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ABSTRACT 

In this paper, a deterministic bounding procedure for the global optimization of a mixed-integer bi-level 

programming problem is proposed. The aim has been to develop an efficient algorithm to deal with a 

case study in the electricity retail market. In this problem, an electricity retailer wants to define a time-

of-use tariff structure to maximize profits, but he has to take into account the consumers’ reaction by 

means of re-scheduling appliance operation to minimize costs. The problem has been formulated as a 

bi-level mixed-integer programming model. 

The algorithm we propose uses optimal-value-function reformulations based on similar principles as 

the ones that have been used by other authors, which are adapted to the characteristics of this type of 

(pricing optimization) problems where no upper (lower) level variables appear in the lower (upper) 

level constraints. The overall strategy consists of generating a series of convergent upper bounds and 

lower bounds for the upper-level objective function until the difference between these bounds is below 

a given threshold. Computational results are presented as well as a comparison with a hybrid approach 

combining a particle swarm optimization algorithm to deal with the upper-level problem and an exact 

solver to tackle the lower-level problem, which we have previously developed to address a similar case 

study. When the lower-level model is difficult, a significant relative MIP gap is unavoidable when 

solving the algorithm’s subproblems. Novel reformulations of those subproblems using “elastic” 

variables are proposed trying to obtain meaningful lower/upper bounds within an acceptable 

computational time. 
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1. Introduction 

This work presents a deterministic bounding procedure for the global optimization of a certain class of 

mixed-integer bi-level programming problems. The algorithm generates a series of convergent upper 

bounds and lower bounds for the upper-level objective function until the difference between these 

bounds is below a given threshold. 

This algorithmic approach has been motivated by a case study dealing with the setting of time-of-use 

(ToU) prices in the electricity retail market. In these pricing schemes, the retailer establishes time-

differentiated prices, usually with higher rates during peak demand periods. This type of tariff structure 

is already offered in electricity retail markets with the price structure valid for long periods (e.g., one-

year contract), but it is expected to become more dynamic (e.g., announced 24 or 48-hour ahead) with 

the evolution to smart grids, enabling to make a better use of supply availability, network assets and 

demand flexibility. 

Bi-level (BL) programming models have been recently used to design ToU tariffs in the electricity retail 

market modelling the interaction between the electricity retailer and residential consumers (Meng and 

Zeng, 2013; Zugno et al., 2013; Alves et al., 2016; Sekizaki et al., 2016; Soares et al., 2020). A trilevel 

energy market model for load shifting induced by ToU pricing has been reported by Aussel et al. (2020) 

involving suppliers, local agents, aggregators and consumers. 

A BL optimization model has a leader-follower hierarchical structure, in which the upper-level (UL) 

problem is associated with the leader’s interests and the lower-level (LL) problem arises as a constraint 

of the UL problem addressing the follower’s perspective. Therefore, the leader should integrate the 

reaction of the follower in his decision process. In the context of defining ToU electricity tariffs, the 

leader is the retailer, who defines the prices aiming to maximize the profit, and the follower is the 

consumer (or a cluster of consumers with similar consumption patterns), who reacts to the time-

differentiated prices set by the retailer by redefining the operation of appliances taking into account his 

comfort requirements to minimize costs. 

BL problems are, in general, very difficult to solve to optimality. To circumvent the inherent 

complexities of these problems, it is crucial to develop methodological approaches that consider the 

structure and features of the BL model. In the BL approaches previously developed by the authors to 

deal with the problem of optimizing electricity tariffs (Alves et al., 2016; Soares et al., 2020), 

metaheuristics (particle swarm optimization – PSO – and genetic algorithms – GA) have been used to 

perform the UL search for prices, calling a mixed-integer linear programming (MILP) solver to address 

the LL problem for each price setting. In (Alves et al. 2016), only shiftable appliances (loads for which 

the operation cycle cannot be interrupted once initiated) were considered in the consumer’s energy 

management problem. The BL problem was extended in (Soares et al., 2020)  to also incorporate in the 

LL problem interruptible appliances (loads whose operation can be interrupted as long as a given 

amount of energy is supplied during a specified time slot) and a thermostatic load (air conditioning 

system). However, the modeling of the thermostat behavior imposes a much higher computational 
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effort, which may turn it difficult to find exact optimal LL solutions within an acceptable computational 

time. 

The BL models in (Alves et al., 2016; Soares et al., 2020) incorporate the physical-based features related 

with the control and operation of the appliances, which are essential to develop a realistic representation 

of the consumer’s problem. However, the physical modelling of the appliance operation cycles (e.g. a 

dishwasher or a laundry machine) or the thermostat hysteresis in the temperature control of an air 

conditioning system gives rise to a highly combinatorial model with many binary variables and 

constraints. 

The models we have developed are mixed-integer nonlinear BL (MINLBL) models. The nonlinearities 

result from the product of UL variables by LL variables, which means that all functions in the LL 

problem become linear when the UL variables are instantiated and, therefore, the LL can be solved by 

a general MILP solver. Hybrid approaches integrating a metaheuristic to search for UL solutions and 

an exact solver to solve the corresponding LL problems are interesting because they enable to obtain 

optimal solutions to the LL for a given (feasible) instantiation of the UL variables. However, they may 

present difficulties to obtain the global optimal solution due to the vastness of the UL search space. 

The current work aims at developing a novel approach that can find exact global solutions within a 

given optimality tolerance, displaying a computational efficiency higher than the hybrid approaches. 

This new approach is based on distinct methodological principles generally called optimal-value-

function reformulations. Since our MINLBL model can be equivalently written as a mixed-integer 

linear BL (MILBL) problem, both MINLBL and MILBL approaches may be of interest for the problem 

of designing ToU tariffs and, in general, for other BL pricing problems that involve continuous and 

integer variables. 

BL problems with discrete variables pose major algorithmic challenges in the development of efficient 

solution strategies. Concerning mixed-integer BL problems, a few exact procedures have been 

developed that allow for integer variables controlled by the follower (LL variables). Algorithms for 

nonlinear problems have received even less attention in literature, for which almost no extensive study 

has been performed so far. 

DeNegre and Ralphs (2009) built up on the ideas of the first branch-and-bound method developed by 

Moore and Bard (1990) for MILBL and developed a branch-and-cut algorithm for the linear BL case 

in which all variables are integer and the UL constraints do not include LL variables. Xu and Wang 

(2014) presented a branch-and-bound algorithm for MILBL problems where all UL variables are 

integer, as well as the values of their functions in the LL constraints.  The algorithm branches on these 

functions, generating multiple branches at each node. Another branch-and-cut algorithm for MILBL 

problems has been proposed by Caramia and Mari (2015), which works with integer UL and LL 

variables. Fischetti et al. (2017) also proposed a branch-and-cut for MILBL problems, which extends 

the valid intersection cuts for MILBL proposed in (Fischetti et al., 2016). In (Fischetti et al., 2017), new 

BL-specific preprocessing procedures and a general branch-and-cut exact method are developed, whose 
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finite convergence relies on the assumption that continuous UL variables do not appear in the LL 

problem. 

A different approach has been proposed by Zeng and An (2014) for MILBL problems, allowing 

continuous and integer variables in both levels. The computation scheme is based on single-level 

reformulations and decomposition strategies (there is a master problem and subproblems). The 

reformulation involves the use of Karush-Kuhn-Tucker conditions, being the master problem a MILP 

problem with complementarity constraints. 

Concerning methods for MINLBL problems, Gümüş and Floudas (2005) proposed a deterministic 

global optimization method in which the LL program involves functions that are convex with respect 

to the continuous LL variables and multilinear with respect to the integer LL variables. Kleniati and 

Adjiman (2015) presented a generalization for MINLBL of the branch-and-sandwich algorithm 

previously proposed by the same authors for BL problems with continuous variables. The algorithm is 

demanding from the implementation standpoint as it requires two branch-and-bound trees. 

The works of Mitsos (2010) and Lozano and Smith (2017) are representative of optimal-value-function 

reformulation approaches. Mitsos (2010) proposed a deterministic algorithm for general MINLBL 

problems to obtain a sequence of increasingly tighter upper and lower bounds. The algorithm finishes 

when the difference between these bounds is below a given tolerance , ensuring -convergence of the 

algorithm. Lozano and Smith (2017) proposed an exact finite algorithm based on a sample scheme for 

the follower’s solutions. Both methods solve a relaxation of the BL problem with disjunctive constraints 

generated from optimal follower’s responses (already known) to obtain upper bounds for the 

maximizing UL objective function. BL feasible solutions are used to obtain lower bounds. Lozano and 

Smith (2017) address the particular case in which all UL variables are integer and the functions of these 

variables in the LL constraints are also integer valued, profiting from this assumption to strengthen the 

formulation and prove convergence to an optimal global solution. Mitsos (2010) and Lozano and Smith 

(2017) do not prescribe tailored techniques for solving the subproblems that arise in their procedures, 

assuming that these subproblems are solved by appropriate algorithms available in the literature. 

Therefore, for the nonlinear cases, an implicit assumption is that the functions involved in the 

formulations of the UL and the LL problems satisfy the requirements to be solved by the mixed-integer 

nonlinear programming (MINLP) solvers. 

The mixed-integer BL model we have to deal with has the following particular characteristics: LL 

constraints do not include UL variables and UL constraints do not include LL variables. These features 

enabled the development of an algorithm based on optimal-value-function reformulations, which is a 

modification of the algorithms proposed by Mitsos (2010) and Lozano and Smith (2017) adapted to this 

type of problems, displaying a very efficient computational performance. Moreover, the MINLBL 

problem we deal with has the additional particularity: the nonlinearities only arise in the objective 

functions and result from products of continuous variables by binary variables. This characteristic 

allows both (UL and LL) objective functions to be rewritten equivalently as linear functions, at the 
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expense of additional variables and constraints. Although the size of the problem is significantly 

increased with this transformation, it allows the sub-problems solved within the algorithm to be tackled 

by a state-of-the-art MILP solver. Our algorithmic proposal has a special concern with the application 

in challenging real-word problems regarding convergence, implementation simplicity and 

computational efficiency. Being efficient and easy to implement, our algorithm can be very useful to 

other authors dealing with problems with the same features as ours. 

The main contribution of this paper is the development of a deterministic bounding procedure (DBP) 

belonging to the family of optimal-value-function approaches for the global optimization of a BL 

dynamic pricing model in the electricity retail market (which can be applied to other problems with the 

characteristics mentioned above). The performance of this new approach is compared with hybrid 

approaches previously developed by the authors, regarding solution quality and computational effort. 

Moreover, further techniques are proposed for cases in which the subproblems to compute lower/upper 

bounds cannot be solved to optimality in a reasonable computational time, as arises frequently in 

practice. 

The manuscript is organized as follows. Section 2 introduces the formulation and the main concepts of 

bilevel optimization. Section 3 presents the DBP foundations and its algorithm. Section 4 presents a BL 

model of the interaction between an electricity retailer and a cluster of residential consumers, similar to 

the one in (Alves et al., 2016), reformulated as a linear mixed-integer BL problem. The results of the 

DBP applied to this model are discussed in Section 5. Section 6 describes the reformulation as a MILBL 

problem of the extended BL model including a thermostatic load in the consumer’s problem in (Soares 

et al., 2020). The improvements in the algorithm so that it can deal with this more challenging model 

are described in Section 7, whose results are presented in Section 8. The conclusions are drawn in 

section 9. 

