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Abstract

In this paper, we consider the optimal strategies in asset allocation, consumption, and life
insurance for a household with an exogenous stochastic income under a self-contagious market
which is modeled by bivariate self-exciting Hawkes jump processes. By using the Hawkes process,
jump intensities of the risky asset depend on the history path of that asset. In addition to the
financial risk, the household is also subject to an uncertain lifetime and a fixed retirement date.
A lump-sum payment will be paid as a heritage, if the wage earner dies before the retirement
date. Under the dynamic programming principle, explicit solutions of the optimal controls
are obtained when asset prices follow special jump distributions. For more general cases, we
apply the Feynman-Kac formula and develop an iterative numerical scheme to derive the optimal
strategies. We also prove the existence and uniqueness of the solution to the fixed point equation
and the convergence of an iterative numerical algorithm. Numerical examples are presented to
show the effect of jump intensities on the optimal controls.
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1 Introduction

Recent financial markets have shown increasingly obvious sudden shocks and jumps of asset prices,

especially during the financial crisis in 2007-2009. One traditional method to explore the impact

of those abrupt events in investment and portfolio management is to introduce Lévy processes into

the dynamics of the asset prices, such as the compound Poisson process. Studies on the impact of

jumps on the portfolio management can be traced back to Merton (1969), who initially explores the

asset allocation and consumption problem in a continuous-time model. Then, instead of considering

continuous underlying processes, Merton (1976) introduces Poisson jumps into the stock dynamics.

Thereafter, many researchers have investigated the abrupt price jumps and extended it to follow

more general Lévy processes. Early works include Aase (1984), Das and Uppal (2004), and Cont

and Tankov (2004), which follow the assumption of serially independent jump increments. More

recently, in addition to considering jumps purely in the asset price, Liu et al. (2003) investigate

the asset allocation problem with jumps in the volatility process as well. The analytic solution

suggests that jumps in the volatility process have large effects on the investors’ willingness to take

leverage or short positions. Furthermore, Branger et al. (2017) explore a multi-asset Wishart-model

where return variances and correlations can jump. They find that the optimal controls are critically

changed by the jumps in the second moments. Aït-Sahalia and Matthys (2019) consider a robust

consumption and portfolio management problem where asset prices follow Lévy processes. Although

previous studies have widely explored the dramatic impact of jumps on the asset allocation problem,

they have largely ignored the cluster and propagation properties of the jump processes.

Boswijk et al. (2018) observe that a significant decline in real equity market triggers multiple

drops in close succession over a short period. The phenomenon is called self excitation that allows a

realized jump to have positive or negative effects on its own stochastic jump intensities. In addition,

Aït-Sahalia et al. (2015) develop an estimation method to test the propagation phenomenon based

on the method of moments, which highly supports the existence of self-excitation and mutual-

excitation in real market. Feinstein (2020) consider the impacts of financial contagion caused by

extreme negative events of one bank or firm on other banks or firms. Standard Lévy processes

assume independent increments, which cannot produce any type of clusters or propagation of jumps.

Therefore, to better model and reproduce the investment environment, we need to consider more

versatile jump processes that can capture the propagation phenomenon described above.

One of the processes that can address this problem is the Hawkes process introduced by Hawkes

(1971), where the arrival of one jump changes its own or other jump intensities and the intensities

revert to a long-tern mean level in the absence of jumps. Branger et al. (2014) compare the Hawkes

jump process with a regime switching model to show that only the Hawkes process induces the

clustering property. Callegaro et al. (2019) observe that Hawkes processes can capture the jumps

clustering features in Forward prices of Power markets. Du and Luo (2019) apply a two-factor
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Hawkes jump-diffusion model to examine the S&P 500 index and observe severe but short lived

propagation effect . Additionally, Cui et al. (2019) investigate the valuation of options under time-

changed Markov processes, including integral of CIR process, Lévy Subordinators, and Markovian

Hawkes process.

To the best of our knowledge, Aït-Sahalia and Hurd (2015) first include the Hawkes process

into the asset allocation problem and figure out the explicit optimal controls for the investor with

log-utilities. They consider a class of multidimensional assets in which each price jump-down in

one asset price increases the probability of future jumps in that asset and other assets. For the

value function, they investigate the expected discounted utilities from life-time consumption. Un-

der certain assumptions, the value function and the optimal controls are simplified to be time

independent. Kokholm (2016) analyzes the impact of propagation on the derivative market by in-

cluding the Hawkes process in the dynamics of the indexes’ log-returns and finds that this model

generates results that are consistent with empirical evidences and fit option volatility surfaces of

the four candidate indexes over an extended period of time. Hainaut (2017) analyzes the impact

of the contagion phenomenon between the financial and insurance market. The optimal alloca-

tion, dividend, and reinsurance policies are obtained by assuming that the value function follows

an exponential affine structure. Dassios and Zhao (2017) extend the standard Hawkes process by

considering CIR-type intensities and introduce a very efficient simulation scheme.

Literature on the optimal consumption, life insurance, and portfolio management of an investor

with uncertain death time can be traced back to early works of Yarri (1965) and Richard (1975).

Recently, Pliska and Ye (2007) assume that the investor’s lifetime is bounded by a fixed time

horizon and derive closed-form solutions for the investor with a deterministic income stream. Kwak

et al. (2011) extend the model from an individual investor to a family where the parents receive

deterministic labor income until a fixed time. If the parents die before the fixed time, the children

with no income have to choose optimal allocation and consumption policies with the remaining

wealth and life insurance benefit. Duarte et al. (2014) provide solutions for the optimal consumption,

investment, and life insurance polices in a market comprised of a risk-free bond and an arbitrary

number of risky securities driven by multi-dimensional Brownian motion. In stead of considering

deterministic labor income, Wang (2009) investigates an optimization problem for an investor with

a stochastic wage process. From then on, researches on this topic become much more popular.

Recent works include Zeng et at. (2015), Wang et al. (2016), and Hou et al. (2018).

In this paper, we mainly follow the framework of Aït-Sahalia and Hurd (2015) and Hainaut

(2017) and discuss the impact of self-contagion on the optimal allocation, consumption, and life

insurance policies for a wage earner with exponential utilities and uncertain lifetime. The wage

earner’s family members will receive a lump-sum payment if the wage earner dies before the re-

tirement date. In stead of considering a self-financing wealth process, we follow the work of Wang
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(2009) and assume the investor receives an exogenous stream of mean-reverting stochastic labor in-

come. Under those complex settings, closed-form solutions of the optimal controls are not available

for general cases as in Aït-Sahalia and Hurd (2015). However, we can apply the exponential affine

structure of Hainaut (2017) to derive explicit expressions under special jump distributions and use

numerical methods to solve more general jump models.

To prove the convergence of the numerical method, we follow the idea of Delong and Klüppelberg

(2008) and define an operator for the fixed point equation. We derive a theorem verifying that the

operator is a contraction mapping. Then, by using Banach fixed point theorem, we find that the

fixed point equation has a unique solution and the iterative method will converge to that unique

solution. Delong and Klüppelberg (2008) consider a Black-Scholes market with coefficients driven by

an external Ornstein-Uhlenbeck process and have to obtain relevant upper bounds for the external

stochastic factor. In this paper, we consider a contagion market with underlying assets following

bivariate self-exciting Hawkes jump processes. Then, due to the jumps in the assets price proesses,

the optimal investment strategy depends on the specific price jump distributions. Hence, it becomes

more difficult to find an upper bound for a function of the investment control, which is the key step

to prove the operator is a contraction mapping.

The main contributions of our paper follow the three ways. First, for the Hawkes jump process,

only consider the effect of negative price jumps on the optimal portfolio selection and Fan (2017)

further assumes that the sizes for the price jump-downs are all negative constants, which indeed

can largely simplify the computation task. However, in real market, the effect of price jump-ups

cannot be the same as the effect of price jump-downs. To describe the asymmetric properties of

jump intensities, we follow the work of Jang and Dassios (2013) and apply a bivariate self-exciting

process where we introduce two jump intensities for a single asset: one for price jump-up and

the other for price jump-down. The arrival of price jump-up increases the jump-up intensity and

decreases the jump-down intensity. The arrival of price jump-down decreases the jump-up intensity

and increases the jump-down intensity. The idea of separating the specific effect of price jumps

can be easily extended to higher dimensional models. By incorporating the bivariate self-exciting

process, the HJB equation will be too complex to have closed-form solutions for general jump

distributions. Moreover, we provide the rigorous convergence proof of the numerical algorithm by

using the Banach fixed point theorem for given exponential jump distribution.

Second, Aït-Sahalia and Hurd (2015) consider the utilities of instantaneous consumption, where

the value function can be much simplified. We study a life-time optimization problem for a household

and further generalize this problem by maximizing the expected discounted utilities from both

the instantaneous consumption and the death-time heritage. In addition, we consider the market

process until the minimum of the wage earner’s death time and the retirement date. Due to the

random death time and the fixed retirement date, the value function cannot be converted to be time
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independent, which makes it much more complicated to derive closed-form solutions of the value

function and the optimal controls. To solve the value function, we follow the work of Hainaut (2017)

and consider a wage earner with exponential utilities. Applying the exponential affine structure,

we can obtain closed-form solutions under special jump size distributions by solving a system of

ordinary differential equations. For more general cases, we apply a numerical method according to

a contraction mapping and the Feynman-Kac formula.

Third, we generalize the work of Zeng et at. (2015) by adopting a linear combination of expo-

nential distributions to model the random death time of the investor, as a linear combination of

exponential distributions can provide an arbitrarily close approximation to nonnegative distributions

including exponential-tail and power-tail distributions in the sense of weak convergence.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the bivariate

self-excitation jump processes and characterize the dynamics of different assets. A comprehensive

description of the formulation is stated. Section 3 develops the value function and the HJB equation.

