requirement of a polyhedral convex hull

is not particularly restrictive: The set of feasible probabilities can capture, for instance, a confidence region

around the vector of equal probabilities (empirical distribution) or all probability vectors satisfying some pre-

specified moment conditions (empirical likelihood approach). Moreover, the use of set-valued probabilities avoids

specifying exactly how many historical return observations are included in the state-space. The developed models
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were illustrated by applying them to empirical data of industry portfolio returns. Results from the application

indicate that a portfolio that dominates the market portfolio for a set of feasible state probabilities in-sample is

also more likely to dominate the market portfolio out-of-sample.

Although the models developed in this paper are relatively general and conceptually straightforward, they

require a priori specification of a set of feasible probabilities. However, there are several techniques that help

with this specification. For instance, the technique deployed by the application in Section 5 can be used in

other applications as well. Historical return observations from any market can be partitioned into training and

validation data sets to identify the probability set that yields the best out-of-sample performance in terms of

stochastic dominance.

Determining an appropriate set of feasible probabilities can also be supported by expert judgement or empirical

stylized facts about the particular application area. In portfolio selection, for instance, Post et al. (2018) suggest

that such stylized facts about the financial markets can be operationalized by enforcing moment conditions based

on common risk factors (Fama & French 1993). Technically, such conditions correspond to linear constraints on

state probabilities and hence they can be directly used to define the set of feasible probabilities in our model.

It is important to highlight that a priori assumptions about the probability distribution cannot be avoided, as

they are necessary when deploying any formal model for portfolio selection. For instance, the common ‘plug-in’

approach of using empirical probabilities is based on the – often implicit – assumption that the asset returns

are identically distributed and serially independent. Relaxing this assumption immediately raises the question of

which probabilities should be used in the model. The strength of the model developed here is that it does not

require selecting a single probability vector to produce decision recommendations.

The models developed in this paper can be applied in other MS/OR areas beyond financial portfolio diversi-

fication. For instance, the management of mixed asset portfolios consisting of both market-traded securities and

in-house R&D projects can be supported by MILP models in which the uncertainties related to security prices and

the success of R&D projects are modeled with a scenario tree (see, e.g., Gustafsson & Salo 2005). Specifying the

probabilities for such scenario trees cannot rely solely on historical financial data but often requires judgmental

estimates from multiple experts. Hence, the models developed here could be used to capture a set of feasible

probabilities that contains the estimates of each expert and then identify a mixed asset portfolio that dominates

a specified target distribution for all feasible probabilities. Similarly, energy investment decisions are made under

uncertainties about the future price of CO2 emissions. These decisions can be supported with MILP models in

which uncertainties are captured by scenario trees (see, e.g., Kettunen et al. 2011). The models developed in this

paper could be used to find energy investment portfolios that are robust to changes in the level of risk aversion

as well as variations in scenario probabilities.

Appendix: Proofs

Proof of Theorem 1. ‘⇒’: Assume X �2
P Y . Take any p∗ ∈ ext(conv(P )) and t ∈ R. Then there exist

p1, ..., pn+1 ∈ P and (α1, . . . , αn+1) ∈ Rn+1
+ such that

∑n+1
i=1 αi = 1 and p∗ =

∑n+1
j=1 αjp

j . Evaluating the
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difference between the integrals of the CDFs of X and Y at (t; p∗) yields

F 2
X(t; p∗)− F 2

Y (t; p∗) =
∑

i|xi≤t

p∗i (t− xi)−
∑

i|yi≤t

p∗i (t− yi) =
∑

i|xi≤t

n+1∑

j=1

αjp
j
i (t− xi)−

∑

i|yi≤t

n+1∑

j=1

αjp
j
i (t− yi)

=
n+1∑

j=1

αj
∑

i|xi≤t

pji (t− xi)−
n+1∑

j=1

αj
∑

i|yi≤t

pji (t− yi)

=
n+1∑

j=1

αj

( ∑

i|xi≤t

pji (t− xi)−
∑

i|yi≤t

pji (t− yi)