 

2. Bilevel optimization  

A BL programming model comprises two optimization problems hierarchically related. These problems 

involve distinct decision makers, each one controlling a different set of decision variables. The UL 

decision maker is the leader, being the first to set the values of his decision variables to optimize his 

objective function anticipating the response of the follower. The LL decision maker is the follower, 

who reacts to the leader’s decision by optimizing his objective function in the feasible region 

constrained by the instantiation of the UL variables. A general formulation of BL problems can be 

stated as follows. Without loss of generality we consider that the UL objective is to be maximized and 

the LL objective function is to be minimized, as this is the direction of optimization in our case study: 

"max"
𝑥∈𝑋

𝐹(𝑥, 𝑦) 

 s.t.  𝐺(𝑥, 𝑦) ≤ 0 

𝑦 ∈ arg min
𝑦′∈𝑌

{𝑓(𝑥, 𝑦′): 𝑔(𝑥, 𝑦′) ≤ 0} 
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where 𝑋 ⊂ ℝ𝑛 and 𝑌 ⊂ ℝ𝑚 are compact sets with n being the number of UL decision variables 

controlled by the leader and m the number of LL decision variables controlled by the follower. In a 

mixed-integer BL problem, 𝑋 and 𝑌 may also include integrality constraints for all or some of the 𝑥 

and 𝑦 variables, respectively. 𝐹(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) are the leader’s and the follower’s objective functions, 

respectively; 𝐺(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are the corresponding constraint functions.  

In face of the decision variables 𝑥 ∈ 𝑋 set by the leader, the feasible and the rational reaction sets of 

the follower are 𝑌(𝑥) = {𝑦 ∈ 𝑌: 𝑔(𝑥, 𝑦) ≤ 0} and Ψ(𝑥) = {𝑦 ∈ 𝑌: 𝑦 ∈ arg min
𝑦′∈𝑌(𝑥)

𝑓(𝑥, 𝑦′)}, 

respectively.  

The constraint set of the BL problem is 𝑆 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌: 𝐺(𝑥, 𝑦) ≤ 0, 𝑔(𝑥, 𝑦) ≤ 0}. The feasible 

set of the BL problem, which is generally called induced (or inducible) region, is 𝐼𝑅 =

{(𝑥, 𝑦): (𝑥, 𝑦) ∈ 𝑆, 𝑦 ∈ Ψ(𝑥)}. 

Finding a global optimal solution to a BL optimization problem remains a great challenge due to its 

inherent non-convexity, since even the linear BL problem is NP-hard. 

Even in the linear case with all variables being continuous and assuming non-emptiness and 

compactness of 𝑆, BL problems with UL constraints involving both UL and the LL variables (generally 

called connecting constraints) may have no optimal solution (Mersha and Dempe, 2006). In addition, if 

there are no connecting constraints but the BL (linear) problem has UL continuous variables and LL 

discrete variables, it also may have no optimal solution because the induced region may be not closed 

(thus being noncompact) (Vicente et al., 1996). 

The quotation marks in the UL objective function of the general formulation of the BL problem express 

the ambiguity of the value F(x, y) from the leader’s point-of-view (who has control over x only) in case 

of multiple optimal solutions to the LL problem. To overcome this ambiguity, the optimistic or the 

pessimist approach can be adopted. The optimistic approach assumes that the follower selects a solution 

𝑦 ∈ Ψ(𝑥) that maximizes F among all alternative optimal solutions to his problem, thus benefiting the 

leader. The pessimistic approach assumes that the follower selects the worst solution for the leader 

among the LL optimal solutions. The optimistic approach has been the most often used, and we also 

consider it in this work. The optimistic approach of the BL problem is equivalent to maximize the UL 

objective function with respect to both x and y, i.e., max 
𝑥∈𝑋,𝑦∈𝑌

𝐹(𝑥, 𝑦). 

 

3. A deterministic bounding procedure for the global optimization of a class of mixed-integer BL 

problems 

In this section, a deterministic bounding procedure (DBP) is developed, which uses optimal-value-

function reformulations to obtain increasingly tighter bounds following a structure of steps similar to 

(Mitsos, 2010). The algorithm we propose is devoted to mixed-integer BL problems with the following 

characteristics: neither UL constraints include LL variables, nor LL constraints include UL decision 
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variables. These characteristics are present in our models to optimize ToU electricity tariffs as well as 

in other pricing problems. The exploitation of these features has a strong impact on the computational 

effort required.  

 

3.1. Foundations 

The optimistic formulation for the class of BL models to be addressed is 

max
𝑥∈𝑋,𝑦∈𝑌

𝐹(𝑥, 𝑦)        (P1) 

 s.t.  𝐺(𝑥) ≤ 0 

𝑦 ∈ arg min
𝑦′∈𝑌

{𝑓(𝑥, 𝑦′): 𝑔(𝑦′) ≤ 0}  

The vectors of decision variables 𝑥 ∈ 𝑋 and/or 𝑦 ∈ 𝑌 may include continuous and integer variables. 

Problem (P2), in which the UL objective function is optimized over the constraint set (S) of the BL 

problem, is designated as the high point relaxation (HPR) of the BL problem (P1): 

 max
𝑥∈𝑋,𝑦∈𝑌

𝐹(𝑥, 𝑦)        (P2) 

 s.t.    𝐺(𝑥) ≤ 0 

𝑔(𝑦) ≤ 0 

In our models (which will be detailed in Sections 4 and 6), the HPR was originally a MINLP problem 

because 𝐹(𝑥, 𝑦) was a nonlinear function. However, since the nonlinearity resulted from products of 

continuous variables x by binary variables y, the objective function could be linearized using additional 

variables and constraints, which allows the HPR to be tackled by a general MILP solver. 

The optimal solution to the HPR gives an upper bound (𝑈𝐵𝐹) for the optimal value of F in (P1). 

Let 𝑥𝑢 be a leader’s solution such that 𝑥𝑢 ∈ 𝑋, 𝐺(𝑥𝑢) ≤ 0. The LL problem (P3) gives the follower’s 

reaction set for 𝑥𝑢: 

min
𝑦∈𝑌

𝑓(𝑥𝑢, 𝑦)        (P3) 

 s.t. 𝑔(𝑦) ≤ 0 

If 𝑦′ is the unique optimal solution to (P3) for 𝑥𝑢 then 𝐹(𝑥𝑢, 𝑦′) is a lower bound (𝐿𝐵𝐹) for the optimal 

value of F in (P1). Since the UL constraints do not include LL decision variables y, then (𝑥𝑢, 𝑦′) is 

surely a feasible solution to the BL problem (P1).  

If the LL problem (P3) has alternative optimal solutions for a given 𝑥𝑢, then our algorithm searches for 

the alternative 𝑦′ that provides the best value for F, following an optimistic approach. 

 

Lemma 1: Let 𝑓𝑢∗ be the optimal value of 𝑓 in (P3) for a given 𝑥𝑢 ∈ 𝑋, 𝐺(𝑥𝑢) ≤ 0. If (P3) has 

alternative optimal solutions, then problem (P4) gives a 𝐿𝐵𝐹  for the optimistic optimal 𝐹∗ to (P1): 

max
𝑦∈𝑌

𝐹(𝑥𝑢, 𝑦)        (P4) 

 s.t.  𝑔(𝑦) ≤ 0 

𝑓(𝑥𝑢, 𝑦) ≤ 𝑓𝑢∗ 



   

 10 

Proof: Let (𝑥𝑢, 𝑦′) be an optimal solution to (P4). Since 𝑓(𝑥𝑢, 𝑦′) ≤ 𝑓𝑢∗ , then (𝑥𝑢, 𝑦′) is also optimal 

to (P3) and provides the best 𝐹 among the alternative optimal solutions of (P3) due to the objective 

function of (P4). Thus, it provides a lower bound for F in the optimistic optimal solution to (P1). • 

 

In order to avoid numerical difficulties arising from the fact that 𝑓𝑢∗ are floating point numbers, a small 

positive tolerance 𝜀′ is allowed on 𝑓𝑢∗ (i. e., 𝑓𝑢∗ + 𝜀′ ) in problem (P4) solved in Step 3 of the 

algorithm presented below, thus ensuring feasibility of (P4). Consequently, an 𝜀′-optimal solution at 

the LL is accepted (as in Mitsos et al. (2008); Mitsos (2010)).  

 

Let 𝑥𝑢1, 𝑥𝑢2, . . . , 𝑥𝑢𝐾 be a series of leader’s solutions, 𝑥𝑢𝑘 ∈ 𝑋, 𝐺(𝑥𝑢𝑘) ≤ 0, 𝑘 = 1, . . . , 𝐾, and 

𝑦1, 𝑦2, . . . , 𝑦𝐾 the corresponding follower’s solutions obtained by solving (P3)+(P4) for each 𝑥𝑢𝑘, 𝑘 =

1, . . . , 𝐾. 

Consider the HPR problem with additional constraints (P5): 

  max
𝑥∈𝑋,𝑦∈𝑌

𝐹(𝑥, 𝑦)        (P5) 

 s.t.       𝐺(𝑥) ≤ 0 

𝑔(𝑦) ≤ 0 

                                      𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦𝑘),   𝑘 = 1, . . . , 𝐾 

 

Lemma 2: An optimal solution to (P5) gives an upper bound (𝑈𝐵𝐹) for the optimal value of F in (P1). 

Proof: Solutions 𝑦1, 𝑦2, . . . , 𝑦𝐾 , 𝑘 = 1, . . . , 𝐾 are feasible to the LL problem of (P1) for any 𝑥 because 

the LL constraints do not depend on 𝑥. Therefore, for any 𝑥′, the value  𝑓′
∗
= min

𝑦∈𝑌
 {𝑓(𝑥′, 𝑦): 𝑔(𝑦) ≤

0} satisfies 𝑓′
∗
≤ 𝑓(𝑥′, 𝑦𝑘), 𝑘 = 1, . . . , 𝐾, which means that the constraints 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦𝑘), 𝑘 =

1, . . . , 𝐾 do not eliminate any optimal solution to the LL problem, i.e., no feasible solution of (P1) is 

eliminated by (P5). Thus, (P5) is a relaxation of (P1) which ensures that an 𝑈𝐵𝐹 to (P1) is obtained. • 

 

After obtaining a first pair of bounds for the optimal value of 𝐹, [𝐿𝐵𝐹 , 𝑈𝐵𝐹], the HPR including the 

constraint 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦1) for the first LL solution 𝑦1 is solved (i.e., P5 is solved for 𝑘 = 1) leading 

to a new UL solution 𝑥𝑢2. Lemma 3 below proves that an optimal solution to the BL problem (P1) is 

found if the same 𝑥𝑢 is obtained. Otherwise, the LL problem is solved for 𝑥𝑢2, yielding a new LL 

optimistic solution 𝑦2 (obtained by solving P4). This solution defines another constraint valid for all 

(𝑥, 𝑦), 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦2), which is included in (P5), and the process continues. 

