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Jiapeng Liua,∗, Mi losz Kadzińskib, Xiuwu Liaoa, Xiaoxin Maoa, Yao Wanga

aCenter of Intelligent Decision-making and Machine Learning, School of Management, Xi’an Jiaotong University, Xi’an, 710049,

Shaanxi, P.R. China
bInstitute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland

Abstract

We present a preference learning framework for multiple criteria sorting. We consider sorting procedures apply-

ing an additive value model with diverse types of marginal value functions (including linear, piecewise-linear,

splined, and general monotone ones) under a unified analytical framework. Differently from the existing sorting

methods that infer a preference model from crisp decision examples, where each reference alternative is assigned

to a unique class, our framework allows to consider valued assignment examples in which a reference alternative

can be classified into multiple classes with respective credibility degrees. We propose an optimization model

for constructing a preference model from such valued examples by maximizing the credible consistency among

reference alternatives. To improve the predictive ability of the constructed model on new instances, we employ

the regularization techniques. Moreover, to enhance the capability of addressing large-scale datasets, we intro-

duce a state-of-the-art algorithm that is widely used in the machine learning community to solve the proposed

optimization model in a computationally efficient way. Using the constructed additive value model, we deter-

mine both crisp and valued assignments for non-reference alternatives. Moreover, we allow the Decision Maker

to prioritize importance of classes and give the method a flexibility to adjust classification performance across

classes according to the specified priorities. The practical usefulness of the analytical framework is demonstrated

on a real-world dataset by comparing it to several existing sorting methods.

Keywords: Decision analysis, Multiple criteria sorting, Preference learning, Additive value function, Valued

decision examples, Class priority

1. Introduction

With a rapid development of information technology, organizations have accumulated and stored a vast quantity

of data from various sources, such as manufacturing, marketing, finance, tourism, agriculture, transportation,

or ecosystem. The availability of data resources helps organizations mine useful information and make better

informed decisions, including optimizing operations, deepening customers engagement, preventing threats and

fraud, and capitalizing on new sources of revenue. Many of such decisions concern classification of a set of

alternatives into pre-defined and preference-ordered classes according to their evaluations on multiple criteria.

Such a scenario is of interest in sorting or ordinal classification problems [10, 15]. For example, in the field of

credit rating, financial institutions predict the credit risk of a prospective debtor (e.g., an individual, a company,

or a government) and assign a grade (e.g., from AAA to B- in Standard & Poor’s) to each debtor, where

grades are intended to represent probability of default. Another example comes from medical diagnostics, where
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doctors evaluate physical conditions of patients and classify them into groups representing different disease grades

according to the observed symptoms.

The practical significance of sorting problems has motivated researchers to develop multiple streams of meth-

ods for addressing such problems, including (a) value-driven methods (e.g., [10, 15, 17, 18]), (b) outranking-based

methods (e.g., [1, 5, 7, 27, 31]), and (c) rule induction-oriented models (e.g., [14, 20]). In this paper, we focus on

the value-driven sorting procedure, which employs a value function as the preference model and assigns a numer-

ical score to each alternative by aggregating its performances on different criteria. The value function model is

widely used and highly appreciated by the Multiple Criteria Decision Aiding (MCDA) community due to its rela-

tively easy computation and intuitive interpretation [17]. In the sorting context, the assignment of an alternative

is usually determined by comparing its value to thresholds that explicitly delimit consecutive classes (threshold-

based sorting procedure, see [10]) or reference alternatives that implicitly characterize each class (example-based

sorting procedure, see [15]).

Under the assumption on the preferential independence of criteria, the value of an alternative can be expressed

as the sum of marginal value functions on each criterion [22, 29], and such a preference model is called additive

value function. There are various types of additive value models for characterizing the preferences over alternatives

on the individual criteria. A basic form of an additive-based value model is composed of linear marginal value

functions, where all marginal values are defined as linear functions on the performance ranges of individual

criteria. Such a value function can be seen as a simple weighted average aggregation model and is relatively easy

to explain to a non-experienced Decision Maker (DM). However, the ability of such a value function for addressing

complex decision structure is rather limited due to incorporating an assumption on the linear form. Another

way of modeling marginal values is to use piecewise-linear marginal value functions, which have been used in the

UTADIS family [10]. The advantage of using piecewise-linear marginal value function consists in the possibility

of reflecting various decision policies such as risk aversion or risk seeking attitude. This capability enhances its

appropriateness and practical usefulness for a wide range of applications [23]. Nevertheless, such a type of value

function is criticized for its lack of smoothness, which may cause a sudden change in slope at breakpoints and

hence limits their interpretability in some contexts [29]. To overcome the shortcoming of piecewise-linear marginal

value functions, [29] proposed to use cubic splines for constructing marginal value functions. A cubic spline is

a set of polynomials of degree three, which is continuous and has continuous first- and second-order derivatives

at breakpoints [16, 29]. The continuity character of splined marginal value functions makes them advantageous

in terms of interpreting human preferences. Another appreciated model is the general monotone value function,

which is defined by marginal values at characteristic points corresponding to all unique performance levels. Such

a preference model makes only the monotonicity assumption on general shape of marginal value functions, and

therefore proves to be the most flexible value function model to represent human preferences [19].

This paper introduces a new analytical framework for multiple criteria sorting problems. We consider linear,

piecewise-linear, splined, and general monotone value functions under a unified framework, in which the DM is

allowed to refer to a desired type of value function. We aim to learn an additive value model from a given set

of holistic decision examples (also called training samples) composed of a set of reference alternatives and their

desired assignments. The latter ones could come from past decisions provided by the DM, such as historical

credit rating reports or past patient classification records. Differently from the existing sorting methods that

consider crisp assignments, where each reference alternative is definitely assigned to a unique class, our framework

allows for taking into account valued decision examples, in which each reference alternative can be classified

into multiple classes with respective credibility degrees [3]. Such an imprecise assignment has many potential

applications in business and management (e.g., funds granting, credit approval, medical diagnostics), when the

DM is unconfident about the desired assignments of alternatives or the collected information is not fully credible.

To learn a value function model from valued decision examples, we investigate the preference relation for any
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pair of reference alternatives by considering each alternative’s possible assignment outcome, and then propose an

original optimization model to simultaneously account for different objectives with respective credibility degrees

concerning each possible preference relation for a pair of alternatives. The targets involved in the proposed

optimization model definitely enhance value difference between a pair of reference alternatives such that one

alternative is always assigned to a class better than the other, and/or equalize values of a pair of reference

alternatives, with a certain credibility, such that they could be classified into the same class. In this way, the

constructed preference model highlights the most certain part in the valued decision examples, and keeps a vague

preference relation for a pair of alternatives among which one cannot indicate a better one.

In this work, learning a value function model from valued decision examples is formulated within the regu-

larization framework by considering both the model’s fitting ability and its complexity simultaneously. In the

context of valued assignment, the fitting ability of a value function model is measured by accounting for the credi-

ble difference between the comprehensive values for all pairs of reference alternatives. In other words, a “best-fit”

value function model should be as credibly consistent with the preference relations between reference alternatives

as possible. However, a value function model that “best-fits” the given decision examples can be very complex

and may encounter the over-fitting problem, that is, the constructed model fits the decision examples well but

has poor generalization performance on new instances. For a comprehensive discussion on this issue, one can refer

to [23]. To improve the predictive ability of a value function model, [6, 11, 23] introduce regularization terms

for controlling the model’s complexity and deriving a simple value function model while maintaining its fitting

ability. From the viewpoint of the statistical learning theory [33, 25], a proper complexity control contributes

to avoiding the over-fitting problem and improving the model’s generalization ability. In this paper, as the an-

alytical framework is applicable to linear, piecewise-linear, splined, and general monotone value functions, we

define the complexity measure for each type of value function model and formulate the learning problem in the

unified regularization framework. In this way, the constructed value function model makes a trade-off between the

fitting ability and the model’s complexity, and improves its generalization ability on new instances. Apart from

the methodological advance from the statistical learning theory, we also introduce a state-of-the-art algorithm

named the alternating direction method of multipliers (ADMM) [2] to address the learning problem and improve

computational efficiency for dealing with large-scale datasets. Using ADMM, the learning problem is solved by

decomposing the original problem into a series of small-size optimization problems, which can be easily addressed

without extraordinary efforts. Moreover, the implementation of ADMM for the learning problem is well suited

to distributed optimization, and has the advantage of parallel computation.

Once a value function model is constructed from the given valued decision examples, we can use the con-

structed preference model to predict the assignment for a new alternative. In this paper, we provide two types of

assignments in this context: crisp and valued. The crisp assignment specifies a class to which the alternative can

be assigned so that the greatest credible consistency between this alternative and all reference alternatives would

be obtained. The valued assignment associates a credibility degree with each class for the alternative which is

derived by accounting for the credible consistency between this alternative and all reference alternatives when

this alternative is put in each class.

In addition, we consider a complementary component in the analytical framework which allows to adjust

classification performance across classes. The appeal of such a component stems from the fact that in may real-

world applications the DM may want to prioritize the importance for classes. For example, in medical diagnostics

where a doctor aims to classify patients into the “healthy” and “unhealthy” groups, the “unhealthy” group is prior

to the “healthy” group although the latter is preferred to the former. This is due to that the doctor usually hopes

to achieve as high classification performance as possible on the “unhealthy” group, because incorrect prediction

will delay necessary treatment for patients. On the other hand, the classification performance on the “healthy”

group is relatively less important, because classifying a healthy person as unhealthy only results in more medical
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examination for her/him. To implement flexible adjustment of classification performance across classes, we require

the DM to specify a priority ranking of all classes, rather than precise values of priorities for each class, which

therefore is less demanding in terms of the required cognitive effort. Then, we discuss a method for adjusting

a classification performance across classes according to the specified priority ranking. This method pays more

attention to classes with greater priorities and enhances the credible consistency between reference alternatives

that can be assigned to these classes and other reference alternatives so that the classification performance on

these classes is improved.

We validate the classification performance of four variants of the analytical framework using linear, piecewise-

linear, splined, and general monotone value functions on a real-world dataset in terms of Top-N accuracies and

Kendall’s tau coefficient. Specifically, we examine these measures achieved by the four variants on valued decision

examples with different credibility distribution which are generated by simulated value functions with different

complexity. Then, we investigate the ability of the proposed method for adjusting classification performance

across classes according to the specified priority ranking of the classes.

The remainder of this paper is organized in the following way. In Section 2, we present the analytical

framework for learning diverse types of value function models from valued decision examples and give the flexible

method for adjusting classification performance across classes. In Section 3, we apply the analytical framework

to a real-world dataset. Section 4 concludes and discusses future work for this study.

2. The analytical framework for multiple criteria sorting problems

2.1. Additive value functions composed of linear, piecewise-linear, splined and general marginal value functions

Let us consider a decision problem regarding m alternatives A = {a1, ..., am} evaluated in terms of n criteria

G = {g1, ..., gn}. Each criterion gj ∈ G is used to assess an alternative a ∈ A from a certain perspective, and the

performance of a on gj is denoted by gj(a). All criteria are assumed to be monotone (gain- or cost-type), i.e., for

any alternative a, either the greater gj(a), the better is a on gj (in case of gain-type criteria), or the less gj(a),

the better is a on gj (in case of cost-type criteria). For dealing with non-monotonic criteria, see [12, 23, 28]. For

the sake of simplicity, but without loss of generality, we suppose that all criteria are of gain-type and that the

performances on criteria have a monotone increasing direction of preferences. Let Xj = [αj , βj ] be the bounded

interval of the performances on criterion gj , where αj and βj are the worst and best performances, respectively.

For any alternative a ∈ A, we shall use a value function in the following additive form as the preference model

to aggregate the performances of a on multiple criteria [22]:

U (a) =
n∑

j=1

uj (gj (a)),

where uj (·), j = 1, ..., n, are monotone non-decreasing marginal value functions. The value function assigns

a numerical score to each alternative, which is used to represent its comprehensive value and impose a preference

relation on the set of alternatives.