)

=
n+1∑

j=1

αj︸︷︷︸
≥0

(

F 2
X(t; pj)− F 2

Y (t, pj)

)

︸ ︷︷ ︸
≤0, since pj∈P

≤ 0,

i.e., F 2
X(t; p∗) ≤ F 2

Y (t; p∗). �

(i) ‘⇐’:Assume F 2
X(t; p) ≤ F 2

Y (t; p) for all t ∈ R and p ∈ {p1, . . . , pl} = ext(conv(P )). Take any p∗ ∈ P and

t ∈ R. Then p∗ ∈ conv(P ) and hence there exists (α1, . . . , αl) ∈ Rl+ such that
∑l

i=1 αi = 1 and p∗ =
∑l

p=1 αjp
j .

Evaluating the difference between the integrals of the CDFs of X and Y at (t; p∗) yields

F 2
X(t; p∗)− F 2

Y (t; p∗) = · · · =
l∑

j=1

αj︸︷︷︸
≥0

(

F 2
X(t; pj)− F 2

Y (t, pj)

)

︸ ︷︷ ︸
≤0, since pj∈ext(conv(P ))

≤ 0,

i.e., F 2
X(t; p∗) ≤ F 2

Y (t; p∗).

Proof of Corollary 1. Let P = P 0. By Theorem 1 X �2
P Y iff F 2

X(t, pl) ≤ F 2
Y (t, pl) for all t ∈ R in each

extreme point pl. Evaluating F 2
X and F 2

Y at extreme point pl gives

F 2
X(t, pl) =






0, if t < xl

t− xl, if t ≥ xl
, and F 2

Y (t, pl) =






0, if t < yl

t− yl, if t ≥ yl

and hence F 2
X(t, pl) ≤ F 2

Y (t, pl) for all t ∈ R holds iff xl ≥ yl.

Proof of Theorem 2. ‘⇒’: Assume X �2
P Y , which by Theorem 1 implies that F 2

X(t; p) ≤ F 2
Y (t; p) ∀ t ∈

R, p ∈ ext(conv(P )). Construct d ∈ Rn×n+ such that dik = max{0, yi − xk} for each i, k ∈ {1, ..., n}. Then

d clearly satisfies constraint (16). To show that d satisfies constraint (17) we evaluate the LHS for arbitrary

i ∈ {1, ..., n}, p ∈ ext(conv(P )), which gives

n∑

k=1

dikpk =
n∑

k∈{1,...,n}
xk≤yi

(yi − xk)pk = F 2
X(yi; p),

which is less or equal to the RHS F 2
Y (yi; p). �

‘⇐’: Assume d∗ ∈ Rn×n+ satisfies constraints (16) and (17). Then for any i ∈ {1, ..., n}, p ∈ ext(conv(P ))

F 2
Y (yi; p) ≥

n∑

k=1

d∗ikpk ≥
n∑

k=1

max{0, yi − xk}pk = F 2
X(yi; p).

Now take any t ∈ R:

(i) Assume t ≤ y1. Then F 2
X(t; p) ≤ F 2

X(y1; p) ≤ F 2
Y (y1; p) = 0 = F 2

Y (t; y), since F 2
(·) is always non-negative

and non-decreasing.
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(ii) Assume t ∈ [yi, yi+1] for some i ∈ {1, ..., n− 1}. On this interval F 2
Y is linear, F 2

X is convex and on the end

points FY is greater than or equal to FX . Hence, F 2
X(t; p) ≤ F 2

Y (t; p).

(iii) Assume t > yn. Then ∂
∂tF

2
Y (t; p) = FY (t; p) = 1 and ∂

∂tF
2
X(t; p) = FX(t; p) ≤ 1. Hence, F 2

Y (yn; p) ≥

F 2
X(yn; p) implies F 2

Y (t; p) ≥ F 2
X(t; p).