 

Lemma 3: Let 𝑥𝑢𝐾 be the UL solution obtained by solving (P5) with 𝐾 − 1  additional constraints  (𝑘 =

1, . . . , 𝐾 − 1) and let 𝑦𝐾 be the solution obtained by (P4) for 𝑥𝑢𝐾 . The constraint 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦𝐾) is 
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added to (P5). Let 𝑥𝑢(𝐾+1) be the UL solution obtained by (P5) with 𝐾 additional constraints (𝑘 =

1, . . . , 𝐾).  If  𝑥𝑢(𝐾+1) = 𝑥𝑢𝐾 then an optimal optimistic solution to (P1) has been found. 

Proof: By Lemma 1, 𝐿𝐵𝐹 = 𝐹(𝑥
𝑢𝐾 , 𝑦𝐾) is a lower bound for the optimal optimistic 𝐹 of (P1). Let 

(𝑥𝑢(𝐾+1), 𝑦𝑢(𝐾+1))  be the solution obtained by solving (P5) with 𝑘 = 1, . . . , 𝐾. Then, 𝑈𝐵𝐹 =

𝐹(𝑥𝑢(𝐾+1), 𝑦𝑢(𝐾+1)) by Lemma 2. Since (P5) includes 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦𝐾) and 𝑥𝑢(𝐾+1) = 𝑥𝑢𝐾 ,    then 

𝑓(𝑥𝑢𝐾 , 𝑦𝑢(𝐾+1)) ≤ 𝑓(𝑥𝑢𝐾 , 𝑦𝐾), which means that 𝑦𝑢(𝐾+1) also optimizes (P3) and (P4) for 𝑥𝑢𝐾. So, 

𝐿𝐵𝐹 = 𝐹(𝑥
𝑢𝐾 , 𝑦𝐾) =  𝐹(𝑥𝑢𝐾 , 𝑦𝑢(𝐾+1))  = 𝑈𝐵𝐹; (𝑥𝑢𝐾 , 𝑦𝐾) and (𝑥𝑢𝐾 , 𝑦𝑢(𝐾+1)), which may be equal 

or different, are optimal solutions to (P1). • 

 

In order to improve 𝑈𝐵𝐹 and narrow the difference between 𝑈𝐵𝐹 and 𝐿𝐵𝐹, the HPR is solved iteratively 

by including in the problem (P5) all generated constraints 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦𝑘), ∀ 𝑘 (where k denotes the 

iteration index). The 𝐿𝐵𝐹 is updated whenever 𝐹(𝑥𝑢𝑘 , 𝑦𝑘) ≥ 𝐿𝐵𝐹. In the algorithm presented below, 

the process stops when 𝑈𝐵𝐹 − 𝐿𝐵𝐹 ≤ 𝜀, with 𝜀 being a predefined optimality tolerance, as suggested 

by Mitsos (2010).  If the algorithm stops with 𝑥𝑢(𝐾+1) ≠ 𝑥𝑢𝐾, then the final solution is the one that 

provided the 𝐿𝐵𝐹, since the solution that gives the 𝑈𝐵𝐹 may be infeasible to (P1).  

In addition, a very small ε' tolerance is added to the right-hand side of the additional constraints of (P5) 

to overcome numerical difficulties arising from floating point numbers, i.e., 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦𝑘) +

𝜀′, ∀ 𝑘. 

 

3.2. The DBP Algorithm 

Parameters: 

o Optimality tolerance: 𝜀 

o Tolerance for constraints on the LL objective function values: 𝜀′ 

Step 1 - Initialization – Set initial lower and upper bounds for the UL objective function 

o Lower bound of the UL objective function: 𝐿𝐵𝐹 = −∞ 

o Solve the HPR (problem P2). Let (𝑥𝑢0, 𝑦𝑢0) be the solution obtained.  

Upper bound of the UL objective function: 𝑈𝐵𝐹 = 𝐹(𝑥
𝑢0, 𝑦𝑢0) 

o Iteration counter: 𝑘 = 0. 

Step 2 - Solve the LL problem for 𝑥𝑢𝑘  

Solve (P3) for the leader’s solution 𝑥𝑢𝑘 to obtain an optimal follower’s reaction. 

Let 𝑦′ be the optimal solution to this problem. The minimum objective function value is 𝑓𝑢∗ =

𝑓(𝑥𝑢𝑘, 𝑦′). 
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Step 3 - Calculate the lower bound to the UL objective function corresponding to 𝑥𝑢𝑘 – The following 

problem (P4- 𝜀), corresponding to the problem (P4) above but allowing an 𝜀′-tolerance for the 

optimal 𝑓𝑢∗, is solved for 𝑥𝑢𝑘: 

max
𝑦∈𝑌

𝐹(𝑥𝑢𝑘, 𝑦)        (P4-𝜀) 

 s.t.  𝑔(𝑦) ≤ 0 

𝑓(𝑥𝑢𝑘, 𝑦) ≤ 𝑓𝑢∗ + 𝜀′ 

Let (𝑥𝑢𝑘, 𝑦𝑘) be the solution obtained.  

The lower bound for the UL objective function corresponding to 𝑥𝑢𝑘 is 𝐿𝐵 = 𝐹(𝑥𝑢𝑘, 𝑦𝑘). 

Step 4 - Lower bounding evaluation 

If 𝐿𝐵 ≥ 𝐿𝐵𝐹 then 

o Update 𝐿𝐵𝐹 = 𝐿𝐵 

o Set the incumbent solution: (𝑥∗, 𝑦∗) = (𝑥𝑢𝑘, 𝑦𝑘), 𝐹∗ = 𝐿𝐵𝐹 

Step 5 – Update the upper bound to the UL objective function 

Update the HPR problem with additional constraints by including the k-th follower’s constraint 

corresponding to solution 𝑦𝑘. This is problem (P5-𝜀), which corresponds to problem (P5) 

above, but allowing an 𝜀′-tolerance for the follower’s objective function value: 

max
𝑥∈𝑋,𝑦∈𝑌

𝐹(𝑥, 𝑦)     (P5-𝜀) 

 s.t.    𝐺(𝑥) ≤ 0 

𝑔(𝑦) ≤ 0 

𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦𝑘) + 𝜀′,   ∀𝑘 

 Solve (P5-𝜀). Let (𝑥𝑢(𝑘+1) , 𝑦𝑢(𝑘+1)) be the optimal solution obtained.  

𝑈𝐵𝐹 =  𝐹(𝑥
𝑢(𝑘+1) , 𝑦𝑢(𝑘+1)). 

Step 6 – Stopping condition – If the amplitude defined by the current upper-lower bounds is higher than 

𝜀 then the search should proceed; otherwise an 𝜀–optimal solution has been obtained. 

If 𝑈𝐵𝐹 − 𝐿𝐵𝐹 > 𝜀 then 

o 𝑘 = 𝑘 + 1 

o Go to Step 2 

Else If 𝑥𝑢(𝑘+1) = 𝑥𝑢𝑘 then the algorithm terminates with the optimal solution(s) 

(𝑥𝑢𝑘, 𝑦𝑘) and (𝑥𝑢𝑘 , 𝑦𝑢(𝑘+1)) 

        Else 

Terminate with the 𝜀–optimal solution (𝑥∗, 𝑦∗), 𝐹∗ = 𝐿𝐵𝐹 . 

 

In our models, 𝑓(𝑥, 𝑦) was originally nonlinear for the same reason as 𝐹(𝑥, 𝑦). So, it has been also 

linearized to be included in the HPR with additional constraints (problem P5-𝜀 – Step 5 of the 

algorithm). Therefore, all problems solved are MILP problems. 
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The algorithm implementation coded in R is available at https://www.uc.pt/en/feuc/mjalves/DBP. 

 

3.3. A discussion on convergence 

Mitsos (2010) defines several assumptions required for the convergence of his algorithm devoted to 

general MINLBL problems. Under those assumptions, conditions for the 𝜀 -tolerances are defined that 

ensure the algorithm terminates finitely. Lozano and Smith (2017) assume that all leader’s variables are 

integer to guarantee the finite termination of their algorithm. 

The DBP herein proposed for problem (P1) converges under the assumptions stated by Mitsos (2010) 

or Lozano and Smith (2017). In addition, the algorithm converges in a finite number of iterations for 

problems in which all follower’s variables are integer (regardless of the leader’s variables being 

continuous or integer) without further assumptions and considering 𝜀′ = 0, as we show below. The 

models we will deal with in the next sections fit into this case. 

The algorithm converges when 𝑈𝐵𝐹 decreases or even when it keeps the same value from one iteration 

to the next. We show the finiteness of the algorithm for the latter case, which also ensures convergence 

for the former case. 

Let (𝑥𝑢(𝐾+1), 𝑦𝑢(𝐾+1)) be the solution obtained by solving (P5) at iteration K, so 𝑈𝐵𝐹 =

𝐹(𝑥𝑢(𝐾+1), 𝑦𝑢(𝐾+1)). Let us suppose that 𝑈𝐵𝐹 did not decrease, i.e. 𝐹(𝑥𝑢𝐾 , 𝑦𝑢𝐾) =

 𝐹(𝑥𝑢(𝐾+1), 𝑦𝑢(𝐾+1)),  but 𝑥𝑢𝐾 ≠ 𝑥𝑢(𝐾+1); so, the algorithm does not finish yet (according to Lemma 

3). Due to the additional constraints 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦𝑘), 𝑘 = 1, . . . , 𝐾, then 𝑓(𝑥𝑢(𝐾+1), 𝑦𝑢(𝐾+1)) ≤

𝑓(𝑥𝑢(𝐾+1), 𝑦𝑘), 𝑘 = 1, . . . , 𝐾. Therefore, when (P3)+(P4) are solved w.r.t. to 𝑥𝑢(𝐾+1), the following 

situations may occur: 

1) neither 𝑦𝑢(𝐾+1) nor 𝑦𝑘 , 𝑘 = 1, . . . , 𝐾, are yielded from (P3)+(P4) and a different solution 𝑦𝐾+1 

is obtained; 

2) 𝑦𝑢(𝐾+1) is obtained from (P3)+(P4); 

3) 𝑦𝑘′ for some 𝑘′ ∈ {1, . . . , 𝐾}  is obtained from (P3)+(P4), thus meaning that 

𝑓(𝑥𝑢(𝐾+1), 𝑦𝑢(𝐾+1)) = 𝑓(𝑥𝑢(𝐾+1), 𝑦𝑘′) due to the additional constraints in (P5). So, 𝑦𝑢(𝐾+1) 

and 𝑦𝑘′ are alternative optimal solutions to the LL problem for 𝑥𝑢(𝐾+1). They also provide the 

same objective function value for the leader, i.e.  𝐹(𝑥𝑢(𝐾+1), 𝑦𝑢(𝐾+1)) = 𝐹(𝑥𝑢(𝐾+1), 𝑦𝑘′), 

otherwise 𝑦𝑘′ would have been the solution yielded by (P5). 