In Section 4, we apply the exponential affine structure to simplify the HJB equation and present

a numerical method to solve the value function under the Feyman-Kac formula. In Section 5,

numerical examples are given to illustrate the effects of the stochastic income and jump intensities

on the optimal controls. Section 6 concludes this paper.

2 Market Formulation

2.1 Bivariate Self-Excitation Jumps

In this paper, we follow the works of Aït-Sahalia et al. (2014) and Hainaut (2017) and introduce

a bivariate self-excitation jump process for the asset prices. According to Hawkes (1971), self-

excitation jump processes are special cases of path-dependent point processes and the intensities of

those processes depend on the paths of that point process. The jump intensities are stochastic and

obey the following mean-reverting dynamics:

dλUt =αU (λ̄U − λUt )dt+ η11dN
U
t + η12dN

D
t ,

dλDt =αD(λ̄D − λDt )dt+ η21dN
U
t + η22dN

D
t ,

(2.1)

where λUt and λDt are the intensities of jump processes NU
t and ND

t , respectively. The intensities

revert at speed αU and αD to λ̄U and λ̄D, respectively. The coefficients are assumed to satisfy the

following conditions:

η11 > 0, η12 < 0, η21 < 0, η22 > 0.

For example, when a price jump-up happens (a jump of NU
t ), the intensity λUt of NU

t increases by a

positive amount η11, resulting a shorter expected waiting time for the next price jump-up. Simulta-

neously, the appearance of price jump-ups motivates investors to participate in the financial market,
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which will increase the demand side. Hence, η21 < 0, leading to a longer expected waiting time to

observe the next price jump-down. The other coefficients can be verified by similar arguments.

Then the jump process is defined by the intensity processes in (2.1). We use NU
t as an example to

demonstrate the process as follows:
P(NU

t+∆t −NU
t = 0|Ft) = 1− λUt ∆t+ o(∆t),

P(NU
t+∆t −NU

t = 1|Ft) = λUt ∆t+ o(∆t),

P(NU
t+∆t −NU

t > 1|Ft) = o(∆t).

(2.2)

2.2 Life Uncertainty Risk

In this paper, we consider a wage earner under Merton’s framework: the wage earner maximizes

the expected discounted utilities from instantaneous consumption and the terminal heritage by

choosing optimal consumption, investment, and life insurance policies, where the stopping time is

the minimum of the random death time (τd) and the fixed retirement date (T).

For the random variable τd, we introduce a linear combination of exponential distributions F̄ (s, t)

to represent the conditional survival probability at time s, given that the wage earner is alive at

time t for s ≥ t ≥ 0. Then, F̄ (s, t) = P{τd > s|τd > t} and the conditional death probability at time

s is F (s, t) = 1− F̄ (s, t) = P{τd ≤ s|τd > t}. Then, the conditional probability density function for

the death probability is f(s, t) = dF (s,t)
ds . We have

F̄ (s, t) =
P{τd > s}
P{τd > t}

=

∑n
i=1 pi exp

(
−
∫ s

0 λ
m
i (u)du

)∑n
i=1 pi exp

(
−
∫ t

0 λ
m
i (u)du

) , (2.3)

and the probability density function has the form

f(s, t) =

∑n
i=1 piλ

m
i (s) exp

(
−
∫ s

0 λ
m
i (u)du

)∑n
i=1 pi exp

(
−
∫ t

0 λ
m
i (u)du

) , (2.4)

with
∑n

i=1 pi = 1, i = 1, . . . , n, n ≥ 1 and λmi (t) > 0, ∀t > 0.

In addition, we assume that the wage earner can purchase life insurance by paying the insurance

premium Pt at time t. If the wage earner dies at time t, his family can receive a lump-sum death

benefit Pt
ηt
, where ηt is the premium-insurance ratio determined by insurance companies. To simplify

computation, we assume that insurance companies do not require a risk loading, which means

ηt = f(t, t).

2.3 Asset Return Dynamics

We assume that there are only two tradable assets: a risk-free bond Bt and a risky stock St. We

characterize the processes of those assets as follows:
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1. The risk-free bond Bt appreciates at a constant rate r:

dBt = rBtdt. (2.5)

2. The risky stock St follows a Hawkes jump-diffusion model:

dSt = µSt−dt+ σSt−dW
S
t + JUt St−dN

U
t + JDt St−dN

D
t , (2.6)

where µ is the drift term, σ is the volatility term, and NU
t and ND

t denote the jumps or

crashes of stock prices. JUt and JDt capture the size of jump-up and jump-down, respectively.

To simplify the notation scheme, the distribution functions of JUt and JDt will be given later.

2.4 Wealth Dynamics

Let Xt denote the total wealth of the wage earner and πt denote the allocation policy, which

represents the actual amount invested in the risky stock at time t, then Xt − πt is the amount

invested in the risk-free bond. Ct denotes the instantaneous consumption amount. Pt is the life

insurance premium purchased by the wage earner and his family will receive a lump-sum payment

at his death time, which depends on the life insurance premium and the mortality rate at that time.

Additionally, we suppose the wage earner receives an exogenous stream of stochastic income

It at time t. Following the work of Wang (2009), we assume that the labor income satisfies a

mean-reverting process where θ denotes income growth parameter, k denotes the persistence of the

income, and σ̃ measures the volatility of the income process. The evolution processes for the total

wealth and income are as follows:

dXt =(Xt − πt)
dBt
Bt

+ πt
dSt
St
− Ctdt− Ptdt,

=[rXt + πt(µ− r) + It − Ct − Pt]dt+ πtσdW
S
t + πtJ

U
t dN

U
t + πtJ

D
t dN

D
t ,

(2.7)

and

dIt = (θ − kIt)dt+ σ̃dW I
t . (2.8)

And we assume the correlation coefficient between the two Brownian motions WS
t and W I

t is ρ.

3 Optimization Problem and The HJB Equation

Now we demonstrate the wage earner’s objective function. Following the work of Pliska and Ye

(2007), we consider three sources of utilities: continuous consumption between initial time t and

exit time min(τd, T ); terminal wealth if the wage earner survives at time T ; and the legacy if he dies

before the retirement date T . Therefore, in a filtered probability space (Ω,F , {F}t≥0,P) satisfying
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the usual conditions of right-continuity and completeness, the target function V is as follows:

V (t,Xt, It, λ
U
t , λ

D
t ) = max

{C,π,P,}
E
[ ∫ τd∧T

t
e−β(s−t)U(Cs)ds+ e−β(T−t)U(XT )I{τd ≥ T}

+ e−β(τd−t)U(Xτd , Pτd)I{τd < T}|Ft
]
,

(3.1)

where E[·|Ft] is the conditional expectation given the information at time t. Xt stands for the initial

total wealth of the wage earner, λUt and λDt is the initial value of jump intensities, β is the subjective

discount rate, and I is the identity function. U(·) stands for the utility function, with

U(Xτd , Pτd) = U

(
Xτd +

Pτd
f(τd, τd)

)
. (3.2)

To solve this optimization problem, we need to express the target function in a dynamic pro-

gramming form and then use stochastic dynamic programming principle to derive the HJB equation

and get formulas for the optimal control policies.

Lemma 3.1. The target function V can be restated as follows:

V (t,Xt, It, λ
U
t , λ

D
t ) = max

{C,π,P}
E
[ ∫ T

t

(
F̄ (s, t)e−β(s−t)U(Cs) + f(s, t)e−β(s−t)U(Xs, Ps)

)
ds

+ F̄ (T, t)e−β(T−t)U(XT )|Ft
]
,

(3.3)

with F̄ (s, t) being the survival probability up to time s, given that the wage earner is alive at time t

as mentioned before, and f(s, t) being the probability density function w.r.t. F (s, t).

The proofs of Lemma 3.1 are provided in Appendix A. Now, we use the dynamic programming

principle to derive the HJB equation of this optimization problem.

Lemma 3.2. The target function satisfies the following recursive relationship for some u ∈ (t, T ):

V (t,Xt, It, λ
U
t , λ

D
t ) = max

{C,π,P}
E
[
F̄ (u, t)e−β(u−t)V (u,Xu, Iu, λ

U
u , λ

D
u )

+

∫ u

t
(F̄ (s, t)e−β(s−t)U(Cs) + f(s, t)e−β(s−t)U(Xs, Ps))ds

∣∣∣Ft]. (3.4)

The proofs of Lemma 3.2 are provided in Appendix B. Now, we state that the HJB equation

that characterizes the optimal controls of this Merton’s problem is as follows:

0 =− (f(t, t) + β)V + Vt + (rXt + It)VX + (θ − kIt)VI

+ αU (λ̄U − λUt )VλU + αD(λ̄D − λDt )VλD + 0.5σ̃2VII

+ max
π

[
πt(µ− r)VX + 0.5π2

t σ
2VXX + ρπtσσ̃VXI + λUt E(V U − V ) + λDt E(V D − V )

]
+ max

C
[−CtVX + U(Ct)]

+ max
P

[−PtVX + f(t, t)U(Xt, Pt)] ,

(3.5)
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with the terminal boundary condition

V (T,XT , IT , λ
U
T , λ

D
T ) = U(XT ).

The derivation of the above HJB equation is included in Appendix C. For the optimal controls

π∗, C∗, and P ∗, we use the first-order condition to (3.5) to derive the following expressions in terms

of the target function V (t, ·):

π∗t = arg max
π

{
π(µ− r)VX + 0.5π2σ2VXX + ρσσ̃πVXI + λUE(V U − V ) + λDE(V D − V )

}
,

C∗t = U−1
C (VX),

P ∗t = U−1
D

(
VX
f(t, t)

)
,

(3.6)

where U−1
C and U−1

D are the inverse functions of partial derivatives of UC and UD. Furthermore,

V U and V D are the value functions right after the price jumps, with V U = V (t,Xt +πtJ
U
t , It, λ

U
t +

η11, λ
D
t + η21) and V D = V (t,Xt + πtJ

D
t , It, λ

U
t + η12, λ

D
t + η22), respectively.