Thus, F 2
Y (t; p) ≥ F 2

X(t; p) for all t ∈ R, p ∈ ext(conv(P )) which by Theorem 1 implies X �2
P Y.�

Proof of Corollary 2. Assume exists X∗ =
∑m

j=1 λ
∗
jXj ∈ X such that X∗ �2

P Y . This implies that X∗ �2
P Y

and furthermore Ep[X∗] ≥ Ep[Y ] for any p ∈ P . By Theorem 2 there exists d∗ ∈ Rn×n such that (λ∗, d∗) is a

feasible solution to problem (18)–(20) and therefore the optimal objective function value is at least Ep̂[X∗]. �

Appendix: First-order Stochastic Dominance under Incomplete Probability Information

First-order stochastic dominance (FSD) between two portfolio is established by comparing the cumulative

distribution functions of the portfolios’ returns. In particular, portfolio X dominates portfolio Y in the sense of

FSD if FX(t) ≤ FY (t) for all t ∈ R. No expected utility maximizing investor who prefers higher returns over

lower ones would choose a portfolio that is dominated in the sense of FSD. FSD can be extended to admit a set

of feasible probability vectors in a similar manner as SSD. This extension is formally presented by the following

definition.

Definition 3. Portfolio X ∈ X dominates portfolio Y ∈ X in the sense of FSD with regard to the set of feasible

probabilities P ⊆ P 0, denoted by X �1
P Y , if

FX(t; p) ≤ FY (t; p) ∀ t ∈ R, p ∈ P.

From the definition it is clear that dominance w.r.t. some set of feasible probabilities P implies dominance w.r.t.

any subset P ′ ⊆ P . Moreover, it is well known that FSD implies SSD. These two properties can be summarized

by

X �1
P Y ⇒ X �1

P ′ Y

⇓ ⇓

X �2
P Y ⇒ X �2

P ′ Y.

A sufficient and necessary condition for FSD holding for all probability vectors in set P is that it holds

everywhere on the ‘border’ of P ’s convex hull. This property is formally stated by the following theorem, which

uses conv(·) to denote the convex hull and ext(·) to denote the extreme points of a set.

Theorem 3. Let P ⊆ P 0. Then

X �1
P Y ⇔ FX(t; p) ≤ FY (t; p) ∀ t ∈ R, p ∈ ext(conv(P )).

Proof.Equivalent to proof of Theorem 1 where F 2
(·) is replaced by F(·). �

If there are no constraints on the state probabilities, then FSD coincides with SSD and state-wise dominance,

as stated by the following corollary.
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Corollary 3. Let P = P 0. Then

X �1
P Y ⇔








x1

...

xn







≥








y1

...

yn







⇔ X �2

P Y.

Proof. The second equivalence is implied by Corollary 1. To prove the first equivalence consider Theorem 3 which

implies that X �1
P 0 Y if and only if FX(t, pl) ≤ FY (t, pl) for all t ∈ R, p ∈ext(conv(P 0)). Since conv(P 0) = P 0

these extreme points correspond to the unit vectors p1, ..., pn such that pli = 1 if l = i and pli = 0 if l 6= i. In each

extreme point the CDFs of X and Y are step functions of the form

FX(t, pl) =






0, if t < xl

1, if t ≥ xl
, and FY (t, pl) =






0, if t < yl

1, if t ≥ yl

and hence FX(t, pl) ≤ FY (t, pl) for all t ∈ R holds iff xl ≥ yl for each l ∈ {1, . . . , n}. �

With a finite state-space the CDF of any portfolio with a fixed probability vector p ∈ ext(conv(P )) is a right

continuous non-decreasing step function in which the locations of the steps correspond to the state-specific returns

of the portfolio. By assuming that the states are indexed in an increasing order of the benchmark portfolio returns,

i.e., y1 ≤ y2 ≤ · · · ≤ yn, the CDF of Y is constant on each interval [−∞, y1), [y1, y2), . . . [yi−1, yi), . . . , [yn−1, yn).

