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a b s t r a c t 

The selection of input and output variables is a key step in evaluating the relative efficiency of decision- 

making units (DMUs) in data envelopment analysis (DEA). In this paper, we present a methodology based 

on Monte Carlo simulations and bootstrapping for calculating the critical values of relevance measures 

in variable selection methods in DEA. Additionally, we define a set of metrics to study the methods’ 

performance when using such critical values. We conducted an extensive simulation study, applying the 

proposed methodology to two variable selection methods in 28 single-output model specifications (i.e., 

different number of inputs and DMUs in the DEA model) under multiple scenarios, varying factors related 

to the functional form of the production function, the probability of an input being relevant in the model, 

the probability distribution of the inputs, and the theoretical efficiencies of the DMUs. The simulation 

study shows that (i) our proposed methodology yields consistent results for the two methods studied, in 

terms of the generated critical values and the performance metrics, and (ii) for most model specifications, 

the critical values can be estimated with a linear model with a high adjusted R 2 , using factors related to 

the input probability distribution and the probability of an input being relevant as independent variables. 

Furthermore, we describe and compare the performance of the two methods studied, provide guidelines 

for using our methodology and the results presented in this paper, and propose suggestions for future 

research. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Data envelopment analysis (DEA) is a mathematical

rogramming-based methodology developed by Charnes, Cooper,

nd Rhodes (1978) to measure the relative efficiency of a set of n

omogeneous decision-making units (DMUs) that use the same set

f m inputs to produce the same set of s outputs. DEA calculates

he efficiency of each DMU based on two sets of weights, one for

he inputs and another for the outputs, chosen in such a way that

ach DMU achieves the maximum feasible efficiency. 

The initial number of variables included in a DEA model is fre-

uently very large ( Wagner & Shimshak, 2007 ), and DEA formu-

ation does not provide guidelines for the selection of inputs and

utputs. Sexton, Silkman, and Hogan (1986) indicated that care
∗ Corresponding author. 
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ust be taken with variable selection when conducting a DEA

nalysis, and presented two related principles: (i) the efficiency

cores cannot decrease if we add a variable to the model, and

ii) variable selection can affect the shape and location of the ef-

cient frontier, altering efficiency scores. Moreover, Dyson et al.

2001) noted that DEA loses its discriminatory power as the num-

er of variables included in the model increases, i.e., many DMUs

f the sample with an efficiency score equal to one and higher

verage efficiency of the DMUs. Variable selection methods are,

herefore, valuable tools for DEA as they help to determine which

ariables should be included in a DEA model. Furthermore, since

EA results are affected by the number of inputs and outputs, Liu,

u, and Lu (2016) identified variable selection as a coherent re-

earch subarea in the DEA literature, reporting 38 papers dedicated

o this subject. 

Many variable selection methods proposed in the literature are

ased on relevance measures defined by the researchers. These rel-

vance measures can be calculated for each variable in the model

o estimate their importance. Alternatively, some methods use rel-

vance measures defined from the efficiencies estimated by DEA

https://doi.org/10.1016/j.ejor.2020.08.021
http://www.ScienceDirect.com
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as test statistics in a hypothesis test to determine whether a vari-

able is relevant or not. However, Sirvent, Ruiz, Borra ́s, and Pastor

(2005) noted that problems could arise in this type of hypothe-

sis testing since the test statistics’ null distribution cannot be de-

termined analytically; hence, they suggested the use of simulation

studies to analyze their performance. Some methods determine a

variable to be relevant in the model if its relevance measure is

greater than some threshold, but there are no guidelines for choos-

ing appropriate thresholds based on the characteristics of the data

( Nataraja & Johnson, 2011 ). 

To address this issue, we present in this paper a methodology

based on Monte Carlo simulations and bootstrapping for calculat-

ing the critical values of relevance measures to test the relevance

of variables in single-output DEA models. Our methodology deter-

mines the critical values using simulated data and a hypothesis

test based on a nominal size of the following type I error: Eliminat-

ing a relevant variable from the model. These critical values thus

have a statistical basis and can be used as thresholds in variable

selection methods based on a single relevance measure without

relying on assumptions to apply certain statistical tests. The core

of the proposed methodology is a data generation process that dif-

fers from those in the current literature ( Adler & Yazhemsky, 2010;

Jitthavech, 2016; Nataraja & Johnson, 2011; Ruggiero, 2005; Sirvent

et al., 2005 ) since (i) it handles cases where the DEA model has

multiple irrelevant inputs, as suggested by Jenkins and Anderson

(2003) , while the latter only considered the case with one irrele-

vant input in the model; (ii) it weights multiple production func-

tions with different contributions of the inputs as their exact con-

tribution is generally unknown in real-world applications, whereas

the latter included only one production function with fixed contri-

butions; and (iii) we can adjust the values of the parameters used

in its formulation according to the characteristics of each DEA ap-

plication. 

Furthermore, we implemented and evaluated our proposed

methodology in two existing variable selection methods through

an extensive simulation study covering multiple DEA model speci-

fications in several different scenarios. Most previous simulations

studies in the literature have analyzed variable selection meth-

ods in DEA models with up to five inputs and 50 or more DMUs.

However, Toloo, Barat, and Masoumzadeh (2015) and Toloo and

Tichý (2015) reviewed multiple DEA applications where 75% of

such applications were associated with 50 or fewer DMUs. On

this basis, we increased the number of inputs to eight and lim-

ited the number of DMUs to a maximum of 50 in our simula-

tion study, to calculate critical values for the two chosen variable

selection methods using relatively common DEA model specifica-

tions. We defined the scenarios by considering multiple factors,

including (i) the form of the production function, suggested by

Nataraja and Johnson (2011) and Jitthavech (2016) ; (ii) the dis-

tribution of the inputs, also suggested by Nataraja and Johnson ;

(iii) the efficiency distribution of the DMUs, frequently explored in

previous papers. We selected these factors to investigate the ef-

fects of varying the data characteristics on the simulation results,

particularly on the critical values. Additionally, we defined three

new metrics to describe and compare the performance of vari-

able selection methods when using the critical values generated

by our methodology, in addition to the traditional size and power

estimates. 

The rest of this paper is organized as follows: Section 2 presents

our literature review and details the two variable selection meth-

ods studied in this research. In Section 3 , we develop the

proposed methodology and define performance metrics for the

variable selection methods. Section 4 describes our simulation

study of the proposed methodology for the two chosen methods.

Section 5 presents a summary and discussion of the simulation re-
ults. Finally, Section 6 presents our conclusions, guidelines for us-

ng both the proposed methodology and the simulation study re-

ults, and suggestions for further research. 

. Literature review 

The literature documents a wide variety of methods for ad-

ressing the problem of variable selection in DEA. We have

rouped these into two classes, as described in the following sub-

ections. 

.1. Methods strictly based on statistical or mathematical criteria 

The first class contains the methods that rely only on statisti-

al or mathematical criteria to obtain the final set of DEA model

ariables from an initial set. 

Ueda and Hoshiai (1997) and Adler and Golany (20 01, 20 02) de-

eloped methods based on principal component analysis to re-

uce the dimensionality of the data, whereas Kao, Lu, and Chiu

2011) and Lin and Chiu (2013) used independent component anal-

sis. Toloo et al. (2015) proposed two different mixed-integer linear

rogramming models to reduce the number of variables to satisfy

he well-known rule of thumb, n ≥ max { 3(m + s ) , m × s } ; Toloo

nd Tichý (2015) modified and extended these models to make

hem more flexible. Fanchon (2003) , Ruggiero (2005) , Sharma and

u (2015) , and Li, Shi, Yang, and Liang (2017) employed regression

echniques as the core of their variable selection methods. Daraio

nd Simar (2007) introduced a method that minimizes the sum

f squared residuals regarding the original data based on linear

ombinations of variables. Morita and Avkiran (2009) presented

 method based on factorial designs and the Mahalanobis dis-

ance. Amirteimoori, Despotis, and Kordrostami (2012) proposed

n approach founded on linear combinations of highly corre-

ated variables; Toloo and Babaee (2015) subsequently pointed out

he drawbacks of this method and provided an enhanced ver-

ion. Limleamthong and Guillén-Gosálbez (2018) proposed a bilevel

ixed-integer programming approach for variable selection in a

EA model. 

.2. Methods based on relevance measures 

The second class contains variable selection methods based on

elevance measures. The most common approach is to define the

elevance measure in terms of the DEA estimated efficiencies be-

ore and after eliminating a variable from the model, as in the fol-

owing methods. Banker (1996) proposed three different test statis-

ics based on the estimated efficiencies to perform two F -tests and

ne Smirnov test. Simar and Wilson (2001) also used estimated ef-

ciencies to define six test statistics for evaluating the relevance of

ariables using Monte Carlo simulations and bootstrapping. Pastor,

uiz, and Sirvent (2002) defined two parameters, the proportion

 0 of DMUs in which the relative change in their efficiencies is

reater than a tolerance value ϕ, and used those parameters in a

inomial test. Based on a simulation study, they reported p 0 = 0 . 15

nd ϕ = 1 . 1 to be associated with a good performance of their

ethod. Sirvent et al. (2005) formulated a similar method, using

nly the relative change in the estimated efficiencies to perform a

 -test. In addition, Sirvent et al. (2005) evaluated their method and

hat proposed by Pastor et al. (2002) in multiple simulation exper-

ments, varying the parameters of each test. Their results indicated

hat the estimated size and power of the tests (methods) depend

n the parameters’ values and the characteristics of the data. Li

nd Liang (2010) defined a Shapley value from the estimated ef-

ciencies as the basis of their method to measure the relevance
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Table 1 

Backward stepwise approach of ACE. 

Step Description 

1. Calculate the estimated efficiencies of the DMUs by including all 

potential input and output variables in the DEA model. 

2. Calculate new sets of estimated efficiencies by excluding each 

input and then each output at a time. If the model has one input 

or output, then it is not possible to exclude such variables. If the 

model has one input and one output, then stop. 

3. Calculate the average change in the estimated efficiencies of the 

DMUs associated with each tested variable in step 2 . 