In order to get the explicit formulas for the optimal controls and the target function, we need

more assumptions on the utility function.

We consider a wage earner with the standard exponential utility U(X) = − e−γX

γ with γ > 0.

Following the work of Duffie et al. (2000), Aït-Sahalia and Hurd (2015), and Fan (2017), we know

that if the jump intensities follows (2.1), the value function V (t,Xt, It, λ
U , λD) follows an exponential

affine structure. Then, we separate the value function as

V (t,Xt, It, λ
U , λD) =

−1

γ
eA(t,T )It+D(t,T )Xtg(t, λUt , λ

D
t ), (3.7)

where g(t, λUt , λ
D
t ) is an implicit function for the affine structure. More specific, we have

g(t, λUt , λ
D
t ) = eE(t,T )+BU (t,T )λUt +BD(t,T )λDt , (3.8)

where E(·), BU (·), BD(·), A(·), and D(·) are functions to be determined. Explicit solutions for the

five unknown functions can be obtained when the price jumps follow some special distributions. We

will present some examples with special jump distributions later.

To solve for the cases with general jump distributions, we can only find explicit solutions for

A(t, T ) and D(t, T ) and have to apply Feynman-Kac formula and an iterative scheme to solve g

numerically, which is covered in Section 4.

4 Analysis and Numerical Algorithm

For general cases, we suppose that the price jump-up sizes and the price jump-down sizes satisfy

general distributions. We follow (3.7) to introduce an implicit function g(t, λUt , λ
D
t ) for the affine
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structure. In Section 4.1, we find the closed-form solutions for A(t, T ) and D(t, T ) and introduce

an iterative scheme to solve g. In section 4.2, we prove the existence and uniqueness of the solution

to this iterative scheme. Convergence of the algorithm is shown accordingly. Finally, in Section 4.3,

we provide the details of the numerical algorithm.

4.1 Analysis of Controls and Value Function

In this section, we follow the structure in (3.7) and omit the parameters to reduce notations. Then,

the partial derivatives become

Vt =
−1

γ
eAIt+DXt

[
(
dA

dt
It +

dD

dt
Xt)g +

∂g

∂t

]
,

VX = DV, VXX = D2V, VI = AV, VII = A2V,

VXI = ADV, VλU =
−1

γ
eAIt+DXt

∂g

∂λU
, VλD =

−1

γ
eAIt+DXt

∂g

∂λD
,

(4.1)

and the value functions right after price jumps become

V U =
−1

γ
eAIt+D(Xt+πtJUt )g(t, λUt + η11, λ

D
t + η21),

V D =
−1

γ
eAIt+D(Xt+πtJDt )g(t, λUt + η12, λ

D
t + η22).

(4.2)

Therefore, the HJB equation (3.5) can be rewritten as

0 =− (f(t, t) + β)V +
−1

γ
eAIt+DXt

[
(
dA

dt
It +

dD

dt
Xt)g +

∂g

∂t

]
+ (rXt + It)DV + (θ − klt)AV

+ αU (λ̄U − λUt )
−1

γ
eAIt+DXt

∂g

∂λU
+ αD(λ̄D − λDt )

−1

γ
eAIt+DXt

∂g

∂λD
+ 0.5σ̃2A2V

+ max
π

πt(µ− r)DV + 0.5σ2π2
tD

2V + ρπtσσ̃ADV

+ λUt E
[
−1

γ
eAIt+D(Xt+πtJUt )g(t, λUt + η11, λ

D
t + η21)− V

]
+ λDt E

[
−1

γ
eAIt+D(Xt+πtJDt )g(t, λUt + η12, λ

D
t + η22)− V

]
+ max

C
−CtDV +

−1

γ
e−γCt

+ max
P
−PtDV + f(t, t)

−1

γ
e
−γ(Xt+

Pt
f(t,t)

)
.

(4.3)

By the first condition, we can rewrite (4.1) as

C∗t = −1

γ
ln(DV ),

P ∗t = −f(t, t)

(
ln(DV )

γ
+Xt

)
,

π∗t = arg min
π
H(πt, g(t, λUt , λ

D
t )),

(4.4)
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where
H(πt, g(t, λUt , λ

D
t )) =πt(µ− r)D + 0.5σ2π2

tD
2 + ρπtσσ̃AD

+ λUt
g(t, λUt + η11, λ

D
t + η21)

g(t, λUt , λ
D
t )

E
[
eDπtJ

U
t − 1

]
+ λDt

g(t, λUt + η12, λ
D
t + η22)

g(t, λUt , λ
D
t )

E
[
eDπtJ

D
t − 1

]
.

(4.5)

Remark 4.1. Note that in (4.5), H(πt, g(t, λUt , λ
D
t )) depends on the moment generating function

of JUt and JDt . For simple jump distributions, we can apply the affine structure in (3.8) to obtain

explicit formulas for the value function and the optimal controls. We include some examples in the

Appendix D.

Now we can substitute the optimal controls in (4.4) into the HJB equation (4.3) and match the

coefficient of Xt. Then, we can obtain

dD

dt
+ rD + f(t, t)D +

f(t, t) + 1

γ
D2 = 0, (4.6)

with the terminal condition D(T, T ) = −γ. It is straightforward to check that D(t, T ) admits the

closed-form solution:

D(t, T ) =

[
−f(t, t) + 1

γ

1

r + f(t, t)

(
1− e−

∫ T
t r+f(u,u)du

)
− 1

γ
e−
∫ T
t r+λm(u))du

]−1

. (4.7)

Similarly, matching the coefficient of It, we have

dA

dt
+D − kA+

1 + f(t, t)

γ
AD = 0, (4.8)

with the terminal condition A(T, T ) = 0. Therefore, A(t, T ) has the closed-form solution:

A(t, T ) =

∫ T

t
D(s, T )e

∫ s
t

(
f(u,u)+1

γ
D(u,T )−k

)
du
ds. (4.9)

After applying the closed-form solutions of A(t, T ) in (4.7) and D(t, T ) in (4.9) to reduce the

terms of Xt and It, we can simplify the HJB equation (4.3) as:

0 =− (f(t, t) + β)g +
∂g

∂t
+ θAg + 0.5σ̃2A2g

+ αU (λ̄U − λUt )
∂g

∂λU
+ αD(λ̄D − λDt )

∂g

∂λD

+ λUt (g(t, λUt + η11, λ
D
t + η21)− g) + λDt (g(t, λUt + η12, λ

D
t + η22)− g)

+H(π∗t , g(t, λUt , λ
D
t ))g +

f(t, t) + 1

γ
Dg

(
ln

(
−D
γ

)
+ ln g − 1

)
.

(4.10)

Then we can define the infinitesimal generator A for the jump intensity processes by

{Ag}(t, λUt , λDt ) =
∂g

∂t
+ αU (λ̄U − λUt )

∂g

∂λU
+ αD(λ̄D − λDt )

∂g

∂λD

+ λUt (g(t, λUt + η11, λ
D
t + η21)− g) + λDt (g(t, λUt + η12, λ

D
t + η22)− g),

(4.11)
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and define Q(t, T ) = θA(t, T )− f(t, t)− β + 0.5σ̃2A(t, T )2 + f(t,t)+1
γ D(t, T )(ln

(
−D(t,T )

γ

)
− 1). We

know the function g(t, λUt , λ
D
t ) must satisfy

{Ag}(t, λUt , λDt ) +Q(t, T )g(t, λUt , λ
D
t ) + J(t, g(t, λUt , λ

D
t )) = 0,

J(t, g(t, λUt , λ
D
t )) = g(t, λUt , λ

D
t )

(
f(t, t) + 1

γ
D(t, T ) ln g(t, λUt , λ

D
t ) +H(π∗t , g(t, λUt , λ

D
t ))

)
.
(4.12)

By Feynman-Kac formula, we can express g(t, λUt , λ
D
t ) as the following conditional expectation,

g(t, λUt , λ
D
t ) = E

[∫ T

t
e
∫ s
t Q(u,T )duJ(s, g(s, λUs , λ

D
s ))ds+ e

∫ T
t Q(s,T )ds|Ft

]
. (4.13)

Note that in (4.13), we have an implicit solution of g(t, λUt , λ
D
t ) and need a numerical scheme to

solve it. We follow the work of Delong and Klüppelberg (2008) and Aït-Sahalia and Hurd (2015),

and write the solution of g(t, λUt , λ
D
t ) as an iterative scheme {g(n)} for n = 0, 1, · · · , g(0) = 1,

and g(n+1) = E
[∫ T
t e

∫ s
t Q(u,T )duJ(s, g(n)(s, λUs , λ

D
s ))ds+ e

∫ T
t Q(s,T )ds|Ft

]
. We provide the proof of

the existence and uniqueness of the solution to (4.13) in the next section and we will discuss this

numerical scheme in more details later.

4.2 Convergence of Iterations

We introduce an operator L acting on function g in (4.13) with

(Lg)(t, λUt , λ
D
t ) = E

[∫ T

t
e
∫ s
t Q(u,T )duJ(s, g(s, λUs , λ

D
s ))ds+ e

∫ T
t Q(s,T )ds|Ft

]
. (4.14)

Then, the solution to (4.13) becomes the solution to the following fixed point equation

(Lg)(t, λUt , λ
D
t ) = g(t, λUt , λ

D
t ). (4.15)

Based on Banach Fixed Point Theorem, to prove the existence and uniqueness of the solution to

(4.13), we only need to prove that the operator L is a contraction mapping. Then, the iterative

method introduced in Section 4.3 will converge. According to (4.5), we know H(·, ·) depends on

the jump size distributions. Therefore, in this proof, we suppose that the jump sizes follow i.i.d.

exponential distributions and for other distributions, one can attempt to verify that the operator L
is also a contraction mapping and we do not attempt this here.

