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aTechnical University of Denmark - Department of Technology, Management and Economics

Abstract

This paper proposes an Adaptive Large Neighbourhood Search heuristic for solving the Port
Scheduling Problem, the problem of scheduling feeder vessels’ operations in multi-terminal ports.
Each vessel has a number of operations to perform at different terminals within the port, and
each terminal can only serve a single vessel at a time. The resulting problem is a general shop-like
problem, with a variety of additional operational constraints. The objective is to let the vessels
depart from the port as early as possible, as this allows them to sail at reduced speed to the next
port, saving large amounts of fuel; as well as scheduling operations early, which leaves more slack
for later and hence makes the system more robust. The developed Adaptive Large Neighbourhood
Search heuristic works with the order of operations, and assigns the start times of the operations
first as part of the solution evaluation. To conduct the computational experiments, a large set of
benchmark test instances, denoted PortLib, was developed, and the performance of the heuristic
was compared to that of a commercial solver. The results show that the heuristic in general finds
better solutions, even with significantly shorter run times.

Keywords: OR in Maritime Industry, Port Operations, General Shop Scheduling, ALNS

1 Introduction

The maritime industry is a vital part of the global economy and there has in recent years been a
large increase in the number of papers published on the topic of optimisation in maritime operations.
Some of the main topics are liner shipping network design, stowage planning, and berth scheduling,
for which advanced decision support tools are also increasingly being implemented in practice.

Today, the vast majority of international trade, around 90% by volume, is carried out by seaborne
transportation. The containerised cargo trade roughly accounts for 23.8% of the total global trade,
and the majority of the transport of this cargo is served by the liner shipping industry. Liner vessels
are large vessels sailing on fixed itineraries, with weekly or bi-weekly frequency, and in 2019, more
than 5,200 container liner vessels were in operation worldwide. The volume of containerised cargo has
grown close to 8% per year during the last three decades, attaining an estimated volume of around
140 million TEUs (twenty-foot equivalent units). To satisfy this massive trade demand, the size of
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Figure 1: Example of a hub and feeder structure in the shipping network.

container vessels is increasing, and the largest vessels today can carry over 20,000 containers (Unctad,
2018, 2019). To facilitate the ever-growing liner vessel, each region typically has a few large ports,
called hubs, where the liner vessels load and discharge containers. From the hubs, the containers
are then transported to other smaller ports, also called spoke ports or feeder ports, by more flexible
vessels, so called feeder vessels. Figure 1 depicts an example of a hub and feeder structure in the
shipping network. Clearly, an efficient feeder structure is crucial for the liner shipping industry to
operate effectively.

One of the drawbacks with this system, however, is that it heavily burdens the major hubs, as
nearly all long-distance container traffic will be transshipped in those ports, between the liner vessels
and the feeder vessels. To keep down the resulting congestion, as infrastructural improvements are
huge capital investments and take significant time to implement, well-planned scheduling is of the
essence to maximise the utilisation of the existing resources.

While feeder ports generally have only a single terminal, some large ports, such as Rotterdam
or Singapore, are multi-terminal ports, i.e. they have several terminals that are located far apart.
A terminal is a station within the port, where containers are loaded and discharged, using so called
quay-cranes. As the liner vessels are very large, and have a significantly larger upkeep than the
feeder vessels, they have priority in the planning process when visiting large ports. In practice, this
means that every liner vessel visits only a single fixed terminal, where it discharges and loads all the
containers for that port. Therefore, when planning the port stays of the feeder vessels, the terminal at
which to load or discharge each container is already decided. Moreover, as each feeder vessel generally
handles containers to and from multiple liner vessels, they need to visit multiple terminals within
the port, especially as transporting containers between terminals by means of trucks or similar is
expensive and should be avoided.

The port inspiring this work is Rotterdam, which is the largest hub in Europe and the gateway
to the European market, with more than 500 visiting liner services connecting more than 1,000
ports all around the world. During 2017, more than 7,000 container vessels arrived to the port for
loading and discharge operations, resulting in a total throughput of 142.6 million tonnes (Port of
Rotterdam, 2017). Feeder and short-sea services play a very important role in the operations of the
port of Rotterdam, and account for around 40% of the total container traffic. Figure 2 provides an
illustration of the port of Rotterdam, where it can be seen how the container terminals are spread out
along the river bank. In this case, the sailing time between the inner and outer terminals is around
three hours.

Together with industry representatives, we have identified a new planning problem, namely that
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Figure 2: Layout of the different container terminal areas in the port of Rotterdam.

of routing and scheduling the feeder vessels through multi-terminal ports, deciding in which order
to visit the terminals, and at which times. The main aim is to let vessels leave for the next port as
early as possible, as sailing at a lower speed significantly lowers the fuel consumption, over the same
distance. Additionally, we try to schedule operations early, to leave more resources available, in case
of later changes, which makes the schedule more robust.

1.1 Problem Definition

Each feeder vessel visiting the multi-terminal port has a number of operations to perform at fixed,
but usually different, terminals. The operations generally consist of either loading or discharging all
the containers designated for a single terminal, and a vessel can have several operations assigned
to the same terminal. In this way, a vessel can visit the same terminal multiple times during its
stay at the port, if not all operations assigned to the terminal can be carried out consecutively. We
also assume that the operations are non-preemptive, i.e. that they have to be completed without
interruption once started, as this is almost always the case in practice. We use estimates for the
arrival and latest departure for the vessels, for the travelling times between terminals and for the
required time to perform the operations. The travel times and the arrival and departure times are
normally given, whereas the operation times have to be estimated. We assume a known and given
gross crane productivity for each operation, based on historical data, and estimate the operation
time as the number of moves, i.e., the number of containers to lift on and off, to perform divided by
this productivity. The gross crane productivity depends on the terminal, the vessel, the number of
quay cranes active, etc. Generally, the terminal is, furthermore, contractually obliged to perform a
minimum amount of moves per hour. More accurate operation times could likely be achieved by using
an appropriate prediction algorithm, learning from historical data, but that is beyond this project.

The particular scope of this problem is based on an agreement between a single carrier, owning a
fleet of vessels, and the terminal administration, which states that a number of terminals, with a set
of accompanying quay cranes and workforce, are freely available to the carrier during certain time
windows. The carrier is then free to schedule the operations of its feeder vessels at those terminals.
Hence, in this case, the carrier is the owner of this problem. This way, the organisational interface
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between the terminal and the carrier becomes significantly more clear-cut.
In the real-life case we have studied, the carrier was allowed to have a single vessel served at each

terminal at a time, which is probably the most common scenario. In general, leasing the terminal
for more time during the week allows for more flexibility than leasing space for multiple vessels
simultaneously. Of course, if a carrier has a very large number of vessels, leasing space for multiple
vessels would be necessary. However, we worked with one of the world’s largest feeder companies,
and so, such carriers are likely to be few. In some other cases, the physical layout of the terminal can
also limit the maximum number of vessels to serve at the terminal.

Following this, we have assumed that each terminal can only serve one vessel simultaneously. It
is of course possible, that in certain agreements, some of the terminals allow multiple vessels, and if
there is no way to circumvent it, the carrier can sometimes manage to negotiate an additional berth.
However, that is out of the scope of this work.

Most containers served in those large ports are being transshipped, i.e. they are being delivered to
the port by one vessel and then picked up by another. Transshipments most commonly occur between
a feeder vessel and liner vessel. For the feeder vessels this means that a load operation can first be
performed once all containers are in place, and similarly a discharge operation has to be performed
before any of the containers has to be delivered to another vessel. Again, as the connecting liner
vessels are significantly larger, their schedule is created first and the schedule for the feeder vessels
then has to adhere to that. Hence, this imposes time windows for the loading and discharge operations
for the feeder vessels. We define the time window of an operation as the time period in which the
operation must be started. Further, time windows are also defined for the vessels port stay. A vessel’s
time window begins at the arrival of the vessel to port, and ends at the latest point of departure at
which the vessel will arrive on time to the next port on its itinerary, sailing at maximum speed.

A vessel may never arrive to the terminal after the end of the time window of the operation,
but is allowed to wait until the start of the time window in a lay-by terminal close to the terminal
of the operation. The availability of lay-by terminals is generally not binding and so, they are not
considered in this work. The terminals can also have time windows; some terminals do not work
during night hours or in the weekend, and others might not be open for the carrier in question during
certain hours.

Additionally, we have a set of precedence requirements, defined by the carrier. The most common
of those arise from the fact that a vessel has to discharge its containers at a terminal before it
loads containers from the same terminal. Other precedence relations depend on for example the
stowage plans, as to avoid unnecessary moves. In other more rare occasions, some containers need
to be transshipped between two feeder vessels, in which the discharge of those containers has to be
performed before they are loaded onto the next vessel.

We can define the Port Scheduling Problem (PSP) as finding an operational schedule for the feeder
vessels, i.e. a starting time for each operation, which satisfies the above mentioned requirements as
well as let the feeder vessels depart from the port as early as possible and packs the schedule as
tight as possible to keep some slack for alterations and unexpected events. The fuel consumption
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of a vessel is generally estimated to grow as the cube of the speed, which makes sailing slow highly
tractable. Other costs, such as in-port fuel costs are marginal and are not considered in this work.

The PSP is a generalisation of the general shop problem, as defined in Brucker (1999), with time
windows, capacity constraints and closing periods for the terminals. If the capacity at each terminal
was unlimited, it would boil down to a set of single vehicle, 2-commodity, capacitated vehicle routing
problems with time windows and precedence constraints. If instead, the order of terminals for each
vessel was fixed, the problem would be a job shop problem with additional constraints. Further, the
PSP is NP-hard as it has the m-machine open shop problem as a special case.

The problem could be considered a sub-problem in the larger picture of optimising container-
terminal operations. The schedules generated for the vessels will then be combined with quay crane
schedules, stowage plans, yard operations, all the way down to worker schedules. Clearly, optimising
the full operations is immensely complex, and so, dividing it into several steps seems to be an
appropriate approach.

1.2 Literature Review

We will divide this literature review in two parts. In the first part we will briefly introduce the
main literature on port operations and discuss how the PSP relates to other previously defined port
operation problems. In the second part we will focus more on the mathematical structure of the
problem and try to classify and compare it to other well-known optimisation problems.

For a detailed review on the topics of maritime optimisation, we refer the reader to the survey
papers by Christiansen et al. (2013, 2019). There has been plenty of work on container-terminal
operations, over which Stahlbock and Voß (2008), Meisel (2009) and Gharehgozli et al. (2016) have
written excellent reviews.

In many regards, the Berth Allocation Problem (BAP) (Kim and Moon, 2003) is one of the
most closely related problems. It serves essentially the same purpose as the PSP, which is to decide
which vessel should occupy which berth at what time. The BAP appears when the terminal owns
the problem of scheduling the berth allocation, where they have a number of available berths and
a number of requested operations to perform on incoming vessels. In contrast, as mentioned before,
the PSP appears when the carrier owns the problem, and as such the problems could be considered
mutually exclusive.

The two other port-side problems generally considered in the container-terminal operation lit-
erature are stowage planning (Avriel and Penn, 1993), and crane-split and quay crane scheduling
problem (QCSP) (Daganzo, 1989). There has been many studies on how to combine the BAP and
the QCSP, for more efficient operations (Imai et al., 2008; Iris et al., 2017). But as the carrier is
promised a fixed number of cranes, and there is only a single berth used at each terminal, performing
the quay crane split and scheduling posterior to the port scheduling should be sufficient. The stowage
planning, however, is deeply connected to the port scheduling, through the number of extra quay
crane moves necessary due to overstowage. Solving an integrated stowage planning and port schedul-
ing problem would, though, be prohibitively complex. So, in this work we are content with defining
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a number of precedence relations between operations, preventing schedules which would require a
large number of extra moves.

Another similar approach, application-wise, is the in-port routing of tanker ships by Wang et al.
(2018). They developed a method to efficiently route a single tanker vessel through a large port with
several operations at multiple terminals, far apart, with various tank allocation restrictions. The
resulting problem, however, turns out to be widely different. The main property of the problem in
Wang et al. (2018) is the tank allocation, whereas the defining property of the PSP is the limited
availability of quay cranes which gives the PSP its scheduling characteristics. In contrast, in the
tanker routing problem, only a single vessel is present, which makes it is a pure routing problem.

Structurally, the PSP is in essence a machine scheduling problem (Kan, 2012). More specifically,
the PSP has a similar structure to the General Shop Scheduling Problem (GSP), as described in
Brucker (1999). This is a more general definition of the shop scheduling problems which encompasses
the well-studied Open Shop Problem (OSP) and the Job Shop Problem (JSP). Each vessel could
be seen as a machine and each terminal could be seen as a job, such that each job has a number
of operations that have to be performed at specific machines. Preemption is not allowed, and any
machine can process at most one job at any time, and similarly, a job cannot be processed at more
than one machine simultaneously. Additionally, there may be some precedence relations between the
operations. The distances between terminals can further be formulated as sequence dependent setup
times.

According to Graham’s notation (Graham et al., 1979), the PSP can be roughly classified as
Gm|pred; rp; dp; spq|

∑
wpCp, i.e. an m-machine General Shop Problem with precedence constraints,

release and due times for the operations and sequence dependent set-up times under an objective
function which minimises the weighted sum of the completion time of the operations. However, the
PSP is not a general shop scheduling problem, as this framework does neither include the closing
periods for the terminals nor the capacity constraints for the vessels. Also, time windows for each
individual operation is uncommon in the scheduling literature.