The analytical framework introduced in this paper admits various types of marginal value functions including

(a) linear, (b) piecewise-linear, (c) splined shaped, and (d) general monotone ones. In case marginal value

functions are assumed to be linear, uj (·), j = 1, ..., n, can be constructed as follows:

uj (x) = wj
x− αj

βj − αj
, x ∈ [αj , βj ] ,

where wj = uj (βj) is the maximal share of each criterion gj in the comprehensive value and can be understood
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as a trade-off weight of gj . To normalize the value function within the interval [0,1], we usually require

wj ≥ 0, j = 1, ..., n,
n∑

j=1

wj = 1.







ELINEAR
BASE

Note that, for linear marginal value functions uj (·), j = 1, ..., n, the vector θ = (w1, ..., wn)T is the only parameter

to be estimated. In particular, the comprehensive value of alternative a can be formulated with respect to θ as

U (a) = θ
TV (a), where V (a) =

(
g1(a)−α1

β1−α1
, ..., gn(a)−αn

βn−αn

)T

.

In the piecewise-linear case, the performance scale [αj , βj] on each criterion gj , j = 1, ..., n, is divided into

a number of sub-intervals, and marginal value functions uj (·) are assumed to be linear over each sub-interval.

Suppose that the performance scale [αj , βj ] on criterion gj is divided into γj equal-length sub-intervals
[
x0
j , x

1
j

]
,

[
x1
j , x

2
j

]
, ...,

[

x
γj−1
j , x

γj

j

]

, where each breakpoint is given by xk
j = αj + k

γj
(βj − αj), k = 0, 1, ..., γj. Such

a way of defining sub-intervals is easy to implement (for other techniques, see [19]). Then, the marginal value

corresponding to the performance gj (a) ∈
[
xk
j , x

k+1
j

]
, k = 0, 1, ..., γj − 1, is defined with linear interpolation:

uj (gj (a)) = uj

(
xk
j

)
+

gj (a)− xk
j

xk+1
j − xk

j

(
uj

(
xk+1
j

)
− uj

(
xk
j

))
.

Therefore, once the marginal values at breakpoints (i.e., uj

(
x0
j

)
= uj (αj), uj

(
x1
j

)
, ..., uj

(
x
γj

j

)
= uj (βj)) are

estimated, we can fully specify piecewise-linear marginal value functions uj (·), j = 1, ..., n. Let ∆uk
j = uj

(
xk
j

)
−

uj

(
xk−1
j

)
, k = 1, ..., γj, and then the marginal value corresponding to the performance gj (a) ∈

[
xk
j , x

k+1
j

]
,

k = 0, 1, ..., γj−1, can be reformulated as uj (gj (a)) =
k∑

t=1
∆ut

j +
gj(a)−xk

j

xk+1
j

−xk
j

∆uk+1
j . To normalize the value function

within the interval [0,1], one can consider the following linear constraints:

∆uk
j > 0, k = 1, ..., γj, j = 1, ..., n,

n∑

j=1

γj∑

k=1

∆uk
j = 1,







EPIECEWISE - LINEAR
BASE

where
γj∑

k=1

∆uk
j is the maximal share of marginal value uj (·) in the comprehensive value, which can be inter-

preted as a trade-off weight of marginal value function uj (·). Let θ =
(
θ
T
1 , ..., θ

T
n

)T
, θj =

(
∆u1

j , ...,∆u
γj

j

)T

for j = 1, ..., n, and V (a) =
(

V1(a)
T
, ...,Vn(a)

T
)T

, Vj (a) =




1, ..., 1,
︸ ︷︷ ︸

kj(a)

gj(a)−x
kj(a)

j

x
kj(a)+1

j
−x

kj(a)

j

, 0, ..., 0
︸ ︷︷ ︸

γj−kj(a)−1






T

where

kj (a) ∈ {0, 1, ..., γj − 1} such that gj (a) ∈
[

x
kj(a)
j , x

kj(a)+1
j

]

, for j = 1, ..., n. Then, in terms of θ and V (a),

the comprehensive value of a can be formulated as U (a) = θ
TV (a). Note that piecewise-linear marginal value

functions with a sufficiently large number of sub-intervals can approximate any non-linear value function [23].

As we use piecewise-linear marginal value functions to approximate the actual value function, rather than making

assumptions on its form, piecewise-linear marginal value functions can be seen as a non-parametric method for

modeling preferences.

One noticeable disadvantage of piecewise-linear marginal value functions consists in the lack of smoothness,

which causes a sudden change in slope at breakpoints and hence limits their interpretability in some contexts [29].

An alternative way of constructing “natural” marginal value function is to use cubic smoothing spline, which is

continuous and has continuous first- and second-order derivatives at breakpoints [16, 29]. Let the performance
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scale [αj , βj ] on each criterion gj , j = 1, ..., n, be divided into γj equal-length sub-intervals
[
x0
j , x

1
j

]
,
[
x1
j , x

2
j

]
,

...,
[

x
γj−1
j , x

γj

j

]

, where xk
j = αj + k

γj
(βj − αj), k = 0, 1, ..., γj. A cubic smoothing splined marginal value

function uj (·) is a piecewise-polynomial of order three, where the k-th polynomial over the sub-interval
[
xk−1
j , xk

j

]
,

k = 1, ..., γj has the following form:

Sk
j (x) = sk,0j + sk,1j x + sk,2j x2 + sk,3j x3, x ∈

[
xk−1
j , xk

j

]
,

where sk,0j , sk,1j , sk,2j and sk,3j are parameters that need to be determined. Then, marginal value function uj (·)

can be formulated as:

uj (x) =

γj∑

k=1

I
(
x ∈

[
xk−1
j , xk

j

])
Sk
j (x),

where I
(
x ∈

[
xk−1
j , xk

j

])
is an indicator function defined as follows:

I
(
x ∈

[
xk−1
j , xk

j

])
=

{

1, x ∈
[
xk−1
j , xk

j

]
,

0, x /∈
[
xk−1
j , xk

j

]
.

To ensure the continuity up to the second-order derivative and the monotonicity and normalization of cubic

smoothing splined marginal value functions uj (·), j = 1, ..., n, we can consider the following linear constraints:

(LC1) Sk
j

(
xk
j

)
= Sk+1

j

(
xk
j

)
, k = 1, ..., γj − 1, j = 1, ..., n,

(LC2)
dSk

j (x)

dx

∣
∣
∣
∣
∣
x=xk

j

=
dSk+1

j (x)

dx

∣
∣
∣
∣
∣
x=xk

j

, k = 1, ..., γj − 1, j = 1, ..., n,

(LC3)
d2Sk

j (x)

dx2

∣
∣
∣
∣
∣
x=xk

j

=
d2Sk+1

j (x)

dx2

∣
∣
∣
∣
∣
x=xk

j

, k = 1, ..., γj − 1, j = 1, ..., n,

(LC4) Sk
j

(
xk
j

)
> 0, k = 0, 1, ..., γj, j = 1, ..., n,

(LC5)
dSk

j (x)

dx

∣
∣
∣
∣
∣
x=xk

j

> 0, k = 0, 1, ..., γj, j = 1, ..., n,

(LC6) S1
j (αj) = 0, j = 1, ..., n,

(LC7)
n∑

j=1

S
γj

j (βj) = 1,







ESPLINE
BASE

where constraints (LC1), (LC2), (LC3) guarantee the continuity of uj (·) and their first- and second-order

derivatives at breakpoints, respectively. Constraints (LC4) and (LC5) ensure the non-negativity of piecewise-

polynomials Sk
j (·) and their first-order derivatives at breakpoints, respectively, which are used to make uj (·)

non-negative and monotone non-decreasing at breakpoints. Note that constraints (LC4) and (LC5) are not suf-

ficient conditions for deriving non-negative monotone non-decreasing marginal value functions over the whole

performance scales, since they only work for breakpoints. However, in case the non-negativity or monotone

non-decreasing properties do not hold, we can divide the performance scales into more refined sub-intervals and

incorporate more constraints until deriving desired marginal value functions. This method is easy to implement

without more dedicated techniques. Another possible way to generate non-negative polynomials is to use semidef-

inite programming models (refer to [29] for more details). Constraints (LC6) and (LC7) normalize marginal value

functions, where S
γj

j (βj) can be understood as the trade-off weight of marginal value function uj (·) in the compre-

hensive value. Analogously to piecewise-linear marginal value function, cubic smoothing splined marginal value
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function is also a non-parametric model for modeling preferences. Let θ =
(
θ
T
1 , ..., θ

T
n

)T
, θj =

(

θ
1T
j , ..., θ

γjT
j

)T

for j = 1, ..., n, θ
k
j =

(

sk,0j , sk,1j , sk,2j , sk,3j

)T

for k = 1, ..., γj, and V (a) =
(

V1 (a)
T
, ...,Vn (a)

T
)T

, Vj (a) =

(

V1
j (a)

T
, ...,V

γj

j (a)
T
)T

for j = 1, ..., n, Vk
j (a) =







(

1, gj (a) , (gj (a))
2
, (gj (a))

3
)T

, if gj (a) ∈
[
xk−1
j , xk

j

]
,

(0, 0, 0, 0)
T
, if gj (a) /∈

[
xk−1
j , xk

j

]
,

for k = 1, ..., γj, and then the comprehensive value of a can be formulated as U (a) = θ
TV (a).

When it comes to general monotone value function, it is a very flexible preference model as it considers

all monotone non-decreasing marginal value functions (rather than linear, piecewise-linear, or splined shaped

marginal value functions) and does not involve any arbitrary or restrictive parametrization [4, 15]. Let χj =

{x ∈ R | ∃a ∈ A such that gj (a) = x} and x0
j = αj , x

1
j , ..., x

mj

j = βj be ordered performance values of χj , x
k
j <

xk+1
j , k = 0, 1, ...,mj−1, mj = |χj | 6 m. In defining general monotone marginal value functions uj (·), j = 1, ..., n,

all marginal values corresponding to characteristic points xk
j ∈ χj , k = 0, 1, ...,mj, j = 1, ..., n, are parameters

to be determined by considering the following linear constraints which are used to ensure monotonicity and

normalization:
uj

(
xk
j

)
6 uj

(
xk+1
j

)
, k = 0, 1, ...,mj − 1, j = 1, ..., n,

uj (αj) = 0, j = 1, ..., n,
n∑

j=1

uj (βj) = 1,







EGENERAL
BASE

where uj (βj) represents the trade-off weight of marginal value function uj (·) in the comprehensive value. Since

we only make the monotonicity assumption on general shape of marginal value functions, it can be deemed as a

non-parametric preference model [30]. Let θ =
(
θ
T
1 , ..., θ

T
n

)T
, θj =

(
uj

(
x0
j

)
, ..., uj

(
x
mj

j

))T
for j = 1, ..., n, and

V (a) =
(

V1(a)
T
, ...,Vn(a)

T
)T

, Vj (a) =
(
v0j (a) , ..., v

mj

j (a)
)T

for j = 1, ..., n, vkj (a) =

{

1, if gj (a) = xk
j ,

0, if gj (a) 6= xk
j ,

for k = 0, 1, ...,mj. Then, the comprehensive value of a can be formulated as U (a) = θ
TV (a).

To sum up, for any type of the considered value functions in the above, the comprehensive value of a can

be written in a linear form U (a) = θ
TV (a), where θ is the intrinsic character of the employed value function

and irrelevant for an alternative, while V (a) depends on the performances of the corresponding alternative a

on multiple criteria. In this perspective, we use a linear model to approximate preferences, although the actual

value function model could be non-linear.