Lemma 4.2. The operator L is bounded with

(Lg)(t, λUt , λ
D
t ) < α1,

(Lg)(t, λUt , λ
D
t ) > α2,

(4.16)

where α1 and α2 are positive constant numbers.
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The proof of Lemma 4.2 is included Appendix E.

Now, we define the space of continuous functions ζ on [0, T ] × (0,∞) × (0,∞) by Ce([0, T ] ×
(0,∞) × (0,∞)) with α2 < ζ(t, λUt , λ

D
t ) < α1 and ζ(t, λUt , λ

D
t ) = eC̃(t,T )+B̃U (t,T )λUt +B̃D(t,T )λDt for

some bounded functions C̃(t, T ), B̃U (t, T ), and B̃D(t, T ). And we define a metric on Ce([0, T ] ×
(0,∞)× (0,∞)) by

d(f, h) = sup
(t,λUt ,λ

D
t )∈[0,T ]×(0,∞)×(0,∞)

∣∣∣e−α(T−t) (f(t, λUt , λ
D
t )− h(t, λUt , λ

D
t )
)∣∣∣ , (4.17)

for some positive α to be specified later.

Then, our objective is to prove d(Lf,Lh) ≤ φd(f, h) for any two functions f, h ∈ Ce([0, T ] ×
(0,∞)× (0,∞)) and for some φ ∈ [0, 1).

d(Lf,Lh) = sup
(t,λUt ,λ

D
t )

∣∣∣e−α(T−t) (Lf − Lh)
∣∣∣

= sup
(t,λUt ,λ

D
t )

∣∣∣∣e−α(T−t)E
[∫ T

t
e
∫ s
t Q(v,T )dv

(
J(s, f(s, λUs , λ

D
s ))− J(s, h(s, λUs , λ

D
s ))
)
ds|Ft

]∣∣∣∣
= sup

(t,λUt ,λ
D
t )

∣∣∣∣e−α(T−t))E
[∫ T

t
e
∫ s
t Q(v,T )dv

(
f(t, t) + 1

γ
D(t, T )(f ln f − h lnh)

+fH(π1
t , f)− hH(π2

t , h)
)
ds|Ft

]∣∣ ,
(4.18)

where we use π1
t and π2

t to denote the optimal controls corresponding to f and h, respectively.

Lemma 4.3. For any two functions f, h ∈ Ce([0, T ]× (0,∞)× (0,∞)), let π1
t and π2

t be the optimal

controls in (4.4) corresponding to f and h, respectively. We have

fH(π1
t , f)− hH(π2

t , h) = (f − h)Φ(x), (4.19)

where Φ(x) is a polynomial of degree three and |Φ(x)| is bounded.

The proof of Lemma 4.3 is included in Appendix F.

Theorem 4.4. The mapping L: [0, T ]×(0,∞)×(0,∞)→ Ce([0, T ]×(0,∞)×(0,∞)) is a contraction

mapping with respect to the metric (4.17) with α > α3 +Q̄(t, T ), where Q̄(t, T ) = maxv∈(t,T )Q(v, T )

and α3 is a positive constant number.

The proof of Theorem 4.4 is included in the Appendix G.

Now, according to Banach fixed point theorem, we prove the existence and uniqueness of the

solution to (4.13). Then, we can apply a convergent iterative method to derive the solution, which

is included in the next section.
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4.3 Numerical Scheme

We provide a numerical scheme to solve g(t, λUt , λ
D
t ) according to the contraction mapping

g(n+1) = G(g(n)),

I(g) =

∫ T

t
e
∫ s
t Q(u,T )duJ(s, g(s, λUs , λ

D
s ))ds+ e

∫ T
t Q(s,T )ds,

G(g) = E[I(g)|Ft],

(4.20)

with the initial guess g(0) = 1 for all t, λUt , and λDt .

1. Approximate the range of the three variables with grid points (ti, λ
Uj , λDk) with dimension

N ×MU ×MD and set g(0) = 1 for all the grid points.

2. Using each grid point as initial values, we follow Ogata’s modified thinning algorithm (Em-

brechts et al., 2011) to generate M groups of the jump intensities process λUtm , λ
D
tm at each

time node.

3. According to the closed-form solutions of A(t, T ) and D(t, T ), compute their values at the

mth time node for the lth simulation, and denote them as Al(tm, T ) and Dl(tm, T ). Then, we

can get Ql(tm, T ).

4. Given the value for λUtm , λ
U
tm , A

l(tm, T ), Dl(tm, T ), and g(n) at the mth time node of the

lth simulation and according to (4.4) and (4.5), we can use a simple numerical method to

get the corresponding optimal control π∗. Then, with that optimal control π∗, we can get

J lm(t, g(n)(t, λU , λDt )) at the mth time node of the lth simulation.

5. Compute the integration in (4.20) for each simulation l by

I l(g(n)) = t̃

N∑
m=i

[
et̃
∑i
n=1Q

l(tn,T )J lm(t, g(n)(t, λU , λDt ))
]

+ et̃
∑N
m=iQ

l(tmT ), (4.21)

where t̃ is the step size between each time node. Then, by the law of large numbers, the

expectation operator in (4.20) can be calculated as the mean of all M simulations,

g(n+1) = G(g(n)) =

∑M
l=1 I(g(n))

M
. (4.22)

6. Repeat Steps 2 to 5 to update g(n+1) for all the grid points until the convergence of g(n) for

each grid point.
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5 Numerical Results

In this section, we present numerical results to gain more insights of the optimal controls under

different parameters. First, we assume that the price jump-up sizes and price jump-down sizes both

follow exponential distributions and apply most of the parameter settings in Hainaut (2017), such

as those of Hawkes processes, bond and stock dynamics. Second, we assume that the long-term

mean level, the speed of reversion and the instantaneous volatility of the unknown income process

to be 0.06, 0.02, and 0.15. Third, to reflect the effect of the stochastic income, we set the initial

wealth level and income level to be 1 unit. Finally, we assume that the wage earner will retire in

10 years, with T = 10. And to simplify computation, we suppose that there are 4 factors that

dominate the hazard function and the mortality rate for τd, with pi = 0.25, for i = 1, 2, 3, 4 and

λm1 = 0.05, λm2 = 0.03, λm3 = 0.02, and λm4 = 0.015. Other parameters are reported in Table 5.1.

λ̄U λ̄D αU αD η11 η12 η21 η22 β λ

0.48 0.48 19.91 19.91 0.1 −0.1 −0.1 0.1 0.8 20

r µ σ θ k σ̃ ρ T γ

0.02 0.05 0.2 0.06 0.02 0.15 0 10 8

Table 5.1: Parameters and Values

In addition, following Section 4, we assume that the jump size satisfies independent exponential

distributions, which can produce general but not too complex results. Let u and d denote the

magnitudes of price jump-up and price jump-down sizes, with u > 0 and d < 0. Then, we have

P{JU ≤ u} = 1− e−λu,with u ∈ (0,∞),

P{|JD| ≤ |d|} = 1− eλd,with d ∈ (−∞, 0).
(5.1)

Then, the moment generating functions can be easily found, with E[eJ
U t] = λ

λ−t , for t < λ and

E[eJ
Ds] = λ

λ+s , for s > −λ. As E[JU ] = 1
λ and E[JD] = − 1

λ , we know the average jump-up and

jump-down size should be 5% and −5% of the stock price, respectively, if we set λ = 20.

5.1 Value Function

Under our assumptions and the parameters in Table 5.1, we present behaviors of the value function

in the following figures. In Figure 5.1, we show how the value function varies with different initial

jump-up and jump-down intensities. First, when the jump-down intensity is relatively large, the

value function decreases as the jump-up intensity λUt increases, for example, λDt = 4. This is

because when the probability of price jump-down is high, the wage earner can short the risky stock

to obtain higher returns. However, as the intensity of jump-up increases, the probability of price

jump-up increases. The wage earner hesitates to short the risky stock, which means he holds a large
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Figure 5.1: Value Function with Different Jump Intensities.

proportion of wealth in the risk-free bond. Similar results hold when λUt is relatively small. The

value function decreases as λDt decreases. Second, the wage earner obtains large value functions at

two extreme cases. The first is when λUt = 0 and λDt = 4, the wage earner can take advantage of

the short position of the risky stock. The second is when λUt = 4 and λDt = 0, the wage earner can

take advantage of the long position of the risky stock.

In Figure 5.2, we present how the value function varies according to different initial time t in

the cases of three different groups of jump intensities and the case without price jumps. First, we

notice that the value function deceases as t increases. The reason is that we fix the initial wealth

level and income level to be 1 unit. As t increases to the fixed retirement time T = 10, there is

less time for the income and wealth level to grow up. Second, the value function without price

jumps is very similar with the value function with very small jump-up and jump-down intensities,

shown by the green curve and the red curve. And the red curve is slightly higher than the green

curve. Third, the value function presented by the blue curve with a larger initial jump-up intensity

is always bigger than that presented by the red curve for any t ∈ [0, 10]. And value function of

the black curve with a larger initial jump-down intensity is also bigger than that of the red curve,

but the difference between the black curve and the red curve is smaller than that between the blue

curve and the red curve. In other words, when the probability of price jump-up is high, the wage

earner can allocate more wealth into the risky stock to obtain better expected utilities. When the

probability of price jump-down is high, the wage earner can also short the risky stock to get better

expected utilities. But the effect of price jump-up is much stronger .
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Figure 5.2: Value Function with Different Initial time.