In situations 2) and 3), the algorithm finishes at this iteration because 𝑈𝐵𝐹 = 𝐿𝐵𝐹. In situation 1), if 

𝑈𝐵𝐹 − 𝐿𝐵𝐹 > 𝜀 then the new solution  𝑦𝐾+1 is included in the constraints of (P5) for the next iteration. 

Since all LL variables are integer, the set of all feasible 𝑦 is discrete and finite, which ensures the 

finiteness of the algorithm. 

In our computational implementation we have set 𝜀′ positive very small just to ensure feasibility of the 

subproblems solved. 
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4. A BL optimization model for electricity retail pricing problems considering Shiftable and 

Interruptible consumer appliances – Model SI 

In this section, a BL problem for the interaction between an electricity retailer and a cluster of residential 

consumers with similar consumption patterns is presented. The retailer first sets the time-differentiated 

electricity prices aiming to maximize profit (revenue minus acquisition cost); the consumer responds to 

the prices communicated by the retailer by scheduling the appliance operation to minimize the 

electricity bill according to his preferences and comfort requirements. The consumer’s problem 

considers two different types of controllable appliances: shiftable appliances, whose operation cycle 

cannot be interrupted, and interruptible loads, whose operation cycle can be interrupted provided that 

the required amount of energy is supplied in a predefined time slot (depending on the characteristics of 

the energy service, e.g. hot water). A base load not deemed for control is also considered, which has an 

impact on the load diagram and consequently on the consumer’s decisions. In the following, this BL 

model – Model SI – is presented and briefly described. For a more detailed explanation, please see 

(Alves et al., 2016; Soares et al. 2020). 

 

Notation 

Parameters 

T = number of units of time the planning horizon T̅ = {1,… , 𝑇} is discretized into (𝑡 ∈ T̅). A typical 

planning horizon is one day. 

ℎ̂ = length of the unit of time the planning horizon T̅ is discretized into (e.g., 15 or 5 minutes). 

I = number of periods of the planning horizon in which different prices apply (𝑖 ∈ {1,… , 𝐼}). 

𝑃𝑖 = periods of prices (𝑃𝑖 ⊂ T̅), disjoint and contiguous, which define the ToU tariff structure, 𝑖 =

1,… , 𝐼. 

𝑥𝐴𝑉𝐺 = average price for the whole planning horizon T̅. 

𝑥𝑖 / 𝑥𝑖 = minimum / maximum energy price values in each period 𝑃𝑖, 𝑖 = 1,… , 𝐼. 

𝜋𝑡 = energy acquisition prices incurred by the retailer at each unit of time t, 𝑡 = 1,… , 𝑇. 

L = number of power levels defined by the retailer (𝑙 ∈ {1,… , 𝐿}), such that the consumer will pay for 

the peak power taken during the planning horizon. 

𝑃𝑙
𝐶𝑜𝑛𝑡 = contracted power at level l (KW), 𝑙 = 1,… , 𝐿. 

el = price charged to the consumer if he takes power level l (€), 𝑙 = 1,… , 𝐿. 

bt = power of non-controllable base load at time t of the planning period (KW), corresponding to 

appliances that are not scheduled by the optimization model, 𝑡 = 1,… , 𝑇. 

For shiftable appliances: 

J = number of shiftable appliances (𝑗 ∈ {1,… , 𝐽}). 

dj = duration of the operation cycle of shiftable appliance j, 𝑗 = 1,… , 𝐽. 
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 fjr = power requested by appliance j at stage (unit of time) r of its operation cycle (KW), 𝑗 =

1,… , 𝐽, 𝑟 = 1,… , 𝑑𝑗. 

[𝑇1𝑗 , 𝑇2𝑗] = comfort time slot within T̅ for appliance j in which it is allowed to operate, 𝑗 = 1,… , 𝐽. 

For interruptible appliances: 

K = number of interruptible appliances (𝑘 ∈ {1,… , 𝐾}). 

Qk = power requested by appliance k at each unit of time (KW), 𝑘 = 1,… , 𝐾 

  Ek = total energy required by appliance k (KWℎ̂), 𝑘 = 1,… , 𝐾. 

  [𝑇1𝑘 , 𝑇2𝑘] = comfort time slot within T for appliance k in which it is allowed to operate, 𝑘 =

1,… , 𝐾. 

 

Upper level decision variables 

𝑥𝑖= energy price (€/kWℎ̂) in period 𝑃𝑖, 𝑖 = 1,… , 𝐼. 

Lower level decision variables 

 𝑤𝑗𝑟𝑡 = {
1 if shiftable appliance 𝑗 is “on” at time 𝑡 and at stage 𝑟 of its operation cycle 
0 otherwise

  

                𝑗 = 1, … , 𝐽,  r=1,… , 𝑑𝑗 ,𝑡 = 𝑇1𝑗 , … , 𝑇2𝑗 

  𝑣𝑘𝑡 = {
1 if interruptible appliance 𝑘 is "on" at time 𝑡
0 otherwise

      𝑘 = 1,… , 𝐾, 𝑡 = 𝑇1𝑘 , … , 𝑇2𝑘  

  𝑢𝑙 = {
1 if the consumer is charged at the power level 𝑙
0 otherwise

   𝑙 = 1,… , 𝐿 

Lower level auxiliary variables 

𝑝𝑗𝑡= ∑ 𝑓𝑗𝑟𝑤𝑗𝑟𝑡
𝑑𝑗
𝑟=1 ∶ power required by shiftable load j at time t,  𝑗 = 1,… , 𝐽,   𝑡 = 𝑇1𝑗 , … , 𝑇2𝑗  

         (constraints ensure that ∑ 𝑤𝑗𝑟𝑡 ≤ 1 so that at most one 
𝑑𝑗
𝑟=1 𝑤𝑗𝑟𝑡 = 1 for each pair (𝑗, 𝑡)) 

𝑞𝑘𝑡= 𝑄𝑘𝑣𝑘𝑡: power required by interruptible load k at time t,  𝑘 = 1,… , 𝐾,    𝑡 = 𝑇1𝑘 , … , 𝑇2𝑘 

 

The UL objective function is the maximization of the retailer’s profit, whose components are the sale 

of energy to consumers (to supply the non-controllable load, the shiftable appliances and the 

interruptible appliances) plus the contracted power component revenue minus the cost of buying energy 

in the wholesale market:  

max
𝑥
𝐹 =∑∑ 𝑥𝑖 (𝑏𝑡 +∑𝑝𝑗𝑡

𝐽

𝑗=1

+∑𝑞𝑘𝑡

𝐾

𝑘=1

)

𝑡∈𝑃𝑖

𝐼

𝑖=1

⏞                      
𝑆𝐸=sale of energy to consumers 

+ ∑𝑒𝑙𝑢𝑙

𝐿

𝑙=1

⏞    
𝐶𝑃=contracted power 

−∑𝜋𝑡 (𝑏𝑡 +∑𝑝𝑗𝑡

𝐽

𝑗=1

+∑𝑞𝑘𝑡

𝐾

𝑘=1

)

𝑇

𝑡=1

⏞                    
cost of buying energy 

 

 

The LL objective function relates to the minimization of the consumer’s electricity bill and matches 

with the corresponding revenue terms in the UL objective function, i.e. SE+CP, the cost of the energy 

consumed by controllable and non-controllable (base) loads and the contracted power for the whole 

planning horizon.  
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The UL and LL objective functions have been linearized to tackle the products of the UL variables and 

the LL variables (𝑥𝑖𝑝𝑗𝑡 and 𝑥𝑖𝑞𝑘𝑡). Since 𝑥𝑖𝑝𝑗𝑡 = 𝑥𝑖 ∑ 𝑓
𝑗𝑟
𝑤𝑗𝑟𝑡

𝑑𝑗

𝑟=1
 and 𝑥𝑖𝑞𝑘𝑡 = 𝑥𝑖 𝑄𝑘𝑣𝑘𝑡, then these 

nonlinearities arise from the product of continuous variables (x) by binary variables (w or v). Introducing 

additional variables 𝑦𝑗𝑟𝑡
1  for the shiftable loads, the products 𝑥𝑖𝑤𝑗𝑟𝑡 are equivalent to 𝑦𝑗𝑟𝑡

1  by imposing 

the additional constraints: 𝑦𝑗𝑟𝑡
1 ≤ 𝑥𝑖𝑤𝑗𝑟𝑡 ,    𝑦𝑗𝑟𝑡

1 ≤ 𝑥𝑖, 𝑦𝑗𝑟𝑡
1 ≥ 𝑥𝑖 − (1−𝑤𝑗𝑟𝑡)𝑥𝑖. The transformation of 

the products 𝑥𝑖𝑣𝑘𝑡 for the interruptible loads is analogous by considering the additional variables 𝑦𝑘𝑡
2 . 

This linearization is the exact form of the McCormick (1976) relaxations (lower/upper envelopes) when 

one of the variables involved in the product is a binary variable. 

The BL model with the linearized objective functions is the following: 

Linearized Model SI 

max
𝑥
𝐹 = ∑ ∑ 𝑥𝑖𝑏𝑡 + ∑ (∑ ∑ 𝑦𝑗𝑟𝑡

1 𝑓𝑗𝑟
𝑑𝑗
𝑟=1

𝐽
𝑗=1 + ∑ 𝑦𝑘𝑡

2 𝑄𝑘
𝐾
𝑘=1 )𝑇

𝑡=1𝑡∈𝑃𝑖
𝐼
𝑖=1 +∑ 𝑒𝑙𝑢𝑙

𝐿
𝑙=1 − ∑ 𝜋𝑡(𝑏𝑡 +∑ 𝑝𝑗𝑡

𝐽
𝑗=1 + ∑ 𝑞𝑘𝑡

𝐾
𝑘=1 )𝑇

𝑡=1  (1) 

s.t. 

𝑥𝑖 ≤ 𝑥𝑖  ,      𝑖 = 1, … , 𝐼          (2) 

𝑥𝑖 ≥ 𝑥𝑖  ,      𝑖 = 1, … , 𝐼          (3) 
1

𝑇
∑ 𝑃𝑖𝑥𝑖
𝐼
𝑖=1 = 𝑥𝐴𝑉𝐺           (4) 

min
𝑤,𝑣,𝑢

𝑓 =∑ ∑ 𝑥𝑖𝑏𝑡 + ∑ (∑ ∑ 𝑦𝑗𝑟𝑡
1 𝑓𝑗𝑟

𝑑𝑗
𝑟=1

𝐽
𝑗=1 + ∑ 𝑦𝑘𝑡

2 𝑄𝑘
𝐾
𝑘=1 )𝑇

𝑡=1𝑡∈𝑃𝑖
𝐼
𝑖=1 + ∑ 𝑒𝑙𝑢𝑙

𝐿
𝑙=1   (5) 

s.t. 