2.2. Constructing additive value function model from valued decision examples

We aim to construct an additive value function model from a given set of decision examples. In the unified

analytical framework, the constructed additive value model can be composed of any type of linear, piecewise-

linear, splined, or general marginal value functions introduced in Section 2.1. In contrast to traditional sorting

problems, where each reference alternative is assigned precisely to only one decision class, the sorting problem

considered in this study involves a set of valued decision examples, each of which assigns a reference alternative to

more than one class with respective credibility degrees. Let us use the following notation to describe the considered

sorting problem: CL = {Cl1, Cl2, ..., Clq} is a set of predefined and preference-ordered decision classes, such that

Cls+1 is preferred to Cls (denoted by Cls+1 ≻ Cls), s = 1, ..., q − 1. Suppose that the set of alternatives A can

be divided into two subsets – the reference one AR and the non-reference one AT . For any reference alternative

a ∈ AR, it could be assigned to multiple classes, and we use a vector σ (a) = (σ1 (a) , ..., σq (a))
T

to represent the

credibility degrees for each possible assignment, i.e., a is assigned to class Cls with a credibility degree σs (a),

s = 1, ..., q. Note that for normalization we require
q∑

s=1
σs (a) = 1 and σs (a) > 0 for s = 1, ..., q. Moreover,

a crisp decision example, which is considered in traditional sorting problems, is a particular case of a valued

7



decision example, where there exists s ∈ {1, ..., q} such that σs (a) = 1, and σs′ (a) = 0 for s′ ∈ {1, ..., q},

s′ 6= s. The assignment for each non-reference alternative a ∈ AT needs to be determined using the constructed

preference model.

2.2.1. Dealing with valued assignment examples

For a general sorting problem, we often refer to a sorting rule called example-based sorting procedure given by

[15], which is described as follows.

Definition 1. For any pair of alternatives ai and aj , a value function U (·) is said to be consistent with the

assignments of ai and aj iff:

U (ai) > U (aj)⇒ Cl (ai) % Cl (aj) , (1)

where Cl (ai) , Cl (aj) ∈ CL are the assignments of ai and aj , respectively, and % means “at least as good

as”. Observe that implication (1) is equivalent to:

Cl (ai) ≻ Cl (aj)⇒ U (ai) > U (aj) . (2)

Definition 1 says that “if alternative ai has a value which is not less than for alternative aj , the assignment of

ai should be at least as good as the assignment of aj”, or equivalently, “if the assignment of ai is better than

the assignment of aj , the value of ai should be greater than the value of aj”. Thus, for any pair of reference

alternatives ai, aj ∈ AR such that ai is assigned to a class better than aj , we can infer a value function by

maximizing the difference between U (ai) and U (aj) (i.e., U (ai) − U (aj)). The aim of doing so is two-fold: on

the one hand, when there exists at least one value function U (·) compatible with the assignments of ai and aj

(i.e., U (ai)−U (aj) > 0), maximizing U (ai)−U (aj) highlights the difference between U (ai) and U (aj); on the

other hand, when no such compatible value function exists (i.e., U (ai) − U (aj) 6 0 for all U (·)), maximizing

U (ai)− U (aj) amounts to minimizing the inconsistency level between U (ai) and U (aj).

In addition to the above requirements for pairs of reference alternatives that come from distinct classes,

another target to be accounted for when inferring a value function model consists in that, the values of reference

alternatives from the same class should be as concentrated as possible, so that consecutive classes could be clearly

delimited. This goal can be implemented by minimizing the absolute difference between U (ai) and U (aj) (i.e.,

|U (ai)− U (aj)|) for pairs of reference alternatives ai, aj in the same class. This target is in line with the idea

of maximizing the distances of the correctly classified alternatives from the class thresholds in a threshold-based

sorting procedure (e.g., the UTADIS II method [10]).

In the context of valued decision examples, as a reference alternative could be assigned to multiple classes

with different credibility degrees, we can account for the above two targets for any pair of reference alternatives

by investigating all their desired assignments and attaching each of them with a certain credibility.

Definition 2. For any pair of reference alternatives ai, aj ∈ AR, the credibility degrees for the facts that “ai

is assigned to a better class than aj”, “both ai and aj are assigned to same class”, and “ai is assigned to

a worse class than aj” are defined as follows, respectively:

D≻ (ai, aj) =

q
∑

s=2

s−1∑

r=1

σs (ai)σr (aj),

D= (ai, aj) =

q
∑

s=1

σs (ai)σs (aj),

D≺ (ai, aj) =

q−1
∑

s=1

q
∑

r=s+1

σs (ai)σr (aj).

8



Coefficients D≻ (ai, aj), D= (ai, aj), and D≺ (ai, aj) aggregate the credibility degrees σs (ai) and σr (aj) for all

possible cases Cls ≻ Clr, Cls = Clr, and Cls ≺ Clr, respectively. Note that, for D≻ (ai, aj), D= (ai, aj), and

D≺ (ai, aj), the multiplicative form σs (ai)σr (aj) is applied, because the two events “alternative ai is assigned to

class Cls with a credibility degree σs (ai)” and “alternative aj is assigned to class Clr with a credibility degree

σr (aj)” are independent. With the credibility degrees for the comparison between the possible assignments of ai

and aj , we can consider to minimize the following objective for inferring a value function model:

ξ (ai, aj) = −D≻ (ai, aj) (U (ai)− U (aj)) + D= (ai, aj) |U (ai)− U (aj)|+ D≺ (ai, aj) (U (ai)− U (aj)) .

Specifically, minimizing ξ (ai, aj) aims to maximize U (ai)− U (aj) with the credibility degree D≻ (ai, aj) and

minimize |U (ai)− U (aj)| with the credibility degree D= (ai, aj) as well as U (ai)− U (aj) with the credibility

degree D≺ (ai, aj). Note that we minimize |U (ai)− U (aj)| rather than (U (ai)− U (aj))
2
, for the case that both

ai and aj are assigned to the same class, as in this way we keep all considered targets in the same magnitude.

For any pair ai, aj ∈ AR, it is easy to verify that ξ (ai, aj) = ξ (aj , ai). Moreover, ξ (ai, aj) has the following two

properties.

Property 1. For any pair of reference alternatives ai, aj ∈ AR, if there exists s, s′ ∈ {1, ..., q} such that s > s′,

and σr (ai) > 0 for r = s, ..., q, and σr (ai) = 0 for r = 1, ..., s − 1, and σr (aj) = 0 for r = s′, ..., q, and

σr (aj) > 0 for r = 1, ..., s′ − 1, then minimizing ξ (ai, aj) amounts to maximizing U (ai)− U (aj) definitely

as D≻ (ai, aj) = 1, D= (ai, aj) = 0 and D≺ (ai, aj) = 0.

Property 2. For any pair of reference alternatives ai, aj ∈ AR, if σ (ai) = σ (aj), minimizing ξ (ai, aj) includes

minimizing |U (ai)− U (aj)| with a certain credibility degree D= (ai, aj) =
q∑

s=1
σs(ai)

2
. In particular, if

there exists s, s′ ∈ {1, ..., q} such that s 6 s′, and σr (ai) = 1/(s′ − s + 1) for r = s, ..., s′, and σr (ai) = 0

for r = 1, ..., s−1, s′+1, ..., q, then the credibility degree D= (ai, aj) for minimizing |U (ai)− U (aj)| becomes

1/(s′ − s + 1) and such a value increases as s′ − s decreases. In an extreme case where s = s′ (i.e., both ai

and aj are assigned to a unique class), minimizing ξ (ai, aj) amounts to minimizing |U (ai)− U (aj)| with

the credibility degree D= (ai, aj) = 1.

Property 1 states that, if the assignment of alternative ai is unanimously better than the assignment of alternative

aj (without overlap of non-zero credibility degrees), minimizing ξ (ai, aj) is equal to maximizing U (ai)− U (aj)

completely credibly. Property 2 reveals that, for a pair of alternatives ai and aj that have the same distribution

of credibility degrees for each class, the more concentrated the distribution is, the more credible it is to minimize

|U (ai)− U (aj)|. Particularly, if both ai and aj are assigned to a unique class definitely, minimizing ξ (ai, aj) is

equal to minimizing |U (ai)− U (aj)| completely credibly. Therefore, minimizing ξ (ai, aj) accounts for not only

differentiating the values of ai and aj for the case that ai is always assigned to a better class than aj , but also

equalizing the values of ai and aj for the case that both ai and aj are assigned to a unique class definitely. Such

an observation derived from Property 1 and 2 confirms the appropriateness of minimizing ξ (ai, aj) for inferring

a value function model.

2.2.2. Regularization

Minimizing ξ (ai, aj) for all pairs of reference alternatives ai, aj ∈ AR can be seen as constructing a preference

model that can fit the valued decision examples as confidently as possible. Besides the consideration of the

model’s fitting ability, we also need to account for the complexity of the preference model. As suggested by the

statistical learning theory [11, 23], a proper complexity control contributes to avoiding the over-fitting problem in

which the constructed preference model fits the decision examples well but has poor generalization performance

on non-reference alternatives. Thus, in this study, we also incorporate the regularization techniques into the

9



preference learning procedure to address the trade-off between the preference model’s fitting performance and

complexity control so that the constructed preference model would have good generalization performance and be

robust to the noise in the decision examples. The basic idea is to construct a value function model that is as

“simple” as possible while maintaining its fitting performance on decision examples. As we consider four types

of marginal value functions in the framework, we will discuss how to define the complexity measure for them

separately.

For the case of linear marginal value function, defining the complexity measure is relatively “simpler” than

for the piecewise-linear, splined, and general monotone marginal value functions, since each linear marginal value

function has only one parameter wj to estimate. In the MCDA context, since all criteria contained in a consistent

family are relevant to the decision problem, we do not hope any criterion has an overwhelming weight than others

[23]. Therefore, the complexity control of an additive value function can be implemented by minimizing the sum

of squares of wj , i.e.:

ΩLINEAR (U) = C

n∑

j=1

w2
j ,

where C > 0 is a constant to establish the trade-off between the complexity control and the fitting ability.

Minimizing ΩLINEAR (U) can be seen as penalizing the square of the L2 norm of the weight vector. According to

the statistical learning theory [16, 25], the L2 norm can regularize the weights to be smooth across criteria, thus

avoiding some criterion having overwhelming weights.

When it comes to piecewise-linear marginal value function, the complexity measure has been defined by [23]

as the smoothness of this function, which can be quantified as the variations of slope at breakpoints as follows:

ΩPIECEWISE - LINEAR (U) = C1

n∑

j=1

( γj∑

t=1

∆ut
j

)2

+ C2

n∑

j=1

γj−1
∑

t=1

(

γj
(
∆ut+1

j −∆ut
j

)

βj − αj

)2

,

where C1, C2 > 0 are two constants to make trade-off between the complexity control and the fitting ability, and
γj∑

t=1
∆ut

j is the trade-off weight of marginal value function uj (·) in the comprehensive value, and
γj(∆ut+1

j
−∆ut

j)
βj−αj

measures the variation of slope of marginal value function uj (·) at breakpoint xt
j . In this way, we not only

avoid generating some marginal value functions that have overwhelming weights, but also pursue marginal value

functions that are as linear as possible.

When using splined marginal value function, the basic idea to control its complexity is to add a smoothing

term that penalizes functions that are “too wiggly”. This can be performed by penalizing the curvature in the

function [16], i.e.:

ΩSPLINE (U) = C1

n∑

j=1

(
S
γj

j (βj)
)2

+ C2

n∑

j=1

∫ βj

αj

(
d2uj (x)

dx2

)2

dx

= C1

n∑

j=1

(
S
γj

j (βj)
)2

+ C2

n∑

j=1

γj∑

k=1

∫ xk
j

xk−1
j

(

d2Sk
j

dx2

)2

dx,

where C1, C2 > 0 are two constants to take into account the trade-off between the complexity control and the

fitting ability, and S
γj

j (βj) is the trade-off weight of marginal value function uj (·) in the comprehensive value,

and
n∑

j=1

γj∑

k=1

∫ xk
j

xk−1
j

(
d2Sk

j

dx2

)2

dx is used to avoid generating marginal value functions that are too wiggly over the

performance scales.