As the GSP has seen little attention in the literature, it is interesting to try to relate it to other
more well studied scheduling problems. Among the classic machine scheduling problems, it has most
similarities with the OSP (Blazewicz et al., 2019; Anand and Panneerselvam, 2015). While there are
still significant differences between the OSP and the PSP, the base structure is similar and many of the
solution concepts for OSP would also work for the PSP. A wide variety of heuristic approaches have
been studied for solving both the classical OSP and different variants with additional constraints. The
most common additional extra constraint, which is also present in the PSP, is the sequence-dependent
setup times (Zhuang et al., 2019; Mejía and Yuraszeck, 2020; Abreu et al., 2020). Among the most
successful approaches, we can highlight Genetic Algorithms (Abreu et al., 2020; Hosseinabadi et al.,
2018) and Particle Swarm Optimisation (Sha and Hsu, 2008; Lin and Sha, 2011). Several authors
have tried various hybrid genetic algorithms, combining a genetic algorithm with for example greedy
heuristics (Kokosiński and Studzienny, 2007) and Tabu Search (Liaw, 2000).

Furthermore, in terms of local search neighbourhood-based heuristics, there are a number of
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papers that use efficient methodology to solve different variants of the OSP, such as Simulated
Annealing (Harmanani and Ghosn, 2016) and Variable Neighbourhood Search (VNS) (Mejía and
Yuraszeck, 2020). The majority of the previous approaches use a permutation list of operations to
efficiently model the problem. In the latter paper by (Mejía and Yuraszeck, 2020), for example, the
authors use an efficient decoding scheme for the permutation list which is embedded in a self-tuning
VNS for solving the OSP with travel times and sequence-dependent setup times.

Furthermore, the PSP can also be seen as a resource constrained project scheduling problem with
sequence dependent setup times and time windows (Hartmann and Briskorn, 2010), but again with
the addition of capacity constraints and closing periods. Nevertheless, this problem becomes more
relevant for the PSP when the capacity of the terminals is no longer limited to serve a single vessel.

In this work we use an Adaptive Large Neighbourhood Search heuristic (ALNS) inspired by
Pisinger and Ropke (2007). This heuristic has been successfully applied to several routing (Ropke
and Pisinger, 2006; Pisinger and Ropke, 2007, 2010) and scheduling problems (Muller, 2009; Kovacs
et al., 2012; Rifai et al., 2016).

1.3 Constraint Programming

One of the most successful methods to solve scheduling problems is Constraint Programming (CP),
which has become the state-of-the-art method for many scheduling problems (Laborie et al., 2018).
As an example, Malapert et al. (2012) reports the overall best performance for the classical OSP
for a wide range of benchmark instances available in the literature. However, this is no longer the
case for objective functions different from the make-span minimisation. IBM ILOG CP Optimizer
provides a generic CP-based system to model and solve scheduling problem, which uses a constraint
programming engine to prove optimality. We have chosen to benchmark against CPLEX, as the
mathematical programming engine returns lower bounds and optimality gaps measures. Nevertheless,
the implementation of CP tools for solving the PSP is an interesting subject for future work.

1.4 Contributions

The main contributions of this paper are:

• First, we present a new scheduling problem for feeder vessels in multi-terminal ports, which has
been developed in close collaboration with industry. We model the problem as a mixed-integer
programming (MIP) model, inspired by machine-scheduling formulations, and show that it is
NP-hard.

• Secondly, we propose an ALNS heuristic to find good solutions for the PSP, using a set of
destroy and repair methods tailored for the problem. The ALNS framework uses weights for
pairs of destroy and repair methods to promote pairs which work well together.

• Thirdly, we present a suite of benchmark instances, denoted PortLib, that have been generated
with the aim of accurately representing realistic test cases. The benchmark instances serve as
an instrument to measure and compare the performance of the proposed methods in the present
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paper, as well as to provide a platform for future researchers to compare and develop further
heuristics and exact methods.

• Lastly, we conduct computational experiments to find a good parameter setting and assess the
performance of the heuristic. The results show that the ALNS heuristic provides good results
within reasonable computation times, and that it outperforms CPLEX, which was used as
benchmark.

The paper is organised as follows: Section 2 presents the mathematical model for the PSP. Section 3 is
devoted to the ALNS heuristic and the main adaptions for this problem are described in detail. Section
4 provides a description of the PortLib instances. The results for the computational experiments are
reported in Section 5. Finally, the paper is summarised and concluded in Section 6.

2 Mathematical Formulation

In this section we introduce the main notation for the PSP, which will be used to model the problem
mathematically as a MIP. This provides an exact definition of the problem, and it is used for the
benchmark. Appendix A gives an overview of all the notation used throughout the paper.

Let T̃ = {1, . . . , n} be the set of n terminals in the port and define T = T̃ ∪ {0, n+ 1}, where 0
is the entry point of the port and n+ 1 is the exit point of the port. Let Ṽ = {1, . . . ,m} be the set
of feeder vessels to route through the port. Additionally, let us define V = Ṽ ∪ {0,m + 1}, where 0
and m+ 1 are dummy vessels for modelling purposes.

Further, let Ovi be the set of operations to be performed by vessel v ∈ V at terminal i ∈ T .
We also define Ov = ⋃

i∈T O
v
i , to be all the operations for vessel v ∈ V , Oi = ⋃

v∈V O
v
i , to be all

operations at terminal i ∈ T , and O = ⋃
i∈T,v∈V O

v
i to be the set of all operations. Here, O0

i and
Om+1
i are dummy operations denoting when terminal i ∈ T starts working, respectively finishes, for

the considered time period. Similarly, Ov0 and Ovn+1 represent the arrival and the departure, for vessel
v ∈ V , to/from the port. Let further Õ = ⋃

i∈T̃ ,v∈Ṽ O
v
i be what we call the set of interior operations,

i.e. operations which are not the dummy operations for the terminals or a vessel entering or leaving
port.

Let δij be the time it takes for a vessel to travel between the terminals i ∈ T and j ∈ T . The
travelling time between the same terminal, i.e., when i = j, is negligible and set to zero. Moreover, let
wp be the number of containers to be handled at operation p ∈ O. Positive values represent loading
operations, whereas negative values represent discharge operations. Associated with the latter, let
τp be the required time to perform the operation p ∈ O. We assume the gross crane productivities
to be given and calculate the operation times as the number of required container moves divided
by the gross crane productivity. Additionally, let λpq be binary precedence parameters, such that
operation p ∈ O has to be performed before operation q ∈ O if λpq = 1. For each operation p ∈ O,
denote the time window, in which the operation is allowed to start, by [αp, βp], and let φp and νp

be the corresponding terminal and vessel of the operation. Note that α
Ov

0
and β

Ov
n+1

denote the
earliest arrival time and latest departure for vessel v to/from the port, respectively. Each vessel
v ∈ V has a maximum cargo capacity of Qv containers, and arrives to the port with an initial cargo

8



of q̂v containers. Lastly, let Si denote a set of closing periods for terminal i ∈ T , within which no
operations can be performed, and let [ξs, ζs] be the time window of closing period s ∈ Si.

With all necessary sets and parameters defined, let us define variables yp, representing the starting
times of operations p ∈ O. As discussed in the introduction, the general objective is to depart early
to save fuel, and schedule operations early to leave slack in the schedule for future changes. To model
this we use the weighted sum of operation starting times as objective function,

f(yp | p ∈ O) =
∑

p∈Õ ∪ On+1

cpyp, (1)

where the sum over Õ denotes the scheduled time of the interior operations and the sum over On+1

denotes the departure times of the vessels.
What remains is to define the coefficients cp. First, a problem with minimising the sum of start

times in a schedule is that it strongly favours putting the short operations early. To avoid this, we
weigh each interior operation p ∈ Õ by its service time in the objective function. Secondly, various
vessels have different priorities, and to model this we weigh each operation by a vessel specific priority
factor, γv. Lastly, we use a coefficient, ρ, which denotes the relative importance between leaving early,
and scheduling operations early. Hence, we get the following weights:

cp =

τpγνp p ∈ Õ

ργνp p ∈ On+1

The values for ρ and γv have to be set according to the preferences of the carrier.
As in most machine scheduling problems we define binary decision variables representing the

precedence between operations. For every distinct operation pair (p, q) : p ∈ O, q ∈ (Oφp ∪Oνp)\{p},
let xpq be a binary variable that takes value 1 if operation p precedes operation q. Let zps be a binary
variable, which is 0 if operation p ∈ Õ is performed before the closing period s ∈ Sφp , and 1 if it is
performed after. A MIP model of the PSP can then be formulated as follows:

min
∑

p∈Õ ∪ On+1

cpyp (2a)

s.t. yq − yp ≥ δφpφq
+ τp −Mpq(1− xpq) p ∈ O, q ∈ (Oφp

∪Oνp
) \ {p} (2b)

xpq + xqp = 1 p ∈ O, q ∈ (Oφp
∪Oνp

) \ {p} (2c)

xpq = 1 p, q ∈ {O : λpq = 1} (2d)∑
q∈Ov

wqxqp ≤ Qv − q̂v − wp v ∈ V, p ∈ Ov (2e)

αp ≤ yp ≤ βp p ∈ O (2f)

yp + τp ≤ ξs + M̂pszps p ∈ Õ, s ∈ Sφp (2g)

yp ≥ ζs − M̄ps(1− zps) p ∈ Õ, s ∈ Sφp (2h)
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xpq ∈ {0, 1} p ∈ O, q ∈ (Oφp
∪Oνp

) \ {p} (2i)

yp ∈ R+ p ∈ O (2j)

zps ∈ {0, 1} p ∈ Õ, s ∈ Sφp
(2k)

where
Mpq = βp − αq + δφpφq + τp,

M̂ps = βp + τp − ξs

and
M̄ps = ζs − αp.

The objective function (2a) minimises the weighted sum of starting times of operations. The sum
over Õ minimises the starting time of the interior operations, whereas the sum over On+1 minimises
the departure time of the vessels from the port. Constraints (2b) and (2c) define the disjunctive
constraints for the operations. Constraints (2b) ensure that if operation q is scheduled after p, then
q cannot be served before the completion of p, and Constraints (2c) ensure that operations for the
same vessel or in the same terminal are not performed simultaneously. Moreover, Constraints (2d)
define the specified precedence between operations.

The maximum cargo capacity must be respected at all times for each vessel during the scheduling
of operations in the port, as expressed in Constraints (2e). For any operation of a given vessel, the
current number of on-board containers is computed as the sum of the cargo handled by the vessel in
the previous operations plus the initial load of that vessel. After serving an operation, the on-board
containers shall not exceed the maximum cargo capacity of the vessel.

Constraints (2f) enforces the time windows of the operations. Additionally, an operation cannot
be served during the closing periods of a terminal, as seen in Constraints (2g)–(2h). Constraints (2g)
ensure that if an operation p ∈ Õ is scheduled before a time period s ∈ Sφp , the operation must be
completed before the terminal becomes inoperative. Similarly, if the operation is scheduled after the
time period, Constraints (2h) make sure that the operation does not start before the terminal becomes
active again. Finally, the domains of the decision variables are defined in Constraints (2i)–(2k).

3 The ALNS Heuristic

Solving general shop-like problems with exact methods tends to be very time consuming. Hence,
the more common approach to solve realistic-sized instances is to develop a metaheuristic. In this
work, we propose a ALNS heuristic for solving the PSP. The ALNS framework has been successfully
applied to several routing and scheduling problems (Pisinger and Ropke, 2010; Muller, 2009).

The ALNS heuristic was first introduced by Ropke and Pisinger (2006) as an extension to the
Large Neighbourhood Search (LNS) heuristic previously presented by Shaw (1998). Starting from
an initial solution, the heuristic progressively seeks for a new solution applying specialised heuristics
to destroy and repair the current solution. Destroy methods are responsible for removing part of
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the current solution, and normally, these methods contain some randomness to diversify the search
for new solutions. Repair methods are defined with greedy strategies for the quick reconstruction of
the current solution. The heuristic is encompassed in an adaptive framework, where the decision of
which destroy and repair methods to use is based on the methods performance earlier in the run. In
each iteration, a destroy method and a repair method are chosen based on their current scores. They
are then applied to the current solution, and the heuristic decides whether to keep the new solution
based on some acceptance criteria. Lastly, the scores for the methods are updated depending on the
quality of the achieved solution. For a more general description of the ALNS framework, we refer to
Pisinger and Ropke (2007). The main adaptions to this framework for this problem are described in
detail in the following Subsections 3.1–3.9.

3.1 Splitting the Order Operations and Time Assignment

For a given order of operations, assigning optimal times for the operations can be done in polynomial
time. This makes it possible to work with the order of operations rather than complete schedules
and then assigning optimal times as part of evaluating a solution. This is commonly modelled with
a disjunctive graph (Brucker, 1999), where a solution is represented by an acyclic orientation of the
edges. The structure of our particular disjunctive graph is that the operations performed by the
same vessel, as well as the operations served by the same terminal, are connected. The connections
are made up of conjunctive arcs where there are precedence relationships and otherwise disjunctive
edges.

As we are working with local search heuristics, we almost exclusively work with orientations of
the disjunctive graph and it turns out that it becomes slightly cleaner if we instead work with the
transitive reduction of the oriented disjunctive graphs. This corresponds to a graph where, for each
vessel, the arcs form a path from the vessel’s dummy start node to it’s dummy end node, through
each interior operation served by that vessel, and similarly for the terminals. We will denote this
graph the order graph, as it represents in which order the operations are performed. The order graph
has |O| nodes, and 2|O| − 3(m + n) arcs, where m is the number of vessels and n the number of
terminals. An example of an order graph can be seen in Figure 3. The squared nodes represent the
non-interior operations from the set O\Õ, whereas the circled nodes represent the interior operations
Õ. Here. each vessel v ∈ V visits each terminal t ∈ T for discharging and for loading containers.
The vertical lines show in which order the operations are performed at a given terminal, whereas the
horizontal lines show in which order the operations are performed for a given vessel.