5.2 Optimal Controls

Next, we present the behavior of the optimal control policies and examine the effect of different

jump intensities to those policies. It is well documented that for the exponential utility with risk

aversion parameter γ > 0, the wage earner can short any assets and consume at a negative rate to

obtain higher utilities.

In Figure 5.3, we plot the optimal allocation policy at time 0 with respect to different jump-

up and jump-down intensities. The optimal allocation amount in the risky stock increases as λDt
decreases or λUt increases. In other words, the higher probability that the next price jump-up

happens before the next price jump-down, the more wealth the wage earner will allocate into the

risky stock.

In Figure 5.4, we examine the effect of the time to the optimal allocation policy. We consider

three cases with different jump-up and jump-down intensities and one case without price jumps.

First, even small probabilities of price jumps motivate the wage earner to invest more wealth into the

risky stock, shown by the red curve and the green curve. However, this effect diminishes over time.

Second, when the jump-up intensity is relatively large, the wage earner shorts the risk-free bond to

long much more risky stock. But the amount allocated in the risky stock is reduced over time, shown

by the blue curve. Finally, when the jump-down intensity is relatively large, the wage earner shorts

the risky stock to long much more bonds. But the amount allocated in the risky stock increases

with time, shown by the black curve. Therefore, the jump intensities have significant effects on the
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Figure 5.3: Optimal Allocation Policy at Time 0 with Different Jump Intensities.

0 1 2 3 4 5 6 7 8 9 10
t

-3

-2

-1

0

1

2

3

(t
,

U
,

D
)

U=0.3, D=0.3
U=3, D=0.3
U=0.3, D=3

Without price jumps

Figure 5.4: Optimal Allocation Policy with Different Initial Time.
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optimal allocation policy and those effects diminish as time goes to the fixed retirement date.

In Figure 5.5, we fix the income level and the jump intensities to present the behavior of the

optimal consumption policy with respect to different time and wealth levels. When t is small, the

optimal consumption amount does not vary much with wealth levels. However, as time moves to

the retirement date, the differences become much more significant. First, when the wealth level is

small, the optimal consumption amount decreases as time goes to the fixed retirement date. This

is because initially the wage earner consumes more than his total wealth, which means he will use

his future labor income to finance current consumption. But this financing ability decreases as

time goes to the retirement date. Second, when the wealth level is large, the optimal consumption

amount increases as time goes to the fixed retirement date. Especially, when t = 10, the fixed

retirement date, the corresponding optimal consumption policy is equal to the wealth level, which

can be easily proved by plugging the terminal conditions into (4.4). This is because we set the same

utility function for the intermediate consumption and the heritage. Therefore, at the retirement

date, consuming all assets or leaving all assets as heritage will result in the same utility. We will

explore the case with different risk-aversion constants for the intermediate consumption and the

heritage in our future research.

Figure 5.5: Optimal Consumption Policy with Different Time and Wealth Level.

In Figure 5.6 and 5.7, we fix the wealth level and the income level to be 1 unit and analyze the

behaviors of the optimal consumption policy and the life insurance policy with respect to different

time and jump intensities. We notice that the differences between the policies under the three

groups of jump intensities are very small, which means that the jump intensities have very limited
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effect on the optimal consumption and life insurance policies.
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Figure 5.6: Optimal Consumption Policy with Different Initial Time.
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Figure 5.7: Optimal Life Insurance Policy with Different Initial Time.
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5.3 Impact of Correlation between Wealth and Income

In above sections, we assume zero correlation between the stochastic income process and the dynam-

ics of the risky stock. To be more realistic, we recalculate our model under another two situations,

where the income process and the stock process are positively or negatively correlated.
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t
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0
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0.8
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)

=0, U=0.3, D=0.3

=0.2, U=0.3, D=0.3

=-0.2, U=0.3, D=0.3

Figure 5.8: Optimal Allocation Policy with Different ρ.

In Figure 5.8, we present the optimal allocation policy under the different situations. We find

that the correlation coefficient has critical influences on the optimal allocation policy. First, when

the stochastic income process is independent with the wealth process, the optimal allocation policy

is relatively stable, reflected by the red curve. Second, in a negatively correlated market, even

though the probability of price jump-up and jump-down is small, the wage earner is willing to short

the risk-free bond to purchase about 1.2 units stock initially. And the optimal allocation amount

decreases a lot as time goes to the fixed retirement date, presented by the black curve. Finally,

in a positively correlated market, the wage earner initially short the risky stock. And the optimal

allocation amount increases a lot as time goes to the fixed retirement date, presented by the blue

curve. This is because the stochastic income and the gains from the financial market are the only

two sources for the wage earner to consume and purchase life insurance. In a positively correlated

market, it is possible to see the two sources to drop together. Then, the wage earner has to decrease

his total risks by reducing his stock holdings.

In Figure 5.9 and 5.10, we demonstrate the optimal consumption and life insurance purchase

policies under the three kinds of markets. The correlation coefficient has very limited effect on those
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Figure 5.9: Optimal Consumption Policy with Different ρ.
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Figure 5.10: Optimal Life Insurance Policy with Different ρ.
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two policies. In both the positively and negatively correlated market, the wage earner increases the

consumption amount a little bit. But the magnitude is larger in the negatively correlated market

than that in the positively correlated market. Similar results hold for the life insurance policy.

6 Concluding Remarks

This study extends the Hawkes jump model in Aït-Sahalia and Hurd (2015) to investigate the impact

of the contagion phenomenon and the stochastic income on the asset allocation, consumption, and

life insurance purchase policies. This framework presents several interesting findings. First, we

construct the target function of a wage earner subject to a random death time and a fixed retirement

date from both the life-time consumption and the heritage, where a general mortality distribution is

presented to describe the randomness of the death time. Closed-form solutions of optimal controls

are obtained in special cases. Second, the numerical results demonstrate that the jump intensities

have a significant impact on the asset allocation policy but small effect on the optimal consumption

and life insurance policies with given wealth and income levels. Finally, the correlation coefficient

between the stock dynamics and the income process has critical impacts on the optimal controls. In

a negatively correlated market, the wage earner allocates much more wealth into the risky stock and

consumes a little bit more. However, in a positively correlated market, the wage earner dramatically

decreases the risky holdings but also increases the consumption amount a little bit.

Recent financial market witnesses the value of investing in illiquid assets, such as real estate,

private company interests, and some types of arts. The liquidity of those assets is highly influenced

by event risks. Ang et al. (2014) introduced trading opportunities depending on the arrival of a

randomly occurring events to consider the liquidity risk of investing in those illiquid assets. In

our previous work, Jin et al. (2020) incorporated the liquidity risk with price jumps in a regime-

switching model. Instead of modeling the liquidity risk by an independent Poisson process, we will

apply the Hawkes process to describe the the price jumps and the trading opportunities in our future

work. Then, we will consider an optimal control problem under a mutual-exciting market, which

means the arrival of a trading opportunity and the occurrence of price jumps will influence each

other. The mutual exciting process will make the dynamic wealth process much more complicated.

However, adding the real estate into a family’s asset portfolio is more realistic and versatile than

the traditional two-asset model for a household’s wealth management.
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Appendix

A Proof of Lemma 3.1

Following the work of Pliska and Ye (2007), the target function (3.3) can be rewritten as

V (t,Xt, It, λ
U
t , λ

D
t ) = max

{C,π,P}
E
[( ∫ τd

t
e−β(s−t)U(Cs)ds+ e−β(τd−t)U(Xτd , Pτd)

)
F (T, t)

+
( ∫ T

t
e−β(s−t)U(Cs)ds+ e−β(T−t)U(XT )

)
F̄ (T, t)

]
= max
{C,π,P}

E
[ ∫ T

t
f(s, t)ds

[ ∫ s

t
e−β(u−t)U(Cu)du+ eβ(s−t)U(Xs, Ps)

]
+ F̄ (T, t)

[ ∫ T

t
e−β(s−t)U(Cs) + e−β(T−t)U(XT )

]]
.

(A.1)

Then, consider the first term of equation (A.1), we have∫ T

t
f(s, t)ds

[
e−β(s−t)U(Cs)ds+ e−β(s−t)U(Xs, Ps)

]
=∫ T

t

∫ s

t
f(s, t)e−β(u−t)U(Cu)duds

+

∫ T

t
f(s, t)e−β(s−t)U(Xs, Ps)ds.

(A.2)

After changing the order of integration, equation (A.2) becomes∫ T

t

∫ T

u
f(s, t)e−β(u−t)U(Cu)dsdu+

∫ T

t
f(s, t)e−β(s−t)U(Xs, Ps)ds

=

∫ T

t
(F̄ (u, t)− F̄ (T, t))e−β(u−t)U(Cu)du+

∫ T

t
f(s, t)e−β(s−t)U(Xs, Ps)ds.

(A.3)

We can directly put equation (A.3) into the target function (A.1), and replace u by s, we will

complete the proof of Lemma 3.1. �

B Proof of Lemma 3.2

According to the dynamics of Xt and It and apply Ito’s lemma to the target function, we have:

dV (t, ·) =Vtdt+ VXdXt + VIdIt + VλUdλ
U + VλDdλ

D + 0.5Vxx(dXt)
2

+ 0.5VII(dIt)
2 + VXIdXtdIt + [V U − V ]dNU

t + [V D − V ]dND
t ,

(B.1)

with V U being the value function after price jump-up of risky stocks St, and V D being the value

function after price jump-down.