   (shiftable appliances) 

𝑝𝑗𝑡 =∑ 𝑓𝑗𝑟𝑤𝑗𝑟𝑡
𝑑𝑗
𝑟=1  ,    𝑗 = 1, … , 𝐽,   𝑡 = 𝑇1𝑗 , … , 𝑇2𝑗      (6) 

𝑝𝑗𝑡 =0  ,    𝑗 = 1, … , 𝐽, 𝑡 < 𝑇1𝑗 ∨ 𝑡 > 𝑇2𝑗       (7) 

∑ 𝑤𝑗𝑟𝑡
𝑑𝑗
𝑟=1 ≤ 1 ,    𝑗 = 1,… , 𝐽,    𝑡 = 𝑇1𝑗 , … , 𝑇2𝑗       (8) 

𝑤𝑗(𝑟+1)(𝑡+1) ≥ 𝑤𝑗𝑟𝑡  ,      𝑗 = 1, … , 𝐽,    𝑟 = 1,… , (𝑑𝑗 − 1) ,    𝑡 = 𝑇1𝑗 , … , (𝑇2𝑗 − 1)   (9) 

∑ 𝑤𝑗𝑟𝑡
𝑇2𝑗
𝑡=𝑇1𝑗

= 1 ,     𝑗 = 1, … , 𝐽,    𝑟 = 1,… , 𝑑𝑗       (10) 

∑ 𝑤𝑗1𝑡
𝑇2𝑗−𝑑𝑗+1

𝑡=𝑇1𝑗
≥ 1 ,    𝑗 = 1, … , 𝐽        (11) 

𝑤𝑗𝑟𝑡 ∈ {0,1} ,      𝑗 = 1, … , 𝐽,   𝑟 = 1,… , 𝑑𝑗 ,   𝑡 = 𝑇1𝑗 , … , 𝑇2𝑗     (12) 

𝑦𝑗𝑟𝑡
1 ≤ 𝑥𝑖𝑤𝑗𝑟𝑡

𝑦𝑗𝑟𝑡
1 ≤ 𝑥𝑖  

𝑦𝑗𝑟𝑡
1 ≥ 𝑥𝑖 − (1−𝑤𝑗𝑟𝑡)𝑥𝑖

}  𝑖 = 1,… , 𝐼, 𝑗 = 1,… , 𝐽 , 𝑟 = 1,… , 𝑑𝑗  , 𝑡 = 𝑇1𝑗 , … , 𝑇2𝑗 ∧ 𝑡 ∈ 𝑃𝑖  (13) 

𝑦𝑗𝑟𝑡
1 = 0 ,   𝑗 = 1,… , 𝐽 , 𝑟 = 1,… , 𝑑𝑗  , 𝑡 < 𝑇1𝑗 ∨ 𝑡 > 𝑇2𝑗      (14) 

   (interruptible appliances) 

𝑞𝑘𝑡 =𝑣𝑘𝑡𝑄𝑘  ,    𝑘 = 1,… , 𝐾,    𝑡 = 𝑇1𝑘 , … , 𝑇2𝑘       (15) 

𝑞𝑘𝑡 =0  ,    𝑘 = 1,… , 𝐾,     𝑡 < 𝑇1𝑘 ∨ 𝑡 > 𝑇2𝑘       (16) 

∑ 𝑞𝑘𝑡
𝑇2𝑘
𝑡=𝑇1𝑘

= 𝐸𝑘  ,     𝑘 = 1,… , 𝐾        (17) 

𝑣𝑘𝑡 ∈ {0,1} ,      𝑘 = 1,… , 𝐾, 𝑡 = 𝑇1𝑘 , … , 𝑇2𝑘       (18) 

𝑦𝑘𝑡
2 ≤ 𝑥𝑖𝑣𝑘𝑡
𝑦𝑘𝑡
2 ≤ 𝑥𝑖  

𝑦𝑘𝑡
2 ≥ 𝑥𝑖 − (1 − 𝑣𝑘𝑡)𝑥𝑖

}  𝑖 = 1,… , 𝐼,   𝑘 = 1,… , 𝐾,   𝑡 = 𝑇1𝑘, … , 𝑇2𝑘 ∧ 𝑡 ∈ 𝑃𝑖   (19) 

𝑦𝑘𝑡
2 = 0 ,   𝑘 = 1,… , 𝐾 , 𝑡 < 𝑇1𝑘 ∨ 𝑡 > 𝑇2𝑘       (20) 

     (power component) 

∑ 𝑢𝑙
𝐿
𝑙=1 = 1           (21) 

𝑏𝑡 + ∑ 𝑝𝑗𝑡
𝐽
𝑗=1 + ∑ 𝑞𝑘𝑡

𝐾
𝑘=1 ≤ ∑ 𝑃𝑙

𝐶𝑜𝑛𝑡𝑢𝑙
𝐿
𝑙=1 , 𝑡 = 1, … , 𝑇      (22) 

𝑢𝑙 ∈ {0,1} ,     𝑙 = 1, … , 𝐿          (23) 
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In each period 𝑃𝑖, the electricity prices are limited by minimum and maximum values, respectively 𝑥𝑖 

and 𝑥𝑖, (UL constraints (2) and (3)). An average price 𝑥𝐴𝑉𝐺  for the whole planning horizon T̅ is also 

imposed to account for retail market competition (UL constraint (4)). 

The LL constraints (6) – (14) model the operation of shiftable loads and the set of LL constraints (15) 

– (20) model the operation of interruptible appliances. The consumer should specify comfort time slots 

([𝑇1𝑗 , 𝑇2𝑗] and [𝑇1𝑘 , 𝑇2𝑘]) in which each shiftable load j and interruptible load k should operate, 

according to his comfort preferences and routines. Outside these time slots, the power requested to the 

grid by these types of appliances is always zero (constraints (7) and (16) respectively), remaining the 

non-controllable load only, 𝑏𝑡 (e.g. fridge, oven, etc.).  

Constraints (21)-(23) define the peak power level the consumer pays for. That is, the tariff structure 

comprises a time-variable energy component and a volume-based power component. 

 

5. Results of the DBP applied to the Model SI 

This section presents results of the DBP proposed in section 3 applied to the BL model in section 4 

(Model SI). A case study with a planning horizon of 24 hours is considered. First, we present the results 

for a discretization in units of time of quarter-hour (ℎ̂ = 15 minutes). 

Regarding the retailer’s problem, six tariff periods 𝑃𝑖 = [𝑃1𝑖 , 𝑃2𝑖] , 𝑖 ∈ {1,… ,6}, are established for 

defining the electricity prices to be charged to the consumers. The minimum and maximum prices that 

can be charged to the consumers in each period 𝑃𝑖 and the average price over the entire planning period 

are displayed in Table A-1 in the Appendix. These data define an UL problem with 6 continuous 

variables and 13 constraints (lower/upper bounds for the prices plus the average price constraint). The 

electricity prices paid by the retailer in the spot market in each 𝑡 ∈ T̅ can be seen in Table A-2 in the 

Appendix. 

In the consumer’s problem, in addition to the non-controllable base load, five controllable appliances 

are considered: three shiftable loads (J = 3) – dishwasher, laundry machine and clothes dryer – and two 

interruptible loads (K = 2) – electric vehicle and electric water heater. The data related to the base load, 

the operation cycles of each controllable load and the comfort time slots allowed for its operation, as 

well as the power levels and corresponding costs are also detailed in the Appendix (Tables A-3 – A-6). 

For each instantiation of the UL variables x, these data define a LL problem with 559 binary variables, 

691 continuous variables and 2389 constraints. The tolerance parameters required by the algorithm were 

set as: 𝜀 = 10−4 and 𝜀′ = 10−5.  

In all the experiments, we considered electricity prices (€/kWℎ̂) with five decimal places. Therefore, 

the UL decision variables can be seen as integer variables by considering a 105 scale factor.  
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The algorithm was written in R language and run in a computer with an Intel Xeon Gold 6138 

CPU@3.7GHz processor. The subproblems in DBP are swiftly solved to optimality using a state-of-

the-art solver (CPLEX). 

The results for the Model SI are displayed in Table 1 and Figure 1. Table 1 shows the upper and lower 

bounds for the retailer’s profit (in €) obtained in each iteration of the DBP algorithm. The DBP produced 

swiftly tighter bounds such that at iteration 3 the lower and upper bounds match and an optimal solution 

is obtained (with 𝐹 = 3.16309). The electricity prices (in €/kWh) for each tariff period 𝑃𝑖, 𝑖 ∈ {1,… ,6} 

are displayed in Figure 1: 𝑥 = (0.09960, 0.27504, 0.28360, 0.08040, 0.15400, 0.14728). The prices 

defined for the first half of the day (periods P1 to P3) as well as the price defined for the last period of 

the day (P6) are equal or close to the respective maximum values (𝑥𝑖). The remaining prices (for periods 

P4 and P5) are equal to the respective minimum values (𝑥𝑖). 

 

Table 1. Upper and lower bounds for the retailer’s profit (in €) in each iteration of the DBP algorithm for the Model SI, 

discretization 15 min. 

Iteration Lower bound Upper bound 

1 3.11711 5.57038 

2 3.11711 3.19822 

3 3.16309 3.16309 

 

We now compare the results obtained using the DBP and the hybrid approach previously developed by 

the authors (Soares et al., 2020). This approach consists of the combination of a PSO algorithm to 

perform the UL search, which calls an external solver to deal with the LL MILP problem for each 

setting of x. 

Table A-9 in the Appendix compares the prices in the best solutions obtained by both approaches. In 

the hybrid approach, the best solution (maximum F) obtained over 20 runs (each with a population of 

30 UL solutions and 100 iterations) has 𝐹 = 3.13996 €, i.e. 0.73% worse than the optimal solution 

given by the DBP (𝐹 = 3.16309).  The average F over the 20 runs is 3.13520, which is 0.88% worse 

than the DBP solution. Concerning the computational effort involved, an optimal solution was obtained 

by the DBP in just three iterations in less than 15 seconds, whereas the best solution given by the hybrid 

approach (involving 3000 calls of the MILP solver per run) took 12 minutes (per run). 

Figure 1 displays the electricity prices together with the power requested to the grid during the planning 

period T for the optimal solution in the DBP and the best solution in the hybrid approach. This figure 

shows that the electricity prices in both approaches are very similar as well as the higher prices (within 

the allowed limits) are associated with the periods in which the amount of electricity required by the 

consumer is higher, mainly due to the charging of the electric vehicle. These results indicate that a 

massive deployment of electric vehicles being charged at home during the night may induce significant 

changes in the shape of ToU pricing schemes currently offered by electricity retailers. 
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Fig 1. Power requested from the grid and prices imposed to the consumer in the optimal solution of DBP and in the best 

solution of the hybrid approach in the Model SI for the 15 min discretization. 

 

We now present the results for a discretization in units of time of  ℎ̂ = 5 minutes, i.e. T̅ = {1,… ,288}. 

In this case, the follower’s problem has 4617 binary variables, 5031 continuous variables and 18981 

constraints. The algorithm behavior is similar to the discretization with ℎ̂ = 15 minutes, obtaining an 

optimal solution in 3 iterations with F = 3.16265 but with a significant increase in the overall 

computational effort (around 10.5 minutes). The electricity prices (in €/kWh) are: 𝑥 =

(0.0996, 0.27492, 0.28344, 0.08052, 0.15396, 0.14748), which are different from the solution for the 

discretization of ℎ̂ = 15 minutes just from the third decimal place onwards (cf. Table A-9). 