The order graph does theoretically not need to be connected, but if the graph is disconnected,
each connected component represents a problem which could be solved independently. So let us for
the remainder assume that the order graph is connected.

3.2 Assigning Time

Once we have an ordering of the operations, assigning the optimal operation times is a single-source
shortest path problem with time windows in a directed acyclic graph, which is solvable in polynomial
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Figure 3: Example of an order graph for an instance with two terminals and two vessels.

time. We use a version of the classic algorithm, described in Section 24.2 in Cormen et al. (2009),
modified to handle time windows.

The order graph provides a topological sorting of the operations. The earliest starting time for
each operation can then be calculated through dynamic programming. First, the time of the first
operations, i.e. the operations for the opening of the terminals and for the arrival of the vessels to
the port, are assigned, and then, recursively, the times of the successors are assigned. Each time an
operation’s starting time is assigned, it has to be pushed forward as to satisfy the start of its time
window and not collide with any closing periods. This procedure will create a semi-active schedule
as the order graph is acyclic. This follows almost immediately from Theorem 24.5 in Cormen et al.
(2009), with minor adaptions to include time windows and closing periods.

Once the times for all operations have been assigned, the algorithm checks if the time assignment
is feasible with regards to the time windows and the capacity constraints, and add the corresponding
penalties to the objective value.

3.3 The Destroy and Repair Methods

With the time assignment as part of the solution evaluation, the heuristic will work with orders of
operations. In our heuristic, we make use of a few different destroy methods, and a number of repair
methods, which follow various strategies when inserting operations. We define removing an operation
from the order graph as removing it from the ordered set of operations of its terminal and of its vessel.
Let p ∈ Õ be the operation to remove, and let Ô be the set of removed operations. There exists one
predecessor p′T ∈ Oφp and one successor p′′T ∈ Oφp in the ordered set of its terminal, and predecessor
p′V ∈ Oνp and one successor p′′V ∈ Oνp in the ordered set of its vessel. Now, removing p from the order
graph G, means that we remove the node representing the operation p along with the arcs connected
to it, and then we add an arc from p′T to p′′T and one arc from p′V to p′′V, to keep the graph structure
intact.

Inserting an operation p ∈ Ô means the exact opposite. We choose two operations p′T ∈ Oφp and
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p′′T ∈ Oφp from the ordered set of its terminal, such that there is an arc from p′T to p′′T, and two
operations p′V ∈ Oνp and p′′V ∈ Oνp from the ordered set of its vessel, such that there is an arc from
p′V to p′′V. Now we remove those two connecting arcs, and instead add four arcs; from p′T to p, from
p to p′′T, from p′V to p and from p to p′′V.

With removal and insertion defined, the destroy and repair methods are then defined as follows:

Destroy Methods:
D1. Random Removal

Remove b random operations from the order graph.
D2. Vessel and Terminal Removal

Remove all operations from a single vessel or a single terminal.
D3. Worst Removal

For each operation p ∈ Õ, compute the cost reduction achieved by removing operation p, normalised by
its service time. Remove the b operations with the highest normalised removal cost reduction.

D4. Infeasible Removal
Remove b random operations as well as, with a probability of 50%, every infeasible operation.

Repair Methods:
R1. Greedy Insertion

For each operation p ∈ Ô, in a random order, insert p where the resulting objective value is minimal.
R2. Sorted Greedy Insertion

Given an ordering of operations, for each operation p ∈ Ô, insert p where the resulting objective value
is minimal. The operations can be ordered according to three sorting rules: In decreasing duration, in
decreasing size of its operational time windows or in decreasing end time of their time window.

R3. 2-regret Insertion
Iteratively insert the operation p ∈ Ô, with the largest difference in objective value between its best and
second best insertion, at its best position.

Note that many of the described destroy and repair methods cover a parametrised family of
different methods. For example, D1 describes B different destroy methods, one for each value of
b ∈ {1, . . . , B} and R2 describes three repair methods, one for each kind of sorting. In total, this
constitutes 2B + 2 destroy options, one for each value of B in D1 and in D3, and one for vessel
removal and one for terminal removal in D2. D4 is used instead of D1 when the current solution is
infeasible. Moreover, there are a total of five repair options, one for R1, three for R2, and one for R3.

The repair methods R1 and R2 all use the same greedy insertion, only varying the sorting of
operations. R1 uses a random order, whereas R2 sort the operations according to the service time,
the size of the time window or the time window end. The reason for using sorted greedy insertion
is to schedule the most challenging operations first, as both operations with longer service time and
tighter time windows tend to be harder to accommodate.

For the sake of completeness, we also test some neighbourhoods from the classic ALNS heuristic
(Pisinger and Ropke, 2007, 2010) such as the destroy method D3 and the repair method R3. Regret
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heuristics similar to R3 have further been used for solving the Vehicle Routing Problem with Time
Windows (Potvin and Rousseau, 1993) and the Generalised Assignment Problem (Trick, 1992).

D3 is a destroy method, which iteratively selects the worst operation from Õ to remove from
the current solution. R3 is a 2-regret insertion, which computes the second-best and best position,
in which to insert the operations, in the current partial solution, and inserts the operation at the
position that maximises the difference between them. The method tries to prioritise the insertion of
those operations that may incur a high cost if they are postponed.

While D3 and R3 give rise to more sophisticated neighbourhoods, they also are computationally
more expensive. As the expensive part of the heuristic is the solution evaluation, the complexity is
best measured in insertion trials. Let us assume that we should insert k nodes. The greedy insertion
methods need O(|O|2) insertion trials per operation to insert, and so runs in O(k|O|2), while the
2-regret runs in O(k2|O|2). Further, D3 needs O(|O|) solution evaluations, whereas the other destroy
methods do not need any.

3.4 Initial Solution

The heuristic requires an initial solution, and due to the strong dependency between operations,
the time windows and the precedence constraints, finding good or even feasible initial solutions is
non-trivial. In this section, we present the algorithm procedure for generating an initial solution.

The construction of the initial solution begins by defining an order graph G that only contains
the non-interior operations, i.e., the set O \ Õ. First, the interior operations are iteratively added
to the order graph using the greedy insertion method. Then any operations leading to infeasibility
are identified, removed from the current solution and then re-inserted, again using the greedy repair
method. The latter stage is repeated until no better solution can be obtained. Next, the initial
solution is further improved by a simple local search heuristic, where the relocation of an operation
is defined as a move in the neighbourhood.

3.5 Accepting New Solutions

The heuristic generates new solutions iteratively, and as the repair methods are heuristics, new
solutions might be worse than previous ones. To avoid exploring areas of the solution space less
likely to lead to good solutions, it is often a good idea to reject a new solution if it is worse than
the previous one. The common practice in ALNS algorithms (Ropke and Pisinger, 2006), to balance
exploration and exploitation, is to use the classic temperature based framework from Simulated
Annealing (Kirkpatrick et al., 1983), where the probability of accepting a deteriorating solution
decreases exponentially with time and with the decrease in objective value. We use this and define
the temperature curve based on an initial and a final temperature which are given as the objective
value of the initial solution times the factors Tst and Tf , respectively. As the acceptance probability
is dependent on the quote between the change in objective value and the temperature, by scaling
the temperature with the initial objective value, the heuristic becomes more stable with regards to
variations in instance size. While the Tf factor is always small enough for the algorithm to reject
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deteriorating solutions towards the end of the run, its exact value is still of great significance as it
defines the shape of the exponential curve, for a given start value.

3.6 Adaptively Choosing a Destroy and Repair Method

As shown previously, there are a number of different destroy and repair methods to choose between,
where each combination of methods could work well for different instances. Additionally, some meth-
ods may complement each other; larger neighbourhoods provide a lot of exploration and smaller
neighbourhoods work better for exploitation. Since the nominal paper by Ropke and Pisinger (2006),
it has been demonstrated many times that using an adaptive framework with probability weights
for the different methods, is a well-working manner of balancing the usage of different destroy and
repair methods.

The specific way to update probability weights differ between papers. It is common to promote
methods which achieve local or global improving solutions, and demote methods resulting in deteri-
orating solutions. But it is also possible to promote exploration by for example rewarding solutions
which have not been seen before.

In our framework, we use a weight for each combination of destroy and repair method, similar
to what is done for example in Kovacs et al. (2012). This way, combinations of destroy and repair
methods, which work well together, are promoted. The drawback, on the other hand, is that it gen-
erates significantly more weights to update, which leads to slower adaptation. An argument for using
weights for pairs in this particular problem is that the algorithm runs sufficiently many iterations
that the methods have ample time to adapt even the larger number of weights.

The update mechanism is then as follows: If a method pair finds an improving solution the weight
is increased by a factor of π+ and if it finds a worse solution it is decreased by a factor of (1− π−),
where π+ and π− are parameters guiding the adaptation speed. After each update, the weights are
scaled such that they sum to one, since they represent probabilities.

3.7 Backtracking

To prevent getting stuck in local minima, and to intensify the search in promising areas of the
solution space, we use a intensification mechanism common in many local search implementations
(Gendreau and Potvin, 2019). If the heuristic fails to find a new global optimum after a fixed number
of iterations, θ, then it returns to the best solution found so far. Furthermore, the temperature is
increased to half the starting temperature, to encourage further exploration.

3.8 Infeasible Solutions

The heuristic allows infeasible solutions, but penalises them with a high cost. While the heuristic has
yet to find a feasible solution, the general scheme of the temperature and acceptance of new solutions
is modified. While the current solution is not feasible, the temperature feature is not activated. Hence,
the acceptance criteria never rejects the new repaired solutions, allowing the heuristic to move freely
to explore the solution space until a feasible solution is found. This proved significantly more efficient
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for finding feasible solutions during initial testing. Further, the heuristic uses the destroy method
D4, which also removes all operations that lead to infeasibility in the current solution, instead of
the destroy method D1. Once the heuristic finds a feasible solution, the temperature feature is re-
activated and the destroy method D4 is no longer used by the heuristic, and is instead replaced by
D1.

3.9 Initial Constraint Propagation of Time Windows and Precedence Relations

As a pre-processing phase, we perform a series of constraint propagation techniques derived from
Dorndorf et al. (2000). This phase narrows the time windows of operations and defines new precedence
relations between the operations. The earliest and latest start time of operations are progressively
tightened by applying several consistency tests. Note that while the new precedence constraints
and tighter time windows generated by this process will never cut away any complete solutions
from the solution space, it could tighten the LP-bound for the MIP and helps with discarding
unfavourable operation placements during the ALNS repair methods. For example, a placement that
seems promising while many operations are removed from the schedule, but which would lead to an
infeasible solution once they are all inserted, could be disregarded. In practice it turned out to have
a minor impact, however, partly because of that modern solvers would perform a similar procedure
in its pre-processing phase.

4 Benchmark Instances

In this section we introduce the set of benchmark instances, which we denote the PortLib instances,
developed to resemble real-life problems, which are used to conduct the computational experiments.

The problem we have proposed has been defined in close collaboration with representatives of
the feeder line industry. While the PSP resembles other problems presented in the literature, the
differences remain rather large. Hence, to test our methods we have generated a set of benchmark
instances aiming at accurately representing realistic test cases. In addition to acting as a basis for us
to do parameter tuning and test our methods, we hope that the instances can stimulate development
of alternative heuristics and other variants of the problem.

The instances are named PSP.n.m.r, where n is the number of container-terminals, m is the
number of vessels and r is the generic name of the scenario.

Based on the weekly operations of the studied feeder company in the port of Rotterdam, we
consider instances with 2 to 5 terminals, and between 4 and 16 vessels. For each terminal-vessel
combination, we assume a maximum of two operations, i.e. discharge and loading of containers, and
we generate instances with 70% of the total maximum number of operations. This comes from the
fact that normally not all vessels need to visit all terminals in the port, as it is almost always the case
in real life. Moreover, in addition to the obvious precedence requirements for a vessel to discharge its
containers before loading containers from the same terminal, a number of precedence constraints are
added, corresponding to 10% of the total number of operations. These precedence may depend on the
stowage plans and transshipment operations between feeder vessels. Other precedence relations can
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be derived from more realistic examples, where the feeder company requires a vessel to first discharge
containers at a specific terminal before visiting the remaining terminals.

Each operation is generated as a randomly selected combination of terminal and vessel, where the
corresponding type (discharge or loading of containers) is randomly assigned. The required service
time τ , in hours, follows a uniform distribution U(2, 10), and the number of containers w to be
handled at the operation is then calculated assuming a fix gross crane productivity of 20 containers
per hour, which is based on historical data on the average productivity of the terminals. In each
instance roughly 15% of the operations are subject to strict time windows.

We will assume a fleet of small feeder vessels with varying maximum cargo capacity from 500 to
1,000 TEU (Brouer et al., 2013). In addition, we assume that vessels arrive at the port relatively
loaded with containers, typically above 70% of its cargo capacity, something which is almost always
the case in reality. A high or low priority will be randomly assigned to each vessel of the fleet with
equal probability. The time windows for the vessels are generated so they arrive within the first days
of the planning horizon and they have sufficient buffer time to service their operations in the assigned
terminals.

In terminals such as Rotterdam, the sailing time between the farthest terminals is significant, and
up to 3 hours. Therefore, we randomly place the terminals in a grid of dimensions d

√
n e × d

√
n e,

where the pilot station, representing the entry/exit gate of the port, is always placed in one of the
corners. We use the Manhattan norm as the distance function between terminals. This also ensures
that the triangle equality holds. Moreover, each terminal can have up to two closing periods with a
maximum duration of 15% of the total service time of the busiest terminal.