1
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Then, for any positive u ∈ (t, T ), we can restate the target function (3.3) as

V (t, ·) = max
{C,π,P}

E
[ ∫ u

t
F̄ (s, t)e−β(s−t)U(Cs) + f(s, t)e−β(s−t)U(Xs, Ps)ds

+

∫ T

u
F̄ (s, t)e−β(s−t)U(Cs) + f(s, t)e−β(s−t)U(Xs, Ps)ds

+ F̄ (T, t)e−β(T−t)U(Xs)|Ft
]

= max
{C,π,P}

E
[ ∫ u

t
F̄ (s, t)e−β(s−t)U(Cs) + f(s, t)e−β(s−t)U(Xs, Ps)ds

+

∫ T

u
F̄ (s, u)F̄ (u, t)e−β(s−u)−β(u−t)U(Cs)

+ f(s, u)F̄ (u, t)e−β(s−u)−β(u−t)U(Xs, Ps)ds

+ F̄ (T, u)F̄ (u, t)e−β(T−u)−β(u−t)U(Xs)|Ft
]
,

(B.2)

then, combine the common factor, we get

V (t, ·) = max
{C,π,P}

E
[ ∫ u

t
F̄ (s, t)e−β(s−t)U(Cs) + f(s, t)e−β(s−t)U(Xs, Ps)ds

+ F̄ (u, t)e−β(u−t)[ ∫ T

u
F̄ (s, u)e−β(s−u)U(Cs) + f(s, u)e−β(s−u)U(Xs, Ps)ds

+ F̄ (T, u)e−β(T−u)U(Xs)
]
|Ft
]
.

(B.3)

Finally, compare with the target function (3.3), we easily complete the proof of Lemma 3.2. �

C Derivation of the HJB equation

For any positive time t and t+ h, with h > 0, by Lemma 3.2, we have

V (t, ·) = max
{C,π,P}

E
[
e−βhF̄ (t+ h, t)V (t+ h, ·)

+

∫ t+h

t
F̄ (s, t)e−β(s−t)U(Cs) + f(s, t)e−β(s−t)U(Xs, Ps)ds|Ft

]
.

(C.1)

Note that for h small enough,

e−βhF̄ (t+ h, t) =
e−βh

∑n
i=1 pi exp

(
−
∫ t+h

0 λmi (u)du
)

∑n
i=1 pi exp

(
−
∫ t

0 λ
m
i (u)du

)
=

∑n
i=1 pi exp

(
−
∫ t

0 λ
m
i (u)du

)
exp

(
−
∫ t+h
t (λmi (u) + β)du

)
∑n

i=1 pi exp
(
−
∫ t

0 λ
m
i (u)du

)
=

∑n
i=1 pi exp

(
−
∫ t

0 λ
m
i (u)du

)
(1− (λmi (t) + β)h+ o(h2))∑n

i=1 pi exp
(
−
∫ t

0 λ
m
i (u)du

)
= 1− (f(t, t) + β)h+ 0(h2).

(C.2)
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We have

V (t, ·) = max
{C,π,P}

E
[
(1− (f(t, t) + β)h+ o(h2))V (t+ h, ·)

+

∫ t+h

t
F̄ (s, t)e−β(s−t)U(Cs) + f(s, t)e−β(s−t)U(Xs, Zs, Ds)ds

]
= max
{C,π,P}

E
[
(1− (f(t, t) + β)h+ o(h2))[V (t, ·) +

∫ t+h

t
dV ]

+

∫ t+h

t
(1− β(s− t) + o(s− t)2)(F̄ (s, t)U(Cs) + f(s, t)U(Xs, Ps)ds|Ft

]
.

(C.3)

Now, replace dV by (B.1) and use dynamics of dXt and dIt, the target function becomes:

V (t, ·) = max
{C,π,P}

E
[
(1− (f(t, t) + β)h+ o(h2))V (t, ·)

+ (1− (f(t, t) + β)h+ o(h2))
(∫ t+h

t
[Vt + (rXt + πt(µ

s − r) + It − Ct − Pt)VX

+ (θ − kIt)VI + αU (λ̄U − λUt )VλU + αD(λ̄D − λDt )VλD

+ 0.5π2
t σ

2VXX + 0.5σ̃2VII + ρπtσσ̃VXI ]dt

+

∫ t+h

t
[πtσVX ]dWS

t +

∫ t+h

t
[σ̃VI ]dW

I
t

+

∫ t+h

t
[V U − V ]dNU

t +

∫ t+h

t
[V D − V ]dND

t

)
+

∫ t+h

t
(1− β(s− t) + o(s− t)2)(F̄ (s, t)U(Cs) + f(s, t)U(Xs, Ps)ds|Ft

]
.

(C.4)

Then, use mean value theorem to simplify the integration in (C.4), and multiply 1
h on both sides of

the simplified equation and take limit as h→ 0, we can get the HJB equation in (3.5). �

D Some examples of Remark 4.1

In this section, we follow the structure in (3.7) and (3.8). First, we can simplify the partial derivatives

as

Vt = V

[
dE

dt
+
dBU

dt
λUt +

dBD

dt
λDt +

dA

dt
It +

dD

dt
Xt

]
,

VX = DV, VXX = D2V, VI = AV, VII = A2V,

VXI = ADV, VλU = BUV, VλD = BDV.

(D.1)
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Substituting (D.1) into the HJB equation (3.5), we have

0 = max
{πt,C,P}

[
−(f(t, t) + β)V +

[
dE

dt
+
dBU

dt
λUt +

dBD

dt
λDt +

dA

dt
It +

dD

dt
Xt

]
V

+[rXt + πt(µ− r) + It − Ct − Pt]DV + 0.5π2
t σ

2D2V + (θ − kIt)AV

+0.5σ̃2A2V + ρσσ̃πtADV + αU (λ̄U − λUt )BUV + αD(λ̄D − λDt )BDV

+λUt E[eB
Uη11+BDη21+πtDJUt − 1]V + λDt E[eB

Uη12+BDη22+πtDJDt − 1]V

+U(Ct) + f(t, t)U(Xt, Pt)] .

(D.2)

By the first condition, we can rewrite (4.1) as

C∗t = −1

γ
ln(DV ),

P ∗t = −f(t, t)

(
ln(DV )

γ
+Xt

)
,

π∗t = arg min
π
H(πt, λ

U
t , λ

D
t ),

(D.3)

where

H(πt, λ
U
t , λ

D
t ) =

{
πt(µ− r)D + 0.5π2

t σ
2D2 + ρσσ̃πtAD

+λUt E[eB
Uη11+BDη21+πtDJUt − 1] + λDt E[eB

Uη12+BDη22+πtDJDt − 1]
}
.

(D.4)

Substituting (D.3) into the HJB equation (D.2) and applying the closed-form solutions of A(t, T )

and D(t, T ) to reduce the terms of It and Xt, we can simplify the HJB equation (D.2) as

0 =− (f(t, t) + β) +
dE

dt
+
dBU

dt
λUt +

dBD

dt
λDt + θA+ 0.5σ̃2A2

+ αU (λ̄U − λUt )BU + αD(λ̄D − λDt )BD

+H(π∗t , λ
U
t , λ

D
t ) +

1 + f(t, t)

γ
(ln

(
−D
γ

)
+A+BUλUt +BDλDt − 1).

(D.5)

Note that, to get the closed form solution of the target function V (·), we need to solve E(t, T ),

BU (t, T ), and BD(t, T ) explicitly, which depends on whether we can get the explicit solution of the

optimal control π∗t .

Now, we investigate the behavior of πt further. Applying the first condition to H(π, λUt , λ
D
t ),

we obtain

0 =(µ− r) + ρσσ̃A+ πtσ
2D + λUt e

BUη11+BDη21E[JUt e
DJUt πt ] + λDt e

BUη12+BDη22E[JDt e
DJDt πt ].

(D.6)

Therefore, the two terms E[JUt e
DπtJUt ] and E[JDt e

DπtJDt ] are important and they are closely related

to the moment generating function of JUt and JDt . Therefore, if we can solve (D.6) to obtain the

closed-form solution of π∗t , we can substitute π∗t into (D.5) and match the coefficients of λUt and λDt
to get a system of ODEs, which will provide a closed-form solution of the target function. In this

section, we consider some special cases where closed-form solutions exist.

4
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D.1 Case One: No Price Jumps

The simplest case is that there are no price jumps, i.e. JUt = 0 and JDt = 0 for any t. Then by

(D.6), we know π∗ only depends on t with

π∗t =− µ− r + ρσσ̃A(t, T )

σ2D(t, T )
. (D.7)

Plugging π∗t into (D.4), we have

H(π∗t , λ
U
t , λ

D
t ) =− (µ− r + ρσσ̃A(t, T ))2

2σ2

+ λUt (eB
U (t,T )η11+BD(t,T )η21 − 1) + λDt (eB

U (t,T )η12+BD(t,T )η22 − 1).

(D.8)

Then, after combining (D.5) and (D.8) and matching the coefficients of λUt and λDt , we can derive

the following system of ODEs,

dBU (t, T )

dt
=

(
αU − 1 + f(t, t)

γ

)
BU (t, T )− (eB

U (t,T )η11+BD(t,T )η21 − 1),

dBD(t, T )

dt
=

(
αD − 1 + f(t, t)

γ

)
BD(t, T )− (eB

U (t,T )η12+BD(t,T )η22 − 1),

dE(t, T )

dt
=f(t, t) + β − θA(t, T )− 0.5σ̃2A(t, T )2

− αU λ̄UBU (t, T )− αDλ̄DBD(t, T ) +
(µ− r + ρσσ̃A(t, T ))2

2σ2

− 1 + f(t, t)

γ

(
ln

(
−D(t, T )

γ

)
+ E(t, T )− 1

)
,

(D.9)

with the terminal conditions E(T, T ) = BU (T, T ) = BD(T, T ) = 0. A(t, T ) and D(t, T ) are given

by (4.7) and (4.9).