The maximum value FX(t; p) obtains in the interval t ∈ [yi−1, yi) is equal to the sum of probabilities of those

states k ∈ {1, ..., n} in which X has a state-specific return xk strictly below yi. These states can be identified

by introducing a binary variables zik for each pair of states i, k ∈ {1, ..., n} and requiring that zik = 1 whenever

xk < yi. This requirement can be implemented as the linear constraint xk+zikM ≥ yi, where M is a large positive

constant. Hence, for X to dominate Y it is necessary that
∑n

k=1 zikpk ≤ FY (yi−1; p) for each i ∈ {1, ..., n}. The

following theorem states that this condition is also sufficient if it holds for each extreme point p of the convex

hull of P.

Theorem 4. X �1
P Y if and only if there exists z ∈ {0, 1}n×n that satisfies constraints

xk +Mzik ≥ yi ∀ i, k ∈ {1, ..., n}, (24)
n∑

k=1

zikpk ≤ FY (yi−1; p) ∀ i ∈ {1, ..., n}, p ∈ ext(conv(P )) (25)

where FY (y0; p) = 0 and M is a large positive constant.

Proof. ‘⇒’: Assume X �1
P Y , which by Theorem 1 implies that FX(t; p) ≤ FY (t; p) ∀ t ∈ R, p ∈ ext(conv(P )).

Construct z ∈ {0, 1}n×n so that

zik =






1, if xk < yi

0, otherwise
∀ i, k ∈ {1, ..., n}.

Then z clearly satisfies constraint (24). To show that z satisfies constraint (25) we evaluate the LHS for arbitrary

i ∈ {1, ..., n}, p ∈ ext(conv(P )), which gives

n∑

k=1

zikpk =
∑

k|xk<yi

pk =






0, if {xk|xk < yi} = ∅

FX(maxk{xk|xk < yi}; p), otherwise.
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We can then use FX(t; p) ≤ FY (t; p) ∀ t ∈ R to bound this from above:

0 ≤ FX(max
k
{xk|xk < yi}; p) ≤ FY (max

k
{xk|xk < yi}; p) ≤ sup

t<yi

FY (t; p) = FY (yi−1; p),

which is equal to the RHS of constraint (25).

‘⇐’: We prove the contrapositive: Assume ¬(X �1
P Y ), which by Theorem 1 implies that ∃t ∈ [0, yn), p ∈

ext(conv(P )) such that FX(t; p) > FY (t; p). Take any z ∈ {0, 1}n×n and if violates constraint (24), then the proof

is complete. In turn, if it satisfies constraint (24), then zik = 1 for all i, k ∈ {1, ..., n} such that xk < yi. Denote

y0 = −∞ and select l ∈ {1, ..., n} such that t ∈ [yl−1, yl). The LHS of constraint (25) for index i = l equals

n∑

k=1

zlkpk ≥
∑

k|xk<yl

pk ≥
∑

k|xk≤t

pk = FX(t; p) > FY (t; p) = FY (yl−1; t),

which implies constraint (25) are not satisfied. �

Theorem 4 can be used to formulate a MILP problem which for a given benchmark portfolio Y identifies a

dominating portfolio X ∈ X with the maximal expected return Ep̂[X] =
∑n

i=1 pixi under some probability vector

p̂ ∈ P . Substituting xk =
∑m

j=1 λjxjk, where λ ∈ Λ, into constraint (24) and into the expected portfolio return

yields

max
λ∈Λ

z∈{0,1}n×n

n∑

i=1

p̂i

m∑

j=1

λjxji (26)

m∑

j=1

λjxjk +Mzik ≥ yi ∀ i, k ∈ {1, ..., n} (27)

n∑

k=1

zikpk ≤ FY (yi−1; p) ∀ i ∈ {1, ..., n}, p ∈ ext(conv(P )), . (28)

For the above model to correctly test the existence of a strictly dominating portfolio, the probability vector used

in the objective function has to belong to the relative interior of conv(P ), formally defined as

relint(conv(P )) = {p ∈ conv(P ) | ∀p′ ∈ conv(P ) ∃ε > 0 s.t. p̂+ ε(p̂− p′) ∈ conv(P )}. (29)

Fortunately, the relative interior is non-empty for every non-empty set (e.g., relint({p}) = {p}) and hence the

requirement of using a probability vector in the relative interior of the set of feasible probabilities does not limit

the applicability of the following corollary.