As for general monotone marginal value function, we prefer functions that increase stably over the performance

scales and thus a proper measure of its complexity can be the variation of growth rates of marginal values over

10



consecutive sub-intervals as follows:

ΩGENERAL (U) = C1

n∑

j=1

(uj (βj))
2

+ C2

n∑

j=1

mj−1
∑

k=1

(

uj

(
xk+1
j

)
− uj

(
xk
j

)

xk+1
j − xk

j

−
uj

(
xk
j

)
− uj

(
xk−1
j

)

xk
j − xk−1

j

)2

,

where C1, C2 > 0 are two constants to make a trade-off between the complexity control and the fitting ability, and

uj (βj) is the trade-off weight of marginal value function uj (·) in the comprehensive value, and
uj(xk+1

j )−uj(xk
j )

xk+1
j

−xk
j

−

uj(xk
j )−uj(xk−1

j )
xk
j
−xk−1

j

measures the difference of growth rates of marginal values uj (·) over the consecutive sub-intervals
[
xk−1
j , xk

j

]
and

[
xk
j , x

k+1
j

]
. By considering the above complexity measure, we avoid deriving general monotone

marginal value functions that have very disparate growth rates over consecutive sub-intervals.

In a joint consideration of the fitting ability and the complexity control, we propose the following optimization

model for constructing a value function model from the valued decision examples:

(P1) : Minimize F (θ) =
∑

ai,aj∈AR: i<j

ξ (ai, aj) + ΩM (U)

=
∑

ai,aj∈AR: i<j

(−D≻ (ai, aj) (U (ai)− U (aj)) + D= (ai, aj) |U (ai)− U (aj)|+ D≺ (ai, aj) (U (ai)− U (aj))) + ΩM (U)

=
∑

ai,aj∈AR: i<j

(
(D≺ (ai, aj)−D≻ (ai, aj))θ

T (V (ai)−V (aj)) + D= (ai, aj)
∣
∣θ

T (V (ai)−V (aj))
∣
∣
)

+ ΩM (U) ,

s.t. EM
BASE.

where M ∈ {LINEAR, PIECEWISE - LINEAR, SPLINE, GENERAL} so that the above model applies to dif-

ferent types of value functions. Note that the hyper-parameters C, C1 and C2 in the complexity control ΩM (U)

are used to make a trade-off between the the fitting ability and the complexity control. Therefore, choosing the

hyper-parameters C, C1 and C2 signifies to select between models with different degrees of complexity, which is

known as model selection [25]. A widely used method for solving this problem is k-fold cross-validation, where

k is specified by a user, usually 5 or 10. Cross-validation for selecting C, C1 and C2 can be performed as follows:

reference set AR is first randomly partitioned into k subsets of (approximately) equal size, called folds. Next, for

certain C, C1 and C2, k− 1 folds serve as the training samples to construct an additive value function model and

the remaining fold is used to test the constructed model. This process is repeated using different combinations

of k − 1 folds and thus generates k possible results. Finally, the k results are averaged to evaluate the perfor-

mance of the constructed models corresponding to certain C, C1 and C2. We choose the values of C, C1 and C2

corresponding to the best performance as the optimal setting for these hyper-parameters.

2.2.3. Optimization model

It is easy to verify that both
∣
∣θ

T (V (a)−V (b))
∣
∣ and Ω∗ (U) are convex in terms of θ and particularly, Ω∗ (U) is

in a quadratic form. Therefore, Model P1 is a constrained convex quadratic optimization problem. To solve such

a problem, a common method is to introduce an auxiliary variable τ (ai, aj) for any pair of reference alternatives

ai, aj ∈ AR and transform P1 to the following form:

(P1)′ : Minimize F (θ) =
∑

ai,aj∈AR: i<j

(

(D≺ (ai, aj) −D≻ (ai, aj)) θT (V (ai) −V (aj)) + D= (ai, aj) τ (ai, aj)
)

+ ΩM (U) ,

s.t. θT (V (ai) −V (aj)) 6 τ (ai, aj) , for ai, aj ∈ AR, i < j,

−θ
T (V (ai) −V (aj)) 6 τ (ai, aj) , for ai, aj ∈ AR, i < j,

EM
BASE

.

Then, some popular optimization packages, such as Lingo, Cplex, or Matlab can be used to address the above

problem. However, when the number of reference alternatives is reasonably large, the number of pairs ai, aj ∈ AR
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such that i < j is in a huge amount and this may exceed the processing ability of most solvers.

In this paper, to enhance the practical ability for addressing large-scale problems, we introduce computational

advances in the convex optimization field and use the alternating direction method of multipliers (ADMM)

to address Model P1. This method is well suited to large-scale problems and has a potential for distributed

implementation. It has been widely used in statistics, machine learning, and related areas [2]. Specifically,

to apply ADMM for solving Model P1, we need to transform P1 to the following form:

(P1)′′ : Minimize f (θ) + h (z) ,

s.t. YT
θ = z,

where the vector z is an auxiliary variable, and the functions f (θ) and h (z) are formulated as:

f (θ) =







∑

ai,aj∈AR: i<j

(

(D≺ (ai, aj)−D≻ (ai, aj)) (V (ai)−V (aj))
T
)

θ + ΩM (U) , if θ satisfies EM
BASE,

+∞ otherwise.

and

h (z) = ‖z‖1,

respectively, and Y is a matrix defined as Y = [...,yij , ...], and each column yij is given as yij = D= (ai, aj) (V (ai)−V (aj))

for any pair of reference alternatives ai, aj ∈ AR such that i < j. Note that the objective f (θ)+h (z) is equivalent

to the objective F in Model P1 by incorporating the constraints EM
BASE. Moreover, we connect θ to the auxiliary

variable z through the equation YT
θ = z. In this way, the terms

∣
∣θ

T (V (ai)−V (aj))
∣
∣ for any pair of reference

alternatives ai, aj ∈ AR such that i < j is converted to the L1 norm of z (i.e., ‖z‖1).

To solve model (P1)′′, ADMM consists of the following iterations [2]:

step 1: θ
k+1 := arg min

θ

(

f (θ) + (ρ/2)
∥
∥YT

θ − zk + uk
∥
∥
2

2

)

,

step 2: zk+1 := arg min
z

(

h (z) + (ρ/2)
∥
∥YT

θ
k+1 − z + uk

∥
∥
2

2

)

= arg min
z

(

‖z‖1 + (ρ/2)
∥
∥YT

θ
k+1 − z + uk

∥
∥
2

2

)

,

step 3: uk+1 := uk + YT
θ
k+1 − zk+1,

where ρ > 0 is a constant, and the superscript k represents iteration k, and u is an auxiliary variable. The advan-

tage of using ADMM for addressing large-scale problems derives from the following pair of observations. First,

in step 1, we address a convex quadratic problem, in which θ is the only variable, and thus the complexity of

solving such a problem only relies on the dimension of θ, irrelevant from the number of reference alternatives.

Particularly, the coefficient
∑

ai,aj∈AR: i<j

(

(D≺ (ai, aj)−D≻ (ai, aj)) (V (ai)−V (aj))
T
)

involved in this problem

can be calculated and stored in advance since it keeps the same during the whole process. Second, when ad-

dressing the optimization problem in step 2, although the term ‖z‖1 is not differentiable, it has been proved that

a simple closed-form solution to this problem exists as follows [9, 2]:

[
zk+1

]

i
:= S1/ρ

([
YT

θ
k+1 + uk

]

i

)

=







[
YT

θ
k+1 + uk

]

i
− 1/ρ, if

[
YT

θ
k+1 + uk

]

i
> 1/ρ,

0, if
∣
∣
[
YT

θ
k+1 + uk

]

i

∣
∣ 6 1/ρ,

[
YT

θ
k+1 + uk

]

i
+ 1/ρ, if

[
YT

θ
k+1 + uk

]

i
< −1/ρ.
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where
[
zk+1

]

i
and

[
YT

θ
k+1 + uk

]

i
stands for the i-th entries of the vectors zk+1 and YT

θ
k+1 + uk, respectively,

and S1/ρ (·) is called the soft thresholding operator [9]. One can observe that the updating for z proceeds sequen-

tially for its each dimension. Even if the number of reference alternatives is very large, this updating can be fin-

ished in a short time. In particular, calculating coefficient
∑

ai,aj∈AR: i<j

(

(D≺ (ai, aj)−D≻ (ai, aj)) (V (ai)−V (aj))
T
)

in step 1 and updating z in step 2 can be implemented in a parallel manner, such as using the MapReduce frame-

work [24]. According to the above observation, ADMM enhances the processing ability of Model P1 for large-scale

problems and its practical usefulness for real-world applications.

2.3. Determining assignments for non-reference alternatives

Once the optimal solution of θ is obtained by solving Model P1, we can calculate the comprehensive values of

both reference alternatives a ∈ AR and non-reference alternatives b ∈ AT using the employed value function

model. Then, we determine the assignments of non-reference alternatives b ∈ AT based on the valued decision

examples. Because each reference alternative a ∈ AR is assigned to multiple classes with respective credibility

degrees, we cannot determine a crisp assignment for any non-reference alternatives b ∈ AT . Instead, we propose

to calculate a valued assignment for each b ∈ AT with a credibility vector σ (b) = (σ1 (b) , ..., σq (b))
T

such that

σr (b) > 0, r = 1, ..., q, and
q∑

r=1
σr (b) = 1. In line with the procedure for inferring a preference model from

valued assignment example, we wish the valued assignment of b should be consistent with the valued decision

examples as credibly as possible. Therefore, a linear programming model for deriving σ (b) = (σ1 (b) , ..., σq (b))
T

is developed as follows:

(P2) : Minimize h (σ) =
∑

a∈AR

(
q−1
∑

s=1

q
∑

r=s+1

σs (a)σr (b) (U (a)− U (b))

+

q
∑

s=1

σs (a)σs (b) |U (a)− U (b)| −

q
∑

s=2

s−1∑

r=1

σs (a)σr (b) (U (a)− U (b))

)

,

s.t.

q
∑

r=1

σr (b) = 1,

σr (b) > 0, r = 1, ..., q.

Model P2 aims to determine a credibility vector σ (b) = (σ1 (b) , ..., σq (b))
T

such that the difference between U(b)

and U(a) for each a ∈ AR is optimized as credibly as possible. About Model P2, there are two useful propositions:

Proposition 1. For each non-reference alternative b ∈ AT and each class Clr, r = 1, ..., q, let us define:

Γr (b) =
∑

a∈AR

(
r−1∑

s=1

σs (a) (U (a)− U (b)) + σr (a) |U (a)− U (b)| −

q
∑

s=r+1

σs (a) (U (a)− U (b))

)

.

(a) if there exists r ∈ {1, ..., q} such that Γr (b) < Γr′ (b) for any r′ = 1, ..., r − 1, r + 1, ..., q, the optimal

solution of Model P2 is σr (b) = 1 and σr′ (b) = 0 for any r′ = 1, ..., r − 1, r + 1, ..., q, which says that b

should be assigned to class Clr definitely.

(b) if there exists a subset Λ ⊆ {1, ..., q} such that Γr (b) = Γr′ (b) for any r, r′ ∈ Λ and Γr (b) < Γr′′ (b) for

r ∈ Λ and r′′ ∈ {1, ..., q} \Λ, Model P2 has infinitely many solutions satisfying
∑

r∈Λ

σr (b) = 1 and σr′′ (b) = 0

for any r′′ ∈ {1, ..., q} \Λ. In this case, we can set σr (b) = 1/|Λ| for any r ∈ Λ, where |Λ| is the number of

elements in Λ, which means that b can be assigned to any class Clr, r ∈ Λ, with the same credibility degree

σr (b) = 1/|Λ|.
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Proof. See e-Appendix A (supplementary material available on-line). �

Proposition 1 indicates that the assignment of any non-reference alternative b ∈ AT can be determined by

examining each Γr (b), r = 1, ..., q, and the classes Clr with the least Γr (b) are the most credible assignments.

Actually, Γr (b) is equal to the value of the objective of Model P2 when σr (b) = 1 and σr′ (b) = 0 for r′ 6= r.

Proposition 2. For any non-reference alternatives b, b′ ∈ AT , suppose that U (b) > U (b′), and Model P2

determines crisp assignments Clr and Clr′ for b and b′, respectively. Then, it must be that r > r′, that is,

the assignment of b is at least as good as the assignment of b′.

Proof. See e-Appendix B (supplementary material available on-line). �

Note that, for any non-reference alternatives b, b′ ∈ AT , if Model P2 assigns them to multiple classes, we can

also derive that the assignment of b is at least as good as the assignment of b′, which can be analyzed in an

analogous way. Proposition 2 proves that the assignments of non-reference alternatives determined by Model P2

are consistent with the sorting rule in the example-based sorting procedure.