Note that it is easy to check that the system of ODEs (D.9) admits the following closed-form

solution,
BU (t, T ) = BD(t, T ) = 0,

E(t, T ) = −
∫ T

t
G(s, T )e

∫ s
t

1+f(u,u)
γ

du
ds,

(D.10)

where

G(s, T ) =f(s, s) + β − θA(s, T )− 0.5σ̃2A(s, T )2 − αU λ̄UBU (t, T )− αDλ̄DBD(t, T )

+
(µ− r + ρσσ̃A(s, T ))2

2σ2
− 1 + f(s, s)

γ

(
ln

(
−D(s, T )

γ

)
− 1

)
.

(D.11)

Therefore, we can rewrite (D.3) to obtain the closed-form solutions for the other two optimal

controls under the assumption with no price jumps.

C∗(t, It, Xt, λ
U
t , λ

D
t ) = −1

γ
∗
(

ln

(
−D(t, T )

γ

)
+ E(t, T ) +A(t, T )It +D(t, T )Xt

)
,

P ∗(t, It, Xt, λ
U
t , λ

D
t ) = −f(t, t)

(
1

γ
∗
(

ln

(
−D(t, T )

γ

)
+ E(t, T ) +A(t, T )It

)
+

(
1 +

D(t, T )

γ

)
Xt

)
,

(D.12)

5

Electronic copy available at: https://ssrn.com/abstract=3588294



where E(t, T ), A(t, T ), and D(t, T ) are given by (D.10), (4.6), and (4.8). Since the jump sizes are all

equal to 0 in this simple case, it is meaningful to observe that the jump intensities λUt and λDt have

no effect on the optimal control policies. Hence, we obtain an analytic solution which generalizes

the work of Zeng et at. (2015), where the mortality rate follows a special exponential distribution.

In addition, the closed-form formula for the undetermined function E(t, T ) in (D.10) holds for

general situations. We only need to determine the specific form of the optimal allocation policy with

given jump-size distributions, then form the system of ODEs to obtain the formulas for BU (t, T )

and BD(t, T ). Following this scheme, we consider another two cases in the following sections.

D.2 Case Two: Exponential Jump-downs

Now, we consider another special jump distribution. Instead of assuming no price jumps, we suppose

that the jump-down size satisfies an i.i.d. exponential distributions and there are no price jump-ups

in the market, with

P{|JD| ≤ |d|} = 1− e−λ|d| = 1− eλd, (D.13)

where d ∈ (−∞, 0) and λ is the parameter of the exponential distribution. Then, the term

E[JDt e
DπtJDt ] becomes − λ

(λ+Dπt)2
with λ+Dπt > 0. Therefore, (D.6) can be written as

0 = (µ− r) + ρσσ̃A+ πtσ
2D − λDt eB

Uη12+BDη22 λ

(λ+Dπt)2

= σ2D3π3
t + (2λσ2 + µ− r + ρσσ̃A)D2π2

t

+ (2λ(µ− r + ρσσ̃A) + λ2σ2)Dπt + λ2(µ− r + ρσσ̃A)− λλDt eB
Uη12+BDη22 .

(D.14)

It is direct to check that the closed-form solution of the optimal allocation policy depends on t and

λDt and follows

π∗(t, λDt ) = W (t, λDt )− 2λσ2 + µ− r + ρσσ̃A(t, T )

3σ2D(t, T )
+

(λσ2 + µ− r + ρσσ̃A(t, T )

9σ4D(t, T )2W (t, λD)
, (D.15)

where

W (t, λDt ) =

[(
∆(t, λDt )2 − (λσ2 + r − µ− ρσσ̃A(t, T ))6

729σ12D(t, T )6

) 1
2

−∆(t, λUt )

] 1
3

,

∆(t, λDt ) =
λ2(r − µ− ρσσ̃A(t, T )) + λλDt e

BU (t,T )η12+BD(t,T )η22)

2σ2D(t, T )3

− (2λσ2 + µ− r + ρσσ̃A(t, T ))3

27σ6D(t, T )3

+
λ(2λσ2 + µ− r + ρσσ̃A(t, T ))(λσ2 + 2µ− 2r + 2ρσσ̃A(t, T ))

6σ4D(t, T )3
.

(D.16)

Even though we obtain the analytic solution for π∗(t, λDt ), we cannot derive a concise system of

ODEs , which means it is too complicated to derive the closed-form solutions of BU (t, T ), BD(t, T ),

and E(t, T ) as in section D.1.

6
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D.3 Case Three: Gamma Jump-ups

In this section, following the work of Daly and Porporato (2010), we consider another special case

where the jump-up size follows i.i.d. Gamma distributions Γ(K,Θ) and there are no jump-downs.

Then, the average jump-up amount is KΘ of the stock price. We focus on Gamma distributions

with the shape parameter K = 2, because we only have explicit formulas for the general roots

of polynomials up to degree four. Therefore, the interesting term E[JUt e
DπtJUt ] becomes 2Θ(1 −

ΘDπt)
−3. Then,(D.6) can be rewritten as

0 = (µ− r) + ρσσ̃A+ πtσ
2D + λUt e

BUη11+BDη21 2Θ

(1−ΘDπt)3

= −σ2Θ3D4π4
t + (3σ2 − (µ− r)Θ + ρσσ̃ΘA)Θ2D3π3

t − (3σ2 − 3Θ((µ− r) + ρσσ̃A))ΘD2π2
t

+ (σ2 − 3Θ((µ− r) + ρσσ̃A))Dπt + (µ− r) + ρσσ̃A+ 2ΘλUt e
BUη11+BDη21 .

(D.17)

As (D.17) is a quartic function of πt, we can convert it to a depressed quartic function and find the

Ferrari’s solutions of this function. Since we consider a wage earner with exponential utilities, it is

possible to obtain solutions indicating short-selling. After comparing the four roots of (D.17), we

obtain the optimal allocation policy as follows

π∗(t, λUt ) = −a2

a1
+ S + 0.5

√
−4S2 − 2p− q

S
, (D.18)

where 

a1 = −σ2Θ3D4,

a2 = (3σ2 − (µ− r)Θ + ρσσ̃ΘA)Θ2D3,

a3 = (3σ2 − 3Θ((µ− r) + ρσσ̃A))ΘD2,

a4 = (σ2 − 3Θ((µ− r) + ρσσ̃A))D,

a5 = (µ− r) + ρσσ̃A+ 2ΘλUt e
BUη11+BDη21 ,

p =
8a1a3 − 3a2

2

8a2
1

,

q =
a3

2 − 4a1a2a3 + 8a2
1a4

8a3
1

,

S = 0.5

√
−2p

3
+

1

3a1

(
m+

∆0

m

)
,

m =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
,

∆0 = a2
3 − 3a2a4 + 12a1a5,

∆1 = 2a3
3 − 9a2a3a4 + 27a2

2a5 + 27a1a
2
4 − 72a1a3a5.

(D.19)

Similarly with the case in Section D.2, the explicit formula of π∗(t, λUt ) in (D.18) is too compli-

cated to derive the closed-form solutions of the target function and the other two optimal controls.
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E Proof of Lemma 4.2

First, the value function in a market without price jumps should be smaller than the value func-

tion with price jump-ups and jump-downs. With price jumps, investors can obtain higher util-

ities by short-selling. Therefore, if we denote the value function obtained in Section D.1 by

V1(t,Xt, It, λ
U
t , λ

D
T ), then the value function with price jumps V (t,Xt, It, λ

U
t , λ

D) > V1(t,Xt, It, λ
U
t , λ

D
T ).

By (3.7), we know g(t, λUt , λ
D
t ) < α1, with α1 =

−γV1(t,Xt,It,λUt ,λ
D
T )

eA(t,T )It+D(t,T )Xt
. And α1 > 0 can be easily

checked. Since, g(t, λUt , λ
D
t ) is the fixed-point of the operator, we know (Lg)(t, λUt , λ

D
t ) < α1.

Second, the value function with price jump-ups and jump-downs should be smaller than the

value function with only price jumps-ups. Therefore, if we denote the value function obtained in

Section D.2 by V2(t,Xt, It, λ
U
t , λ

D
T ), we have V (t,Xt, It, λ

U
t , λ

D) < V2(t,Xt, It, λ
U
t , λ

D
T ). By similar

steps, we know the (Lg)(t, λUt , λ
D
t ) > α2, with α2 =

−γV2(t,Xt,It,λUt ,λ
D
T )

eA(t,T )It+D(t,T )Xt
. We can also easily check the

positivity of α2. �

F Proof of Lemma 4.3

Applying the first condition to (4.5), we know that x1 and x2 satisfy the following equations

(µ− r) + ρσσ̃A+ σ2x1 + λUt
fU

f

λ

(λ− x1)2
− λDt

fD

f

λ

(λ+ x1)2
= 0, (F.1)

(µ− r) + ρσσ̃A+ σ2x2 + λUt
hU

h

λ

(λ− x2)2
− λDt

hD

h

λ

(λ+ x2)2
= 0, (F.2)

where x1 = π1
tD, x2 = π2

tD, and there exists ε1 ∈ (0, λ) and ε2 ∈ (0, λ) s.t. x1 ∈ (−ε1, ε1) and

x2 ∈ (−ε2, ε2).

Therefore, we have

((µ− r) + ρσσ̃A)(f − h) + σ2(fx1 − hx2)

+ λUt

(
fU

λ

(λ− x1)2
− hU λ

(λ− x2)2

)
− λDt

(
fD

λ

(λ+ x1)2
− hD λ

(λ+ x2)2

)
= 0.

(F.3)

fH(π1
t , f)− hH(π2

t , h)

= (µ− r + ρσσ̃A)(fx1 − hx2) + 0.5σ2(fx2
1 − hx2

2)

+λUt

(
fU

x1

λ− x1
− hU x2

λ− x2

)
− λDt

(
fD

x1

λ+ x1
− hD x2

λ+ x2

)
= (µ− r + ρσσ̃A)(fx1 − hx2) + 0.5σ2(fx1 − hx2)(x1 + x2)− 0.5σ2(f − h)x1x2

+λUt

(
fU

x1

λ− x1
− hU x2

λ− x2

)
− λDt

(
fD

x1

λ+ x1
− hD x2

λ+ x2

)
.