For comparison purposes, five independent runs of the hybrid approach were performed, with a 

population of 30 UL solutions and 100 iterations. The best objective value was  𝐹 = 3.14410 €  in 

around 35 minutes (per run), which is 0.59% worse than the optimal solution given by the DBP. The 

average F over the 5 runs is 3.12599, which is 1.16% worse than the DBP solution. 
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6. Including a thermostatic appliance in the consumer’s problem – Model SIAC 

The BL optimization model presented in section 4 (Model SI) is now extended to include a thermostatic 

load – an air conditioning (AC) system – in the follower’s problem. This BL model – Model SIAC – is 

presented below with a brief explanation of the changes induced by the inclusion of the AC (a more 

complete description can be seen in (Soares et al., 2020)).  

 

Additional notation  

Parameters  

𝑃𝐴𝐶
𝑛𝑜𝑚 = nominal power of the AC system (W) 

𝜃𝑚𝑎𝑥  = maximum allowed indoor temperature during the entire planning horizon (ºC) 

𝜃𝑟𝑒𝑓 = reference comfort indoor temperature during the entire planning horizon (ºC) 

𝜃𝐴𝑏𝑠
𝑚𝑖𝑛 = absolute minimum comfort indoor temperature during the entire planning horizon (ºC) 

𝑐−= monetized cost of the discomfort (€/ℎ̂ per ºC below 𝜃𝑟𝑒𝑓)  

𝑐+= monetized cost of the discomfort (€/ℎ̂ per ºC above 𝜃𝑟𝑒𝑓)  

𝛼, 𝛽, 𝛾 = coefficients associated with the thermal modeling of the space being conditioned 

𝜃𝑡
𝑒𝑥𝑡 = outdoor temperature at time t (ºC), 𝑡 = 1,… , 𝑇 

 

Lower level decision variables 

 𝜃𝑡
𝑚𝑖𝑛 = minimum indoor temperature at which the AC is set “on” at time t (ºC), 𝑡 = 1,… , 𝑇 

 𝑠𝑡 = {
1 if the AC is "on" at time 𝑡
0 otherwise

   𝑡 = 1,… , 𝑇 

Lower level auxiliary variables 

𝜃𝑡
𝑖𝑛 = indoor temperature at time t (ºC), 𝑡 = 1,… , 𝑇 

 ∆𝑡
+ = indoor temperature deviation above 𝜃𝑟𝑒𝑓 at time t (ºC), 𝑡 = 1,… , 𝑇 

 ∆𝑡
− = indoor temperature deviation below 𝜃𝑟𝑒𝑓 at time t (ºC), 𝑡 = 1,… , 𝑇 

𝑧𝑡 , 𝑦𝑡   = binary variables to simulate the thermostat hysteresis behavior, 𝑡 = 1,… , 𝑇  

 

In addition to the cost of the energy consumed by controllable and non-controllable loads as well as the 

power cost, the LL objective function also comprises the costs resulting from the monetization of the 

positive and negative deviations of the minimum indoor temperature 𝜃𝑡
𝑚𝑖𝑛 at each time t ∈ T̅ (which is 

a variable controlling the thermostat operation) from the reference comfort temperature. 

The consumer should specify minimum (𝜃𝐴𝑏𝑠
𝑚𝑖𝑛), maximum (𝜃𝑚𝑎𝑥) and reference (𝜃𝑟𝑒𝑓) indoor 

temperatures used for setting the AC system. The LL constraints (26) – (38) below model the operation 

of this thermostatic load. 

As in the Model SI, the UL and LL objective functions have been linearized (because of the products 

∑ ∑ 𝑥𝑖(𝑠𝑡𝑃𝐴𝐶
𝑛𝑜𝑚)𝑡∈𝑃𝑖

𝐼
𝑖=1  associated with the AC operation). The additional binary variables 𝑦𝑡

3 and 
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constraints (39) are used for this purpose, which derive from products 𝑥𝑖𝑠𝑡, with 𝑖 ∈ {1,… , 𝐼} and 𝑡 ∈

𝑃𝑖. 

Linearized Model SIAC 

max
𝑥
𝐹 = ∑ ∑ 𝑥𝑖𝑏𝑡 + ∑ (∑ ∑ 𝑦𝑗𝑟𝑡

1 𝑓𝑗𝑟
𝑑𝑗
𝑟=1

𝐽
𝑗=1 + ∑ 𝑦𝑘𝑡

2 𝑄𝑘
𝐾
𝑘=1 + 𝑦𝑡

3𝑃𝐴𝐶
𝑛𝑜𝑚)𝑇

𝑡=1𝑡∈𝑃𝑖
𝐼
𝑖=1 + ∑ 𝑒𝑙𝑢𝑙

𝐿
𝑙=1 − ∑ 𝜋𝑡(𝑏𝑡 + ∑ 𝑝𝑗𝑡

𝐽
𝑗=1 +𝑇

𝑡=1

∑ 𝑞𝑘𝑡
𝐾
𝑘=1 + 𝑠𝑡𝑃𝐴𝐶

𝑛𝑜𝑚
)      (24) 

s.t. 

UL constraints (2) – (4) 

 

min
𝑤,𝑣,𝑢,𝑠,𝜃𝑚𝑖𝑛

𝑓 =∑ ∑ 𝑥𝑖𝑏𝑡 + ∑ (∑ ∑ 𝑦𝑗𝑟𝑡
1 𝑓𝑗𝑟

𝑑𝑗
𝑟=1

𝐽
𝑗=1 + ∑ 𝑦𝑘𝑡

2 𝑄𝑘
𝐾
𝑘=1 + 𝑦

𝑡
3𝑃𝐴𝐶

𝑛𝑜𝑚)𝑇
𝑡=1𝑡∈𝑃𝑖

𝐼
𝑖=1 + ∑ 𝑒𝑙𝑢𝑙

𝐿
𝑙=1 +

∑ (𝑐+∆𝑡
+ + 𝑐−∆𝑡

−)𝑡∈𝑇       (25) 

s.t. 

LL constraints (6) – (14) for shiftable appliances 

LL constraints (15) – (20) for interruptible appliances 

    (thermostatic appliance) 

𝜃𝑡
𝑖𝑛 = 𝛼𝜃𝑡−1

𝑖𝑛 + 𝛽𝜃𝑡−1
𝑒𝑥𝑡 + 𝛾𝑠𝑡−1𝑃𝐴𝐶

𝑛𝑜𝑚  ,      𝑡 = 1,… , 𝑇       (26) 

𝜃𝑡
𝑖𝑛 ≥ 𝜃𝑡

𝑚𝑖𝑛 −𝑀𝑠𝑡  ,      𝑡 = 1,… , 𝑇         (27) 

𝜃𝑡
𝑖𝑛 ≤ 𝜃𝑡

𝑚𝑖𝑛 +𝑀𝑧𝑡  ,      𝑡 = 1,… , 𝑇         (28) 

𝜃𝑡
𝑖𝑛 ≥ 𝜃𝑚𝑎𝑥 −𝑀𝑦𝑡  ,      𝑡 = 1,… , 𝑇        (29) 

𝑧𝑡 + 𝑦𝑡 − 𝑠𝑡−1 + 𝑠𝑡 ≤ 2 ,      𝑡 = 1,… , 𝑇       (30) 

𝑧𝑡 + 𝑦𝑡 + 𝑠𝑡−1 − 𝑠𝑡 ≤ 2 ,      𝑡 = 1,… , 𝑇       (31) 

𝜃𝑡
𝑖𝑛 ≤ 𝜃𝑚𝑎𝑥 +𝑀(1 − 𝑠𝑡) ,      𝑡 = 1,… , 𝑇        (32) 

𝜃𝑡
𝑚𝑖𝑛 − 𝜃𝑟𝑒𝑓 = ∆𝑡

+ − ∆𝑡
− ,      𝑡 = 1,… , 𝑇       (33) 

𝜃𝑡
𝑚𝑖𝑛 ≥ 𝜃𝐴𝑏𝑠

𝑚𝑖𝑛  ,      𝑡 = 1,… , 𝑇        (34) 

𝜃𝑡
𝑚𝑖𝑛 ≤ 𝜃𝑚𝑎𝑥  ,      𝑡 = 1,… , 𝑇        (35) 

𝑠𝑡 , 𝑧𝑡 , 𝑦𝑡 ∈ {0,1} ,      𝑡 = 1,… , 𝑇        (36) 

𝜃𝑡
𝑚𝑖𝑛 ∈ ℤ ,      𝑡 = 1,… , 𝑇           (37) 

∆𝑡
−, ∆𝑡

+≥ 0 ,      𝑡 = 1,… , 𝑇           (38) 

𝑦𝑡
3 ≤ 𝑥𝑖𝑠𝑡
𝑦𝑡
3 ≤ 𝑥𝑖  

𝑦𝑡
3 ≥ 𝑥𝑖 − (1 − 𝑠𝑡)𝑥𝑖

}  𝑖 = 1,… , 𝐼,   𝑡 ∈ 𝑃𝑖        (39) 

   (power component) 

∑ 𝑢𝑙
𝐿
𝑙=1 = 1           (40) 

𝑏𝑡 + ∑ 𝑝𝑗𝑡
𝐽
𝑗=1 + ∑ 𝑞𝑘𝑡

𝐾
𝑘=1 + 𝑠𝑡𝑃𝐴𝐶

𝑛𝑜𝑚 ≤ ∑ 𝑃𝑙
𝐶𝑜𝑛𝑡𝑢𝑙

𝐿
𝑙=1 , 𝑡 = 1,… , 𝑇                 (41) 

𝑢𝑙 ∈ {0,1} ,     𝑙 = 1, … , 𝐿          (42) 

 

The modelling of the thermostatic load enables to capture its physical control characteristics but 

imposes a severe computational burden, which is associated with the introduction of a significant 

number of binary variables and constraints associated with the thermostat hysteresis behavior. 

Moreover, the linearization of the products 𝑥𝑖𝑠𝑡 increases the number of continuous variables and 

constraints. This impairs obtaining the optimal LL solution in a practical computational time by a state-

of-the-art solver (Soares et al., 2020). 

 

7. Improvements in the DBP to deal with a more demanding problem 

The subproblems required by the DBP revealed, in general, impossible to be solved to optimality in an 

acceptable timeframe for the Model SIAC presented in the previous section, having in mind the need 
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of the retailer to announce prices short in advance, e.g., day-ahead. The solution process of most of 

these subproblems terminated after a specified computation budget (from five minutes until more than 

one hour) still with a significant MIP gap. Moreover, in some cases, the solver was not able to find a 

feasible integer solution to these subproblems. Therefore, new reformulations were introduced in the 

DBP subproblems with additional constraints. Also, the information given by the solver after a certain 

computation budget was considered to obtain meaningful lower/upper bounds. 

In the following, the difficulties faced to solve the subproblems required by DBP are enumerated and 

the solution proposals adopted to circumvent these difficulties are presented. It should be noted that 

these difficulties have not been addressed in the literature and, in general, are not observed in benchmark 

problems. Therefore, it is of utmost importance to test the DBP approach in challenging conditions 

associated with real-world problems in which a limited timeframe for computation is generally at stake. 

The DBP herein proposed for this class of mixed-integer bi-level programming problems revealed a 

good computational performance in addressing these issues after including the proposals presented 

below. 