4. Eliminate the variable associated with the smallest average change 

in the estimated efficiencies from the model and go to step 1 . 
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Table 2 

Backward stepwise approach of ADEA. 

Step Description 

1. Calculate the estimated efficiencies of the DMUs by using the 

input-oriented CCR DEA model with all potential input and 

output variables. 

2. Calculate the loads of the variables by solving model (1) . 

3. Select the variable with the smallest load as the candidate variable, 

eliminate it from the model if that load is not greater than a 

specified threshold, and go to step 1 ; otherwise, stop. 
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f variables in DEA models. Madhanagopal and Chandrasekaran

2014) employed a genetic algorithm and used the parameters sug-

ested by Pastor et al. (2002) to iteratively add variables to an ini-

ial model with one input and one output. Jitthavech (2016) used

he change in the number of efficient DMUs in the model after

he elimination of a variable to perform a binomial or McNemar

est. 

Jenkins and Anderson (2003) introduced a different approach

o defining the relevance measure. Their method eliminates vari-

bles that contain minimum information based on partial covari-

nce. However, they did not determine any threshold for the total

ariance proportion lost by the elimination of variables from the

odel. 

We shall now introduce the two methods studied in this pa-

er. First, Wagner and Shimshak (2007) proposed a method based

n the average change in the estimated efficiencies of the DMUs

hen a variable is dropped or added to the model. We refer to

his method as ACE (average change in efficiencies). Table 1 details

he backward stepwise approach of ACE, i.e., dropping one vari-

ble at a time, studied in the current work. Wagner and Shimshak

2007) do not provide any threshold for the average change in ef-

ciencies to determine whether a variable is relevant. Neverthe-

ess, the authors suggest that: “alternative stopping rules can be

eveloped, and in most cases would be desirable. Some possible

topping rules include: (1) when the average difference in effi-

iency scores exceeds some maximum level, (2) when the change

n any one efficiency score exceeds some maximum level, or (3)

hen the number of efficient DMUs falls below some minimum

umber.” The current paper focuses on the first of these sug-

estions, i.e., calculating critical values for the average change in

fficiencies. 

Since our methodology is designed to calculate the critical val-

es of single relevance measures, we chose to study ACE from

mong the efficiency-based variable selection methods because (i)

he average change in efficiencies is related to the parameter “rela-

ive change in efficiencies” in the method proposed by Pastor et al.

2002) , and (ii) the variable selection criterion in Pastor’s method

as found to be straightforward to management staff ( Eskelinen,

017 ). Therefore, we believe our methodology provides a more

traightforward criterion because ACE is based on just one param-

ter rather than two. Nonetheless, the results of our research on

CE can provide insights into the behavior of the relative change

n efficiencies, which could contribute to extending the proposed

ethodology to determine critical values for the two joint param-

ters defined by Pastor et al. (2002) 

Second, Fernandez-Palacin, Lopez-Sanchez, and Munoz-Marquez 

2017) developed the alternative DEA method for variable selec-

ion, henceforth referred to as ADEA, based on a relevance mea-

ure called load . ADEA defines the loads of the variables in terms

f their contribution to the global efficiency of all the DMUs and

alculates the loads by solving the following linear programming
odel: 

max ˆ α

s.t: 

m ∑ 

i =1 

νi j x i j = 1 , ∀ j = 1 , . . . , n 

s ∑ 

r=1 

μr j y re ≤
m ∑ 

i =1 

νi j x ie , ∀ e = 1 , . . . , n, ∀ j = 1 , . . . , n 

s ∑ 

r=1 

μr j y r j = h 

∗
j , ∀ j = 1 , . . . , n 

ˆ αin 
i 

= 

m 

n 

n ∑ 

j=1 

νi j x i j , ∀ i = 1 , . . . , m 

ˆ αout 
r = 

s 

h 

n ∑ 

j=1 

μi j y i j , ∀ r = 1 , . . . , s 

ˆ αin 
i 

≥ ˆ α, ∀ i = 1 , . . . , m 

ˆ αout 
r ≥ ˆ α, ∀ r = 1 , . . . , s 

ˆ α, ˆ αin 
i 

, ˆ αout 
r ≥ 0 , ∀ i = 1 , . . . , m, ∀ r = 1 , . . . , s 

νi j , μr j ≥ 0 , ∀ i = 1 , . . . , m, ∀ r = 1 , . . . , s, ∀ j = 1 , . . . , n,

(1) 

here h ∗
j 

is the estimated efficiency of the j th DMU by the input-

riented CCR DEA model ( Charnes et al., 1978 ) and h = 

∑ n 
j=1 h 

∗
j 
.

he ˆ α variables are called ˆ α-ratios, and the load of each input and

utput is given by the corresponding value of ˆ αin and ˆ αout , re-

pectively, in the solution of this problem. The value of ˆ αin is the

roportion corresponding to each input of the sum of the virtual

nputs associated with the efficiencies of the DMUs, multiplied by

he number of inputs in the model. The value of ˆ αout is defined in

 similar manner to ˆ αin for the outputs. 

ADEA maximizes the minimum ˆ α-ratio of the variables in the

odel while preserving the initially estimated efficiencies of the

MUs with those variables. Consequently, for a given initial solu-

ion of model (1) , ADEA increases the smallest ˆ α-ratio until it is

qual to the second smallest ˆ α-ratio (if feasible); then, ADEA si-

ultaneously increases these two ˆ α-ratios until they are equal to

he third smallest ˆ α-ratio (if feasible) and so forth. It is worth not-

ng that the sum of the ˆ αin -ratios (resp. ˆ αout -ratios) is equal to the

umber of inputs (resp. outputs) in the model; therefore, the loads

f all the inputs or outputs in the model will be equal to one if

hey have the same relevance to ADEA. 

We chose to study ADEA because it evaluates variables’ rele-

ance based on their weights in DEA in one single linear pro-

ramming model rather than on the estimated efficiencies of two

ested DEA models, i.e., before and after the elimination of a vari-

ble. Moreover, Sirvent et al. (2005) highlighted two problems with

hese two sets of estimated efficiencies: They are not independent,

nd the estimated bias differs between them (being smaller for the

EA model with fewer variables). 

ADEA uses a similar approach to ACE for variable selection, as

escribed in Table 2 . Fernandez-Palacin et al. (2017) applied ADEA

n two real-world problems using Monte Carlo simulations to cal-

ulate the load thresholds as quantiles of the load distribution of a

ummy variable included in the DEA model. Based on the results
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of these simulations, they suggest using 0.6 as a threshold for the

application of ADEA. 

Regarding variable selection method performance, many au-

thors have used Monte Carlo simulations for performance evalu-

ation. Similarly, Sirvent et al. (2005) , Adler and Yazhemsky (2010) ,

Nataraja and Johnson (2011) , Kao et al. (2011) , Jitthavech (2016) ,

and Eskelinen (2017) compared sets of methods, reporting their

strengths and weaknesses. The most common performance met-

rics are the estimated size and power of the method, and the cor-

relation and deviation of the DEA estimated efficiencies from the

theoretical efficiencies. 

3. Proposed methodology 

In this section, we introduce our proposed methodology for cal-

culating critical values of single relevance measures in variable

selection methods in DEA. These critical values can be used as

thresholds in such methods to perform a backward stepwise al-

gorithm by calculating for each step the relevance measure of each

variable in the DEA model, and eliminating the variable with the

lowest relevance measure (i.e., the candidate variable) if its value

does not exceed the critical value. 

We developed the proposed methodology for the single-output

case in DEA, given that we defined and included several elements

in its formulation and that the single-output case is the most

widely studied in the literature. Nevertheless, we believe that most

of the elements and results of the current work will be relevant

in extending the methodology to the multi-output case. Conse-

quently, we model the output y of a DMU as 

y = f ( x ) · e −τ , (2)

where x = (x 1 , . . . , x m 

) is the input vector, f is the production func-

tion that transforms the inputs into the output, and e −τ is the effi-

ciency term. Eq. (2) is widely used in the literature (See Banker,

1996; Nataraja & Johnson, 2011; Simar & Wilson, 2001; Sirvent

et al., 2005 ), where τ ≥ 0 is called the inefficiency parameter and

is equal to 0 if a DMU is efficient. For notation purposes, let

i ∈ I = { 1 , . . . , m } . 

3.1. Critical values calculation 

Since our focus is the single-output case in DEA, the candi-

date variable is the input with the lowest relevance measure in

the model. Accordingly, we formulate the following problem for

hypothesis testing: {
H 0 : The candidate input is relevant , 
H 1 : The candidate input is irrelevant . 

(3)

For this hypothesis test, the test statistic θ is the relevance

measure of the candidate input. Then, for a given nominal size α
of type I error, we seek a critical value θα such that 

P (θ ≤ θα| H 0 is true ) = α. (4)

To compute the critical value θα , we use Monte Carlo simula-

tions to perform a data generation process (DGP) to obtain a sim-

ulated null distribution S of θ . Then, we can calculate θα as the

α-quantile of S . Let T be the number of simulation trials in the

DGP and T = { 1 , . . . , T } . 
Before performing a DGP for the hypothesis test in Eq. (3) , we

must first address two concerns: The first arises from the need to

define the condition under which an input is relevant in the model.

For simplicity’s sake, we assume that the production function as-

sociates a unique parameter with each input, given that an input

will theoretically be relevant if its respective parameter is not zero.
n example of this type of function is the following Cobb-Douglas

roduction function: 

 = 

m ∏ 

i =1 

x λi · e −τ , (5)

here λi ≥ 0 ∀ i ∈ I . Consequently, we introduce the input parame-

ers vector λ = (λ1 , . . . , λm 

) , with 

∑ m 

i =1 λi = L, 0 < L < ∞ and λi ≥
 ∀ i ∈ I, so that if any λi > 0, then the respective input x i is rele-

ant. However, since the effect of input variations on the output

alue can be imperceptible to variable selection methods for small

values, we consider it necessary to select a non-zero minimum

alue for the λ parameters so that an input is considered relevant.

efinition 1. Let λrel > 0 be the minimum relevant parameter value

hat an input must have in a production function to be consid-

red relevant and m r = m r ( λ, λrel ) = |{ i ∈ I : λi ∈ λ, λi ≥ λrel }| be

he number of relevant inputs in a production function. 