In real-world applications, the assignment of a non-reference alternative b ∈ AT determined by Model P2

is often unique because we rarely encounter a situation where more than one class Clr have the same Γr (b).

However, for some problems, we may hope to obtain such results that each non-reference alternative b ∈ AT

is assigned to multiple classes with non-zero credibility degrees, rather than a crisp assignment. Therefore, we

propose to use the softmax function to derive a credibility vector σ (b) = (σ1 (b) , ..., σq (b))
T

with each σr (b) > 0,

r = 1, ..., q. The softmax function is often used to transform a vector of real numbers to a multinoulli probability

distribution proportional to the exponentials of each input number, which has been widely used in multi-class

logistic regression, linear discriminant analysis, artificial neural network (particularly, deep learning) [13, 25]

and discrete choice model [32]. In our context, the credibility vector σ (b) = (σ1 (b) , ..., σq (b))
T

for the valued

assignment of each non-reference alternative b ∈ AT can be obtained using the softmax function as follows:

σr (b) =
exp (−Γr (b))
q∑

s=1
exp (−Γs (b))

, r = 1, ..., q,

where exp (·) is the exponential function with respect to the mathematical constant e = 2.71828.... The less

Γr (b) is, the greater σr (b). Note that although −Γr (b) could be less than zero, σr (b) derived from the softmax

function ensures σr (b) > 0, r = 1, ..., q, and
q∑

r=1
σr (b) = 1. Obviously, class Clr with the least Γr (b) has the

greatest σr (b), which means b can be assigned to class Clr with the greatest credibility. Such an observation is

consistent with the assignment determined by Model P2. In this way, we derive a “soft” valued assignment for

each non-reference alternative in contrast to the “hard” assignment determined by Model P2.

2.4. Adjusting classification performance across classes according to class priorities

In constructing a preference model from valued assignment examples introduced in Section 2.2, an important

assumption is the equal priorities for all classes, such that the classification performance for each class is addressed

in a fair way. However, this is not always the case in many real-world applications, such as credit rating, medical

diagnostics, etc., where we need to pay more attention to some particular classes. In this case, the DM may

allocate priorities to respective classes and requires to obtain different classification performance according to

the specified class priorities. In this section, we propose a method for adjusting classification performance across

classes based on the initial preference model constructed by the optimization Model P1. Such a method can be

seen as a complementary component of the analytical framework and the DM can decide whether to launch it.

At the beginning of this method, the DM is required to review the classification performance of the initial

preference model suggested by Model P1 on the reference set (i.e., the fitting ability on valued decision examples).
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Specifically, for each reference alternative a ∈ AR, we regard it as a fictitious non-reference alternative, and use

the method discussed in Section 2.3 to predict its valued assignment (denoted by σ
′ (a) = (σ1

′ (a) , ..., σq
′ (a))

T
),

and then compare the predicted valued assignment to its actual one σ (a) = (σ1 (a) , ..., σq (a))
T

. Then, ac-

cording to σ (a) and σ
′ (a), we can derive two ranking lists of classes for a, denoted by Clφ1(a), ..., Clφq(a) and

Clφ1
′(a), ..., Clφq

′(a), respectively, such that σφi(a) > σφj(a) (or σφi
′(a)

′ > σφj
′(a)

′), for i < j, where all classes rank

in a descending order of credibility degrees. Then, for each class Clr, r = 1, ..., q, we can define the following

cardinal and ordinal classification performance measures, respectively, as follows:

CardPfr =
1

|AR|

∑

a∈AR

∣
∣σr (a)− σr (a)

′
∣
∣,

OrdPfr =
1

(q − 1) |AR|

∑

a∈AR

|posφ (a, r)− posφ′ (a, r)|,

where posφ (a, r) and posφ′ (a, r) represent the positions of class Clr in the ranking lists Clφ1(a), ..., Clφq(a) and

Clφ1
′(a), ..., Clφq

′(a), respectively. CardPfr quantifies the average difference between the credibility degrees of

class Clr in the actual and predicted credibility distributions for all reference alternatives a ∈ AR, while OrdPfr

measures the average distance between the positions of class Clr in the actual and predicted ranking lists for

all reference alternatives a ∈ AR. Note that both CardPfr and OrdPfr are normalized within the interval [0, 1].

Obviously, the less CardPfr and OrdPfr, the better performance is achieved on class Clr.

The measures CardPfr and OrdPfr for each class Clr, r = 1, ..., q, are submitted to the DM, and (s)he can

review such results and then decides whether to adjust the classification performance. If the DM thinks the

performance on some class Cls is relatively low, (s)he may require to improve the performance on this class.

However, acquiring the precise values of the priorities for each class from the DM is a difficult task. Instead, we

can require the DM to specify a priority ranking of all q classes in the following form

Clτ(1), Clτ(2), ..., Clτ(q),

where τ (·) ∈ {1, ..., q} is the permutation on the set of indices of classes according to the specified priorities,

such that class Clτ(s) is prior to class Clτ(s+1), s = 1, ..., q − 1, which means that once the performance of class

Clτ(s+1) is improved, that of class Clτ(s) should also be improved. The DM wishes that the performance of each

class improves according to this priority order.

To implement flexible adjustment of classification performance across classes, our method pays more attention

to classes with higher priorities and aims to improve the credible consistency between the reference alternatives

that can be assigned to these classes with certain credibility degrees and other reference alternatives that are

assigned to other classes. Specifically, the credible consistency for each class Cls, s = 1, ..., q, can be quantified

as follows:

Os =
s−1∑

r=1

∑

ai,aj∈AR

σs (ai)σr (aj) (U (ai)− U (aj)) +

q
∑

r=s+1

∑

ai,aj∈AR

σs (ai) σr (aj) (U (aj)− U (ai)),

where the left part concerns the value difference between the reference alternatives ai that can be assigned to

class Cls with certain credibility degrees and other aj that are classified into a worse class, while the right part

measures the value difference between these reference alternatives ai and those aj that come from a better class.

According to the rule for the example-based sorting procedure, the greater Os is, the more likely it is to achieve

an improved performance on class Cls. Therefore, we can consider to increase Os for classes Cls, s = 1, ..., q,

according to the specified priority order.

15



Definition 3. [26] Let θ be a parameter vector of the employed preference model. Regarding Os, s = 1, ..., q,

a vector d 6= 0 is said to be an ascent direction of Os at θ, if there exits a positive number δ such that

Os (θ + λd) > Os (θ) for any scalar λ ∈ (0, δ).

Proposition 3. [26] Let θ be a parameter vector of the employed preference model. Regarding Os, s = 1, ..., q,

if a vector d 6= 0 satisfies ∇Os
Td > 0 where ∇Os stands for the gradient of Os, there exists a positive

number δ such that Os (θ + λd) > Os (θ) for any scalar λ ∈ (0, δ), that is, d is an ascent direction of Os

at θ.

According to the above definition and proposition, increasing Os, s = 1, ..., q, can be done by finding an ascent

direction d for Os. For this purpose, let us consider the following mixed-integer programming model:

(P3) : Maximize

q
∑

s=1

vs,

s.t. (LC1) ∇Os|θ=θ̂

T
d + Q (1− vs) > 0, s = 1, ..., q,

(LC2) vτ(s) > vτ(s+1), s = 1, ..., q − 1,

(LC3) vs ∈ {0, 1} , s = 1, ..., q,

(LC4)
∣
∣
∣[d]j

∣
∣
∣ 6 1, j = 1, ..., dim (d) ,

EM
BASE,

where θ̂ represents the current value of the parameter vector θ, Q is an auxiliary constant equal to a sufficiently

large positive value such that Q >
∥
∥∇Os|θ=θ̂

∥
∥
1
, vs for s = 1, ..., q are binary variables, [d]j is the j-th entry of

d, dim (d) represents the dimension of d, and M ∈ {LINEAR, PIECEWISE - LINEAR, SPLINE, GENERAL}

so that the above model applies to different types of value functions. If vs = 1, constraint (LC1) amounts to

∇Os|θ=θ̂

T
d > 0, which requires to find a direction d along which Os increases. Constraint (LC2) ensures that

Os for all classes Cls, s = 1, ..., q, increase according to the specified priority order, such that once Os+1 for class

Cls+1 with a lower priority increases, Os for class Cls with a higher priority should also increase. Constraint

(LC4) guarantees to derive a bounded d. Model P3 aims to maximize the number of classes whose Os can be

increased according to the specified priority order. Let d∗ and v∗s be the values of d and vs at the optimum,

respectively, which indicate that Os for classes Cls with v∗s = 1 increase along the direction d∗ to improve the

credible consistency for these classes. Then, we can adjust the current preference model by solving the following

linear programming model:

(P4) : Maximize
∑

s=1,...,q: v∗
s=1

Os|θ=θ̂+λd,

s.t. λ > 0,

EM
BASE|θ=θ̂+λd,

where the variable λ represents a step. Model P4 aims to maximize Os for classes Cls such that v∗s = 1 by

adjusting θ̂ along the ascent direction d∗, so that the credible consistency for these classes is improved. Once

the value of λ at the optimum (denoted by λ∗) is achieved, we can derive a new value of the parameter vector θ

according to the following formula

θ̂
′ = θ̂ + λ∗d∗,

where θ̂
′ stands for the adjusted value of the parameter vector θ.

The procedure for adjusting Os according to the specified priority order is an iterative process, which can

be organized as Algorithm 1. Threshold ζ is a positive value used to control the complexity of the adjusted

preference model U ′, and a stopping criterion of Algorithm 1 consists in that the complexity measure Ω (U ′)
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exceeds threshold (1 + ζ) Ω (U). Without threshold ζ, we may obtain an adjusted preference model that over-fits

the decision examples and has poor generalization performance on new alternatives. Note that ζ can be specified

in advance (e.g., 10%, 20%, etc.), or adjusted during the process by checking the classification performance on

a subset of reference alternatives for validation (i.e., cross-validation).

Algorithm 1 Method for adjusting classification performance across classes according to specified priority order.

Input:

Solution θ̂ output by Model P1, complexity measure Ω (U) of preference model U corresponding to θ̂, priority
ranking of classes Clτ(1), Clτ(2), ..., Clτ(q), threshold ζ.

1: Solve Model P3 to derive ascent direction d∗ and identify classes Cls such that v∗s = 1.
2: if d = 0 then

3: Terminate.
4: end if

5: Solve Model P4 to obtain step λ∗.
6: if λ∗ = 0 then

7: Terminate.
8: else

9: θ̂
′ ← θ̂ + λ∗d∗.

10: Derive new preference model U ′ according to θ̂
′ and then measure its complexity Ω (U ′).

11: if Ω (U ′) > (1 + ζ) Ω (U) then

12: Terminate.
13: else

14: θ̂ ← θ̂
′, U ← U ′.

15: Go to step 1.
16: end if

17: end if

Output:

Adjusted solution θ̂ and corresponding adjusted preference model U .

3. Experimental analysis

In this section, we validate the practical performance of the proposed framework on a real-word dataset, which

is collected from the QS World University Ranking1. This dataset provides an overall ranking of 500 universities

from all over the world according to six evaluation criteria, including (g1) citation per faculty, (g2) international

students, (g3) international faculty, (g4) faculty student, (g5) employer reputation, and (g6) academic reputation.

The ranking of 500 universities is derived by aggregating the performances of each university on all criteria using

the criteria weights w1 = 0.4, w2 = 0.1, w3 = 0.2, w4 = 0.05, w5 = 0.05 and w6 = 0.2, where wj is the weight of

criterion gj , j = 1, ..., 6. All criteria are of gain-type. A descriptive summary of the dataset is provided in Table 1

and the distribution of performance values on each criterion is depicted in Figure 1. One can observe that the

distribution of performance values on most criteria is not uniform: the distribution of performance levels on g1

and g2 is skewed to the left, whereas a significant proportion of performance values are located in the interval

[95.0, 100.0] on g3, g4 and g5. This observation incurs a careful setting for the experimental analysis, which will

be discussed later.