Following the description above, we have generated two sets of benchmark instances: The training
instances, which were used to conduct the parameter analysis, and the test instances, denoted PortLib,
which were used to evaluate the performance of the tuned heuristic. The sets are distinct, but have the
same characteristics. The PortLib instances will be published online at Zenodo.com 1. Additionally,
a smaller set of instances were generated for the sensitivity analysis.

The generated instances are constructed to be realistic, but in addition we ensured that each
instance has a feasible solution as well as strove towards that each constraint should have a significant
impact. In general, the instances are made to be slightly harder to solve than the problems faced by
industry, in order to challenge the developed methods, as well as spurring further development. Both
the benchmark sets each contains 300 randomly generated instances grouped into 15 terminal-vessel
combinations. A brief summary of the instances is shown in Table 1.

Table 1: Overview of the PortLib instances. The instances are named PSP.n.m.r, where n is the number of
container-terminals, m is the number of vessels and r is the generic name of the scenario.

Terminals 2 3 4 5
Vessels 4 6 8 6 8 10 12 8 10 12 14 10 12 14 16

Operations 12 17 23 26 34 42 51 45 56 68 79 70 84 98 112
Instances 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

1https://doi.org/10.5281/zenodo.3760979
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5 Computational Experiments

To study the computational performance of the ALNS heuristic, we compare it to solving the MIP
model (2a)–(2k) using a commercial MIP-solver. As a solver we used CPLEX version 12.9 limited
with a maximum execution time as specified in the following Section 5.1. Moreover, the ALNS
heuristic has been implemented in Java, and both methods were run on a Huawei XH620 V3 computer
with a 2.6GHz Intel Xeon Processor 2660v3. The parameter analysis was conducted on the training
instances, whereas the test performance and comparison of the proposed methods were conducted
on the PortLib instances.

One of the main factors of almost every metaheuristic, is a good parameter setting. We therefore
first present experimental results for the analysis of the main parameters of the heuristic. Next, the
ALNS heuristic and the MIP model solutions are compared. Lastly, a sensitivity analysis for the
main constraints is conducted.

5.1 Run Times

The inherent trade-off between run time and solution quality is a crucial question for almost every
optimisation algorithm. What to aim for depends on the use case for the heuristic, which for the PSP
is twofold. The first use case is the operational planning of the daily schedule, which also includes
remaking the schedule in response to potential disruptions. In this case the heuristic has to run in
a few minutes as to not be a hindrance in the planner’s work. The second use case is the strategic
planning, where the aim is to make a recurring plan, which is relevant as liner vessels sail on weekly
itineraries. Here, the quality of the solution is more important than the run time, and so longer run
times are accepted.

In an attempt to balance run time and performance, we decided to test the heuristic for the two
use cases. As the instances vary significantly in size, for the short run times we decided to let the
run times increase with the size of the instances. We decided to use run times roughly proportional
to the third power - more precisely, for an instance with |Õ| operations, the run time would be
max(5, d|Õ|3/2000e) seconds. The precise run times can also be seen in Table 2. For a fair comparison
in the computational experiments, we decided to use a maximum time limit for CPLEX of 10 times
that of the heuristic, for each instance. For the long run times, we only study instances with 5
terminals and there we instead used one hour for the heuristic, and 10 hours for CPLEX.

Table 2: The short run times for the heuristic and for CPLEX for the different sizes of instances.
Terminals 2 3 4 5

Vessels 4 6 8 6 8 10 12 8 10 12 14 10 12 14 16
ALNS [s] 5 5 7 9 20 38 67 46 88 158 247 172 297 471 703

CPLEX [s] 50 50 70 90 200 380 670 460 880 1580 2470 1720 2970 4710 7030
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5.2 Parameter Analysis

In this section we aim to study the effect of the different parameters, as well as the different destroy
and repair methods, on the performance of the heuristic. Both to increase the understanding of how
the heuristic works and to find a well-performing parameter setting.

Due to the large computational time required to carry out all the experiments, we decided to
perform the parameter analysis mainly using short run times on the training instances. However, as
the run time is likely to significantly affect the performance of additional methods, we further tested
the effect of including extra methods for long run times on the best parameter setting found for short
run times, which is discussed in Section 5.3.1.

5.2.1 Parameters

The main parameters to study are those controlling which destroy and repair methods to use. The
random removal (D1) and the greedy insertion (R1) are considered the core methods, and they will
always be used by the heuristic.

The parameter B denotes the maximum operations to remove in the random removal destroy
method. A high number of removals opens up for a larger search space, but can also challenge the
repair method, and lead to increased time consumption in each iteration.

The parameters Tst and Tf , are the start and end temperature factors, which will then be mul-
tiplied by the initial solution value to get the initial and final temperature. Further, θ, denotes the
number of iterations without finding any improving solutions before the algorithm resets to the best
found value.

For the update factors for the repair and destroy weights, π+ and π−, we have decided to fix the
penalty values to π+ = 1% and to π− = 0.5%, as this was providing good results in the phase of
initial testing.

5.2.2 Performance analysis of the ALNS heuristic

After a phase of initial testing to get a good initial parameter setting, we decided to study and
adjust the parameters individually. While the effect of the parameters cannot be expected to be
independent, to jointly study or tune the parameters become exhaustively time-consuming, due to
the inherent stochasticity of the problem. A decoupled study of the parameters also adds valuable
insight into each individual parameter’s impact on the heuristic.

To be able to compare results over different instances with various objective values, we have in all
our experiments used percent over the best solution found, as the metric. This way we can average
results over different instances in a meaningful way.

The most important parameter is the maximum number of removals in the random removal
destroy method. As it would make little sense to use the same number of removals for an instance
with 10 operations as for one with 200, we are interested to see how different settings perform for
instances with different numbers of operations. We then study the effect of this parameter on the
heuristic’s performance, aiming to define the maximum removals as function of the instance size.
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Table 3: Average percentage deviation from the best solution found for the different values of the temperature
factors. The rows correspond to different values for the start temperature factor, and the columns to different
values for the end temperature factor.

End Temperature Factor
0.01 0.001 0.0001

Start 0.1 1.658 1.234 1.342
Temperature 0.05 1.547 1.109 1.267

Factor 0.025 1.405 1.079 1.271
0.01 1.201 1.148 1.435

Each instance was run 10 times for each value of B ∈ {2n+1 | n = 0, . . . ,
√
O} and then a second

order polynomial was fitted to the best setting found for each instance size tested. The resulting
polynomial, over an interpolation of the average gap for different maximum number of moves for
different numbers of operations is shown in Figure 4. We see that the heuristic performs poorly
when B is too low, but is less sensitive when B becomes larger. This is expected, as the heuristic is
embedded in an adaptive framework, and can as such, to some extent, choose the number of removals
which best fit the current instance. We further see that the average gap increases significantly for
larger instances.

Figure 4: A contour map over how well the method performs for various numbers of maximal removals and
various number of operations with the fitted second order polynomial.

Next, the start and end temperature factors, Tst and Tf were studied. Following a similar ap-
proach, each instance was run five times for each combination of parameters, and the results are
shown in Table 3. We see that a start temperature of 2.5% of the initial objective value and an end
temperature of 0.1% of the initial objective value yielded the best results.

Further, we see that when we have a high start temperature, it is better to have a low end
temperature, and when we have a low start temperature, it is better to have a high end temperature.
A possible explanation is that it is important to have elements from both exploration and exploitation,
and that when both the start and end temperature factors are either too low or too high, the heuristic
becomes too focused on a single one of them.

In Table 4 we see the average gap from the best solution found when introducing the reset
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Table 4: Average percentage deviation from the best solution found for the different values of the reset
parameter.

Reset Parameter Av. Gap [%]
800 1.139
1,600 1.047
3,200 1.031
6,400 1.020
∞ 1.095

Table 5: Summary of the results obtained by the ALNS heuristic with different combinations of repair and
destroy methods. For each of the tested destroy and repair methods the average gap to the best solution found
is presented. In each combination, in addition to the presented methods, the random removal (D1) and greedy
insertion (R1) methods are also used.

Additional Methods Gap [%]
None 1.016
Sorted Greedy Insertion R2 0.999
2-regret R3 1.414
Terminal and Vessel Removal D2 1.112
Worst Removal D3 1.024

mechanism, for a few different values of θ. We see that the reset method has a clear improving
effect on the heuristic and that the performance increases progressively with the value of the reset
parameter. Resetting the current solution to the best known solution after 6,400 iterations without
improvement seems to yield the best performance, out of the tested values. The reason for that no
higher values were tested is that θ is reaching towards the total number of iterations performed for
the largest instances, which is around to 10,000.

Lastly, we studied the effect of including the remaining repair and destroy methods, presented
in Section 3.3. In Table 5, we see the average gap when running the heuristic 10 times on each
instance, with the different additional methods included. We see that the heuristic performs well
when considering exclusively the base case, and an improvement with the addition of the repair
method R2, which is the greedy insertion with different sorting strategies. Yet, the differences are
rather small, which is expected as each of the extra methods only is one of many repair and destroy
methods in an ALNS framework. Moreover, in trying several combinations of the repair method R2
with the remaining methods seemed to not yield any further improvements.

It is clear from the results that, for this parameter setting, the performance of the heuristic is
better when considering the fast repair methods, which allow a greater number of iterations, when
using the short run times. Nonetheless, in Section 5.3.1, we will see that the more elaborate methods
perform better for longer run times.

After iteratively improving the parameter values from an initial good parameter setting, the final
parameter setting which will be used in the computational experiments is summarised in Table 6.
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Table 6: Final parameter setting for the ALNS heuristic with short run times.

Parameter Value
B d−0.0013|Õ|2 + 0.25|Õ|+ 2.89e
Tst 0.025
Tf 0.001
θ 6,400
Destroy Methods D1
Repair Methods R1, R2

5.3 Computational Results

The complete results for all the test instances for both CPLEX and the ALNS heuristic can be
found as a supplement to this paper and online at Zenodo.com 2. The results from solving the
PortLib instances, using CPLEX, are summarised in Table 7. The instances are grouped by number of
terminals, and then further divided by the number of vessels visiting the port. The smaller instances,
with less than 26 operations, were solved to optimality in a few seconds. We also see that instances
with around 40 operations seem to be the upper limit for what CPLEX can solve to optimality
within the given time frame. Note further, how different instances of the same size vary significantly
in difficulty. For the instances that reach the maximum execution time, the resulting optimality gaps
are rather high, as shown in the lower part of the table, reaching up to 50% for the largest instances.
For the remainder of this section, we will report as the CPLEX solution the objective value of the best
integer solution found after reaching the maximum CPLEX execution time for the given instance.

Table 7: Summary of the CPLEX results for all PortLib instances. Instances are grouped by number of
terminals and number of vessels. The table reports the total number of operations, the number of optimal
solutions, the average execution times in seconds (s), the average optimality gap in percentage (%), and the
interval optimality gap of the instances. The results for the instances reaching the time limit are denoted with
(t.l).

Instance Avg. CPLEX Avg. Optimality Interval
Name Operations Optimal Time (s) Gap (%) Gap (%)

PSP.2.4.r 12 20/20 0.0 0.0 [0.0,0.0]
PSP.2.6.r 17 20/20 0.1 0.0 [0.0,0.0]
PSP.2.8.r 23 20/20 1.4 0.0 [0.0,0.0]
PSP.3.6.r 26 20/20 2.6 0.0 [0.0,0.0]
PSP.3.8.r 34 17/20 64.7 1.8 [0.0,14.8]
PSP.3.10.r 42 7/20 286.0 9.5 [0.0,30.8]
PSP.3.12.r 51 1/20 651.5 20.5 [0.0,35.3]
PSP.4.8.r 45 4/20 404.8 10.2 [0.0,22.5]
PSP.4.10.r 56 0/20 t.l 23.7 [8.9,39.5]
PSP.4.12.r 68 0/20 t.l 31.2 [17.8,42.7]
PSP.4.14.r 79 0/20 t.l 35.3 [24.8,45.0]
PSP.5.10.r 70 0/20 t.l 27.7 [18.0,36.7]
PSP.5.12.r 84 0/20 t.l 34.1 [21.9,43.0]
PSP.5.14.r 98 0/20 t.l 38.1 [29.3,52.1]
PSP.5.16.r 112 0/20 t.l 38.8 [28.1,47.1]

We run the ALNS heuristic 10 times on each of the PortLib instances with the best configuration
found during the parameter analysis process and using the time limits from Table 2.

2https://doi.org/10.5281/zenodo.3760979

22

Zenodo.com


Figure 5: The bar plot depicts the average objective value for the heuristic and the objective value by CPLEX,
aggregated by the number of terminals and number of vessels, after being normalised with respect to the best-
known solution obtained from the both methods.

In Figure 5, we see the results for the PortLib instances, which have been normalised and aggre-
gated by the number of vessels and terminals. In particular, the heuristic proves effective for larger
instances with more than 50 operations, where its average performance is consistently better than
the solution obtained from CPLEX. As shown in Figure 5, the average performance of the heuristic
does not deviate excessively from the best-known solution as the number of operations increases;
the difference between the average and best objective values always stay below 2%. The difference
between the CPLEX solution and by the best-known solution increases more drastically, reaching
more than 5% for the largest instances.