(F.4)
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Now, combine (F.3) and (F.4), we have

fH(π1
t , f)− hH(π2

t , g)

= ((µ− r + ρσσ̃A)∆− 0.5σ2x1x2)(f − h)

+ λUt ∆

(
fU

λ

(λ− x1)2
− hU λ

(λ− x2)2

)
− λDt ∆

(
fD

λ

(λ+ x1)2
− hD λ

(λ+ x2)2

)
+ λUt

(
fU

x1

λ− x1
− hU x2

λ− x2

)
− λDt

(
fD

x1

λ+ x1
− hD x2

λ+ x2

)
,

(F.5)

where ∆ =
−(µ−r+ρσσ̃A+0.5σ2(x1+x2))

σ2 .

Then, combine (F.1), (F.2), and (F.5), we can further obtain

fH(π1
t , f)− hH(π2

t , h) = ((µ− r + ρσσ̃A)∆− 0.5σ2x1x2)(f − h)

+ ∆(−(µ− r + ρσσ̃A+ σ2x1)f + (µ− r + ρσσ̃A+ σ2x2)h)

+

(
λUt f

U x1

λ− x1
− λDt fD

x1

λ+ x1

)
−
(
λUt h

U x2

λ− x2
− λDt hD

x2

λ+ x2

)
.

(F.6)

Then, we can multiple λ− x1 on both sides of (F.1) and multiple λ+ x2 on both sides of (F.1) to

obtain

(µ− r) + ρσσ̃A+ σ2x1

λ
(λ− x1)f + λUt f

U 1

λ− x1
− λDt fD

1

λ+ x1
+ 2λDfD

x1

(λ+ x1)2
= 0,

(µ− r) + ρσσ̃A+ σ2x1

λ
(λ+ x1)f + λUt f

U 1

λ− x1
− λDt fD

1

λ+ x1
+ 2λUfU

x1

(λ− x1)2
= 0.

(F.7)

Therefore, we have

λUt f
U x1

λ− x1
− λDt fD

x1

λ+ x1

= −(µ− r + ρσσ̃A+ σ2x1)x1f −
(
λUfU

x2
1

(λ− x1)2
+ λDfD

x2
1

(λ+ x1)2

)
.

(F.8)

Similarly,

λUt h
U x2

λ− x2
− λDt hD

x2

λ+ x2

= −(µ− r + ρσσ̃A+ σ2x2)x2h−
(
λUhU

x2
2

(λ− x2)2
+ λDhD

x2
2

(λ+ x2)2

)
.

(F.9)

Then, we can simplify (F.6) by (F.8) and (F.9) as

fH(π1
t , f)− hH(π2

t , h) = 0.5σ2x2
2h+ λUhU

x2
2

(λ− x2)2
+ λDhD

x2
2

(λ+ x2)2

−
(

0.5σ2x2
1f + λUfU

x2
1

(λ− x1)2
+ λDfD

x2
1

(λ+ x1)2

)
.

(F.10)

Now, by the Mean Value Theorem, we can rewrite (F.10) as

fH(π1
t , f)− hH(π2

t , h) = (f − h)
dζH (π(ζ), ζ)

dζ
|ζ=ξ1 , (F.11)
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for some function ξ1 between f and h. And

ζH (π(ζ), ζ) = −
(

0.5σ2x2ζ + λUζU
x2

(λ− x)2
+ λDζD

x2

(λ+ x)2

)
, (F.12)

where x is actually a function of ζ with

(µ− r) + ρσσ̃A+ σ2x+ λUt
ζU

ζ

λ

(λ− x)2
− λDt

ζD

ζ

λ

(λ+ x)2
= 0. (F.13)

We apply Taylor series to estimate (F.13)

(µ− r + ρσσ̃A)ζ + σ2xζ + λUt ζ
U

(
1

λ
+

2

λ2
x+O(x2)

)
− λDt ζD

(
1

λ
− 2

λ2
x+O(x2)

)
= 0. (F.14)

Since ζ(t, λUt , λ
D
t ) = eC̃(t,T )+B̃U (t,T )λUt +B̃D(t,T )λDt , we know ζU = eB̃

U (t,T )η11+B̃D(t,T )η21ζ and ζD =

eB̃
U (t,T )η12+B̃D(t,T )η22ζ. Then

(µ− r + ρσσ̃A) + σ2x+ σ2ζ
dx

dζ
+ λUt e

B̃U (t,T )η11+B̃D(t,T )η21

(
1

λ
+

2

λ2
x

)
+ λUt ζ

U 2

λ2

dx

dζ
− λDt eB̃

U (t,T )η12+B̃D(t,T )η22

(
1

λ
− 2

λ2
x

)
+ λDt ζ

D 2

λ2

dx

dζ
= 0.

(F.15)

Therefore,

ζ
dx

dζ
=

K − λDt ζDeB̃
U (t,T )η12+B̃D(t,T )η22

(
1
λ −

2
λ2
x
)

σ2 +
2λUt
λ2
eB̃U (t,T )η11+B̃D(t,T )η21 +

2λDt
λ2
eB̃U (t,T )η12+B̃D(t,T )η22

, (F.16)

where

K = µ− r + ρσσ̃A+ σ2x+ λUt e
B̃U (t,T )η11+B̃D(t,T )η21

(
1

λ
+

2

λ2
x

)
.

Then, according to (F.12), we can derive the derivative of ζH (π(ζ), ζ),

dζH (π(ζ), ζ)

dζ
= −

[
x2 + 2xζ

dx

dζ

] [
0.5σ2 + λUt e

B̃U (t,T )η11+B̃D(t,T )η21

(
1

λ2
+

2

λ3
x

)
+λDt e

B̃U (t,T )η12+B̃D(t,T )η22

(
1

λ2
− 2

λ3
x

)]
− x2ζ

[
λUt e

B̃U (t,T )η11+B̃D(t,T )η21 − λDt eB̃
U (t,T )η12+B̃D(t,T )η22

] 2

λ3

dx

dζ
.

(F.17)

Finally, we can obtain

fH(π1
t , f)− hH(π2

t , h) = (f − h)Φ(x), (F.18)

where Φ(x) is a polynomial of degree three.

Φ(x)

= −x2

[
0.5σ2 + λUt e

B̃U (t,T )η11+B̃D(t,T )η21

(
1

λ2
+

2x

λ3

)
+ λDt e

B̃U (t,T )η12+B̃D(t,T )η22

(
1

λ2
− 2x

λ3

)]
−
[
σ2x+ λUt e

B̃U (t,T )η11+B̃D(t,T )η21

(
2x

λ2
+

6x2

λ3

)
+ λDt e

B̃U (t,T )η12+B̃D(t,T )η22

(
2x

λ2
− 2x2

λ3

)]
ζ
dx

dζ
,

(F.19)
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where ζ dxdζ is given by (F.16). When ζ = ξ1, we know x should be between x1 and x2. Therefore

Φ(x) is bounded. �

G Proof of Theorem 4.4

Similarly, we know f ln f − h lnh = (f − h)(ln ξ2 + 1) for some function ξ2 between f and h.

The following inequality holds for all (t, λUt , λ
D
t ) ∈ Ce([0, T ] × (0,∞) × (0,∞)). Therefore, it

also holds for d(Lf,Lh).

d(Lf,Lh)

= e−α(T−t)
∣∣∣∣Et [∫ T

t
e
∫ s
t Q(v,T )dv

(
f(t, t) + 1

γ
D(t, T )(f ln f − h lnh) + fH(π1

t , f)− hH(π2
t , h)

)
ds

]∣∣∣∣
= e−α(T−t)

∣∣∣∣Et [∫ T

t
e
∫ s
t Q(v,T )dv

(
f(t, t) + 1

γ
D(t, T )(ln ξ2 + 1) + Φ(x)

)
(f − h)ds

]∣∣∣∣
≤ e−α(T−t)d(f, h)

∣∣∣∣Et [∫ T

t
e
∫ s
t Q(v,T )dv+α(T−s)

(
f(t, t) + 1

γ
D(t, T )(ln ξ2 + 1) + Φ(x)

)
ds

]∣∣∣∣
≤ e−α(T−t)d(f, h)Et

[∫ T

t
e
∫ s
t Q(v,T )dv+α(T−s)

∣∣∣∣(f(t, t) + 1

γ
D(t, T )(ln ξ2 + 1) + Φ(x)

)∣∣∣∣ ds]
= d(f, h)Et

[∫ T

t
e
∫ s
t Q(v,T )dv−α(s−t)

∣∣∣∣(f(t, t) + 1

γ
D(t, T )(ln ξ2 + 1) + Φ(x)

)∣∣∣∣ ds]
≤ d(f, h)Et

[∫ T

t
e
∫ s
t Q(v,T )dv−α(s−t)

(∣∣∣∣f(t, t) + 1

γ
D(t, T )(ln ξ2 + 1)

∣∣∣∣+ |Φ(x)|
)
ds

]

≤

∣∣∣f(t,t)+1
γ D(t, T )(ln ξ2 + 1)

∣∣∣+ |Φ(x)|

α− Q̄(t, T )
d(f, h),

(G.1)

where Et is the expectation conditioned on Ft. Then according to Lemma 4.2 and Lemma 4.3,

we know α2 < ξ2 < α1 and |Φ(x)| is bounded. Therefore we have
∣∣∣f(t,t)+1

γ D(t, T )(lnξ2 + 1)
∣∣∣ +

|Φ(x)| < α3, for some positive α3. Therefore, if α > α3 + Q̄(t, T ), we find the ideal φ ∈ [0, 1) s.t.

d(Lf,Lh) ≤ φd(f, h). �
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