Therefore, based on Definition 1 , and denoting the parame-

er λ of the candidate input as λcand , we will not reject H 0 if

cand ≥ λrel as λ is an increasing relevance measure. The selection

f λrel depends on the effect size we wish to detect. For instance,

onsider the production function y = x 
λ1 
1 

x 
λ2 
2 

e −τ . If λ1 = 0 . 01 , then

oubling the x 1 value will increase y by only 0.7%. In contrast, if

1 = 0 . 05 or 0.1, then the increase will be 3.5% or 7.2%, respec-

ively, and these variations can be more perceptible to variable se-

ection methods. Thus, we used λrel = 0 . 1 as the minimum relevant

arameter value in this paper. 

The second consideration is that we need observations of θ
hen the candidate input is relevant in order to construct the sim-

lated null distribution S . This is because the candidate input is

etermined by the variable selection method’s relevance measure

ather than the actual relevance ( λ parameters) of the inputs in

he production function. One possible approach to guarantee the

elevance of candidate input in all simulation trials, independently

f the method, is to use production functions with only relevant

nputs. If we obtain S using this approach, we assume the can-

idate input is relevant only when all the model’s inputs are rel-

vant. However, since the relevance measure θ is not necessarily

 strictly increasing function of λ, the previous assumption is not

ecessarily true, because a relevant input may still be selected as

he candidate input even when there are irrelevant inputs in the

odel. Consequently, an appropriate DGP for the hypothesis test

n Eq. (3) must satisfy the following conditions: 

C.1 Inclusion of production functions with different numbers of rel-

evant inputs . 

C.2 Utilization of different values for the non-zero input parame-

ters in the production functions . 

The arguments supporting condition C.1 are: (i) we do not

now how many inputs in the initial set are relevant, and (ii) we

ust examine scenarios where the candidate input may be rele-

ant when there are irrelevant inputs in the model, as described

bove. In contrast, the supporting arguments for condition C.2 are:

i) we do not know the actual relevance of each relevant input, (ii)

he effects of λ parameters of different magnitudes are likely to

e different, and (iii) the effect of a specific λ value can be differ-

nt in distinct λ vectors. The implementation of these conditions

n the DGP is described in the next subsection. 

A consequence of using a DGP that satisfies conditions C.1 and

.2 is that we obtain observations of θ for both relevant ( H 0 )

nd irrelevant ( H 1 ) candidate inputs. Nevertheless, we can track

hich case is associated with each observation by storing both

and λcand in each simulation trial, i.e., collecting a sample S =
 (θ (t) , λ(t) 

cand 
) } T 

t=1 
from the DGP. Then, it is straightforward that

 = { θ (t) : (θ (t) , λ(t) 
cand 

) ∈ S, λ(t) 
cand 

≥ λrel , t ∈ T } . 
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Table 3 

π ( m r ) values for m = 4 and p rel = 0 . 8 . 

m r 1 2 3 4 

π ( m r ) 
1 

125 
12 

125 
48 
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After conducting the DGP, we use bootstrapping to obtain B =
0 0 0 pseudo-samples ˆ S b , b = 1 , . . . , B, from S to find the criti-

al value θb 
α of the ˆ S b empirical distribution associated with each

seudo-sample ˆ S b . Finally, we calculate the critical value θα as the

ean of the pseudo-sample critical values, i.e., 

α = 

1 

B 

B ∑ 

b=1 

θ b 
α. (6) 

.2. Data generation process 

In the literature, we observed the DGPs performed for single-

utput DEA models to have a common structure ( Adler & Yazhem-

ky, 2010; Jitthavech, 2016; Nataraja & Johnson, 2011; Ruggiero,

005; Sirvent et al., 2005 ). Therefore, we define a standard single-

utput DGP with such a structure as follows: first, define a produc-

ion function to be used in all the simulation trials. Then, for each

rial, perform the following steps: (i) randomly generate the inputs

rom a probability distribution F , (ii) randomly assign an efficiency

qual to 1 (i.e., τ = 0 ) to a φ proportion of the DMUs, (iii) calculate

he efficiencies of the other DMUs by generating their inefficiency

arameter τ from a probability distribution H , and (iv) calculate

he output of each DMU using the predefined production function.

We must modify the standard DGP to implement conditions C.1

nd C.2 defined in Section 3.1 since we need to include multiple

roduction functions in the DGP simulation trials. These conditions

re implemented as follows: 

efinition 2. Let Y = { y 1 , . . . , y T } be the set of production func-

ions assigned to the T simulation trials of the DGP. 

To implement condition C.1, we must define the percentage of

unctions in the set Y with m r = 1 , . . . , m relevant inputs. For this

urpose, we assume that one of the inputs in the model is rele-

ant and that each of the other inputs has a fixed probability p rel 

f being relevant. Therefore, the proportion of functions in Y with

 r ∈ I relevant inputs is determined by the binomial distribution

n the following definition. 

efinition 3. The proportion π ( m r ) of functions with m r relevant

nputs in Y is given by 

(m r ) = 

(
m − 1 

m r − 1 

)
p m r −1 

rel ( 1 − p rel ) 
m −m r , (7)

here m r ∈ I, 0 < p rel < 1 and m ∈ N \ { 1 } . 
The selection of a suitable value for p rel may depend on the

eal-world DEA application. In some cases, the initial set of vari-

bles may be chosen well, making the value of p rel relatively high.

n other cases, this initial set may contain several irrelevant vari-

bles, such that p rel would be relatively low. Taking this into ac-

ount, we included p rel as a factor in the simulation study in

ection 4 and selected p rel = 0 . 4 , 0.6, 0.8, and 0.9 to test multi-

le values for the probability of an input being relevant in a DEA

odel. 

Furthermore, a consequence of condition C.1 is the need to de-

ne a set that contains functions with different numbers of rel-

vant inputs, from which we can obtain Y by sampling with re-

lacement. 

efinition 4. Let ˆ Y = { ̂  y 1 , . . . , ̂  y Q } be the set of distinct production

unctions to be sampled with replacement to obtain the set Y , ˆ p =
( ̂  p 1 , . . . , ˆ p Q ) be the probability vector to sample from 

ˆ Y and q ∈
 = { 1 , . . . , Q} . 
efinition 5. For all m r ∈ I, let 
( m r ) be the subset of ˆ Y that con-

ains the functions with m r relevant inputs. 
efinition 6. For all m r ∈ I, let Q (m r ) = { q ∈ Q : y q ∈ 
(m r ) } be

he index set of the functions in 
( m r ). 

According to condition C.2, the set ˆ Y must contain production

unctions with different input parameters vectors ( λ) for each pos-

ible number of relevant inputs. However, since the only constraint

n the elements of λ is to have a positive finite sum L , and we

o not know the actual relevance of each relevant input, there are

nfinite options for choosing these vectors. To deal with this situ-

tion, we limit the options to those formed with zeros and mul-

iples of λrel . Moreover, since the inputs are generated from the

ame probability distribution in our DGP, the production functions

ith input parameter vectors that differ only in the order of their

lements are expected to yield the same results. Therefore, we

onstruct the set ˆ Y using only the λ vectors that have their ele-

ents arranged in ascending order and assign them a weight w

qual to the number of possible permutations with repetition with

heir elements. For instance, the weight of the production function

 = x 0 . 1 
1 

x 0 . 2 
2 

x 0 . 2 
3 

x 0 . 5 
4 

e −τ is 12, since that is the number of different

roduction functions that can be formed with the permutations of

he vector (0.1,0.2,0.2,0.5). Based on Definitions 3 –5 , these weights

re necessary to calculate the vector ˆ p by appropriately distribut-

ng the probability π ( m r ) among the functions in the subset 
( m r )

or all m r ∈ I . Consequently, we define the probability ˆ p q ∈ ˆ p asso-

iated with the function ˆ y q ∈ 

ˆ Y as 

ˆ p q = 

w q ∑ 

q ∈Q ( m r ) 
w q 

× π(m r ) , (8) 

here w q , m r and 
( m r ) are the weight, the number of relevant

nputs, and the subset of ˆ y q , respectively. 

For illustration purposes, we present the set ˆ Y and the vec-

or ˆ p for m = 4 inputs, λrel = 0 . 1 , p rel = 0 . 8 , and a Cobb-Douglas

roduction function with constant returns to scale ( 
∑ m 

i =1 λi = 1 ) in

ables 3 and 4 . In more detail, Table 3 indicates that for p rel = 0 . 8

e assume the probabilities of having m r = 1 , 2 , 3 , or 4 relevant

nputs in a given 4-input DEA model are 0.8%, 9.6%, 38.4%, and

1.2%, respectively. Then, these probabilities are distributed among

he production functions in the respective subsets 
( m r ), as shown

n Table 4 . 

In summary, we generate the set Y by sampling with replace-

ent from the set ˆ Y using the vector ˆ p in the first stage of our

GP. Then, for each simulation trial t = 1 , . . . , T , we generate the

nputs and efficiencies of the DMUs following steps (i)-(iii) in the

tandard DGP and calculate the output of the DMUs using the as-

igned production function y t . 

.3. Performance metrics 

We define the following metrics to describe and compare the

ariable selection methods’ performance when using the critical

alues generated by our methodology. To calculate each metric, we

se bootstrapping one more time to obtain D = 10 0 0 new pseudo-

amples ˜ S d (d = 1 , . . . , D ) from S . Then, we determine the value of

he metric for each 

˜ S d . Finally, we set the mean of these pseudo-

ample metrics as the final value of the performance metric. 

efinition 7. The estimated type I error rate A α associated with the

ritical value θα is given by 

 α = 

1 

D 

D ∑ 

d=1 

ˆ P d (θ ≤ θα| λcand ≥ λrel ) . (9) 
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Table 4 

Set ˆ Y and vector ˆ p for m = 4 inputs, λrel = 0 . 1 , p rel = 0 . 8 and Cobb- 

Douglas production function with constant returns to scale. 