Corollary 4. Let p̂ ∈ relint(conv(P )). There exists X ∈ X such that X �1
P Y if and only if MILP problem

(26)–(28) has an optimal solution (λ∗, z∗) such that Ep̂[
∑m

j=1 λ
∗
jXj ] > Ep̂[Y ].

Proof. ‘⇒’ Assume there exists X =
∑m

j=1 λjXj ∈ X such that X �1
P Y . Since X �1

P Y, Theorem 4 implies

that there exists z ∈ {0, 1}n×n such that (z, λ) is a feasible solution to problem (26)–(28). Furthermore, since

¬(Y ∼1
P X) there must exists p∗ ∈ P, t∗ ∈ R such that (FX(t; p∗) < FY (t; p∗)), which implies Ep∗ [X − Y ] > 0.

Since p̂ belongs to the relative interior of conv(P ), there exists ε > 0 such that p′ = p̂ + ε(p̂ − p∗) ∈conv(P ).

Rearranging this gives

p̂ =
1

1 + ε
p′ +

ε

1 + ε
p∗.
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Hence, linearity of the expectation operator yields

Ep̂[X − Y ] =
n∑

i=1

p̂i(xi − yi) =
n∑

i=1

1
1 + ε

p′i(xi − yi) +
n∑

i=1

ε

1 + ε
p∗i (xi − yi) =

=
1

1 + ε︸ ︷︷ ︸
>0

Ep′ [X − Y ]
︸ ︷︷ ︸
≥0, since p′∈P

+
ε

1 + ε︸ ︷︷ ︸
>0

Ep∗ [X − Y ]
︸ ︷︷ ︸

>0

> 0,

which is equivalent to Ep̂[X] > Ep̂[Y ].

‘⇐’. Assume (λ∗, z∗) is an optimal solution to problem (26)–(28) such that Ep̂[
∑n

j=1 λ
∗
jXj ] > Ep̂[Y ]. Denote

X∗ =
∑m

j=1 λ
∗
jXj . Since the solution satisfies constraints (27)–(28) Theorem 4 implies X∗ �1

P Y . Furthermore,

since Ep̂[X∗] > Ep̂[Y ] we have ¬(Y �1
P X

∗). Together these imply X∗ �1
P Y . �

Assuming that the feasible asset weights λ ∈ Rm are defined by a single constraint (
∑

j λj = 1), the number

of constraints in MILP problem (26)–(28) is equal to 1 + n2 + nq, where q is the number of extreme points of

the set conv(P ). The number of decision variables is m+ n2, which includes m asset weights λj and n2 auxiliary

variables zik. The efficiency of the formulation can be improved by reducing the feasible region of the continuous

relaxation as small as possible without removing the integer optimal solutions. This is exemplified by Figure

5.2(a) presenting the feasible values that constraint (27) allows for the pair of decision variables xk =
∑m

j=1 λjxjk

and zik. Clearly, there are feasible solutions that are known a priori not to be optimal.

Figure 3: Figures (a) and (b) show in dark gray the feasible values of decision variables variables xk =
∑m
j=1 λjxjk and zik under

constraint (27) and constraints (30)–(31), respectively. The continuous relaxation of the feasible region is in light gray.