Next, we look at the difference for individual instances. In Figure 6, for each instance, we plot
the quotient of the average ALNS objective value and the CPLEX objective value. The graph is
constructed so that, in each section, the instances are ordered after the number of vessels, where
instances with more vessels are further to the right. We see that the ALNS heuristic in general
outperforms CPLEX, using significantly less time. As would be expected, we see that the heuristic
is performing better, relative to CPLEX, on larger instances. For the smaller instances, where we
know that CPLEX has found the optimal solution, we see that the heuristic quite consistently finds
the optimal solution in each of the 10 runs, with only a few outliers. In the graph, those would be
the instances up until half-way through the section with 3 terminals.

If we instead look to Figure 7, we see the quotients between the best solution of the ALNS over
the 10 runs and the CPLEX solution. In this comparison, the heuristic is consistently better, and for
the largest instances the differences reaches 10%. We also see that the differences between the the
best solutions and the average solutions are not that large, which we also saw in Figure 5. Finally,
to further clarify, the results are summarised in Table 8.

To further study the performance, we show the results for the PSP.5.16.r instances in more
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Figure 6: Ratio between the average performance of the ALNS heuristic and the CPLEX solution for each
of the PortLib instances, using the time limits from Table 2. A value below 1 means that ALNS was able to
find a better solution than the solution from CPLEX.

Figure 7: Ratio between the best solutions found by the ALNS heuristic the CLPEX solutions for each of
the PortLib instances, using the time limits from Table 2. A value below 1 means that ALNS was able to find
a better solution than the solution from CPLEX.
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Table 8: Summary of the results divided by number of terminals for the ratios between the best and average
solutions, respectively, found by the ALNS heuristic and the solution from CPLEX.

Ratio r
2 Terminals 3 Terminals 4 Terminals 5 Terminals

Average Best Average Best Average Best Average Best
r < 1 0 0 22 23 55 69 63 77
r > 1 7 0 32 3 25 8 17 3
r = 1 53 60 26 54 0 3 0 0

Table 9: Results for the PSP.5.16.r instances. Reported are: the best and average value found by the ALNS
heuristic together with percentage error of the discrepancy between the average and best value found by the
ALNS heuristic, and the best integer value found by CPLEX.

Instance ALNS ALNS Percentage CPLEX
Number Best Average Error Best

1 306,831 311,669.1 1.58 312,228
2 217,592 222,339.5 2.18 230,796
3 213,511 216,723.8 1.50 213,835
4 236,437 244,857.3 3.56 252,336
5 266,035 269,238.0 1.20 273,893
6 241,263 246,755.1 2.28 263,450
7 301,739 308,827.4 2.35 319,136
8 221,382 225,710.0 1.95 226,712
9 249,949 254,266.8 1.73 259,384
10 350,639 355,099.5 1.27 371,843
11 281,495 283,333.5 0.65 287,836
12 231,876 235,485.4 1.56 245,892
13 281,589 286,959.5 1.91 289,990
14 235,009 239,518.8 1.92 241,622
15 301,210 309,660.0 2.81 318,835
16 335,194 340,773.0 1.66 353,614
17 303,141 307,152.7 1.32 305,538
18 238,994 248,000.6 3.77 243,146
19 298,500 303,361.2 1.63 314,108
20 258,593 262,173.0 1.38 274,204

detail in Table 9. Here, the upper bound from CPLEX is presented, alongside the best and average
objective values for the solutions found by ALNS. We see that the best solutions found by ALNS are
significantly better than the best solutions found by CPLEX, and also that the average is consistently
better. There is, on the other hand, a non-negligible discrepancy between the best and average
solutions found by the ALNS heuristic. To some extent, this might be due to the fact that the
problem consists of large discrete blocks and a single change may have a large impact on the solution
value.

5.3.1 Experiments with long run times

To study the performance of the heuristic as a tool for strategic planning, we performed a number
of experiments using a run time of one hour for the ALNS heuristic and 10 hours for CPLEX. First,
we are interested in the performance of the destroy and repair methods in this new setting. For
this experiment, we considered all instances with 5 terminals from the PortLib instances. We ran
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Table 10: Summary of the results obtained by the ALNS heuristic with different combinations of repair and
destroy methods and a run time of 3,600 seconds. Conf.: Configuration number of the methods. Av. Gap:
The average gap to the best found solution for the tested combinations of destroy and repair methods. For each
configuration the random removal (D1) and greedy insertion (R1) methods are also included as a base case.
The table reports first the results for the addition of the methods individually, and then, the remainder of the
table is sorted by decreasing average gap.

Repair Methods Destroy Methods
Conf. R2 R3 D2 D3 Av. Gap [%]
Base 1.719
1 × 1.493
2 × 1.417
3 × 1.665
4 × 1.609
5 × × × 1.744
6 × × 1.704
7 × × 1.643
8 × × × 1.612
9 × × 1.500
10 × × 1.499
11 × × × × 1.488
12 × × × 1.463
13 × × × 1.447
14 × × 1.388
15 × × 1.380

the heuristic 5 times on each instance for all of combinations of the destroy and repair methods.
We see from the results in Table 10 that, with the increased run time, all specialised methods now
individually improve the base configuration of the heuristic.

How the methods work together is intricate, but in general we see that, combinations including
the worst removal (D3) seem to perform worse and combinations including the sorted greedy repair
method (R2) performs well. The 2-regret (R3) seems to perform well, but not together with the
worst removal. In the light of the good performance of the sorted greedy insertion, it seems a little
surprising that configuration 14 performs so well. The move terminal and move vessel neighbourhood
(D2) constitutes only two destroy methods, and the impact of adding this neighbourhood is less.
This can be seen by that the configurations which uses D2 together with another method, performs
similarly to the same configurations, but where D2 is excluded. In the end, the configuration which
includes the two other repair methods to the base configuration gave the best result for the long run
times.

While the results necessarily are affected by the stochastic nature of the heuristic, the results
presented in Table 10 are consolidated from 6,400 hours of run time. Taking this into consideration,
it seems unlikely that the results would change significantly by running more experiments. We can
conclude that, when giving more time to the heuristic, the search for new solutions can be carried out
more effectively by considering more specialised neighbourhoods, and that the most efficient setting
for strategic planning is using both R2 and R3, apart from the core methods D1 and R1.

In Figure 8, we show the results for each of the PSP.5.12.r PortLib instances. The graph shows
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Figure 8: The graph shows the average performance of the ALNS heuristic for a number of configurations,
divided by the best objective value found, for the 20 PortLib instances in PSP.5.12.r.

the results for the ALNS using the long run times of one hour with the best configuration for the short
run times as found in Section 5.2, denoted ‘ALNS(1 hour, R2)’, as well as with the best configuration
for the long run times as discussed above, denoted ‘ALNS(1 hour, R2+R3)’. For reference, it also
contains the results for the ALNS using the standard short run time of 297 seconds with the best
configuration for short run times, which is denoted ‘ALNS(297 seconds, R2)’. Lastly, the graph shows
the objective value found by CPLEX after 10 hours of execution time. In each case, the objective is
normalised by the best value found, and for the ALNS, each configuration is run 10 times on each
instance, and the average ratio from the best found solution is shown.

There are a few key observations to make. First, we see a significant improvement in the results
when running the heuristic for a longer time. The average results are not only much better, but
also significantly more consistent. We see that even with the short run times, the heuristic still
outperforms CPLEX on some instances, even though it here uses less than 1% of the run time of the
solver. For the long run times, when the heuristic uses 10% of the run time of CPLEX, the heuristic
performs clearly better.

Comparing the change in objective value for CPLEX when increasing the time to 10 hours, from
the standard 2,970 seconds, we see an improvement in the average solution quality for these instances
of about 1.51%. The average gap here for the ALNS using shorter run times is around 2.74%, which
is significantly higher than what we see in Figure 5. This is due to the fact that we are dividing by the
best value found using one hour, instead of as previously, using 297 seconds. The average difference
between the best solutions found, between using the longer and the shorter run times, in this case,
turns out to be around 0.83% and 0.97% for when using the best configurations for short and long
run times, respectively. Lastly, while not better for every instance, the improved configuration for
longer run times, with the 2-regret option, performs better for most of the instances.
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Table 11: Average Optimality Gap [%] for the sensitivity instances obtained using CPLEX.

Optimality Gap [%] TW [%]
30% 15% 0%

PC [%]
20% 21.427 25.565 31.646
10% 24.645 29.510 35.927
0% 27.611 32.104 39.815

Table 12: Ratio between the best-known solution (left column) and the average solution (right column)
obtained from the ALNS heuristic and the upper bound obtained using CPLEX for the sensitivity instances.

Ratio TW [%]
30% 15% 0%

PC [%]
20% 0.989 1.001 0.985 0.999 0.975 0.991
10% 0.983 1.001 0.971 0.992 0.972 0.991
0% 0.978 0.994 0.971 0.988 0.958 0.978

5.4 Sensitivity Analysis

In this section, we present a study of how the difficulty of solving the PSP varies, when changing
the time windows and precedence constraints for the operations. For this purpose 9 scenarios were
generated, each corresponding to scheduling the operations of 12 vessels in a port with 4 terminals.
Each scenario consists of a number of instances, which are identical except for that the number of
precedence constraints and active time window constraints differ. Together, those instances make
up the sensitivity instances. The number of precedence constraints considered only accounts for
precedence relations between operations performed by the same vessel at two different terminals
or between operations carried out at the same terminal by two different vessels. The requirement
that containers from a vessel are discharged at a terminal before loading containers from the same
terminal, is kept for all instances but does not count towards the number of precedence constraints
in the instances. Note that the PortLib instances have been constructed so each instance roughly
accounts that 15% of the operations are subject to strict time windows, and that the number of
precedence requirements correspond to 10% of the total number of operations.

Having less constraints means that the operations can be scheduled more freely within the port,
making it easier to find feasible solutions. However, this comes at the price of having a larger solution
space. The aim of this study was to analyse how this trade-off affects the two solution methods.

The sensitivity instances were first solved using CPLEX, and the average optimality gap when
varying the level of both constraints is presented in Table 11. The column TW indicates the percent-
age of operations with strict time windows, whereas the rows PC indicates the number of precedence
requirements between operations, given as a percentage of the total number of operations. The op-
timality gap for the unconstrained case is relatively large, barely getting below 40% after reaching
the time limit. However, as the instances become more constrained, the solution space shrinks, and
the gap becomes significantly smaller.

Table 12 presents the ratios of the two solution methods. The best-known solution (to the left) and
to the average solution (to the right) of the heuristic are compared to the solution found by CPLEX
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for the sensitivity instances. A value below 1 means that ALNS was able to find a better solution (left
column) or a better average solution (right column) than the upper bound from CPLEX. In general,
the ALNS heuristic finds better solutions, and we see that the ratio between the best solution by
the heuristic and by CPLEX is always below 1. We also see that the difference in performance is
larger for the unconstrained case, where the heuristic found solutions that in average were around 4%
better than those of CPLEX. As the problem becomes more constrained, however, the ratio between
the solutions increases. This increase in ratio may also be due to the fact that the gaps for CPLEX
become smaller. If parts of the improved gap comes from better integer solutions found by CPLEX,
this would lower the ratio, which makes it difficult to say, whether the more constrained instances
are in fact easier or more difficult to solve for the heuristic.

6 Conclusion

In this paper, we have presented a new scheduling problem for feeder vessels, which has been defined
in close collaboration with the industry. The PSP accounts for all of the most important practical
restrictions faced by the carriers in scheduling the operations, and a prototype is currently being
tested in practice by the shipping company with which we collaborate. The developed heuristic in
this work can be used as a decision support tool for planners.

We have proposed a compact formulation for the problem, inspired by machine-scheduling formu-
lations. As the PSP has not been studied previously, we have created a set of benchmark instances,
denoted PortLib, aiming at accurately reflecting reality. Additionally, we have shown that the PSP is
NP-hard, and only small instances could be solved to optimality by CPLEX, within the given time
frame. Instead, in order to solve larger instances, an ALNS heuristic was proposed.

An extensive parameter analysis process was carried out, during which we have followed an
iterative strategy to find a good parameter setting. Moreover, as part of this analysis, we studied the
performance of the heuristic with different configurations of repair and destroy methods, which have
proven efficient in a variety of other ALNS applications.

The result was that the combination of repair methods based on the same greedy insertion
with different sorting strategies of operations performed the best when using short run times. The
more elaborate destroy and repair methods, however, which uses more time per iteration, were
shown to perform better than the base configuration for longer run times. Especially, the 2-regret
neighbourhood increased the performance of the heuristic significantly.

The developed method showed promising results for solving the PSP. As there is no benchmark
method to compare to, we compared the ALNS heuristic to CPLEX and studied the variation of
the obtained results. In general it can be said that the heuristic outperforms CPLEX in nearly all
cases, even when using significantly shorter run times. On 300 instances of different sizes, the average
objective value of solutions found by the heuristic was better than the solution found by CPLEX for
140 of them and worse for 81, when giving the solver 10 times the run time of the heuristic. The
79 instances where the results were the same, were mainly instances where both methods found the
optimal solution. In general, the heuristic performed better on larger instances, where it was also
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given more time. When increasing the run time to one hour for the heuristic and 10 hours for the
solver, the heuristic performed significantly better, on average, for 19 out of 20 instances.

The results further showed that longer run times have a notable positive impact on the quality
of the method, both in terms of solution quality and robustness. In application, this means that the
run time, and consequently the neighbourhoods, should be adjusted based on the needs of planners.

To study the effects of the constraints, we studied a variety of scenarios with an increasing number
of constraints. It was clear that CPLEX benefited greatly from a more constrained search space,
which was seen as a significantly lower final optimality gap. For the heuristic it is hard to compare
the performance over different settings, but we could see that it performs better, in comparison to
CPLEX, for less constrained instances.