ˆ y q w q ˆ p q 

ˆ y 1 = x 0 . 0 1 x 0 . 0 2 x 0 . 0 3 x 1 . 0 4 e −τ 4 4 
4 

× 1 
125 

= 0 . 0080 ∑ 

q ∈Q ( 1 ) w q = 4 

ˆ y 2 = x 0 . 0 1 x 0 . 0 2 x 0 . 1 3 x 0 . 9 4 e −τ 12 12 
54 

× 12 
125 

= 0 . 0213 

ˆ y 3 = x 0 . 0 1 x 0 . 0 2 x 0 . 2 3 x 0 . 8 4 e −τ 12 12 
54 

× 12 
125 

= 0 . 0213 

ˆ y 4 = x 0 . 0 1 x 0 . 0 2 x 0 . 3 3 x 0 . 7 4 e −τ 12 12 
54 

× 12 
125 

= 0 . 0213 

ˆ y 5 = x 0 . 0 1 x 0 . 0 2 x 0 . 4 3 x 0 . 6 4 e −τ 12 12 
54 

× 12 
125 

= 0 . 0213 

ˆ y 6 = x 0 . 0 1 x 0 . 0 2 x 0 . 5 3 x 0 . 5 4 e −τ 6 6 
54 

× 12 
125 

= 0 . 0107 ∑ 

q ∈Q ( 2 ) w q = 54 

ˆ y 7 = x 0 . 0 1 x 0 . 1 2 x 0 . 1 3 x 0 . 8 4 e −τ 12 12 
144 

× 48 
125 

= 0 . 0320 

ˆ y 8 = x 0 . 0 1 x 0 . 1 2 x 0 . 2 3 x 0 . 7 4 e −τ 24 24 
144 

× 48 
125 

= 0 . 0640 

ˆ y 9 = x 0 . 0 1 x 0 . 1 2 x 0 . 3 3 x 0 . 6 4 e −τ 24 24 
144 

× 48 
125 

= 0 . 0640 

ˆ y 10 = x 0 . 0 1 x 0 . 1 2 x 0 . 4 3 x 0 . 5 4 e −τ 24 24 
144 

× 48 
125 

= 0 . 0640 

ˆ y 11 = x 0 . 0 1 x 0 . 2 2 x 0 . 2 3 x 0 . 6 4 e −τ 12 12 
144 

× 48 
125 

= 0 . 0320 

ˆ y 12 = x 0 . 0 1 x 0 . 2 2 x 0 . 3 3 x 0 . 5 4 e −τ 24 24 
144 

× 48 
125 

= 0 . 0640 

ˆ y 13 = x 0 . 0 1 x 0 . 2 2 x 0 . 4 3 x 0 . 4 4 e −τ 12 12 
144 

× 48 
125 

= 0 . 0320 

ˆ y 14 = x 0 . 0 1 x 0 . 3 2 x 0 . 3 3 x 0 . 4 4 e −τ 12 12 
144 

× 48 
125 

= 0 . 0320 ∑ 

q ∈Q ( 3 ) w q = 144 

ˆ y 15 = x 0 . 1 1 x 0 . 1 2 x 0 . 1 3 x 0 . 7 4 e −τ 4 4 
84 

× 64 
125 

= 0 . 0244 

ˆ y 16 = x 0 . 1 1 x 0 . 1 2 x 0 . 2 3 x 0 . 6 4 e −τ 4 4 
84 

× 64 
125 

= 0 . 0244 

ˆ y 17 = x 0 . 1 1 x 0 . 1 2 x 0 . 3 3 x 0 . 5 4 e −τ 12 12 
84 

× 64 
125 

= 0 . 0731 

ˆ y 18 = x 0 . 1 1 x 0 . 1 2 x 0 . 4 3 x 0 . 4 4 e −τ 6 6 
84 

× 64 
125 

= 0 . 0366 

ˆ y 19 = x 0 . 1 1 x 0 . 2 2 x 0 . 2 3 x 0 . 5 4 e −τ 12 12 
84 

× 64 
125 

= 0 . 0731 

ˆ y 20 = x 0 . 1 1 x 0 . 2 2 x 0 . 3 3 x 0 . 4 4 e −τ 24 24 
84 

× 64 
125 

= 0 . 1463 

ˆ y 21 = x 0 . 1 1 x 0 . 3 2 x 0 . 3 3 x 0 . 3 4 e −τ 4 4 
84 

× 64 
125 

= 0 . 0244 

ˆ y 22 = x 0 . 2 1 x 0 . 2 2 x 0 . 2 3 x 0 . 4 4 e −τ 4 4 
84 

× 64 
125 

= 0 . 0244 

ˆ y 23 = x 0 . 2 1 x 0 . 2 2 x 0 . 3 3 x 0 . 3 4 e −τ 6 6 
84 

× 64 
125 

= 0 . 0244 ∑ 

q ∈Q ( 4 ) w q = 84 
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Definition 8. The estimated power P α associated with the critical

value θα is given by 

P α = 

1 

D 

D ∑ 

d=1 

ˆ P d (θ ≤ θα| λcand < λrel ) . (10)

Definition 9. The strong type I error rate B α associated with the

critical value θα is given by 

B α = 

1 

D 

D ∑ 

d=1 

ˆ P d (θ ≤ θα ∩ λcand > λrel | λcand ≥ λrel ) . (11)

B α is the part of A α corresponding with cases where an input

with a parameter greater than λrel was dropped from the model.

The ideal value of B α is 0 since the type I error should ideally be

associated with the elimination of inputs with the minimum rele-

vant parameter value λrel . 

Definition 10. The tie-related type I error rate W α associated with

the critical value θα is given by 

 α = 

1 

D 

D ∑ 

d=1 

ˆ P d (θ ≤ θα ∩ θrel = θirrel | λcand ≥ λrel ) , (12)

where θrel and θirrel are the lowest relevance measures of the rele-

vant and irrelevant inputs in the model, respectively. 

W α is the part of A α that corresponds to the cases where a tie

in θ occurred between relevant and irrelevant inputs. We randomly

select the candidate input from the tied inputs. 

Definition 11. The type I error impact �α associated with the crit-

ical value θα is given by 

�α = 

1 

D 

D ∑ 

d=1 

( ∑ 

t∈T d 
(
r a t − r b t 

)
|T d | 

) 

(13)

where r b and r a are the Pearson correlation coefficients between

the theoretical and DEA estimated efficiencies of the DMUs before

and after eliminating the candidate input, respectively, and T =
d 
 t ∈ T : (θ (t) , λ(t) 
cand 

) ∈ 

ˆ S d , θ
(t) ≤ θα, λ(t) 

cand 
≥ λrel } is the index set of

he simulation trials where a type I error is committed using the

ritical value θα in the pseudo-sample ˜ S d . 

The purpose of calculating �α is to measure the impact of type

 error on the correlation between the theoretical and estimated

fficiencies of the DMUs. 

. Simulation study 

A simulation study was performed to investigate the results of

mplementing the proposed methodology to calculate critical val-

es for ACE and ADEA methods in different model specifications

sing multiple different DGP configurations. Specifically, for each

ethod, we conducted 28 experiments corresponding to all possi-

le model specifications from m = 2 , . . . , 8 inputs and n = 20, 30,

0, and 50 DMUs, considering that many DEA applications are as-

ociated with small sample sizes, i.e., n ≤ 50 (see Toloo et al., 2015;

oloo & Tichý, 2015 ). All the experiments consisted of 256 differ-

nt scenarios defined by the four levels of p rel and six additional

actors with two levels each, and five replicates of T = 10 0 0 sim-

lation trials in each scenario. This meant that 2 × 28 × 256 × 5 ×
0 0 0 = 71 , 680 , 0 0 0 data sets were generated. 

Furthermore, we considered α = 5% and α = 10% as nominal

izes, and calculated the critical values and performance metrics of

he methods for such values. Under the assumption that the pro-

uction functions exhibit constant returns to scale (CRS), we used

he input-oriented CCR DEA model ( Charnes et al., 1978 ) to esti-

ate the DMUs’ efficiencies. The simulation was implemented in R

 Team, 2017 ), using a package provided by Fernandez-Palacin et al.

2017) to perform the calculations needed for the ADEA method. 

Next, we shall detail the other six factors used to generate

he scenarios in each experiment. The factor levels were selected

o investigate their effect on the critical values generated by our

ethodology. The first factor is the functional form f of the pro-

uction function. Since each input must have only one parameter

n f , we used the Cobb–Douglas (CD) function, i.e., 

f CD ( x ) = 

m ∏ 

i =1 

x λi 

i 
, (14)

nd the constant elasticity of substitution (CES) function, i.e., 

f CES ( x ) = 

( 

m ∑ 

i =1 

λi x 
ρ
i 

) 1 /ρ

, (15)

ith ρ = −1 / 9 . We imposed the constraint 
∑ m 

i =1 λi = 1 on the in-

ut parameters due to the CRS assumption. We selected these

unctional forms to examine the effect of changing the elasticity

f substitution of the inputs from 1 (CD function) to 0.9 (CES func-

ion). 

The second and third factors are the shape and spread of the

robability distribution of the inputs F , respectively. For the shape,

e used uniform and lognormal distributions because (i) the for-

er has negative excess kurtosis and the latter has positive excess

urtosis, and (ii) we assume that many real-world variable distri-

utions will have identical or similar shapes. For the spread, we

mployed the coefficient of variation (CV) as a metric and used

wo values, 29% and 51%, to represent input sets with low and high

ariation, respectively. We selected the parameters of the F distri-

utions used in the simulation study so that they all have a mean

f 40. Table 5 shows the values of those parameters. 

The fourth factor is the proportion φ of efficient DMUs in the

ample; we used φ = 0 . 20 and φ = 0 . 30 , as per Holland and Lee

2002) and Jitthavech (2016) , respectively. The fifth factor is the

hape of the inefficiency parameter distribution H for which we

sed exponential, Exp( λ), and half-normal, | N (0, σ 2 )|, distributions,
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Table 5 

Parameters of the F distributions used in 

the simulation study. 

CV Uniform Lognormal 

a b μ σ

29% 20 60 3.6488 0.2829 

51% 5 75 3.5752 0.4768 

Table 6 

Parameters of the H distributions used in the sim- 

ulation study. 