First, Definition 3 directly implies that if any realization of X is below the lowest realization of Y , i.e. y1,

then X does not strictly stochastically dominate Y . However, rather than introducing the additional constraint
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xk ≥ y1, k ∈ {1, ..., n}, we instead replace constraint (27) with

m∑

j=1

λjxjk ≥ ziky1 + (1− zik)yi ∀ i ∈ {1, ..., n}, k ∈ {1, ..., n}, (30)

which leads to an even smaller feasible region (cf. Figure 5.2(b)). For i = 1, constraint (30) yields xk ≥ y1, k ∈

{1, ..., n}, and hence there is no longer need for bookkeeping on which of the X’s state-specific returns fall below

y1. Thus, the decision variables z11, ..., z1n can be removed from the problem as well as constraint (28) for the

index i = 1.

Second, even if xk is above yi setting zik = 1 does not violate constraint (27) nor (30), but it can violate

constraint (28). If there is an optimal solution to problem (26)–(28) such that (xk, zik) = (x∗k, 1), where x∗k > yi,

then the solution (xk, zik) = (x∗k, 0) is also feasible (cf. Figure 5.2) and it has the same objective function value.

Hence, it may be beneficial to ensure that the variables zik are not set equal to one when xk is above yi. This can

be implemented with the additional constraint

m∑

j=1

λjxjk ≤ yizik + (1− zik)xk ∀ i ∈ {2, ..., n}, k ∈ {1, ..., n}, (31)

where xk = maxX∈X X(sk) = maxλ∈Λ

∑m
j=1 λjxjk is the maximum possible return in the kth state. This

parameter value can be readily solved a priori through linear programming although with the standard market

set Λ = {λ ∈ Rm |
∑

j λj = 1} the solution is trivial: xk = maxj xjk.

Third, recall that the states are indexed in an ascending order of the benchmark portfolio’s returns (cf.

equation (15)). Furthermore, constraint (28) requires that zik = 1 for each state k in which the portfolio return

xk =
∑m

j=1 λjxjk is strictly below that of the benchmark portfolio in state i. If this is the case, then xk < yi ≤ yi+1

which implies that also zi+1,k = 1. Hence, we may introduce the constraint

zik ≤ zi+1,k ∀ i ∈ {2, ..., n − 1}, k ∈ {1, ..., n} (32)

to problem (26)–(28) without removing any feasible integer solutions. With these three modifications MILP

problem (26)–(28) becomes

max
λ∈Λ

z∈{0,1}(n−1)×n

n∑

i=1

p̂i

m∑

j=1

λjxji (33)

m∑

j=1

λjxjk ≥ y1 ∀ k ∈ {1, ..., n} (34)

m∑

j=1

λjxjk ≥ y1zik + (1− zik)yi ∀ i ∈ {2, ..., n}, k ∈ {1, ..., n} (35)

m∑

j=1

λjxjk ≤ yizik + (1− zik)xk ∀ i ∈ {2, ..., n}, k ∈ {1, ..., n} (36)

n∑

k=1

zikpk ≤ FY (yi−1; p) ∀ i ∈ {2, ..., n}, p ∈ ext(conv(P )) (37)

zik ≤ zi+1,k ∀ i ∈ {2, ..., n − 1}, k ∈ {1, ..., n}. (38)
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Corollary 5. Let p̂ ∈ relint(conv(P )). There exists X ∈ X such that X �1
P Y if and only if MILP problem

(33)–(38) has an optimal solution (λ∗, z∗) such that Ep̂[
∑m

j=1 λ
∗
jXj ] > Ep̂[Y ].

Proof. Corollary 4 provides equivalence between the existence of a dominating portfolio and optimal objective

function value of MILP problem (26)–(28). Hence, to prove this corollary, it is sufficient to show the following

two results: (i) If (z1, λ) is a feasible solution to MILP problem (26)–(28), then there exists z2 ∈ {0, 1}(n−1)×n

such that (z2, λ) is a feasible solution to MILP problem (33)–(38), and (ii) if (z2, λ) is a feasible solution to MILP

problem (33)–(38), then there exists z1 ∈ {0, 1}(n×n) such that (z2, λ) is a feasible solution to problem (26)–(28).