 

Difficulty 1: The solver cannot find feasible integer solutions to the subproblems with additional 

constraints, i.e., problem (P4-𝜀) solved in Step 3 and problem (P5-𝜀) solved in Step 5 to calculate the 

lower bound and the upper bound to the UL objective function, respectively. 

Proposal: “Elastic” variables are introduced, which are penalized in the objective functions of (P4-D) 

and (P5-D) using a big-M. 

1.1. The subproblem aimed at calculating (𝑥𝑢𝑘, 𝑦𝑘), which leads to a lower bound to the UL objective 

function (Problem P4-𝜀 solved in Step 3), is reformulated as (P4-D): 

max
𝑦∈𝑌,𝐷

𝐹(𝑥𝑢𝑘 , 𝑦) − 𝑀 ×𝐷      (P4-D) 

  s.t.   𝑔(𝑦) ≤ 0 

𝑓(𝑥𝑢𝑘 , 𝑦) ≤ 𝑓𝑢∗ + 𝜀′ + 𝐷 

𝐷 ≥ 0 

If the optimal value of D in (P4-D) is different from zero, then the F-value obtained cannot be accepted 

as a lower bound because the f-value is not within the 𝜀′-tolerance with respect to 𝑓𝑢∗. In this case, the 

solution obtained in Step 2, (𝑥𝑢𝑘, 𝑦′), is kept to proceed to Step 4. 

1.2. The HPR with additional constraints (Problem P5-𝜀 solved in Step 5) is reformulated as (P5-D): 

max
𝑥∈𝑋,𝑦∈𝑌,𝐷𝑘

𝐹(𝑥, 𝑦) − 𝑀 × ∑ 𝐷𝑘𝑘        (P5-D) 

s.t.   𝐺(𝑥) ≤ 0 

 𝑔(𝑦) ≤ 0 

 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦𝑘) + 𝜀′ +  𝐷𝑘,   ∀𝑘 

 𝐷𝑘 ≥ 0,   ∀𝑘 
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This reformulation overcomes the infeasibility issue. However, if any 𝐷𝑘 > 0 then the upper bound 

obtained may be higher than the current 𝑈𝐵𝐹 and turn difficult the convergence of the DBP. 

 

Difficulty 2: The subproblems cannot be solved to optimality and then the resulting bounds are 

misleading. 

2.1. The HPR with additional constraints (Problem P5-𝜀, or its reformulation P5-D, solved in Step 5) 

cannot be solved to optimality. 

Proposal: The relative MIP gap (𝑔𝑎𝑝𝐻𝑃𝑅) given by the solver is used to estimate a guaranteed upper 

bound: 𝑈𝐵𝐹 = 𝐹(𝑥
𝑢(𝑘+1) , 𝑦𝑢(𝑘+1)) × (1 + 𝑔𝑎𝑝𝐻𝑃𝑅). 

2.2. The LL problem (Problem P3 solved in Step 2) cannot be solved to optimality. 

Proposal: In Step 2, if a solution with a relative MIP gap (𝑔𝑎𝑝𝐿𝐿) is obtained, within the computation 

budget specified, the additional subproblem (P6) is considered to further improve the LL objective 

function value 𝑓𝑢∗:  

min
𝐷,𝑦
 𝐷         (P6) 

 s.t.  𝑔(𝑦) ≤ 0 

𝑓(𝑥𝑢𝑘, 𝑦) ≤ 𝑓𝑢∗(1 − 𝑔𝑎𝑝𝐿𝐿) + 𝐷 

𝐷 ≥ 0 

The solution obtained to (P6) is adopted to proceed with the algorithm in Step 3 if the corresponding  f-

value is better than 𝑓𝑢∗. 

 

These modifications enable the DBP to deal with challenging cases, obtaining optimal or nearly 

optimal solutions to the BL problem. However, due to the way the bounds are calculated, considering 

the elastic variables D and the gaps, convergence cannot be ensured. For this reason, in the 

implementation of the algorithm we have considered an additional stopping condition, which is defined 

by a maximum number of iterations without updating 𝑈𝐵𝐹 and 𝐿𝐵𝐹. 

 

8. Results of the DBP applied to the Model SIAC 

In this section, the results of the DBP with the improvements proposed in section 7 applied to the Model 

SIAC (in section 6) are presented for a planning horizon of 24 hours discretized in units of 15 minutes 

(T= 96 units of time) and 5 minutes (T= 288 units of time). 

First, we present the results for the discretization in ℎ̂ = 15 minutes. The LL problem has 847 binary 

variables, 1171 continuous variables and 3627 constraints. The additional data of this BL model 

concerning the AC operation can be seen in Tables A-7 and A-8 in Appendix. The CPLEX models and 

the corresponding data are available at https://www.uc.pt/en/feuc/mjalves/DBP. 
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The application of the DBP, as presented in section 3, to the Model SIAC proved unable to proceed 

beyond the first iteration. At the first iteration, the 𝑈𝐵𝐹 obtained in Step 1 was 7.21770 with a relative 

MIP gap of 4.2% for a running time limited to 5 min; the gap decreased to 3.08% after 1 hour. Solving 

the LL problem (Step 2) for the UL prices obtained with the HPR resulted into a solution with a gap of 

2.41% after 5 min of computation; the gap decreased to 1.70% after 1 hour.  Step 3 produced no solution 

and thus the UL objective function was evaluated for the solution obtained in Step 2. The problem (P5-

𝜀) was then considered with an additional constraint from the previous iteration, but no solution was 

found within a computation budget of 5 min for the solver.  

The reformulations (P4-D) and (P5-D) of the subproblems in Step 3 and Step 5, respectively, including 

the “elastic” variables, were thus implemented to address the Difficulty 1 described in the previous 

section.  

Considering a computation budget of 5 min for the solver, the reformulated subproblems became 

solvable (with a positive MIP gap) and the DBP found a solution after just five iterations. The 𝐿𝐵𝐹 

obtained was 4.25261 € with a consumer’s cost of 7.20426 € and a MIP gap of 3%. However, the 

positive MIP gaps lead to misleading bounds (Difficulty 2). The value of 𝐹(𝑥𝑢, 𝑦𝑢) (the iteration index 

k is omitted for clarity) in a sub-optimal solution for the HPR with additional constraints is not a true 

upper bound. In our experiments the 𝑈𝐵𝐹 taken as 𝐹(𝑥𝑢, 𝑦𝑢) oscillated over iterations and could even 

go below the 𝐿𝐵𝐹. To estimate a guaranteed upper bound, the proposal in Difficulty 2.1 was adopted, 

𝑈𝐵𝐹 = 𝐹(𝑥
𝑢, 𝑦𝑢) × (1 + 𝑔𝑎𝑝𝐻𝑃𝑃), which is never lower than 𝐿𝐵𝐹. In addition, the introduction of the 

constraint 𝐹(𝑥, 𝑦) ≤ 𝑈𝐵𝐹, in both reformulated subproblems (P4-D) and (P5-D), enabled to improve 

the algorithm efficiency, which is in accordance with Mitsos (2010). The introduction of this constraint 

avoids any oscillatory behavior of the 𝑈𝐵𝐹.  

To address Difficulty 2.2, the additional subproblem (P6) was considered to further improve the 𝑓𝑢∗ 

value obtained in (P3) with a positive gap (𝑔𝑎𝑝𝐿𝐿).  

The implementation of the proposals in section 7 allowed the DBP to quickly converge to good and 

reliable bounds for the UL objective function, thus being able to offer useful information to the 

leader/retailer helping him to make sound decisions. The respective results can be seen in Table 2. 

The auxiliary stop criterion was implemented in parallel to the 𝜀 threshold value to guarantee that the 

algorithm stops after an acceptable computational time: if both 𝑈𝐵𝐹 and 𝐿𝐵𝐹 remain unchanged over 

10 iterations, then the DBP algorithm terminates with the incumbent solution. In this setting, the 

algorithm terminated after 12 iterations with the bounds 𝑈𝐵𝐹 =  4.51516 €  and 𝐿𝐵𝐹 = 4.31758 €, 

which remained the same from iteration 3 onwards. In the final (incumbent) solution, 𝐹 = 4.31758 € 

and the vector of electricity prices (in €/kWh) is 𝑥 =

(0.09960, 0.27108, 0.27900, 0.08040, 0.15400, 0.15716). The corresponding consumer’s cost is 

7.21030 €, obtained with a relative MIP gap of 3.69%. Like in the Model SI (including only shiftable 
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and interruptible loads), the highest electricity prices in the Model SIAC are also in the first half of the 

day, with a peak price in the period P3.  

We now compare the results obtained by the DBP with those obtained by the hybrid approach of Soares 

et al. (2020). The prices in the best solutions reached by both approaches are displayed in Table A-10 

in the Appendix. The electricity prices along the whole planning horizon T̅ as well as the power 

requested to the grid in each 𝑡 ∈ T̅ are displayed in Figure 2.  

In the hybrid approach, the best solution has the retailer’s profit in the interval [3.86998, 4.24842] 

which compares with [4.31758, 4.51516] given by the DBP. The lower bound (the worst possible 

retailer’s profit) determined by the DBP is better than the upper bound (the best retailer’s profit) found 

by the hybrid approach. 

 

Fig 2. Power requested from the grid and prices imposed to the consumer in the optimal solution of DBP and in the best 

solution of the hybrid approach to Model SIAC for the 15 min discretization. 
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Table 2. Results obtained in each step of DBP in each iteration to solve the Model SIAC with a 15min discretization. The retailer’s profit and the consumer’s cost are in € and the relative MIP 

gap in % rounded to two decimal places. 

Iteration 
(P5-D) a (P3) (P6) 

f* 
(P4-D) 

LB LBF 
F D gap UBF f gap F D f F F D gap 

0 7.21770 - 4.20 7.21770 7.15169 2.38 4.18519 0.17036 7.15169 4.14934 7.15169 4.21171 0 4.78 4.21171 4.21171 

1 4.35962 [0] 3.57 4.51516 7.21624 2.78 4.25774 0.18448 7.19977 4.22362 7.19977 4.25130 0.01201 - 4.22362 4.22362 

2 4.34726 [0,0] 3.86 4.51516 7.23393 4.08 4.26943 0.27319 7.21192 4.24715 7.21192 4.31758 0 3.69 4.31758 4.31758 

3 4.31638 [0,0,0] 4.61 4.51516 7.19544 2.88 4.22251 0.19694 7.18510 4.18392 7.18510 4.24865 0.00003 - 4.18392 4.31758 

4 4.34424 [0,0,0,0] 3.93 4.51516 7.24744 3.56 4.29839 0.23166 7.22075 4.24620 7.22075 4.30570 0.00993 - 4.24620 4.31758 

5 4.09413 [0,…,0] 10.28 4.51516 6.99685 4.07 4.01645 0.26786 6.98019 4.01957 6.98019 4.07412 0.01566 - 4.01957 4.31758 

6 4.27569 [0,…,0] 5.60 4.51516 7.21012 2.85 4.23562 0.20574 7.21012 4.23274 7.21012 4.27906 0.00766 - 4.23274 4.31758 

7 4.07345 [0,…,0] 10.84 4.51516 6.95674 3.20 4.00582 0.24626 6.98013 - 6.95674 4.05966 0.02539 - 4.00582 4.31758 

8 3.70999 [0,…,0] 21.70 4.51516 6.62908 4.42 3.66111 0.24604 6.58222 3.61847 6.58222 3.72576 0.04512 - 3.61847 4.31758 

9 4.00664 [0,…,0] 12.69 4.51516 6.94414 3.08 4.00540 0.17881 6.90913 3.93321 6.90913 4.02904 0.03013 - 3.93321 4.31758 

10 4.27393 [0,…,0] 5.64 4.51516 7.25503 3.51 4.23056 0.20082 7.20090 4.20288 7.20090 4.26429 0 5.16 4.26429 4.31758 

11 4.26184 [0,…,0] 5.94 4.51516 7.16764 3.19 4.23714 0.20694 7.14578 4.19076 7.14578 4.26184 0.01478 - 4.19076 4.31758 

a – in iteration k = 0 problem (P2) is solved 
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In what concerns the computational effort, the best solution given by the DBP was obtained in less than 

4 h (a total of 12 iterations) while the best solution attained by the hybrid approach (over 20 runs, each 

with a population of 20 UL solutions and 70 iterations, thus involving a total of 1400 MILP problems 

by run) took more than 6 hours (per run). 