Mean efficiency Exponential Half-normal 

0.80 λ = 0 . 25 σ = 0 . 3 

0.85 λ = 0 . 1765 σ = 0 . 2137 

Table 7 

Coded factors levels in simulation study. 

Code f form F shape F spread φ H shape H mean 

−1 CES Lognormal 29% 0.20 Exponential 0.80 

+1 CD Uniform 51% 0.30 Half-normal 0.85 
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that smallest load. 
ollowing the trend in the literature. Finally, the sixth factor is the

heoretical mean efficiency of the non-efficient DMUs ( H mean ). Here

e selected the parameters for each H shape to obtain two lev-

ls of mean efficiency, 0.80 and 0.85, as in the works developed

y Perelman and Santín (2009) and Nataraja and Johnson (2011) ,

espectively. Table 6 shows the parameters of the H distributions

sed in the simulation study, and Table 7 shows the coded levels

f the six factors described above. 

. Results and discussion 

In this section, we present and discuss the results obtained

rom the simulation study. We focus on the results corresponding

o α = 5% nominal size as the same conclusions can be drawn for

= 10% . (Results for α = 10% are reported in Appendix A.) 

.1. Critical values analysis 

For each variable selection method, we calculated an ANOVA

odel with the critical value as the dependent variable and the

ollowing factors: Number of inputs, number of DMUs, probability

f an input being relevant, and the six factors defined in Section 4 .

NOVAs for ACE and ADEA methods are presented in Tables 8 and

 , respectively. The aim of these ANOVA models was to determine

he significance and effect size of each factor on the critical values.

We can see in Tables 8 and 9 that all the factors were statis-

ically significant at the 1% level. Nevertheless, we considered it

ecessary to evaluate the effect size of the factors on the critical
Table 8 

ANOVA of ACE critical values at α = 5% . 

Source of variation Sum of squares df 

Number of inputs 16.8236 6 

Number of DMUs 0.4855 3 

p rel 0.0009 3 

f form 0.0008 1 

F shape 0.1937 1 

F spread 1.0046 1 

φ 0.0161 1 

H shape 0.0007 1 

H mean 0.0098 1 

Residuals 2.5836 35821 

Total 21.1193 35839 
alues to evaluate their practical significance. For this purpose, we

sed the eta-squared effect size, i.e., η2 = 

sum of squares of the factor 
total sum of squares 

.

he number of inputs was notably the factor with the greatest

ffect size, approximately η2 = 0 . 8 , for both ACE and ADEA. The

ther factors with a considerable effect on the critical values of

oth methods were the number of DMUs, and the shape and

pread of the input distribution. Additionally, the factor related to

he probability of an input being relevant had a noticeable effect

n ADEA critical values ( η2 = 0 . 1 ). Taking this into account, we

onstructed a linear model of the critical values for each method

nd combination of the number of inputs and DMUs in terms of

he other aforementioned factors. The forms of these linear mod-

ls are shown in Eqs. (16) and (17) for ACE and ADEA, respectively,

nd the corresponding coefficients are shown in Table 10 . 

ˆ ACE 
α = b 0 + b 1 F shape + b 2 F spread + ε (16)

ˆ ADEA 
α = b 0 + b 1 F shape + b 2 F spread + b 3 p rel + ε (17)

We highlight the following key points from the results in

able 10 . 

i) All factors were statistically significant at the 5% level in all the

linear models, except for F shape and F spread in some experiments

in which their coefficient was zero. 

ii) The linear models had a high adjusted R 2 for ACE in the exper-

iments with six inputs or less, except those with six inputs and

20 DMUs, and for ADEA in the experiments with three or more

inputs. This indicates that we can use the linear models to es-

timate the critical values in terms of F shape , F spread , and p rel in

most of the DEA model specifications used in this paper. 

ii) In the experiments for ACE with 7–8 inputs and 20 DMUs,

the intercepts and coefficients were zero or very close to zero;

therefore, the critical values can be assumed to be zero for

these experiments. Moreover, in the experiments for ADEA with

2 inputs, the critical values were equal to the intercept from

a practical point of view, as the factor coefficients were very

small compared to the intercept. 

v) ACE critical values asymptotically decreased to zero for more

inputs in the DEA model and increased with more DMUs. This

behavior is reasonable since the average change in the esti-

mated efficiencies when we remove a variable from the DEA

model is expected to be smaller in higher dimensional spaces

(with more variables) and larger in more constrained DEA mod-

els (with more DMUs). 

v) ADEA critical values asymptotically increased to one with more

inputs in the DEA model and decreased with more DMUs. This

tendency is also reasonable since the load of a variable is based

on its weights in the solution of model (1) , and having more

variables (inputs) allows the smallest load to be bigger, while

having more constraints (DMUs) limits the maximization of
Mean square F p -value 

2.8039 38875.27 0.0000 

0.1618 2243.58 0.0000 

0.0003 4.30 0.0049 

0.0008 10.66 0.0011 

0.1937 2685.31 0.0000 

1.0046 13929.03 0.0000 

0.0161 223.69 0.0000 

0.0007 9.96 0.0016 

0.0098 135.38 0.0000 

0.0000721 
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Table 9 

ANOVA for ADEA critical values at α = 5% . 

Source of variation Sum of squares df Mean square F p -value 

Number of inputs 1476.21 6 246.04 114548.47 0.0000 

Number of DMUs 28.01 3 9.34 4347.09 0.0000 

p rel 183.40 3 61.13 28463.01 0.0000 

f form 0.05 1 0.05 25.52 0.0000 

F shape 16.64 1 16.64 7748.49 0.0000 

F spread 16.13 1 16.13 7511.33 0.0000 

φ 0.29 1 0.29 135.64 0.0000 

H shape 0.08 1 0.08 36.82 0.0000 

H mean 0.38 1 0.38 178.74 0.0000 

Residuals 76.94 35821 0.00215 

Total 1798.13 35839 

Table 10 

Coefficients of linear models for ACE and ADEA critical values at α = 5% . 

Inputs DMUs ACE method ADEA method 

Intercept F shape F spread R 2 
adj 

Intercept F shape F spread p rel R 2 
adj 

2 20 0.0555 ∗∗∗ 0.0071 ∗∗∗ 0.0176 ∗∗∗ 0.89 0.295 ∗∗∗ 0.002 ∗∗∗ 0.002 ∗∗∗ −0 . 003 ∗∗ 0.18 

30 0.0639 ∗∗∗ 0.0083 ∗∗∗ 0.0201 ∗∗∗ 0.89 0.264 ∗∗∗ 0.001 ∗∗∗ 0.002 ∗∗∗ −0 . 001 ∗ 0.17 

40 0.0692 ∗∗∗ 0.0090 ∗∗∗ 0.0217 ∗∗∗ 0.89 0.250 ∗∗∗ 0.001 ∗∗∗ 0.002 ∗∗∗ −0 . 002 ∗∗∗ 0.24 

50 0.0735 ∗∗∗ 0.0098 ∗∗∗ 0.0231 ∗∗∗ 0.89 0.239 ∗∗∗ 0.001 ∗∗∗ 0.001 ∗∗∗ −0 . 001 ∗∗ 0.26 

3 20 0.0213 ∗∗∗ 0.0032 ∗∗∗ 0.0070 ∗∗∗ 0.88 0.230 ∗∗∗ 0.011 ∗∗∗ 0.005 ∗∗∗ 0.299 ∗∗∗ 0.90 

30 0.0284 ∗∗∗ 0.0036 ∗∗∗ 0.0087 ∗∗∗ 0.91 0.223 ∗∗∗ 0.008 ∗∗∗ 0.003 ∗∗∗ 0.271 ∗∗∗ 0.87 

40 0.0331 ∗∗∗ 0.0037 ∗∗∗ 0.0098 ∗∗∗ 0.92 0.272 ∗∗∗ 0.009 ∗∗∗ 0.008 ∗∗∗ 0.195 ∗∗∗ 0.77 

50 0.0364 ∗∗∗ 0.0037 ∗∗∗ 0.0106 ∗∗∗ 0.93 0.347 ∗∗∗ 0.010 ∗∗∗ 0.012 ∗∗∗ 0.088 ∗∗∗ 0.65 

4 20 0.0077 ∗∗∗ 0.0015 ∗∗∗ 0.0024 ∗∗∗ 0.80 0.308 ∗∗∗ 0.024 ∗∗∗ 0.022 ∗∗∗ 0.388 ∗∗∗ 0.94 

30 0.0137 ∗∗∗ 0.0023 ∗∗∗ 0.0042 ∗∗∗ 0.87 0.272 ∗∗∗ 0.021 ∗∗∗ 0.019 ∗∗∗ 0.367 ∗∗∗ 0.94 

40 0.0181 ∗∗∗ 0.0026 ∗∗∗ 0.0054 ∗∗∗ 0.90 0.267 ∗∗∗ 0.018 ∗∗∗ 0.015 ∗∗∗ 0.326 ∗∗∗ 0.92 

50 0.0214 ∗∗∗ 0.0028 ∗∗∗ 0.0062 ∗∗∗ 0.91 0.272 ∗∗∗ 0.017 ∗∗∗ 0.012 ∗∗∗ 0.288 ∗∗∗ 0.91 

5 20 0.0022 ∗∗∗ 0.0004 ∗∗∗ 0.0004 ∗∗∗ 0.60 0.370 ∗∗∗ 0.031 ∗∗∗ 0.030 ∗∗∗ 0.472 ∗∗∗ 0.95 

30 0.0062 ∗∗∗ 0.0011 ∗∗∗ 0.0017 ∗∗∗ 0.81 0.314 ∗∗∗ 0.029 ∗∗∗ 0.027 ∗∗∗ 0.482 ∗∗∗ 0.96 

40 0.0095 ∗∗∗ 0.0016 ∗∗∗ 0.0026 ∗∗∗ 0.85 0.290 ∗∗∗ 0.028 ∗∗∗ 0.024 ∗∗∗ 0.468 ∗∗∗ 0.96 