Notice that solutions (z1, λ) and (z2, λ) yield equal objective function values, and hence the two results together

imply that (z1, λ) is an optimal solution to problem (26)–(28) if and only if (z2, λ) is an optimal optimal solution

to problem (33)–(38). In what follows we prove these two results.

(i) Assume (z1, λ) is a feasible solution to MILP problem (26)–(28) and denote K = {1, . . . , n} and I =

{2, . . . , n}. For i = 1, constraint (28) yields
∑n

k=1 z
1
1,kpk ≤ FY (y0; p) = 0, which implies that for any k ∈ K

z1
1,k = 0. In this case, constraint (27) reduces to

∑m
j=1 λjxjk ≥ y1, k ∈ K, and hence λ satisfies constraint (34).

Next we show that solution (z2, λ), where z2 ∈ {0, 1}(n−1)×n is defined as

z2
ik =






1 if
∑m

j=1 λjxjk < yi

0 if
∑m

j=1 λjxjk ≥ yi
, i ∈ I, k ∈ K, (39)

satisfies also constraints (35)–(38).

Constraint (35): Take any i ∈ I, k ∈ K. If z2
ik = 1, then the constraint reduces to

∑m
j=1 λjxjk ≥ y1, which is

equivalent constraint (34), which is satisfied. If z2
ik = 0, the constraint reduces to

∑m
j=1 λjxjk ≥ yi, which holds

by equation (39).

Constraint (36): Take any i ∈ I, k ∈ K. If z2
ik = 1, by equation (39)

∑m
j=1 λjxjk < yi, and the constraint

reduces to
∑m

j=1 λjxjk ≤ yi. If z2
ik = 0, the constraint reduces to

∑m
j=1 λjxjk ≤ xk = maxλ∈Λ

∑m
j=1 λjxjk, which

holds for any λ ∈ Λ.

Constraint (37): Notice that if z2
ik = 1 for some i ∈ I, k ∈ K, then

∑m
j=1 λjxjk < yi. Since z1

ik satisfies

constraint (27), z1
ik = 1 must hold. Hence, z2

ik ≤ z1
ik for all i ∈ I, k ∈ K. Now evaluating the left-hand-side of

constraint (37) for any i ∈ I gives
∑n

k=1 z
2
ikpk ≤

∑n
k=1 z

1
ikpk ≤ FY (yi; p) since z1 satisfies (28).

Constraint (38): If z2
i,k = 1 for some i ∈ I \ {n}, k ∈ K, then (39) implies

∑m
j=1 λjxjk < yi. By definition,

yi ≤ yi+1, and hence (39) implies that z2
i+1,k = 1. Thus z2

i,k ≤ z
2
i+1,k for all i ∈ I \ {n}, k ∈ K.

(ii) Assume (z2, λ) is a feasible solution to MILP problem (33)–(38). Define z1 ∈ {0, 1}n×n such that

z1
ik =






0 if i = 1, k ∈ K

z2
ik if i ∈ I, k ∈ K

. (40)

The solution (z1, λ) satisfies constraint (27) for i = 1 and k ∈ K since

m∑

j=1

λjxjk +Mz1
1,k =

m∑

j=1

λjxjk ≥ y1,

27



where the last inequality holds since λ satisfies (34). This solution also satisfies constraint (27) for any i ∈ I and

k ∈ K since

yi −Mz1
ik = yi −Mz2

ik ≤ yi − (yi − y1)
︸ ︷︷ ︸

<M

z2
ik = y1z

1
ik + (1− z2

ik)yi ≤
m∑

j=1

λjxjk,

where the last inequality holds since (z2, λ) satisfies (35). The solution satisfies constraint (28) since
∑n

k=1 z
1
0,kpk =

0 and for any i ∈ I
n∑

k=1

z1
ikpk =

n∑

k=1

z2
ikpk ≤ FY (yi−1; p),

since z2 satisfies (37). �
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Dentcheva, D., & Ruszczyński, A. (2010). Robust stochastic dominance and its application to risk-averse optimization.

Mathematical Programming , 123 , 85–100.
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