For future work, it would be interesting to study the dynamic version of this problem, where
the decision-making of planners is done iteratively, minimising the deviation between the opera-
tion schedule before and after the introduction of a new event. Furthermore, some terminals have
sometimes enough capacity to serve more than one vessel simultaneously, so called dual-berth, but
normally this comes at an additional price. If planners know which vessels can be served concurrently
at the terminals, the heuristic can model it by adding proxy terminals for such operations. Otherwise,
if the terminals only can operate more than one vessel at a time during certain time periods, the
decision-making becomes more complex, and some of the basic structure utilised by the heuristic is
changed. But it adds some additional flexibility to the model and could be an interesting subject to
future work.

It is also noteworthy that the ALNS heuristic handles nonlinear objective functions, at virtually
no extra cost. This makes the method significantly more flexible than working with the MIP model,
and it makes it easy to adapt to the carriers needs. For future work, it would be especially interesting
to see how the results would differ if the cubic nature of the fuel consumption was included in the
objective function.

Lastly, in addition to being relevant in practice, the formulation turns out to be a generalisation
of the classic General Shop Problem, with the possibility to model a variety of additional constraints
which commonly appears in practice. We hence believe that the developed heuristic would be a good
choice for various other scheduling applications.
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A Table of Notation

Table 13: General Notation for the Mathematical Formulation and the ALNS heuristic.

Sets
T̃ = {1, . . . , n} := Set of Terminals.

T = T̃ ∪ {0, n+ 1} := Set of Terminals, including the entry and exit point of the port.
Ṽ = {1, . . . ,m} := Set of Vessels.

V = Ṽ ∪ {0,m+ 1} := Set of Vessels, including the dummy vessels.
O := Set of operations.
Õ := Set of interior operations.
Ovi := Set of operations to be performed by vessel v ∈ V at terminal i ∈ T .
Ov := Set of operations for vessel v ∈ V .
Oi := Set of operations for terminal i ∈ T .
Si := Set of closing periods for terminal i ∈ T .
Ô := Set of removed operations.

Parameters
δij := Sailing distance between terminal i ∈ T and terminal j ∈ T .
wp := Number of containers to be handled at operation p ∈ O.
τp := Required time to perform operation p ∈ O.
λpq := Binary precedence parameter. Equal to 1 if operations p ∈ O

has to be performed after operation q ∈ O, and 0 otherwise.
αp := Time window start for operation p ∈ O.
βp := Time window end for operation p ∈ O.
φp := Terminal associated to operation p ∈ O.
νp := Vessel associated to operation p ∈ O.
cp := Cost coefficient of operation p ∈ O.
Qv := Maximum cargo capacity of vessel v ∈ V .
q̂v := Initial cargo capacity of vessel v ∈ V when arriving to the port.
γv := Priority factor for vessel v ∈ V .
ρ := Penalty weight for the departure of the vessel from the port.
ξs := Start time of the closing period s ∈ Si for terminal i ∈ T .
ζs := End time of the closing period s ∈ Si for terminal i ∈ T .

Mpq := Maximum difference between the start time for operations p, q ∈ O.
M̂ps := Maximum difference between the start time of operation p ∈ Õ

and start of the closing period s ∈ Sφp .
M̄ps := Maximum difference between the start time of operation p ∈ Õ

and the end of closing period s ∈ Sφp
.

B := Maximum operations to remove in the random removal destroy method.
Tst := Initial temperature factor.
Tf := End temperature factor.
θ := Maximum allowed number of iterations without finding a new best solution.

π+ := Penalty factor for updating a weight after finding a better solution.
π− := Penalty factor for updating a weight after finding a worse solution.

Decision variables
yp ∈ R+ := Start time of operation p ∈ O.

xpq ∈ {0, 1} := Equal to 1 if operation p ∈ O precedes operation q ∈ (Oφp
∪Oνp

) \ {p}.
zps ∈ {0, 1} := Equal to 1 if operation p ∈ Õ is performed before closing period s ∈ Sφp .
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Summary of computational results for the PortLib instances

In Table 1 we see the detailed results for the PortLib instances with the various methods presented in An Adaptive
Large Neighbourhood Search Heuristic for Routing and Scheduling Feeder Vessels in Multi-terminal Ports. The first
column indicates the name of the name of the instance, whereas the remaining columns collect information about the
CPLEX and ALNS results. From the second to sixth columns, the table reports whether CPLEX proves optimality
or not, the total execution time, the percentage gap and the upper and lower bound, respectively. Furthermore, the
results for the ALNS heuristics are collected in the remaining columns. The table reports the best found solution
together with the average performance for the two different run times. The precise short run times are shown in
Table 2 from the manuscript, whereas we set one hour execution time for every instance for the long run times. The
ALNS results are from running with the best parameter settings found, as described in Table 6 in the manuscript.
For the long run times, we additionally use the repair method R3, as discussed in Section 5.3.1.

Table 1: Summary of the results for the PortLib instances for CPLEX and ALNS heuristic.
Name Status CPLEX Gap CPLEX CPLEX ALNS ALNS ALNS ALNS CPLEX