50 0.0123 ∗∗∗ 0.0019 ∗∗∗ 0.0035 ∗∗∗ 0.88 0.279 ∗∗∗ 0.026 ∗∗∗ 0.022 ∗∗∗ 0.448 ∗∗∗ 0.95 

6 20 0.0002 ∗∗∗ 0 ∗∗∗ −0 . 0 0 01 ∗∗∗ 0.34 0.442 ∗∗∗ 0.032 ∗∗∗ 0.036 ∗∗∗ 0.502 ∗∗∗ 0.96 

30 0.0025 ∗∗∗ 0.0003 ∗∗∗ 0.0003 ∗∗∗ 0.53 0.377 ∗∗∗ 0.032 ∗∗∗ 0.033 ∗∗∗ 0.539 ∗∗∗ 0.97 

40 0.0047 ∗∗∗ 0.0007 ∗∗∗ 0.0009 ∗∗∗ 0.75 0.339 ∗∗∗ 0.033 ∗∗∗ 0.031 ∗∗∗ 0.548 ∗∗∗ 0.97 

50 0.0068 ∗∗∗ 0.0010 ∗∗∗ 0.0016 ∗∗∗ 0.81 0.316 ∗∗∗ 0.033 ∗∗∗ 0.029 ∗∗∗ 0.546 ∗∗∗ 0.97 

7 20 0 ∗∗∗ 0 0 ∗∗∗ 0.05 0.522 ∗∗∗ 0.028 ∗∗∗ 0.036 ∗∗∗ 0.483 ∗∗∗ 0.95 

30 0.00077 ∗∗∗ 0.00002 ∗ −0 . 0 0 010 ∗∗∗ 0.13 0.453 ∗∗∗ 0.031 ∗∗∗ 0.034 ∗∗∗ 0.541 ∗∗∗ 0.97 

40 0.00221 ∗∗∗ 0.00021 ∗∗∗ 0.00016 ∗∗∗ 0.25 0.407 ∗∗∗ 0.033 ∗∗∗ 0.033 ∗∗∗ 0.570 ∗∗∗ 0.97 

50 0.00368 ∗∗∗ 0.00043 ∗∗∗ 0.00055 ∗∗∗ 0.58 0.373 ∗∗∗ 0.034 ∗∗∗ 0.033 ∗∗∗ 0.588 ∗∗∗ 0.97 

8 20 0 0 0 0.00 0.611 ∗∗∗ 0.023 ∗∗∗ 0.031 ∗∗∗ 0.418 ∗∗∗ 0.92 

30 0.00016 ∗∗∗ −0 . 0 0 0 01 ∗∗∗ −0 . 0 0 011 ∗∗∗ 0.58 0.539 ∗∗∗ 0.026 ∗∗∗ 0.031 ∗∗∗ 0.495 ∗∗∗ 0.95 

40 0.00091 ∗∗∗ −0 . 0 0 0 03 ∗∗∗ −0 . 0 0 017 ∗∗∗ 0.25 0.488 ∗∗∗ 0.029 ∗∗∗ 0.031 ∗∗∗ 0.541 ∗∗∗ 0.96 

50 0.00186 ∗∗∗ 0.00007 ∗∗∗ 0 0.02 0.449 ∗∗∗ 0.032 ∗∗∗ 0.031 ∗∗∗ 0.574 ∗∗∗ 0.97 

∗ , ∗∗ and ∗∗∗ denote significance at the level of 0.05, 0.01 and 0.001, respectively. 
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i) Regarding the factors F shape and F spread , the ratios between their

estimated coefficients and the intercept parameter were smaller

for ADEA than for ACE in all the experiments. This means that

ADEA critical values are more robust against different input dis-

tribution shapes and spreads. In contrast, ADEA critical values

are affected by the probability of an input being relevant; this

is not true for ACE critical values. 

ii) The coefficients of F shape , F spread , and p rel were positive in most

of the experiments. Hence, input distributions with less excess

kurtosis (i.e., taller tails), greater coefficient of variation, and

higher probabilities of an input being relevant are generally as-

sociated with greater critical values. 

We shall now suggest default critical values for ACE and ADEA,

as shown in Table 11 , by selecting a level for each factor in the

linear models, as detailed below. DEA practitioners may neverthe-

less select other levels for the factors to obtain better critical val-

ues based on the characteristics of the data in their particular DEA

problem. 
(i) F shape = −1 (lognormal), based on the assumption that the in-

puts will more frequently have a lognormal or similar distribu-

tion than a uniform distribution. 

ii) F spread = +1 (51%), since the inputs will commonly have a high

coefficient of variation in many DEA problems, potentially ex-

ceeding 100%. 

ii) p rel = 0.6 to be conservative regarding the increase in ADEA

critical values, since they increase with p rel and we do not

know the actual probability that an input is relevant. 

.2. Performance analysis of ACE and ADEA methods 

In this subsection, we detail and compare the performance of

CE and ADEA methods when using critical values generated by

ur methodology. In particular, we summarize and illustrate only

he results of the performance metrics associated with nominal

ize α = 5% . (Numerical results for both α = 5% and α = 10% are

iven in Appendix A.) Fig. 1 shows that the estimated type I er-
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Table 11 

Suggested default ACE and ADEA critical values at α = 5% . 

ACE method ADEA method 

Number of inputs Number of DMUs Number of DMUs 

20 30 40 50 20 30 40 50 

2 0.0660 0.0757 0.0819 0.0868 0.294 0.264 0.250 0.238 

3 0.0251 0.0335 0.0392 0.0433 0.403 0.381 0.388 0.402 

4 0.0086 0.0156 0.0209 0.0248 0.539 0.489 0.460 0.441 

5 0.0022 0.0068 0.0105 0.0139 0.652 0.602 0.567 0.544 

6 0.0001 0.0025 0.0049 0.0074 0.747 0.701 0.666 0.640 

7 0 0.00065 0.00216 0.00380 0.820 0.781 0.749 0.725 

8 0 0.00006 0.00077 0.00179 0.870 0.841 0.815 0.792 

Fig. 1. ACE (left) and ADEA (right) average estimated Type I error rate at α = 5% in our experiments. 

Fig. 2. ACE (left) and ADEA (right) average estimated power at α = 5% in our experiments. 
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or rate ( A ) was very close to the nominal size of 5% for ADEA,

hereas these rates steadily increased from 5% to 6% as the num-

er of inputs in the DEA model increased from 2 to 8. 

Fig. 2 shows that the average estimated power of both meth-

ds increased with more DMUs in the model and decreased with

ore inputs, as expected. In comparison, ACE had a higher aver-

ge estimated power than ADEA in all model specifications, except

or those with 6–8 inputs and 20 DMUs, where ADEA was more

owerful than ACE. Notice that ACE critical values were close to

ero (i.e., about 0.001 and below) in the latter model specifica-

ions, indicating that ACE power decays to low levels as its criti-

al values get very close to zero, which is associated with a high

umber of inputs in the model. It is worth highlighting the follow-

ng characteristics of ADEA power curves: (i) A steep descent when

he number of inputs in the model increased from 3 to 4, and

ii) an asymptotic behavior starting at six inputs, which is an in-
ication that ADEA power slowly decreases beyond that number of

nputs. 

Fig. 3 illustrates that ACE and ADEA average strong type I error

ates ( B ) were low in all model specifications. Specifically, we can

ee that the average B rates were below 1.2%, indicating that more

han 3.8% of the 5% estimated type I error rate was associated with

he elimination of inputs with the minimum relevant parameter

alue, i.e., λrel = 0 . 1 . The B rates of both methods decreased as the

umber of DMUs increased, which is desirable. Notably, ACE aver-

ge B rates were below 0.2% in all model specifications with 30

r more DMUs. In comparison, ACE showed smaller B rates than

DEA in the experiments with three or more inputs, whereas the

pposite held for the experiments with two inputs. 

Fig. 4 shows that ADEA average tie-related type I error rates ( W )

ere very close to the nominal size α = 5% in the model specifica-

ions with four or more inputs. This is a consequence of how ADEA
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Fig. 3. ACE (left) and ADEA (right) average strong Type I error rate at α = 5% in our experiments. 

Fig. 4. ADEA average tie-related Type I error rate at α = 5% in our experiments. 
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calculates the relevance measures; ties are more likely to occur as

the number of variables in the model increases. Further, this be-

havior causes ADEA power to decrease significantly when the num-

ber of inputs increases from 3 to 4. In contrast, the W rates for ACE

were practically 0% for all model specifications. 

Finally, we can see in Fig. 5 that the average type I error im-

pact ( �) of both methods was small, being between −0.06 and 0

for most model specifications. Therefore, type I error did not sig-

nificantly decrease the correlation between the theoretical and es-

timated efficiencies of the DMUs. It is also clear that the magni-

tude of this impact was smaller with more inputs in the model and
Fig. 5. ACE (left) and ADEA (right) average Type I
lightly larger when the number of DMUs increased. Moreover, ACE

isplayed a better performance than ADEA regarding the D rates in

ll the experiments. 

. Conclusion 

In this paper, we proposed a methodology for calculating the

ritical values of relevance measures in variable selection methods

n DEA. In addition, we defined a set of performance metrics to

valuate these methods when using the critical values generated

y our methodology. We then conducted an extensive simulation

tudy in which we applied the proposed methodology to ACE and

DEA methods in 28 single-output model specifications (i.e., using

–8 inputs and 20, 30, 40, and 50 DMUs) for several different sce-

arios by varying the DGP factors. The main findings from these

imulations can be summarized as follows. 

The magnitude and behavior of the calculated critical values

cross all the model specifications were reasonable in relation to

he formulation of each method. The estimated type I error rate

hen using the calculated critical values was very close to the

ominal size, and the estimated power of both methods increased

ith more DMUs and decreased with more inputs in the DEA

odel. Notably, in most model specifications, the critical values of

CE could be estimated using a linear model with a high adjusted

 

2 , using the shape and spread of the input probability distribution

s independent variables, whereas the linear models for ADEA crit-

cal values also included the probability of an input being relevant

n the DEA model as an independent variable; thus, these mod-

ls could be used to estimate critical values for ACE and ADEA in
 error impact at α = 5% in our experiments. 
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ny single-output DEA model with 2–8 inputs and 20–50 DMUs, as

xplained in Section 5.1 . Moreover, the proportion of efficient

MUs in the sample, the shape and mean of the efficiency distri-

ution of non-efficient DMUs, and the functional form of the pro-

uction function did not have a significant impact on the calcu-

ated critical values. Therefore, the proposed methodology suitable

or generating critical values that are robust against the common

ssumptions in the literature regarding these four factors. 