As our framework can be equipped with linear, piecewise-linear, splined, or general monotone marginal value

functions, we implement the four variants in the experimental study. Furthermore, the UTADIS method as well as

its three variants (UTADIS I, II, & III) [10] and the method proposed by [23] are investigated to compare with the

four variants of the proposed framework. Both the UTADIS family and the method proposed by [23] employ an

1https://www.topuniversities.com/university-rankings/world-university-rankings/2020
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Table 1: Descriptive summary of QS World University Ranking dataset.

Criterion Min. Performance Max. Performance Avg. Performance
g1 3.0 100.0 39.7
g2 2.5 100.0 40.1
g3 4.0 100.0 51.9
g4 0.0 100.0 53.4
g5 0.0 100.0 47.2
g6 1.0 100.0 44.2
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Figure 1: Distribution of performance on each criterion.
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additive value function model composed of piecewise-linear marginal value functions as the preference model. The

UTADIS method constructs a preference model by minimizing the sum of misclassification errors for all reference

alternatives, and then other or near optimal solutions are explored and averaged to derive a final preference model

in the post optimality analysis stage. In addition to the classification error, UTADIS I maximizes the distances of

the correctly classified alternatives from the class thresholds, so that a sharp discrimination is achieved. UTADIS

II uses a mixed-integer programming model to minimize the number of misclassified alternatives, rather than their

magnitude. UTADIS III combines UTADIS I and II. The model proposed by [23] is based on the regularization

framework and aims to construct a preference model composed of marginal value functions that are as “smooth”

as possible while minimizing the sum of inconsistency levels for pairs of reference alternatives coming from distinct

classes.

In the experimental setting, for the methods that require dividing performance scales into a number of

equal-length sub-intervals (including the piecewise-linear and splined variants of the proposed framework, the

UTADIS method and its three variants, and the method proposed by [23]), the number of sub-intervals is

perceived as a hyper-parameter, which is determined using cross-validation by examining the following values γj ∈

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In making trade-off between the preference model’s fitting ability and its complexity

control, we also use the cross-validation method to determine the hyper-parameters C, C1 and C2 from the

following candidates {10−8, 5 × 10−8, 10−7, 5 × 10−7,..., 107, 5 × 107, 108, 5 × 108}. To construct a sorting

problem, we assign all universities to five preference-ordered classes CL = {Cl1, Cl2, Cl3, Cl4, Cl5} according to

their overall ranking: Cl5, Cl4, Cl3, Cl2 and Cl1 consist of universities that are ranked in the intervals [1, 100],

[101, 200], [201, 300], [301, 400], and [401, 500], respectively. In evaluating the performance of the proposed

framework, the original dataset is randomly split into two parts, 70% (referred to as AR) for constructing the

preference model and 30% (referred to as AT ) for testing the predictive accuracy of the constructed model.

Note that the distribution of universities from respective classes in the training and test sets are ensured to be

(approximately) the same with that in the original dataset. This procedure is repeated 100 times, and the results

are finally averaged. Note that, in each run, we use different sorting methods to construct a preference model and

then test its performance on the same AR and AT , so that the final averaged results on 100 runs can be used to

compare different methods. All considered methods are implemented using Python and the involved optimization

models are solved with the CVXPY optimization package2.

To evaluate the performance of a sorting method, we can consider the following measures including Top-N

accuracies and Kendall’s tau coefficient. Specifically, for each non-reference alternative b ∈ AT , let σ (b) =

(σ1 (b) , ..., σq (b))
T

and σ
′ (b) = (σ1

′ (b) , ..., σq
′ (b))

T
denote its actual and predicted credibility degrees for val-

ued assignment. According to σ (b) and σ
′ (b), we can derive two ranking lists of classes for b, denoted by

Clφ1(b), ..., Clφq(b) and Clφ1
′(b), ..., Clφq

′(b), respectively, such that σφi(b) > σφj(b) (or σφi
′(b)

′ > σφj
′(b)

′), for i < j.

Then, for any N = 1, ..., q, let ΘN (b) and Θ′N (b) denote the top N classes with the greatest credibility degrees

according to the above two ranking lists, respectively. Moreover, let nc and nd represent the numbers of con-

cordant and discordant pairs of classes in the above two ranking lists, respectively. Then, with the use of this

notation, Top-N accuracies and Kendall’s tau for b are calculated as follows:

Accuracy@N (b) =

∣
∣ΘN (b) ∩Θ′N (b)

∣
∣

N
,

Kendall’s tau (b) =
2 (nc − nd)

q (q − 1)
.

Accuracy@N (b) reflects, in the top N recommendations for alternative b, how many classes actually have the

2https://www.cvxpy.org/
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greatest N credibility degrees, and Kendall’s tau (b) refers to the difference between the proportions of concordant

and discordant pairs of classes in the above two ranking lists. Obviously, the greater Accuracy@N (b) and

Kendall’s tau (b), the better the classification performance is achieved on alternative b. Note that N could be

specified by the DM, since it concerns the most credible N assignments for each alternative. Particularly, when

N = 1, we care about the most credible one for each alternative. Finally, we can average the above measures for

all non-reference alternatives b ∈ AT and obtain comprehensive performance evaluation for a sorting method.

3.1. Experiments with crisp assignment examples

We first report the outcomes of applying all above sorting methods to the original crisp decision examples. Since

each reference alternative is assigned to only one class precisely, we only measure the classification accuracy (i.e.,

Accuracy@1) for each sorting method to reflect how many alternatives are correctly classified by each method.

Besides, we also report the trade-off weight of marginal value function on each criterion in terms of mean and

standard deviation to measure the ability of each method in constructing a preference model that is close to the

actual one. The experimental results are summarized in Table 2 and the distribution of classification of each

method is depicted in Figure 2. It is apparent that the four variants of the proposed framework and the method

proposed by [23] achieve higher classification accuracies than the UTADIS family. Although UTADIS I, II, and

III improve the original UTADIS method in some aspects, the performance of the three variants is unstable and

the classification accuracies could be rather low for some sets of decision examples. Both the four variants of the

proposed framework and the method proposed by [23] incorporate the advance of regularization techniques and

tend to deriving as linear marginal value functions as possible, which are close to the actual preference model

(i.e., linear value functions). When referring to the trade-off weight of marginal value function on each criterion,

we observe that the averaged results from all sorting methods are close to the actual ones, but the outcomes

from the four variants of the proposed framework and the method proposed by [23] are more stable than those

suggested by the UTADIS family. Furthermore, the difference among the performance from the four variants of

the proposed framework and the method proposed by [23] is marginal, since the actual preference model is simple

and the decision examples over the experimental runs are consistent.

Table 2: Classification performance and trade-off weight of marginal value function derived from respective method in terms of mean
and standard deviation for crisp decision examples.

Method Accuracy
Trade-off weight of marginal value function

g1 g2 g3 g4 g5 g6
UTADIS original 0.8206 ± 0.0570 0.3998 ± 0.0689 0.1030 ± 0.0245 0.2045 ± 0.0476 0.0508 ± 0.0138 0.0514 ± 0.0130 0.1932 ± 0.0416

UTADIS I 0.8370 ± 0.0457 0.4013 ± 0.0558 0.0993 ± 0.0197 0.2014 ± 0.0380 0.0497 ± 0.0107 0.0497 ± 0.0107 0.1984 ± 0.0386
UTADIS II 0.8519 ± 0.0393 0.3842 ± 0.0408 0.1011 ± 0.0186 0.2052 ± 0.0339 0.0507 ± 0.0095 0.0508 ± 0.0091 0.2077 ± 0.0282

UTADIS III 0.8736 ± 0.0298 0.3930 ± 0.0327 0.1020 ± 0.0135 0.2012 ± 0.0265 0.0505 ± 0.0080 0.0491 ± 0.0076 0.2039 ± 0.0234
Method by [23] 0.9267 ± 0.0057 0.4005 ± 0.0080 0.0999 ± 0.0030 0.1996 ± 0.0053 0.0498 ± 0.0016 0.0498 ± 0.0014 0.2001 ± 0.0054
Linear variant 0.9258 ± 0.0057 0.4013 ± 0.0081 0.1000 ± 0.0028 0.1989 ± 0.0060 0.0499 ± 0.0015 0.0499 ± 0.0016 0.1997 ± 0.0051

Piecewise-linear variant 0.9264 ± 0.0062 0.4005 ± 0.0073 0.0997 ± 0.0029 0.2009 ± 0.0048 0.0498 ± 0.0016 0.0497 ± 0.0015 0.1991 ± 0.0053
Splined variant 0.9269 ± 0.0058 0.4009 ± 0.0080 0.1001 ± 0.0028 0.1996 ± 0.0050 0.0498 ± 0.0013 0.0499 ± 0.0017 0.1994 ± 0.0056

General monotone variant 0.9263 ± 0.0054 0.3994 ± 0.0074 0.1004 ± 0.0029 0.1997 ± 0.0053 0.0502 ± 0.0015 0.0500 ± 0.0015 0.2001 ± 0.0053

For illustrative purpose, let us present the examples of the preference models constructed by the four variants

of the proposed framework. Figure 3 illustrates the four types of marginal value functions of the constructed

preference models corresponding to the greatest predictive accuracy. The derived linear marginal value functions

are completely linearly increasing with respect to the performance values. As for the marginal value functions

derived from the piecewise-linear, splined, and general monotone variants, they look almost linear since the

regularization term is in favor of functions that are as linear as possible. As expected, the piecewise-linear

functions have a sudden change in slope at breakpoints, although it is very slight in the presented example,

whereas the splined functions are completely smooth over the whole performance scales. When it comes to

general monotone marginal value functions, they exhibit slight “zig-zag” behavior, since we allow each distinct

performance value observed over the performance scales to be breakpoints and the constructed marginal value

functions are difficult to be completely smooth.
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UTADIS orginal UTADIS I UTADIS II UTADIS III Method by Liu et al. (2019) Linear variant Piecewise-linear variant Splined variant General monotone variant
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Figure 2: Distribution of classification accuracy of each method for crisp decision examples.
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(a) Linear marginal value function
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(b) Piecewise-linear marginal value function
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(c) Splined marginal value function
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(d) General monotone marginal value function

Figure 3: An example of marginal value functions derived from four variants of proposed framework. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)
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3.2. Experiments with valued assignment examples

Let us now test the classification performance of the four variants of the proposed framework on valued decision

examples. Note that the family of UTADIS and the method proposed by [23] cannot address this sorting task,

since they only apply to crisp decision examples. To construct valued decision examples, we modify the original

dataset in the following way: for any alternative, a majority proportion (including 90%, 80%, 70%, and 60%) of

credibility degree is assigned to its actual assignment, and the remaining (including 10%, 20%, 30%, and 40%)

is allocated to the two classes adjacent to its actual assignment. For example, when the majority proportion

of credibility degree that is assigned to the actual assignment is 90%, for an alternative a, of which the actual

assignment is Cl3, the constructed distribution of credibility degrees will be σ (a) = (0, 0.05, 0.9, 0.05, 0)
T

.

Particularly, for an alternative a′ that is actually assigned to Cl1 or Cl5, the constructed σ (a′) will be set as

σ (a′) = (0.9, 0.1, 0, 0, 0)
T

or σ (a′) = (0, 0, 0, 0.1, 0.9)
T

. Then, we examine the classification performance of

different sorting methods in terms of Accuracy@1, Accuracy@2, Accuracy@3, and Kendall’s tau for 100 runs on

randomly constructed AR and AT .