Time (%) UB LB Best (Short) Avg. (Short) Best (Long) Avg. (Long) UB (Long)
PSP.2.4.1 Optimal 0.0 0.0 15,293 15,293.0 15,293 15,293.0 - - -
PSP.2.4.2 Optimal 0.0 0.0 15,914 15,914.0 15,914 15,914.0 - - -
PSP.2.4.3 Optimal 0.0 0.0 20,883 20,883.0 20,883 20,883.0 - - -
PSP.2.4.4 Optimal 0.0 0.0 18,465 18,465.0 18,465 18,465.0 - - -
PSP.2.4.5 Optimal 0.0 0.0 14,802 14,802.0 14,802 14,802.0 - - -
PSP.2.4.6 Optimal 0.0 0.0 21,242 21,242.0 21,242 21,242.0 - - -
PSP.2.4.7 Optimal 0.0 0.0 23,589 23,589.0 23,589 23,589.0 - - -
PSP.2.4.8 Optimal 0.0 0.0 18,613 18,613.0 18,613 18,613.0 - - -
PSP.2.4.9 Optimal 0.0 0.0 9,341 9,341.0 9,341 9,341.0 - - -
PSP.2.4.10 Optimal 0.0 0.0 22,089 22,089.0 22,089 22,089.0 - - -
PSP.2.4.11 Optimal 0.0 0.0 19,852 19,852.0 19,852 19,852.0 - - -
PSP.2.4.12 Optimal 0.0 0.0 14,177 14,177.0 14,177 14,177.0 - - -
PSP.2.4.13 Optimal 0.0 0.0 16,378 16,378.0 16,378 16,378.0 - - -
PSP.2.4.14 Optimal 0.0 0.0 16,904 16,904.0 16,904 16,904.0 - - -
PSP.2.4.15 Optimal 0.0 0.0 23,084 23,084.0 23,084 23,084.0 - - -
PSP.2.4.16 Optimal 0.0 0.0 19,962 19,962.0 19,962 19,962.0 - - -
PSP.2.4.17 Optimal 0.0 0.0 28,202 28,202.0 28,202 28,202.0 - - -
PSP.2.4.18 Optimal 0.0 0.0 16,813 16,813.0 16,813 16,813.0 - - -
PSP.2.4.19 Optimal 0.0 0.0 9,353 9,353.0 9,353 9,353.0 - - -
PSP.2.4.20 Optimal 0.0 0.0 27,858 27,858.0 27,858 27,858.0 - - -
PSP.2.6.1 Optimal 0.2 0.0 26,683 26,683.0 26,683 26,683.0 - - -
PSP.2.6.2 Optimal 0.0 0.0 29,538 29,538.0 29,538 29,538.0 - - -
PSP.2.6.3 Optimal 0.1 0.0 25,984 25,982.0 25,984 25,984.0 - - -
PSP.2.6.4 Optimal 0.1 0.0 31,489 31,489.0 31,489 31,735.8 - - -
PSP.2.6.5 Optimal 0.1 0.0 32,310 32,310.0 32,310 32,310.0 - - -
PSP.2.6.6 Optimal 0.1 0.0 33,701 33,701.0 33,701 33,701.0 - - -
PSP.2.6.7 Optimal 0.0 0.0 30,582 30,582.0 30,582 30,582.0 - - -
PSP.2.6.8 Optimal 0.0 0.0 26,231 26,231.0 26,231 26,231.0 - - -
PSP.2.6.9 Optimal 0.0 0.0 35,520 35,520.0 35,520 35,520.0 - - -
PSP.2.6.10 Optimal 0.1 0.0 33,332 33,332.0 33,332 33,388.4 - - -
PSP.2.6.11 Optimal 0.0 0.0 32,951 32,951.0 32,951 32,951.0 - - -
PSP.2.6.12 Optimal 0.1 0.0 32,416 32,416.0 32,416 32,416.0 - - -
PSP.2.6.13 Optimal 0.0 0.0 47,491 47,491.0 47,491 47,491.0 - - -
PSP.2.6.14 Optimal 0.1 0.0 22,911 22,911.0 22,911 22,911.0 - - -
PSP.2.6.15 Optimal 0.3 0.0 42,867 42,866.0 42,867 42,867.0 - - -
PSP.2.6.16 Optimal 0.5 0.0 35,907 35,907.0 35,907 35,923.4 - - -
PSP.2.6.17 Optimal 0.2 0.0 35,957 35,957.0 35,957 35,957.0 - - -
PSP.2.6.18 Optimal 0.4 0.0 35,876 35,876.0 35,876 35,876.0 - - -
PSP.2.6.19 Optimal 0.0 0.0 31,752 31,752.0 31,752 31,752.0 - - -
PSP.2.6.20 Optimal 0.1 0.0 22,373 22,373.0 22,373 22,373.0 - - -
PSP.2.8.1 Optimal 0.4 0.0 57,553 57,551.8 57,553 57,553.0 - - -
PSP.2.8.2 Optimal 0.4 0.0 50,470 50,470.0 50,470 50,703.4 - - -
PSP.2.8.3 Optimal 1.6 0.0 53,920 53,920.0 53,920 53,920.0 - - -
PSP.2.8.4 Optimal 4.0 0.0 61,048 61,048.0 61,048 61,048.0 - - -
PSP.2.8.5 Optimal 3.6 0.0 74,692 74,686.3 74,692 74,838.3 - - -
PSP.2.8.6 Optimal 0.5 0.0 41,123 41,119.8 41,123 41,123.0 - - -
PSP.2.8.7 Optimal 0.4 0.0 44,182 44,182.0 44,182 44,182.0 - - -
PSP.2.8.8 Optimal 0.2 0.0 34,466 34,466.0 34,466 34,466.0 - - -
PSP.2.8.9 Optimal 0.1 0.0 61,965 61,965.0 61,965 61,965.0 - - -
PSP.2.8.10 Optimal 0.9 0.0 54,165 54,165.0 54,165 54,165.0 - - -
PSP.2.8.11 Optimal 2.9 0.0 52,584 52,579.0 52,584 52,584.0 - - -
PSP.2.8.12 Optimal 1.3 0.0 33,077 33,077.0 33,077 33,096.4 - - -
PSP.2.8.13 Optimal 2.4 0.0 56,497 56,494.7 56,497 56,497.0 - - -
PSP.2.8.14 Optimal 0.4 0.0 50,030 50,028.0 50,030 50,030.0 - - -
PSP.2.8.15 Optimal 1.0 0.0 39,822 39,822.0 39,822 39,822.0 - - -
PSP.2.8.16 Optimal 0.3 0.0 48,317 48,317.0 48,317 48,588.9 - - -
PSP.2.8.17 Optimal 5.2 0.0 53,957 53,954.0 53,957 53,957.0 - - -
PSP.2.8.18 Optimal 0.8 0.0 57,470 57,468.0 57,470 57,470.0 - - -
PSP.2.8.19 Optimal 1.5 0.0 59,245 59,243.0 59,245 59,245.0 - - -
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PSP.2.8.20 Optimal 0.6 0.0 50,094 50,090.0 50,094 50,094.0 - - -
PSP.3.6.1 Optimal 1.3 0.0 42,381 42,381.0 42,381 42,507.0 - - -
PSP.3.6.2 Optimal 0.5 0.0 43,977 43,977.0 43,977 43,977.0 - - -
PSP.3.6.3 Optimal 1.3 0.0 49,286 49,286.0 49,286 49,294.1 - - -
PSP.3.6.4 Optimal 2.5 0.0 41,742 41,742.0 41,742 42,060.0 - - -
PSP.3.6.5 Optimal 0.5 0.0 54,388 54,382.6 54,388 54,388.0 - - -
PSP.3.6.6 Optimal 0.8 0.0 34,666 34,666.0 34,666 34,666.0 - - -
PSP.3.6.7 Optimal 1.8 0.0 51,304 51,304.0 51,304 51,337.2 - - -
PSP.3.6.8 Optimal 1.7 0.0 30,307 30,307.0 30,307 30,310.3 - - -
PSP.3.6.9 Optimal 5.3 0.0 31,941 31,941.0 31,941 31,948.2 - - -
PSP.3.6.10 Optimal 0.4 0.0 44,923 44,921.3 44,923 44,923.0 - - -
PSP.3.6.11 Optimal 4.9 0.0 43,550 43,548.7 43,550 43,550.0 - - -
PSP.3.6.12 Optimal 2.6 0.0 36,925 36,925.0 36,925 36,925.0 - - -
PSP.3.6.13 Optimal 1.7 0.0 49,662 49,662.0 49,662 49,662.0 - - -
PSP.3.6.14 Optimal 16.4 0.0 49,529 49,524.1 49,529 49,529.0 - - -
PSP.3.6.15 Optimal 1.3 0.0 43,094 43,094.0 43,094 43,094.0 - - -
PSP.3.6.16 Optimal 0.9 0.0 38,691 38,689.6 38,691 38,691.0 - - -
PSP.3.6.17 Optimal 0.4 0.0 44,672 44,670.3 44,672 44,672.0 - - -
PSP.3.6.18 Optimal 2.2 0.0 47,424 47,422.7 47,424 47,424.0 - - -
PSP.3.6.19 Optimal 1.4 0.0 58,768 58,764.3 58,768 58,875.8 - - -
PSP.3.6.20 Optimal 4.0 0.0 49,246 49,244.1 49,246 49,290.8 - - -
PSP.3.8.1 Optimal 11.7 0.0 66,345 66,340.0 66,345 66,345.0 - - -
PSP.3.8.2 Optimal 37.2 0.0 69,911 69,904.6 69,911 69,911.0 - - -
PSP.3.8.3 Optimal 11.1 0.0 58,026 58,020.3 58,026 58,046.0 - - -
PSP.3.8.4 Optimal 191.1 0.0 76,588 76,580.5 76,588 76,588.0 - - -
PSP.3.8.5 Feasible 200 9.7 68,696 62,038.3 68,541 68,541.0 - - -
PSP.3.8.6 Optimal 4.0 0.0 60,030 60,027.4 60,030 60,030.0 - - -
PSP.3.8.7 Feasible 200 11.5 78,894 69,806.5 78,744 78,753.0 - - -
PSP.3.8.8 Optimal 108.5 0.0 62,413 62,406.8 62,413 62,413.0 - - -
PSP.3.8.9 Optimal 10.1 0.0 67,947 67,943.7 67,947 68,099.7 - - -
PSP.3.8.10 Optimal 16.0 0.0 71,038 71,032.0 71,038 71,038.0 - - -
PSP.3.8.11 Optimal 35.7 0.0 67,673 67,666.2 67,673 67,673.0 - - -
PSP.3.8.12 Optimal 1.3 0.0 106,042 106,042.0 106,042 106,042.0 - - -
PSP.3.8.13 Optimal 6.6 0.0 47,129 47,129.0 47,129 47,188.8 - - -
PSP.3.8.14 Optimal 68.6 0.0 54,496 54,496.0 54,496 54,496.0 - - -
PSP.3.8.15 Optimal 17.1 0.0 68,643 68,643.0 68,643 68,643.0 - - -
PSP.3.8.16 Optimal 3.8 0.0 59,586 59,581.7 59,586 59,586.0 - - -
PSP.3.8.17 Optimal 56.6 0.0 59,868 59,862.7 59,992 59,946.6 - - -
PSP.3.8.18 Feasible 200 14.8 80,820 68,877.3 80,820 80,847.9 - - -
PSP.3.8.19 Optimal 4.7 0.0 55,230 55,224.9 55,230 55,230.0 - - -
PSP.3.8.20 Optimal 109.8 0.0 66,857 66,850.3 66,857 67,020.1 - - -
PSP.3.10.1 Optimal 11.1 0.0 75,273 75,265.8 75,273 75,475.6 - - -
PSP.3.10.2 Feasible 380 22.8 109,196 84,261.1 107,569 108,140.3 - - -
PSP.3.10.3 Optimal 171.5 0.0 102,779 102,768.7 102,779 102,790.6 - - -
PSP.3.10.4 Feasible 380 18.3 74,684 61,006.0 74,092 74,092.0 - - -
PSP.3.10.5 Optimal 116.8 0.0 96,243 96,233.4 96,243 96,243.0 - - -
PSP.3.10.6 Feasible 380 5.3 91,589 86,737.1 91,589 91,750.4 - - -
PSP.3.10.7 Feasible 380 14.4 93,522 80,015.9 93,522 93,536.5 - - -
PSP.3.10.8 Feasible 380 10.6 75,989 67,945.1 75,989 75,997.6 - - -
PSP.3.10.9 Optimal 80.0 0.0 115,502 115,490.9 115,502 115,520.2 - - -
PSP.3.10.10 Optimal 267.3 0.0 90,338 90,329.2 91,008 90,823.8 - - -
PSP.3.10.11 Feasible 380 5.8 62,068 58,445.8 62,068 62,227.5 - - -
PSP.3.10.12 Feasible 380 6.4 84,418 79,021.7 84,400 84,400.0 - - -
PSP.3.10.13 Optimal 33.6 0.0 85,772 85,764.1 85,772 85,968.4 - - -
PSP.3.10.14 Feasible 380 1.7 109,935 108,065.4 109,935 109,951.6 - - -
PSP.3.10.15 Feasible 380 30.8 126,336 87,390.9 126,056 126,400.3 - - -
PSP.3.10.16 Optimal 99.3 0.0 112,178 112,167.1 112,178 112,458.1 - - -
PSP.3.10.17 Feasible 380 15.7 91,676 77,261.9 90,585 90,785.9 - - -
PSP.3.10.18 Feasible 380 14.5 87,249 74,620.7 86,082 86,223.8 - - -
PSP.3.10.19 Feasible 380 27.0 93,946 68,566.9 93,946 94,065.5 - - -
PSP.3.10.20 Feasible 380 15.6 101,921 85,975.9 101,578 101,578.0 - - -
PSP.3.12.1 Feasible 670 35.3 136,930 88,632.8 134,183 135,134.6 - - -
PSP.3.12.2 Optimal 300.7 0.0 143,468 143,454.1 143,468 143,468.0 - - -
PSP.3.12.3 Feasible 670 33.0 143,368 96,005.2 139,834 140,033.0 - - -
PSP.3.12.4 Feasible 670 24.8 119,890 90,113.6 116,827 117,374.8 - - -
PSP.3.12.5 Feasible 670 23.9 103,011 78,431.4 102,675 102,538.2 - - -
PSP.3.12.6 Feasible 670 18.4 127,060 103,666.9 124,417 124,434.3 - - -
PSP.3.12.7 Feasible 670 18.1 124,438 101,918.4 124,438 130,010.1 - - -
PSP.3.12.8 Feasible 670 31.0 130,030 89,700.7 130,030 129,708.1 - - -
PSP.3.12.9 Feasible 670 18.9 104,190 84,447.8 103,362 103,407.2 - - -
PSP.3.12.10 Feasible 670 11.6 108,457 95,842.9 108,450 108,450.0 - - -
PSP.3.12.11 Feasible 670 21.7 126,992 99,449.9 124,843 125,739.1 - - -
PSP.3.12.12 Feasible 670 25.9 105,008 77,855.5 102,658 102,903.7 - - -
PSP.3.12.13 Feasible 670 24.1 160,584 121,844.9 157,189 159,257.1 - - -
PSP.3.12.14 Feasible 670 17.0 124,035 102,929.9 122,731 122,797.2 - - -
PSP.3.12.15 Feasible 670 30.2 103,755 72,443.3 102,617 103,002.2 - - -
PSP.3.12.16 Feasible 670 20.4 89,073 70,926.1 88,009 89,886.8 - - -
PSP.3.12.17 Feasible 670 24.3 156,999 118,915.2 155,118 156,358.8 - - -
PSP.3.12.18 Feasible 670 19.4 85,174 68,686.3 85,174 85,930.9 - - -
PSP.3.12.19 Feasible 670 9.8 123,080 110,987.8 123,080 123,331.6 - - -
PSP.3.12.20 Feasible 670 1.9 122,645 120,302.6 122,659 122,671.7 - - -
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PSP.4.8.1 Feasible 460 22.5 71,901 55,711.0 71,765 72,178.7 - - -
PSP.4.8.2 Optimal 87.3 0.0 93,767 93,758.0 93,767 93,998.3 - - -
PSP.4.8.3 Optimal 195.4 0.0 61,997 61,990.8 62,523 62,391.4 - - -
PSP.4.8.4 Feasible 460 22.5 59,401 46,029.5 58,714 58,642.4 - - -
PSP.4.8.5 Feasible 460 13.3 76,534 66,381.0 75,017 75,767.9 - - -
PSP.4.8.6 Feasible 460 15.3 77,543 65,704.5 76,681 76,762.3 - - -
PSP.4.8.7 Feasible 460 7.0 79,008 73,459.0 78,491 78,945.3 - - -
PSP.4.8.8 Feasible 460 5.2 72,047 68,290.5 72,380 72,444.0 - - -
PSP.4.8.9 Feasible 460 8.6 91,350 83,466.7 91,583 91,507.3 - - -
PSP.4.8.10 Feasible 460 12.9 68,984 60,092.3 68,869 68,999.1 - - -
PSP.4.8.11 Feasible 460 4.6 76,339 72,791.0 76,339 76,601.5 - - -
PSP.4.8.12 Optimal 273.8 0.0 67,608 67,601.3 67,916 68,290.7 - - -
PSP.4.8.13 Feasible 460 14.3 87,801 75,214.7 87,542 88,254.9 - - -
PSP.4.8.14 Feasible 460 12.5 86,981 76,139.6 85,058 85,631.4 - - -
PSP.4.8.15 Feasible 460 13.6 82,314 71,111.3 81,668 83,026.5 - - -
PSP.4.8.16 Optimal 179.7 0.0 79,575 79,567.1 79,647 79,596.6 - - -
PSP.4.8.17 Feasible 460 12.2 75,525 66,310.5 74,594 74,924.8 - - -
PSP.4.8.18 Feasible 460 7.5 63,037 58,309.3 62,977 63,032.5 - - -
PSP.4.8.19 Feasible 460 16.6 90,438 75,396.3 90,379 90,736.9 - - -
PSP.4.8.20 Feasible 460 15.2 83,282 70,660.0 81,759 81,955.4 - - -
PSP.4.10.1 Feasible 880 14.2 99,762 85,591.9 98,941 99,239.9 - - -
PSP.4.10.2 Feasible 880 23.5 97,145 74,292.1 96,161 96,549.2 - - -
PSP.4.10.3 Feasible 880 15.9 115,681 97,262.1 115,386 115,249.8 - - -
PSP.4.10.4 Feasible 880 8.9 125,715 114,487.9 125,715 125,898.3 - - -
PSP.4.10.5 Feasible 880 16.8 146,195 121,645.6 147,690 147,590.7 - - -