In terms of performance, we observed that ACE usually

chieved higher power estimates than ADEA, except for the model

pecifications with a high number of inputs and a low number of

MUs (i.e., 6–8 inputs with 20 DMUs) where ADEA was more pow-

rful than ACE. Notably, ADEA power curves show an asymptotic

ehavior starting at six inputs, i.e., the power slowly decreases be-

ond that number of inputs. We identified ACE’s main drawback

o be the convergence of its critical values to zero as the num-

er of inputs increases because its power decreases given that the

verage change in the estimated efficiencies associated with the

limination of relevant inputs approaches zero, and such a change

s similar to that associated with irrelevant inputs. In comparison,

e identified ADEA’s main shortcoming to be the high occurrence

f ties where relevant and irrelevant inputs have the same rele-

ance measure (particularly when there are four or more inputs in

he model) since such ties have a notable negative impact on its

ower. Furthermore, for both methods, type I error was generally

ssociated with the elimination of inputs with the minimum rele-

ant parameter value used among all production functions. Addi-

ionally, the impact of type I errors on the correlation between the

heoretical and DEA estimated efficiencies of the DMUs was small

or both methods. 

Based on these findings, we conclude that our methodology

enerates consistent and rational results, and can be applied in any

ariable selection method based on a single relevance measure to

nd its critical values in a given single-output DEA model. Specifi-

ally, the inputs can be generated using the probability distribution

hat best fits the shape and average coefficient of variation of the

ctual inputs in the dataset, and the probability of an input be-
Table A1 

ANOVA of ACE critical values at α = 10% . 

Source of variation Sum of squares df 

Number of inputs 24.0896 6 

Number of DMUs 0.4831 3 

p rel 0.0021 3 

f form 0.0017 1 

F shape 0.2502 1 

F spread 1.3721 1 

φ 0.0134 1 

H shape 0.0004 1 

H mean 0.0095 1 

Residuals 3.4317 35,821

Total 29.6539 35,839

Table A2 

ANOVA for ADEA critical values at α = 10% . 

Source of variation Sum of squares df 

Number of inputs 1528.64 6 

Number of DMUs 34.90 3 

p rel 149.09 3 

f form 0.05 1 

F shape 13.31 1 

F spread 15.92 1 

φ 0.22 1 

H shape 0.06 1 

H mean 0.31 1 

Residuals 65.01 35,821

Total 1807.51 35,839
ng relevant can be adjusted based on the DEA user’ assessment

f how well-selected the inputs are. It is safe to assume that the

evels of the other four factors in the DGP can be set to one of the

ptions proposed in this paper since they do not have a signifi-

ant impact on the critical values, as noted above. It is also possi-

le to incorporate additional components into the data generation

rocess, such as input generation from a multivariate distribution

ith a correlation matrix, or limiting the theoretical relevance of

he inputs in the production function. 

Furthermore, our methodology addresses the following issues:

i) the lack of guidelines for choosing appropriate relevance mea-

ures thresholds based on observable characteristics of the dataset,

n order to apply variable selection methods based on such mea-

ures ( Nataraja & Johnson, 2011 ), and (ii) the fact that the re-

uired assumptions for performing statistical tests based on rele-

ance measures are not necessarily satisfied ( Sirvent et al., 2005 ). 

Suggestions for future research include: (i) implementing the

roposed methodology in the multi-output case; (ii) applying the

roposed methodology to other variable selection methods and

mproving the ACE and ADEA methods; (iii) analyzing the impact

f input-input and input-output correlations and the returns to

cale of the production function on the critical values; (iv) devel-

ping a variable selection approach by combining the results ob-

ained using the critical values of two or more variable selection

ethods. 
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ppendix A. Additional simulation study results 
Mean square F p -value 

4.0149 91908.67 0.0000 

0.1610 1680.74 0.0000 

0.0007 7.45 0.0001 

0.0017 17.85 0.0000 

0.2502 2612.10 0.0000 

1.3721 14322.12 0.0000 

0.0134 139.89 0.0000 

0.0004 3.75 0.0528 

0.0096 100.20 0.0000 

 0.0000096 

 

Mean square F p -value 

254.77 140383.99 0.0000 

11.63 6410.58 0.0000 

49.70 27384.59 0.0000 

0.05 25.54 0.0000 

13.31 7331.90 0.0000 

15.92 8771.55 0.0000 

0.22 118.59 0.0000 

0.06 34.10 0.0000 

0.31 172.00 0.0000 

 0.00181 
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Table A3 

Coefficients of linear models for ACE and ADEA critical values at α = 10% . 

Inputs DMUs ACE method ADEA method 

Intercept F shape F spread R 2 
adj 

Intercept F shape F spread p rel R 2 
adj 

2 20 0.0698 ∗∗∗ 0.0088 ∗∗∗ 0.0217 ∗∗∗ 0.90 0.335 ∗∗∗ 0 −0 . 004 ∗∗∗ −0 . 004 ∗ 0.10 

30 0.0774 ∗∗∗ 0.0098 ∗∗∗ 0.0240 ∗∗∗ 0.90 0.293 ∗∗∗ 0.001 ∗ −0 . 004 ∗∗∗ −0 . 003 0.13 

40 0.0823 ∗∗∗ 0.0104 ∗∗∗ 0.0257 ∗∗∗ 0.90 0.273 ∗∗∗ 0.001 ∗∗∗ −0 . 003 ∗∗∗ −0 . 004 ∗∗ 0.14 

50 0.0860 ∗∗∗ 0.0108 ∗∗∗ 0.0268 ∗∗∗ 0.90 0.258 ∗∗∗ 0.001 ∗∗∗ −0 . 002 ∗∗∗ −0 . 001 0.11 

3 20 0.0265 ∗∗∗ 0.0035 ∗∗∗ 0.0083 ∗∗∗ 0.91 0.300 ∗∗∗ 0.011 ∗∗∗ 0.009 ∗∗∗ 0.297 ∗∗∗ 0.89 

30 0.0333 ∗∗∗ 0.0039 ∗∗∗ 0.0098 ∗∗∗ 0.93 0.302 ∗∗∗ 0.009 ∗∗∗ 0.009 ∗∗∗ 0.246 ∗∗∗ 0.82 

40 0.0376 ∗∗∗ 0.0039 ∗∗∗ 0.0108 ∗∗∗ 0.93 0.362 ∗∗∗ 0.011 ∗∗∗ 0.015 ∗∗∗ 0.141 ∗∗∗ 0.72 

50 0.0407 ∗∗∗ 0.0040 ∗∗∗ 0.0116 ∗∗∗ 0.94 0.414 ∗∗∗ 0.012 ∗∗∗ 0.017 ∗∗∗ 0.052 ∗∗∗ 0.73 

4 20 0.0103 ∗∗∗ 0.0017 ∗∗∗ 0.0030 ∗∗∗ 0.83 0.386 ∗∗∗ 0.022 ∗∗∗ 0.025 ∗∗∗ 0.374 ∗∗∗ 0.95 

30 0.0165 ∗∗∗ 0.0025 ∗∗∗ 0.0049 ∗∗∗ 0.89 0.338 ∗∗∗ 0.020 ∗∗∗ 0.022 ∗∗∗ 0.363 ∗∗∗ 0.95 

40 0.0208 ∗∗∗ 0.0028 ∗∗∗ 0.0060 ∗∗∗ 0.92 0.314 ∗∗∗ 0.018 ∗∗∗ 0.018 ∗∗∗ 0.344 ∗∗∗ 0.94 

50 0.0240 ∗∗∗ 0.0029 ∗∗∗ 0.0068 ∗∗∗ 0.93 0.299 ∗∗∗ 0.017 ∗∗∗ 0.014 ∗∗∗ 0.328 ∗∗∗ 0.93 

5 20 0.0035 ∗∗∗ 0.0006 ∗∗∗ 0.0007 ∗∗∗ 0.68 0.461 ∗∗∗ 0.028 ∗∗∗ 0.032 ∗∗∗ 0.436 ∗∗∗ 0.96 

30 0.0078 ∗∗∗ 0.0012 ∗∗∗ 0.0020 ∗∗∗ 0.83 0.392 ∗∗∗ 0.027 ∗∗∗ 0.029 ∗∗∗ 0.461 ∗∗∗ 0.96 

40 0.0112 ∗∗∗ 0.0017 ∗∗∗ 0.0030 ∗∗∗ 0.87 0.357 ∗∗∗ 0.027 ∗∗∗ 0.027 ∗∗∗ 0.458 ∗∗∗ 0.96 

50 0.0141 ∗∗∗ 0.0020 ∗∗∗ 0.0039 ∗∗∗ 0.90 0.336 ∗∗∗ 0.026 ∗∗∗ 0.025 ∗∗∗ 0.449 ∗∗∗ 0.96 

6 20 0.0007 ∗∗∗ 0 ∗∗∗ −0 . 0 0 01 ∗∗∗ 0.17 0.543 ∗∗∗ 0.027 ∗∗∗ 0.035 ∗∗∗ 0.439 ∗∗∗ 0.96 

30 0.0034 ∗∗∗ 0.0004 ∗∗∗ 0.0005 ∗∗∗ 0.61 0.470 ∗∗∗ 0.029 ∗∗∗ 0.033 ∗∗∗ 0.487 ∗∗∗ 0.97 

40 0.0058 ∗∗∗ 0.0008 ∗∗∗ 0.0012 ∗∗∗ 0.76 0.423 ∗∗∗ 0.030 ∗∗∗ 0.032 ∗∗∗ 0.509 ∗∗∗ 0.97 

50 0.0079 ∗∗∗ 0.0011 ∗∗∗ 0.0018 ∗∗∗ 0.82 0.391 ∗∗∗ 0.031 ∗∗∗ 0.031 ∗∗∗ 0.519 ∗∗∗ 0.97 