The results are summarized in Table 3 and depicted in Figures 4 – 7. We observe that the Accuracy@1

measures of the four variants of the proposed framework decrease with the majority proportion of credibility

degree that is assigned to the actual assignment. For example, the mean of Accuracy@1 of the linear variant

decreases from 0.9258 for the crisp decision examples (see Table 2) to 0.8101 for the “60%-40%” valued decision

examples. This is due to that, for a pair of reference alternatives a and a′, where the actual assignments of

a and a′ are Cls+1 and Cls, s = 1, ..., 4, in the case of crisp decision examples, it is very credible to maximize

U (a)−U (a′) since D≻ (a, a′) = 1; when the majority proportion of credibility degree that is assigned to the actual

assignment decreases, D≻ (a, a′) decreases while D≺ (a, a′) and D= (a, a′) increase, and in turn the credibility to

maximize U (a)−U (a′) decrease, which contradicts the actual preference relation between a and a′. Moreover, it

is interesting to observe that the Accuracy@2 measures of the four variants increase as the majority proportion of

credibility degree that is assigned to the actual assignment decreases. Such an observation reflects that, although

the decision examples are incredible when the majority proportion of credibility degree that is assigned to the

actual assignment decreases, the four variants can work out top two recommendations that are credible enough

for making correct prediction. In addition, the Accuracy@3 and Kendall’s tau indicators decrease with the decline

of the majority proportion of credibility degree that is assigned to the actual assignment. On the other hand, in

the comparison of the four variants, the linear variant slightly outperforms others in terms of the Top-N accuracy

and Kendall’s tau, since the actual value function model is linear, which makes the linear variant achieve better

performance than the others.

Table 3: Top-N accuracy and Kendall’s tau in terms of mean and standard deviation of four variants of proposed framework for
valued decision examples.

Method Credibility distribution Accuracy@1 Accuracy@2 Accuracy@3 Kendall’s tau

Linear variant

90%-10% 0.9058±0.0052 0.9172±0.0015 0.8778±0.0010 0.7333±0.0016
80%-20% 0.8805±0.0051 0.9300±0.0014 0.8745±0.0017 0.7313±0.0018
70%-30% 0.8452±0.0043 0.9374±0.0016 0.8702±0.0015 0.7247±0.0013
60%-40% 0.8101±0.0047 0.9452±0.0013 0.8669±0.0006 0.7188±0.0014

Piecewise-linear variant

90%-10% 0.9016±0.0071 0.9186±0.0021 0.8780±0.0015 0.7330±0.0021
80%-20% 0.8769±0.0079 0.9293±0.0018 0.8746±0.0026 0.7303±0.0030
70%-30% 0.8413±0.0074 0.9374±0.0022 0.8700±0.0019 0.7238±0.0024
60%-40% 0.8027±0.0064 0.9455±0.0022 0.8669±0.0011 0.7173±0.0018

Splined variant

90%-10% 0.9010±0.0079 0.9183±0.0021 0.8782±0.0017 0.7329±0.0026
80%-20% 0.8772±0.0075 0.9293±0.0020 0.8750±0.0025 0.7307±0.0028
70%-30% 0.8422±0.0066 0.9371±0.0022 0.8705±0.0020 0.7241±0.0023
60%-40% 0.8024±0.0064 0.9454±0.0020 0.8666±0.0014 0.7170±0.0019

General monotone variant

90%-10% 0.9000±0.0088 0.9186±0.0026 0.8782±0.0018 0.7327±0.0028
80%-20% 0.8741±0.0102 0.9293±0.0020 0.8747±0.0031 0.7297±0.0040
70%-30% 0.8398±0.0076 0.9373±0.0024 0.8698±0.0020 0.7233±0.0026
60%-40% 0.8004±0.0069 0.9452±0.0025 0.8667±0.0018 0.7166±0.0024

22



90:10 80:20 70:30 60:40

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu
ra
cy
@
1

(a) Accuracy@1

90:10 80:20 70:30 60:40

0.915

0.920

0.925

0.930

0.935

0.940

0.945

0.950

Ac
cu
ra
cy
@
2

(b) Accuracy@2

90:10 80:20 70:30 60:40
0.866

0.868

0.870

0.872

0.874

0.876

0.878

0.880

Ac
cu
ra
cy
@
3

(c) Accuracy@3

90:10 80:20 70:30 60:40

0.715

0.720

0.725

0.730

0.735

Ke
nd

al
l's

 ta
u

(d) Kendall’s tau

Figure 4: Distribution of Top-N accuracy and Kendall’s tau of linear variant of proposed framework for valued decision examples.
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Figure 5: Distribution of Top-N accuracy and Kendall’s tau of piecewise-linear variant of proposed framework for valued decision
examples.
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Figure 6: Distribution of Top-N accuracy and Kendall’s tau of splined variant of proposed framework for valued decision examples.
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Figure 7: Distribution of Top-N accuracy and Kendall’s tau of general monotone variant of proposed framework for valued decision
examples.
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3.3. Simulating decision policies with non-linear value functions

In the above experimental analysis, the actual preference model underlying the given decision examples is com-

posed of linear marginal value functions. To test our methods on decision examples which are generated by other

types of value functions, we conduct an additional experiment on simulating actual value functions to generate

decision examples, on which the four variants of the proposed framework are applied to derive respective results

for comparison. In this part, we assume actual value functions are in the general monotone form, that is, we make

no assumptions about properties of actual value functions except monotonicity. The least assumption imposed on

actual value functions makes the conclusion derived from the experimental outcomes would be general. A widely

used method for generating general monotone value functions is to assign marginal values to distinct performance

values by sorting random values drawn from a uniform distribution [21]. In a recent study by [8], this method for

generating general monotone value functions is found to bias the obtained value functions towards a certain shape,

especially when the distribution of performance values is not uniform. Recall that we observe the imbalanced

distribution of performance values in Figure 1. Hence, to avoid distorted conclusions, we use another method

for generating general monotone value functions: (a) first, for each criterion, assign zero and a positive random

value to the worst two performance values x0
j , x

1
j , respectively, as the corresponding marginal values uj(x

0
j ) and

uj(x
1
j); (b) then, for the remaining performance values x2

j , ..., x
mj

j , sequentially assign a random value ς satisfying

the following equation to xk
j , k = 2, ...,mj, as the corresponding marginal value uj

(
xk
j

)
:

ς − uj

(
xk−1
j

)

xk
j − xk−1

j

= (1 + δ)
uj

(
xk−1
j

)
− uj

(
xk−2
j

)

xk−1
j − xk−2

j

,

where δ is a random value drawn uniformly from the interval [−ρ, ρ], and ρ > 0 is a specified parameter used to

control the complexity of the general monotone value function. Actually, [1− ρ, 1 + ρ] delimits the variation range

of growth rates of marginal values over consecutive sub-intervals. In this study, we consider the levels 25%, 50%,

75%, and 100% for ρ, and obviously a greater ρ allows a wide variation range of growth rates of marginal values

over consecutive sub-intervals, which is more likely to generate complex marginal value functions. (c) normalize

the marginal values on all criteria. For each level of ρ, we randomly generate 100 general monotone value functions

and the corresponding assignment for each alternative. We transform the crisp assignment for each alternative

to the valued one by allocating 20% credibility degree to the classes adjacent to its actual assignment. Then,

each generated dataset is randomly split into the training set AR and the test set AT , and the four variants of

the proposed framework are applied to construct a preference model from AR and then tested on AT .

The results of generating random value functions for testing the performance of the four variants of the

proposed framework are presented in Table 4 and Figures 8–11. For all variants of the proposed framework, when

increasing the complexity of the underlying value function model by selecting a greater ρ, the performance of

the sorting methods decreases on all evaluation metrics, which is reflected in the decline of mean and the rise of

standard deviation. This observation is easy to understand, because a more complex actual value function model

makes it difficult for the sorting methods to fit the valued decision examples well. When it comes to the comparison

among the four variants of the proposed framework, we observe that the linear variant is significantly outperformed

by the others, because its ability to fit non-linear marginal value functions is rather weak. Moreover, it is noted

that the piecewise-linear and splined variants slightly outperform the general monotone variant. A possible

reason for this observation can be that the fitting ability of piecewise-linear and splined marginal value functions

is sufficient to construct a preference model that is close to the actual one, while the general monotone variant is

too flexible and the decision examples are insufficient to help it infer a “close” value function since the number is

reference alternatives is 350. An example of a randomly generated actual value function and the marginal value

functions derived from the four variants of the proposed framework is illustrated in Figure 12, where we can

compare the actual value function and the constructed ones directly. It is apparent that the constructed linear
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marginal value functions have great divergence to the actual ones, while the piecewise-linear, splined, and general

monotone marginal value functions are similar to the actual ones. Particularly, the piecewise-linear functions

have a significant change in slope at breakpoints in this example, while the splined marginal value functions are

completely smooth over the whole performance scales. In this perspective, the splined marginal value functions

have the advantage of interpretability and descriptive character.

Table 4: Top-N accuracy and Kendall’s tau in terms of mean and standard deviation of four variants of proposed framework for
valued decision examples generated by random value functions.

Method ρ Accuracy@1 Accuracy@2 Accuracy@3 Kendall’s tau

Linear variant

25% 0.6474±0.0061 0.6977±0.0014 0.6446±0.0027 0.4998±0.0026
50% 0.6224±0.0169 0.6982±0.0029 0.6440±0.0024 0.4944±0.0050
75% 0.6093±0.0178 0.6923±0.0050 0.6454±0.0046 0.4896±0.0046
100% 0.5970±0.0188 0.6891±0.0065 0.6471±0.0067 0.4865±0.0068

Piecewise-linear variant

25% 0.8811±0.0056 0.9300±0.0016 0.8749±0.0019 0.7318±0.0020
50% 0.8791±0.0064 0.9300±0.0017 0.8745±0.0021 0.7311±0.0023
75% 0.8782±0.0061 0.9293±0.0018 0.8749±0.0020 0.7309±0.0023
100% 0.8764±0.0073 0.9293±0.0021 0.8746±0.0025 0.7302±0.0029

Splined variant

25% 0.8801±0.0058 0.9301±0.0017 0.8744±0.0018 0.7312±0.0019
50% 0.8796±0.0064 0.9297±0.0017 0.8748±0.0019 0.7313±0.0022
75% 0.8784±0.0063 0.9294±0.0017 0.8747±0.0021 0.7308±0.0024
100% 0.8770±0.0067 0.9291±0.0020 0.8748±0.0021 0.7304±0.0026

General monotone variant

25% 0.8792±0.0055 0.9296±0.0017 0.8747±0.0019 0.7311±0.0021
50% 0.8776±0.0068 0.9290±0.0021 0.8749±0.0024 0.7305±0.0025
75% 0.8765±0.0082 0.9288±0.0018 0.8747±0.0023 0.7301±0.0029
100% 0.8749±0.0087 0.9288±0.0026 0.8744±0.0030 0.7295±0.0033

25% 50% 75% 100%

0.58

0.60

0.62

0.64

0.66

Ac
cu
ra
cy
@
1

(a) Accuracy@1

25% 50% 75% 100%

0.680

0.685

0.690

0.695

0.700

0.705

Ac
cu
ra
cy
@
2

(b) Accuracy@2

25% 50% 75% 100%
0.635

0.640

0.645

0.650

0.655

Ac
cu
ra
cy
@
3

(c) Accuracy@3

25% 50% 75% 100%

0.475

0.480

0.485

0.490

0.495

0.500

Ke
nd

al
l's

 ta
u

(d) Kendall’s tau

Figure 8: Distribution of Top-N accuracy and Kendall’s tau of linear variant of proposed framework for valued decision examples
generated by random value functions.
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Figure 9: Distribution of Top-N accuracy and Kendall’s tau of piecewise-linear variant of proposed framework for valued decision
examples generated by random value functions.
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Figure 10: Distribution of Top-N accuracy and Kendall’s tau of splined variant of proposed framework for valued decision examples
generated by random value functions.
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Figure 11: Distribution of Top-N accuracy and Kendall’s tau of general monotone variant of proposed framework for valued decision
examples generated by random value functions.