PSP.4.10.6 Feasible 880 13.2 85,551 74,223.1 84,525 84,732.3 - - -
PSP.4.10.7 Feasible 880 31.7 90,123 61,560.1 87,753 88,819.3 - - -
PSP.4.10.8 Feasible 880 25.4 115,244 85,968.7 112,634 113,114.0 - - -
PSP.4.10.9 Feasible 880 23.0 122,427 94,232.4 119,179 119,441.6 - - -
PSP.4.10.10 Feasible 880 35.4 150,267 97,111.8 142,853 144,731.9 - - -
PSP.4.10.11 Feasible 880 24.1 101,989 77,372.4 100,412 100,420.9 - - -
PSP.4.10.12 Feasible 880 24.7 116,686 87,810.3 116,535 117,237.3 - - -
PSP.4.10.13 Feasible 880 21.3 133,906 105,423.8 130,727 131,627.3 - - -
PSP.4.10.14 Feasible 880 35.0 80,570 52,390.0 77,697 77,720.5 - - -
PSP.4.10.15 Feasible 880 24.6 134,574 101,509.7 132,872 133,077.6 - - -
PSP.4.10.16 Feasible 880 39.5 96,034 58,122.6 90,911 92,653.0 - - -
PSP.4.10.17 Feasible 880 25.0 107,177 80,368.3 104,168 105,618.9 - - -
PSP.4.10.18 Feasible 880 20.8 110,929 87,873.4 110,167 110,761.2 - - -
PSP.4.10.19 Feasible 880 35.4 127,686 82,542.2 123,702 124,537.1 - - -
PSP.4.10.20 Feasible 880 16.4 117,897 98,560.3 113,995 117,556.8 - - -
PSP.4.12.1 Feasible 1580 29.7 184,227 129,440.3 185,473 187,150.8 - - -
PSP.4.12.2 Feasible 1580 40.9 175,436 103,627.4 162,781 167,071.9 - - -
PSP.4.12.3 Feasible 1580 34.4 138,424 90,838.5 128,906 132,339.4 - - -
PSP.4.12.4 Feasible 1580 41.5 162,136 94,866.6 154,726 155,920.7 - - -
PSP.4.12.5 Feasible 1580 17.8 144,082 118,379.4 140,125 142,047.9 - - -
PSP.4.12.6 Feasible 1580 38.4 150,436 92,606.1 148,242 152,041.6 - - -
PSP.4.12.7 Feasible 1580 38.1 158,067 97,824.6 155,599 156,953.8 - - -
PSP.4.12.8 Feasible 1580 18.3 178,600 145,865.8 175,913 178,140.7 - - -
PSP.4.12.9 Feasible 1580 25.4 152,046 113,496.6 151,412 154,550.9 - - -
PSP.4.12.10 Feasible 1580 24.9 144,648 108,619.8 141,212 142,253.3 - - -
PSP.4.12.11 Feasible 1580 27.4 123,632 89,805.7 121,990 122,603.4 - - -
PSP.4.12.12 Feasible 1580 32.1 169,199 114,963.8 159,512 160,280.8 - - -
PSP.4.12.13 Feasible 1580 31.2 164,142 112,972.7 161,214 163,772.9 - - -
PSP.4.12.14 Feasible 1580 27.3 118,688 86,284.9 117,012 118,757.1 - - -
PSP.4.12.15 Feasible 1580 30.9 139,127 96,162.4 138,544 139,441.5 - - -
PSP.4.12.16 Feasible 1580 42.7 150,724 86,304.8 143,205 143,912.7 - - -
PSP.4.12.17 Feasible 1580 26.5 121,635 89,398.5 118,476 119,180.0 - - -
PSP.4.12.18 Feasible 1580 34.7 140,058 91,502.1 128,648 128,991.5 - - -
PSP.4.12.19 Feasible 1580 25.7 206,306 153,238.6 200,601 202,928.6 - - -
PSP.4.12.20 Feasible 1580 35.7 167,881 107,869.4 161,923 164,526.8 - - -
PSP.4.14.1 Feasible 2470 36.0 192,728 123,416.0 184,640 185,810.7 - - -
PSP.4.14.2 Feasible 2470 38.7 191,702 117,567.9 185,342 186,533.4 - - -
PSP.4.14.3 Feasible 2470 42.8 181,728 103,936.0 176,522 177,715.8 - - -
PSP.4.14.4 Feasible 2470 24.8 254,594 191,535.8 254,838 255,849.1 - - -
PSP.4.14.5 Feasible 2470 36.8 202,398 127,868.6 200,362 203,058.3 - - -
PSP.4.14.6 Feasible 2470 29.9 176,190 123,526.4 175,328 177,862.7 - - -
PSP.4.14.7 Feasible 2470 33.0 203,029 135,947.5 198,513 201,967.8 - - -
PSP.4.14.8 Feasible 2470 37.8 202,541 126,051.0 197,365 200,375.1 - - -
PSP.4.14.9 Feasible 2470 42.3 205,267 118,359.0 191,266 194,958.3 - - -
PSP.4.14.10 Feasible 2470 37.0 261,398 164,556.2 244,920 248,202.0 - - -
PSP.4.14.11 Feasible 2470 34.2 227,671 149,818.4 226,688 226,904.8 - - -
PSP.4.14.12 Feasible 2470 33.6 187,314 124,426.8 183,329 187,869.9 - - -
PSP.4.14.13 Feasible 2470 45.0 175,101 96,324.5 170,326 171,787.2 - - -
PSP.4.14.14 Feasible 2470 30.1 228,420 159,637.6 219,243 221,450.2 - - -
PSP.4.14.15 Feasible 2470 30.7 188,429 130,539.8 185,358 186,694.2 - - -
PSP.4.14.16 Feasible 2470 42.6 175,207 100,602.8 170,697 174,586.1 - - -
PSP.4.14.17 Feasible 2470 42.1 177,267 102,724.3 175,211 175,914.9 - - -
PSP.4.14.18 Feasible 2470 27.7 193,229 139,681.9 189,882 191,212.2 - - -
PSP.4.14.19 Feasible 2470 31.8 179,422 122,387.7 174,479 176,919.7 - - -
PSP.4.14.20 Feasible 2470 29.6 206,342 145,313.7 201,274 206,562.2 - - -
PSP.5.10.1 Feasible 1720 21.7 111,525 87,331.4 107,575 108,915.4 107,575 107,785.0 -
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PSP.5.10.2 Feasible 1720 21.7 138,769 108,709.7 135,988 137,318.4 135,988 135,988.0 -
PSP.5.10.3 Feasible 1720 31.9 107,500 73,223.9 106,081 107,593.9 104,309 104,815.8 -
PSP.5.10.4 Feasible 1720 23.4 105,735 81,026.8 105,160 105,654.1 104,647 104,983.2 -
PSP.5.10.5 Feasible 1720 27.2 129,429 94,173.0 125,671 128,537.5 125,671 126,523.0 -
PSP.5.10.6 Feasible 1720 18.0 119,233 97,772.8 119,048 120,296.1 118,158 118,581.0 -
PSP.5.10.7 Feasible 1720 30.5 107,445 74,623.7 107,554 108,302.4 106,479 107,101.8 -
PSP.5.10.8 Feasible 1720 14.8 148,725 126,663.9 146,728 147,391.2 146,210 146,440.0 -
PSP.5.10.9 Feasible 1720 39.7 128,935 77,691.2 124,148 124,812.6 121,099 121,856.0 -
PSP.5.10.10 Feasible 1720 26.3 122,242 90,071.8 124,680 125,895.6 124,164 124,165.6 -
PSP.5.10.11 Feasible 1720 18.6 118,872 96,796.7 118,306 119,571.8 117,918 118,375.8 -
PSP.5.10.12 Feasible 1720 35.4 122,208 78,946.9 117,978 121,421.2 118,261 118,813.6 -
PSP.5.10.13 Feasible 1720 25.2 126,516 94,638.2 122,334 124,031.1 121,251 121,974.8 -
PSP.5.10.14 Feasible 1720 27.6 126,565 91,663.2 124,127 125,299.7 123,980 124,075.4 -
PSP.5.10.15 Feasible 1720 22.8 106,634 82,349.6 105,647 106,022.2 103,399 104,206.4 -
PSP.5.10.16 Feasible 1720 29.5 152,067 107,213.0 148,423 151,191.3 148,358 149,118.2 -
PSP.5.10.17 Feasible 1720 32.4 121,628 82,248.3 113,896 114,871.8 112,526 113,337.4 -
PSP.5.10.18 Feasible 1720 36.7 165,161 104,489.8 161,358 162,091.9 159,092 159,304.2 -
PSP.5.10.19 Feasible 1720 35.4 122,578 79,176.9 118,784 118,403.5 115,915 116,409.0 -
PSP.5.10.20 Feasible 1720 34.8 132,558 86,437.5 131,767 132,545.8 130,041 130,440.8 -
PSP.5.12.1 Feasible 2970 39.5 201,337 121,756.4 200,536 205,533.0 200,423 201,376.8 198,534
PSP.5.12.2 Feasible 2970 34.5 179,988 117,937.4 172,328 175,695.9 169,103 170,494.8 172,157
PSP.5.12.3 Feasible 2970 43.0 191,828 109,272.8 186,283 187,184.3 182,335 185,053.6 190,840
PSP.5.12.4 Feasible 2970 36.8 174,174 110,151.0 169,517 171,654.7 166,514 168,423.4 170,116
PSP.5.12.5 Feasible 2970 35.9 168,738 108,098.9 161,092 161,042.9 159,449 159,811.4 164,115
PSP.5.12.6 Feasible 2970 38.8 165,819 101,533.7 161,866 162,911.8 159,882 161,964.8 163,348
PSP.5.12.7 Feasible 2970 31.4 189,069 129,739.2 178,263 186,284.2 180,135 182,000.8 183,880
PSP.5.12.8 Feasible 2970 21.9 153,167 119,638.8 153,117 154,369.7 147,954 149,866.0 152,468
PSP.5.12.9 Feasible 2970 38.6 163,481 100,305.5 158,303 162,435.9 157,253 159,904.8 163,911
PSP.5.12.10 Feasible 2970 32.0 181,628 123,425.1 175,702 179,594.7 174,359 176,607.6 178,927
PSP.5.12.11 Feasible 2970 24.6 154,029 116,063.0 149,704 152,583.4 146,765 148,480.6 148,900
PSP.5.12.12 Feasible 2970 31.6 157,722 107,920.2 157,430 157,782.8 155,405 156,544.6 159,344
PSP.5.12.13 Feasible 2970 30.4 170,137 118,438.8 169,600 171,215.2 166,926 168,087.8 169,943
PSP.5.12.14 Feasible 2970 35.6 180,642 116,391.5 173,232 174,323.9 170,943 172,965.0 174,566
PSP.5.12.15 Feasible 2970 31.8 201,715 137,483.3 197,534 201,743.0 195,982 197,507.4 202,687
PSP.5.12.16 Feasible 2970 29.7 169,855 119,329.0 170,751 171,549.0 167,008 168,981.8 170,928
PSP.5.12.17 Feasible 2970 39.6 235,708 142,454.3 225,797 226,510.5 220,691 221,556.4 231,423
PSP.5.12.18 Feasible 2970 33.8 163,008 107,953.7 154,851 157,747.9 153,908 156,195.4 160,756
PSP.5.12.19 Feasible 2970 39.4 190,492 115,346.7 182,310 186,000.8 182,790 183,752.2 185,335
PSP.5.12.20 Feasible 2970 32.9 172,198 115,560.1 164,414 165,996.2 162,682 164,087.4 167,953
PSP.5.14.1 Feasible 4710 52.1 258,843 124,007.4 246,102 249,034.8 243,670 244,488.4 -
PSP.5.14.2 Feasible 4710 35.5 203,240 131,069.7 200,908 204,199.1 199,113 201,111.4 -
PSP.5.14.3 Feasible 4710 35.8 237,827 152,659.1 233,049 238,312.5 232,671 234,377.2 -
PSP.5.14.4 Feasible 4710 37.4 190,948 119,522.1 186,225 186,979.0 182,359 185,533.4 -
PSP.5.14.5 Feasible 4710 42.8 224,953 128,635.9 213,905 215,554.2 211,338 212,391.6 -
PSP.5.14.6 Feasible 4710 32.0 263,710 179,217.2 253,416 253,996.7 250,341 251,829.2 -
PSP.5.14.7 Feasible 4710 40.7 225,930 134,015.0 219,515 220,672.5 218,020 218,802.8 -
PSP.5.14.8 Feasible 4710 37.3 177,294 111,195.1 175,260 175,127.3 172,499 173,427.6 -
PSP.5.14.9 Feasible 4710 38.9 211,067 128,984.6 202,710 203,965.2 200,850 203,365.6 -
PSP.5.14.10 Feasible 4710 44.9 181,409 100,007.9 166,888 169,532.8 166,511 167,495.6 -
PSP.5.14.11 Feasible 4710 29.3 205,794 145,509.7 200,948 201,124.6 198,488 200,046.4 -
PSP.5.14.12 Feasible 4710 34.9 238,794 155,562.5 233,117 237,087.5 232,390 235,346.8 -
PSP.5.14.13 Feasible 4710 30.4 254,311 176,953.9 249,375 252,672.3 248,149 250,196.8 -
PSP.5.14.14 Feasible 4710 47.7 223,499 116,912.5 214,039 216,773.5 212,374 215,542.4 -
PSP.5.14.15 Feasible 4710 38.9 312,803 191,258.9 293,933 297,825.3 290,894 293,764.0 -
PSP.5.14.16 Feasible 4710 47.9 230,618 120,125.2 216,154 218,661.9 214,286 215,636.0 -
PSP.5.14.17 Feasible 4710 36.2 184,333 117,570.5 182,577 185,077.9 180,315 181,632.2 -
PSP.5.14.18 Feasible 4710 34.7 273,073 178,272.8 264,777 267,521.0 261,489 264,208.4 -
PSP.5.14.19 Feasible 4710 30.4 229,802 159,990.7 223,981 225,263.4 217,262 221,016.0 -
PSP.5.14.20 Feasible 4710 34.1 192,353 126,819.5 183,782 185,383.3 183,408 184,206.2 -
PSP.5.16.1 Feasible 7030 28.1 312,288 224,429.7 306,831 311,669.1 304,841 308,913.0 -
PSP.5.16.2 Feasible 7030 43.6 230,796 130,128.8 217,592 222,339.5 217,308 219,355.8 -
PSP.5.16.3 Feasible 7030 29.5 213,835 150,801.7 213,511 216,723.8 212,473 213,511.2 -
PSP.5.16.4 Feasible 7030 40.4 252,336 150,424.1 236,437 244,857.3 238,885 241,203.8 -
PSP.5.16.5 Feasible 7030 35.8 273,893 175,875.1 266,035 269,238.0 264,412 270,823.2 -
PSP.5.16.6 Feasible 7030 41.9 263,450 153,184.4 241,263 246,755.1 240,978 243,333.4 -
PSP.5.16.7 Feasible 7030 44.5 319,136 177,111.8 301,739 308,827.4 299,743 306,127.6 -
PSP.5.16.8 Feasible 7030 44.8 226,712 125,061.4 221,382 225,710.0 220,993 222,839.8 -
PSP.5.16.9 Feasible 7030 33.1 259,384 173,415.6 249,949 254,266.8 249,449 252,294.2 -
PSP.5.16.10 Feasible 7030 36.8 371,843 234,904.4 350,639 355,099.5 349,071 351,271.4 -
PSP.5.16.11 Feasible 7030 35.3 287,836 186,088.0 281,495 283,333.5 279,149 281,179.8 -
PSP.5.16.12 Feasible 7030 40.8 245,892 145,514.3 231,876 235,485.4 232,984 234,295.2 -
PSP.5.16.13 Feasible 7030 39.5 289,990 175,569.1 281,589 286,959.5 280,129 283,986.4 -
PSP.5.16.14 Feasible 7030 41.3 241,622 141,834.8 235,009 239,518.8 232,388 235,427.8 -
PSP.5.16.15 Feasible 7030 33.9 318,835 210,736.3 301,210 309,660.0 297,431 302,690.4 -
PSP.5.16.16 Feasible 7030 36.7 353,614 223,721.8 335,194 340,773.0 334,278 336,273.6 -
PSP.5.16.17 Feasible 7030 47.1 305,538 161,722.9 303,141 307,152.7 297,061 301,695.4 -
PSP.5.16.18 Feasible 7030 45.8 243,146 131,820.4 238,994 248,000.6 236,513 244,114.4 -
PSP.5.16.19 Feasible 7030 35.7 314,108 201,963.0 298,500 303,361.2 296,325 300,703.4 -
PSP.5.16.20 Feasible 7030 42.2 274,204 158,588.4 258,593 262,173.0 257,894 260,204.6 -
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