7 20 0.00004 ∗∗∗ 0.00001 ∗∗∗ −0 . 0 0 0 03 ∗∗∗ 0.45 0.635 ∗∗∗ 0.021 ∗∗∗ 0.031 ∗∗∗ 0.386 ∗∗∗ 0.93 

30 0.00131 ∗∗∗ 0.00006 ∗∗∗ −0 . 0 0 0 07 ∗∗∗ 0.06 0.558 ∗∗∗ 0.025 ∗∗∗ 0.031 ∗∗∗ 0.458 ∗∗∗ 0.96 

40 0.00291 ∗∗∗ 0.00028 ∗∗∗ 0.00026 ∗∗∗ 0.36 0.504 ∗∗∗ 0.028 ∗∗∗ 0.032 ∗∗∗ 0.502 ∗∗∗ 0.97 

50 0.00444 ∗∗∗ 0.00051 ∗∗∗ 0.00067 ∗∗∗ 0.61 0.463 ∗∗∗ 0.030 ∗∗∗ 0.032 ∗∗∗ 0.531 ∗∗∗ 0.98 

8 20 0 ∗∗∗ 0 0 ∗∗∗ 0.01 0.721 ∗∗∗ 0.017 ∗∗∗ 0.025 ∗∗∗ 0.311 ∗∗∗ 0.87 

30 0.00037 ∗∗∗ −0 . 0 0 0 04 ∗∗∗ −0 . 0 0 019 ∗∗∗ 0.59 0.649 ∗∗∗ 0.020 ∗∗∗ 0.026 ∗∗∗ 0.390 ∗∗∗ 0.92 

40 0.00136 ∗∗∗ −0 . 0 0 0 01 −0 . 0 0 015 ∗∗∗ 0.15 0.594 ∗∗∗ 0.023 ∗∗∗ 0.027 ∗∗∗ 0.446 ∗∗∗ 0.94 

50 0.00240 ∗∗∗ 0.00011 ∗∗∗ 0.00005 ∗∗∗ 0.06 0.550 ∗∗∗ 0.026 ∗∗∗ 0.028 ∗∗∗ 0.488 ∗∗∗ 0.95 

∗ , ∗∗ and ∗∗∗ denote significance at the level of 0.05, 0.01 and 0.001, respectively. 

Table A4 

Suggested default ACE and ADEA critical values at α = 10% . 

ACE method ADEA method 

Number of inputs Number of DMUs Number of DMUs 

20 30 40 50 20 30 40 50 

2 0.0827 0.0916 0.0976 0.1020 0.329 0.286 0.267 0.254 

3 0.0313 0.0392 0.0445 0.0483 0.476 0.450 0.451 0.450 

4 0.0116 0.0189 0.0240 0.0279 0.613 0.558 0.520 0.493 

5 0.0026 0.0086 0.0125 0.0160 0.727 0.671 0.632 0.604 

6 0.0006 0.0035 0.0062 0.0086 0.814 0.766 0.730 0.702 

7 0 0.00118 0.00289 0.00460 0.877 0.839 0.809 0.784 

8 0 0.00022 0.00122 0.00234 0.916 0.889 0.866 0.845 
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Table A5 

ACE and ADEA average performance metrics at α = 5% in our experiments. 

Inputs DMUs ACE ADEA 

A α (%) P α (%) B α (%) W α (%) �α A α (%) P α (%) B α (%) W α (%) �α

2 20 5.11 99.41 0.21 0 −0 . 056 5.15 87.91 0.01 0 −0 . 085 

30 5.11 99.98 0.07 0 −0 . 059 5.14 95.51 0 0.00 −0 . 083 

40 5.12 100.00 0.03 0 −0 . 061 5.15 98.28 0 0.00 −0 . 082 

50 5.12 100.00 0.02 0 −0 . 063 5.15 99.32 0 0.00 −0 . 081 

3 20 5.18 81.90 0.18 0 −0 . 034 5.16 47.07 0.32 3.63 −0 . 059 

30 5.18 95.72 0.04 0 −0 . 038 5.19 66.85 0.08 3.32 −0 . 061 

40 5.16 99.09 0.01 0 −0 . 040 5.20 83.87 0.02 2.73 −0 . 062 

50 5.17 99.85 0.01 0 −0 . 042 5.13 93.71 0 1.81 −0 . 063 

4 20 5.28 53.64 0.23 0 −0 . 014 5.12 34.02 0.61 4.55 −0 . 044 

30 5.35 77.89 0.06 0 −0 . 022 5.14 39.88 0.25 4.76 −0 . 044 

40 5.33 91.05 0.02 0 −0 . 027 5.15 45.37 0.07 4.88 −0 . 045 

50 5.36 96.71 0.01 0 −0 . 029 5.17 51.07 0.02 4.97 −0 . 048 

5 20 5.36 33.09 0.32 0 −0 . 003 5.10 28.84 0.88 4.73 −0 . 032 

30 5.46 55.90 0.07 0 −0 . 010 5.11 32.64 0.51 4.87 −0 . 035 

40 5.59 74.22 0.01 0 −0 . 014 5.13 36.33 0.26 4.97 −0 . 036 

50 5.72 86.43 0.01 0 −0 . 017 5.13 39.62 0.14 5.03 −0 . 037 

6 20 5.76 20.37 0.45 0 0 5.09 24.54 1.03 4.81 −0 . 023 

30 5.48 36.68 0.10 0 −0 . 003 5.10 27.76 0.69 4.91 −0 . 026 

40 5.77 54.17 0.03 0 −0 . 006 5.10 30.31 0.47 4.98 −0 . 028 

50 6.11 70.08 0.01 0 −0 . 009 5.10 32.76 0.31 5.03 −0 . 028 

7 20 6.99 13.33 0.73 0.01 0 5.05 21.20 1.13 4.78 −0 . 016 

30 5.60 24.46 0.15 0 0 5.05 23.97 0.85 4.91 −0 . 019 

40 5.73 37.77 0.05 0 −0 . 002 5.09 26.35 0.64 4.99 −0 . 021 

50 6.06 52.79 0.01 0 −0 . 003 5.10 28.12 0.47 5.05 −0 . 022 

8 20 5.48 6.43 0.69 0.03 0 4.99 17.89 1.16 4.62 −0 . 010 

30 6.30 16.61 0.17 0 0 5.00 20.55 0.93 4.77 −0 . 012 

40 5.70 25.99 0.05 0 0 5.05 22.72 0.76 4.90 −0 . 014 

50 6.04 37.10 0.02 0 −0 . 001 5.05 24.04 0.61 4.96 −0 . 016 

Table A6 

ACE and ADEA average performance metrics at α = 10% in our experiments. 

Inputs DMUs ACE ADEA 

A α(%) P α (%) B α (%) W α(%) �α A α (%) P α(%) B α (%) W α (%) �α

2 20 10.11 99.85 0.74 0 −0 . 060 10.16 93.80 0.08 0 −0 . 083 

30 10.12 100.00 0.32 0 −0 . 062 10.16 97.74 0.01 0 −0 . 081 

40 10.13 100.00 0.16 0 −0 . 064 10.16 99.14 0 0.00 −0 . 080 

50 10.14 100.00 0.08 0 −0 . 066 10.14 99.67 0 0.00 −0 . 080 

3 20 10.18 89.09 0.46 0 −0 . 037 10.14 62.71 1.09 5.88 −0 . 063 

30 10.16 97.87 0.13 0 −0 . 039 10.15 80.42 0.34 4.98 −0 . 061 

40 10.18 99.61 0.04 0 −0 . 041 10.13 91.85 0.09 3.56 −0 . 061 

50 10.17 99.95 0.01 0 −0 . 043 10.11 96.81 0.02 2.03 −0 . 061 

4 20 10.27 65.71 0.54 0 −0 . 018 10.10 47.06 1.72 8.35 −0 . 046 

30 10.28 85.65 0.14 0 −0 . 024 10.12 53.55 0.85 8.69 −0 . 045 

40 10.35 94.76 0.04 0 −0 . 028 10.14 58.87 0.32 8.90 −0 . 045 

50 10.31 98.25 0.02 0 −0 . 030 10.16 64.20 0.13 9.00 −0 . 045 

5 20 10.28 45.66 0.66 0 −0 . 005 10.09 41.28 2.23 8.92 −0 . 034 

30 10.40 67.29 0.17 0 −0 . 012 10.09 45.47 1.42 9.20 −0 . 036 

40 10.54 82.56 0.04 0 −0 . 016 10.10 49.43 0.86 9.42 −0 . 036 

50 10.60 91.56 0.02 0 −0 . 019 10.13 52.40 0.49 9.58 −0 . 036 

6 20 10.41 31.06 0.84 0 0 10.02 35.94 2.47 9.15 −0 . 024 

30 10.46 49.42 0.22 0 −0 . 004 10.08 39.91 1.78 9.40 −0 . 027 

40 10.61 65.98 0.08 0 −0 . 007 10.08 42.68 1.31 9.57 −0 . 028 

50 10.92 79.22 0.03 0 −0 . 010 10.10 45.35 0.93 9.68 −0 . 029 

7 20 11.58 21.43 1.15 0.01 0 9.93 31.33 2.64 9.03 −0 . 016 

30 10.44 36.21 0.28 0 −0 . 001 10.01 35.10 2.08 9.39 −0 . 019 

40 10.64 50.13 0.12 0 −0 . 002 10.03 37.84 1.61 9.59 −0 . 021 

50 10.87 64.29 0.03 0 −0 . 004 10.03 40.00 1.24 9.71 −0 . 022 

8 20 11.03 13.67 1.29 0.04 0 9.89 26.97 2.67 8.85 −0 . 010 

30 10.97 26.46 0.33 0 0 9.98 30.38 2.23 9.20 −0 . 012 

40 10.58 37.72 0.10 0 0 9.98 32.94 1.84 9.39 −0 . 014 

50 10.86 49.40 0.03 0 −0 . 001 9.97 34.82 1.53 9.52 −0 . 015 
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Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.ejor.2020.08.021 . 
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