3.4. Accounting for class priorities

To illustrate the method for adjusting classification performance across classes according to class priorities, we

give an example which is summarized in Table 5 and Figure 13. In this example, the actual preference model is

a randomly generated general monotone value function with the setting ρ = 25%. Then, we use this preference

model to determine the actual assignment for each alternative and construct the training set AR and the test

set AT . Particularly, we construct valued decision examples by allocating 20% credibility degree of each reference

alternative to the classes adjacent to its actual assignment. Then, we use the splined variant of the proposed

framework to derive the initial value function model, according to which the initial performance measures CardPfr

and OrdPfr for each class on the reference and non-reference alternatives are obtained (see columns “Initial” in

Table 5). In the following procedure for adjusting classification performance across classes, we consider the priority

ranking of classes as Cl5, Cl4, Cl3, Cl2, Cl1, where the classes Cl5 and Cl1 have the greatest and least priorities,

respectively. According to the specified class priorities, we apply the proposed method to adjust classification

performance across classes, in which threshold ζ for controlling the complexity of the adjusted preference model is

determined using cross-validation by checking CardPfr on the two classes with the greatest priorities. Specifically,

if we observed no improvement of CardPfr on the two classes with the greatest priorities at a certain iteration on

the validation set, we terminate the adjustment process. Note that one can choose different measures for using

cross-validation to set threshold ζ. Finally, we obtain the adjusted classification performance across classes (see

columns “Final” in Table 5). The variation of CardPfr and OrdPfr for each class during the whole process is

depicted in Figure 13.

We observe the measures CardPfr and OrdPfr for each class on the reference alternatives are adjusted ac-

cording to the specified priority ranking. Particularly, CardPfr and OrdPfr for Cl4 and Cl5 decrease during

the whole process as they have the greatest two priorities, whereas CardPfr and OrdPfr for Cl1, Cl2 and Cl3
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(a) Linear marginal value function
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(b) Piecewise-linear marginal value function
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(c) Splined marginal value function
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(d) General monotone marginal value function

Figure 12: An example of non-linear actual marginal value functions and marginal value functions derived from four variants of
proposed framework. The dashed and solid lines refer to actual marginal value functions and marginal value functions derived from
four variants of proposed framework, respectively. The marginal value functions on each criteria are represented using different colors:
red – g1, blue – g2, yellow – g3, green – g4, purple – g5, gray – g6. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)
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increase because they have relatively low priorities. This indicates that the classification performance on Cl1,

Cl2 and Cl3 is sacrificed to improve that on Cl4 and Cl5. When it comes to the performance for each class on the

non-reference alternatives, the measure CardPfr for each class varies as it does on the reference alternatives, while

the measure OrdPfr deteriorates slightly for each class. It suggests that the predictive ability of the constructed

model for each class is adjusted in terms of the measure CardPfr, but the performance in terms of the measure

OrdPfr does not achieve the desired effect.

Table 5: Initial and final CardPfr and OrdPfr for each class in an example of adjusting classification performance across classes
according to class priorities.

Class
CardPfr OrdPfr

Initial Final Initial Final

Reference alternatives

Cl1 0.2827 0.4005 0.2942 0.3407
Cl2 0.2797 0.3314 0.1521 0.1651
Cl3 0.2763 0.3941 0.1035 0.1271
Cl4 0.2555 0.1038 0.2435 0.1964
Cl5 0.1092 0.0523 0.2185 0.2021

Non-reference alternatives

Cl1 0.0349 0.0654 0.4083 0.4533
Cl2 0.0366 0.0475 0.2066 0.2866
Cl3 0.1468 0.2197 0.1283 0.2100
Cl4 0.1654 0.0928 0.3651 0.4283
Cl5 0.1142 0.0481 0.3783 0.3983
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(c) CardPfr on non-reference alternatives
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(d) OrdPfr on non-reference alternatives

Figure 13: Variation of CardPfr and OrdPfr for each class in an example of adjusting classification performance across classes
according to class priorities.

In the above example, we observe that the predictive ability of the constructed model for each class cannot

necessarily be adjusted according to the specified class priorities. To test the validity of the proposed method

for adjusting classification performance across classes, we conduct a further simulation experiment to examine

whether the measures CardPfr and OrdPfr for each class on non-reference alternatives can be adjusted according

to the specified class priorities. In this simulation experiment, we simulate 100 general monotone value functions
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Table 6: ANOVA results for the percentage of problem instances in which CardPfr
and OrdPfr for classes with the greatest N priorities on non-reference alternatives
improve, respectively.

Outcome Indicator ρ Credibility distribution Sorting method
∆CardPfr@1 df 4 4 3

Mean squares 0.002 0.003 0.564
F 0.541 0.943 169.804

Sig. 0.706 0.443 0.000*

∆CardPfr@2 df 4 4 3
Mean squares 0.002 0.003 0.559

F 0.246 0.464 80.606
Sig. 0.911 0.762 0.000*

∆CardPfr@3 df 4 4 3
Mean squares 0.009 0.019 0.675

F 0.783 1.579 57.545
Sig. 0.541 0.187 0.000*

∆OrdPfr@1 df 4 4 3
Mean squares 0.003 0.004 0.486

F 0.523 0.741 101.439
Sig. 0.719 0.567 0.000*

∆OrdPfr@2 df 4 4 3
Mean squares 0.001 0.004 0.462

F 0.096 0.564 59.471
Sig. 0.984 0.689 0.000*

∆OrdPfr@3 df 4 4 3
Mean squares 0.011 0.018 0.549

F 0.867 1.471 44.488
Sig. 0.487 0.218 0.000*

1 ∆CardPfr@N and ∆OrdPfr@N for N = 1, 2, 3 refer to the percentage of problem
instances in which CardPfr and OrdPfr for the classes with the greatest N priorities
on the non-reference alternatives improve, respectively.

for each complexity level (ρ=0%, 25%, 50%, 75%, 100%) as the actual preference models to generate valued

decision examples with different distribution of credibility degrees (100%-0%, 90%-10%, 80%-20%, 70%-30%,

60%-40%). We use the four variants of the proposed framework to construct the initial value functions and

then use the method for adjusting classification performance across classes. Particularly, we consider all possible

rankings of class priorities (since we consider five classes in this problem, there are 120 possible rankings).

Moreover, the stopping criterion of the adjustment procedure is either that there is no improvement of CardPfr

on the two classes with the greatest priorities at a certain iteration on the validation set, or that the maximum

iteration (100) is reached. Finally, we count the percentage of problem instances in which the measures CardPfr

and OrdPfr for the classes with the greatest priorities on non-reference alternatives improve, which can be seen

as the possibility the proposed method for adjusting classification performance achieves the desired effect. In

e-Appendix C, we report the percentage of problem instances in which CardPfr and OrdPfr for classes with

the greatest N priorities on non-reference alternatives improve, respectively, in each problem setting, where

N = 1, 2, 3. Since we have 120 combinations of problem setting regarding three factors (F1: ρ, F2: distribution of

credibility degrees, and F3: sorting method), we first use a three-way analysis of variance (ANOVA) to analyze

the obtained results, in which we do not consider the interactions between factors. The ANOVA results for

the percentage of problem instances in which CardPfr and OrdPfr for classes with the greatest N priorities on

non-reference alternatives improve, respectively, are presented in Table 6. It is apparent that, among the three

considered factors regarding a sorting task, only the factor of sorting method (i.e., the underlying value function

model) affects whether the measures CardPfr and OrdPfr for each class on non-reference alternatives can be

adjusted according to the specified class priorities.

Then, we analyze the results of applying the proposed method to adjust the initial outcomes derived by differ-

ent variants of the proposed framework, which is summarized in Table 7. On the one hand, we observe that both

∆CardPfr@N and ∆OrdPfr@N decrease as N increases, which indicates that the chance that the performance
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Table 7: Percentage of problem instances in which CardPfr and OrdPfr for classes with the greatest N priorities on non-reference
alternatives improve, respectively, in terms of mean and standard deviation.

Method ∆CardPfr@1 ∆CardPfr@2 ∆CardPfr@3 ∆OrdPfr@1 ∆OrdPfr@2 ∆OrdPfr@3
Linear variant 0.6043±0.0605 0.4951±0.0896 0.3744±0.1227 0.5293±0.0691 0.4212±0.0885 0.3008±0.1242

Piecewise-linear variant 0.9040±0.0598 0.8124±0.0916 0.7288±0.1179 0.7988±0.0676 0.7117±0.0885 0.6200±0.1199
Splined variant 0.9080±0.0489 0.7856±0.0611 0.6856±0.0862 0.8163±0.0643 0.6816±0.0782 0.5771±0.0892

General monotone variant 0.9024±0.0534 0.7807±0.0709 0.6873±0.0966 0.8083±0.0661 0.6819±0.0801 0.5876±0.1015
1 ∆CardPfr@N and ∆OrdPfr@N for N = 1, 2, 3 refer to the percentage of problem instances in which CardPfr and OrdPfr for the
classes with the greatest N priorities on the non-reference alternatives improve, respectively.

on a class is improved decreases with its priority. Particularly, ∆CardPfr@N is greater than ∆OrdPfr@N for

the same N , which means that the measure CardPfr has a higher possibility to be improved than the measure

OrdPfr. On the other hand, it is noted that the proposed method has a greater possibility to adjust the initial

outcomes derived by the piecewise-linear, splined, and general monotone variants of the proposed framework than

to adjust the results achieved by the linear counterpart. This is because the piecewise-linear, splined, and general

monotone value functions are more flexible while the linear value function is restricted to the linear form.

4. Conclusions

In this paper, we proposed a new preference learning framework for constructing an additive value function

model from the given decision examples. We put the linear, piecewise-linear, splined, and general monotone

value functions under a unified analytical framework, in which the DM can select any type to equip different

variants of the analytical framework. In comparison with the existing sorting methods, our analytical framework

allows to consider valued decision examples and each reference alternative could be assigned to multiple classes

with respective credibility degrees. We formulated the learning problem within the regularization framework in

order to improve the predictive ability of the constructed preference model on new instances. Specifically, we

defined the complexity for each type of value function model and use regularization terms avoid the over-fitting

problem. Moreover, we introduced the advanced alternating direction method of multipliers to solve the proposed

optimization model in a computationally efficient way. In addition, considering the potential lack of equivalence

in class priorities, we proposed a method to adjust classification performance across classes according to the

priority ranking of classes specified by the DM.

The experimental study of applying the analytical framework to a real-world dataset revealed that the vari-

ants using different value functions had a competitive advantage over the existing sorting methods in terms of

a predictive performance, but each of them had respective characteristics in interpreting human preferences.

Specifically, the value function model constructed by the linear variant is easy to explain to a non-experienced

DM, but has a relatively weak ability in learning complex non-linear preferences. As for the piecewise-linear

variant, the derived piecewise-linear marginal value functions can fit complex preferences well, but may exhibit

a sudden change in slope at breakpoints, which limits their interpretability in some contexts. When it comes

to the splined variant, it achieves the same high classification performance as the piecewise-linear variant, but

has the advantage of constructing smooth marginal value functions, which is more appreciated in some applica-

tions. Finally, the general monotone variant uses the most flexible value function model that can characterize

any general monotone preferences over alternatives.

We also investigated the variation of classification performance for different credibility distribution of valued

decision examples generated by simulated value functions with different degrees of complexity. Moreover, we

tested the possibility of using the proposed method for adjusting classification performance to achieve desired

outcomes. Overall, the analytical framework is capable of dealing with complex decision problems and reveals

flexibility to fulfil personalized requirement from the DM.

Our work contributes to the research at the crossroads of Multiple Criteria Decision Aiding and Machine

Learning. On the one hand, we introduced the methodological and computational advances from the machine
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learning community as efficient tools to address several new characteristics that have never been considered in

previous studies in the field of MCDA, including constructing various types of value function models under the

unified framework, assigning alternatives to multiple classes with respective credibility degrees, and prioritizing

importance of classes in order to adjust classification performance. On the other hand, these new characteris-

tics also provide several possible avenues to the Machine Learning community, such as utilizing the descriptive

character of value function models for interpreting the outcomes suggested by a learning procedure, consid-

ering consistency-driven procedure for ordinal classification tasks instead of using the traditional probabilistic

framework, and allowing the DM to participate in the construction process to obtain customized results.

We envisage the following directions for future research. The analytical framework can be extended to consider

interacting and non-monotonic preferences. Moreover, it will be interesting to apply the analytical framework to

multiple criteria ranking or multi-label ranking. We will also incorporate more types of value function models

and other preference models into the analytical framework. Finally, more real-world applications are needed to

validate the practical performance of the four variants of the analytical framework.
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