We now present a comparison of the DBP and the hybrid approach for the Model SIAC with a 

discretization of the planning horizon in units of time of 5 minutes (T= 288). The LL problem has 5481 

binary variables, 6471 continuous variables and 22149 constraints.  

The computational budget to solve each MILP subproblem of the DBP was set as 10 min. With this 

budget, no subproblem could be solved to optimality. Therefore, the bounds have been computed taken 

the gaps into account as described in section 7. The algorithm was stopped in the 17th iteration after 10 

iterations without changes in the bounds. It took 11h20 of computation time leading to the bounds 

𝑈𝐵𝐹 =  4.64731 € and 𝐿𝐵𝐹 = 4.37542 €. In the final (incumbent) solution, the UL objective value is 

𝐹𝐷𝐵𝑃 = 𝐿𝐵𝐹 = 4.37542 € and the consumer’s cost is 7.32245 €, obtained in problem (P4-D) with a 

MIP gap of 5.8%.  

Five independent runs of the hybrid approach were performed, each with a population of 20 UL 

solutions and 70 iterations. With a computational budget of 30 seconds to solve each MILP subproblem, 

each run took around 12h. At a final stage, the LL problem was solved again for the prices 

corresponding to the best 𝐹 of each run imposing the same computational budget as the DBP allowed 

for each subproblem (10 min). The best final solution was 𝐹 = 4.42863 €, which is 1.22% better than 

𝐹𝐷𝐵𝑃, and the consumer’s cost is 7.40614 €. This solution was obtained with a MIP gap of 6.98%, 

which is not directly comparable with the 5.8% above since the problems that yielded the corresponding 

solutions are different (P4-D in the DBP and the LL problem in the hybrid approach). Although not all 

the five final solutions were better than 𝐹𝐷𝐵𝑃, the average F is still 0.55% higher than that value. These 

results show that the hybrid approach can be interesting when the subproblems cannot be solved to 

optimality. However, due to the stochastic nature of the UL search, it requires several runs to gauge the 

quality of the solutions since a single run may lead to a bad solution. In this problem instance, a single 

run was lengthier than the DBP.  

The computation time is a relevant issue in the context of announcing day-ahead dynamic ToU prices, 

depending on regulatory directives and the type of contracts between retailers and their clients. 

Therefore, the computational budget should be adjusted to the requirements imposed by the energy 

regulator to retailers regarding the antecedence with which those prices are broadcasted. 

 

9. Conclusions 

In this paper, a deterministic bounding procedure (DBP) to determine the optimal solution to a mixed-

integer BL problem is proposed, which is suited to assist an electricity retailer in defining time-of-use 
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prices to maximize profits to which consumers react to minimize costs by changing the operation of 

their appliances (price-based demand response). This algorithmic approach belongs to the family of 

methodologies based on optimal-value-function reformulations and consists of generating a series of 

convergent upper and lower bounds for the UL objective function. Due to the specific features of our 

BL pricing model (upper/lower level variables do not appear in the lower/upper level constraints), it 

was possible to develop a very efficient approach. When the LL problem does not impose an excessive 

computational burden to be solved to optimality, the DBP is able to obtain the optimal solution 

displaying a much better performance than a hybrid approach (a PSO algorithm to tackle the UL 

problem calling a solver to address the LL problem) previously developed by the authors. However, 

when the LL problem became more complex (in our model due to the consideration of a thermostatic 

appliance), the subproblems in the DBP presented several difficulties, including getting no feasible 

solution or yielding a sub-optimal solution with a significant MIP gap, even when the computational 

budget was increased. Reformulations of those subproblems using “elastic” variables and additional 

subproblems were proposed using the information of the MIP gaps to obtain meaningful lower/upper 

bounds within an acceptable computational time. The implementation of these techniques enabled the 

DBP to obtain good bounds for the UL objective function, outperforming the ones obtained with the 

hybrid approach in most cases. These key issues can only be ascertained with demanding models and, 

in general, are not observed in benchmark problems for which no physical analysis of results is possible. 

Also, the computation effort is much smaller for the DBP than for the hybrid approach. When the LL 

MILP problem poses excessive combinatorial difficulties, the DBP endowed with these techniques can 

quickly converge to good lower/upper bounds and offer reliable information to the leader to help him 

making sound decisions. The results showed that the hybrid approach can be useful when it is not 

possible to solve subproblems to optimality within a given computational budget, since it could reach 

solutions competitive with the ones of the DBP or even slightly better. However, this is accomplished 

at the expense of a very high computational time as several runs may be required to reach good quality 

solutions. Future work will involve the development and implementation of new subproblems and 

reformulations able to provide even better bounds within reasonable computation time limits whenever 

it is not possible to reach optimality in difficult problems. 
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APPENDIX 

 

The data in Tables A-1 – A-8 refer to the 15 min discretization in Models SI and SIAC. The algorithm 

code in R, the model files to be run in CPLEX and all data for the 5 min and 15 min discretization in 

both models are available at https://www.uc.pt/en/feuc/mjalves/DBP. 

 

Tables A-9 and A-10 present the best solution of the hybrid approach and the optimal solution of the 

DBP for the Models SI and SIAC, respectively. 

  

 
Table A-1. Minimum (𝑥𝑖), maximum (𝑥𝑖) and average (xAVG) of the electricity prices (in €/kWh) that can be charged to the 

consumers by the retailer, in each sub-period 𝑃𝑖 ,  𝑖 ∈ {1, … ,6}. 

Periods 
P1 P2 P3 P4 P5 P6 

xAVG 
 [1,28] [29,44] [45,56] [57,72] [73,84] [85,96] 

Prices 

(€/kWh) 

𝒙𝒊 0.0440 0.0848 0.1080 0.0804 0.1540 0.0920 
0.1614 

𝒙𝒊 0.0996 0.2780 0.2836 0.2492 0.3240 0.1620 

 

 
Table A-2. Electricity spot market prices (in €/kWh) seen by the retailers. 

Time intervals 

[initial time, final time] 

Prices 

(€/kWh) 

[1,8] 0.050 

[9,16] 0.035 

[17,24] 0.045 

[25,32] 0.065 

[33,40] 0.075 

[41,48] 0.080 

[49,56] 0.090 

[57,64] 0.100 

[65,72] 0.110 

[73,80] 0.085 

[81,88] 0.080 

[89,96] 0.100 

 

 
Table A-3. Power requested to the grid (in W) in each unit of time 𝑡 ∈ T (expressed in intervals of time [initial time, final 

time]) by (non-controllable) base load. 

Time intervals 

[initial time, final time] 

Power 

(W) 

[1,32] 165 

[33,34] 700 

[35,36] 170 

[37,44] 85 

[45,54] 160 

[55,64] 130 

[65,80] 160 

[81,81] 500 

[82,83] 1600 

[84,85] 750 

[86,86] 250 

[87,87] 450 
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[88,90] 280 

[91,91] 1080 

[92,96] 250 

 

 

 

Table A-4. Comfort time slots, 𝑇𝑗 = [𝑇1𝑗 , 𝑇2𝑗] and 𝑇𝑘 = [𝑇1𝑘 , 𝑇2𝑘] for 𝑗 ∈ {1,… , 𝐽} and 𝑘 ∈ {1,… , 𝐾}, allowed for the 

operation of each controllable appliance. 

Shiftable Loads Interruptible Loads 

DW LM CD EV EWH 

[1,32] [28,58] [76,96] [1,48] [26,34]  

 

 
Table A-5. Operation cycles of the controllable appliances. 

 Appliance 
Power required by the appliance at each stage of its operation cycle (W) 

1 2 3 4 5 6 7 8-36 

Shiftable Loads 

DW 1750 1250 120 1600 640 220   

LM 1840 980 160 220 300 340 120  

CD 1660 1720 300 220     

Interruptible 

Loads 

EV 2300 2300 2300 2300 2300 2300 2300 2300 

EWH 1500 1500 1500 1500 1500 1500   

 

 
Table A-6. Power level prices (in €) charged to the consumers by the retailer. 

 
Prices 

(€/day) 

Maximum Power 

(W) 

1 0.2047 2300 

2 0.2206 3450 

3 0.2834 4600 

4 0.3492 5750 

5 0.4198 6900 

6 0.6280 10350 

7 0.8302 13800 

8 1.0324 17250 

9 1.2351 20700 

 

 

Table A-7. Parameters of the thermostatic load. 

𝜽𝒎𝒂𝒙 𝜽𝑨𝒃𝒔
𝒎𝒊𝒏 𝜽𝒓𝒆𝒇 𝜽𝟎

𝒊𝒏 𝑷𝑨𝑪
𝒏𝒐𝒎 𝒔𝟎 

24ºC 18ºC 20ºC 12ºC 1400W 0 

 

 
Table A-8. Outdoor temperatures for a period of 24h (T=96). 

t 𝜽𝒕
𝒆𝒙𝒕 (°𝑪) t 𝜽𝒕

𝒆𝒙𝒕 (°𝑪) t 𝜽𝒕
𝒆𝒙𝒕 (°𝑪) 

0 9.45     

1 9.45 33 8.96 65 12.92 

2 9.40 34 8.92 66 12.79 

3 9.35 35 8.92 67 12.64 

4 9.30 36 9.00 68 12.50 

5 9.25 37 9.19 69 12.40 

6 9.20 38 9.43 70 12.35 

7 9.15 39 9.66 71 12.32 

8 9.10 40 9.80 72 12.30 
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9 9.05 41 9.81 73 12.29 

10 9.01 42 9.75 74 12.27 

11 8.96 43 9.72 75 12.25 

12 8.90 44 9.80 76 12.20 

13 8.83 45 10.06 77 12.13 

14 8.78 46 10.48 78 12.02 

15 8.76 47 10.97 79 11.88 

16 8.80 48 11.50 80 11.70 

17 8.91 49 12.00 81 11.48 

18 9.06 50 12.43 82 11.25 

19 9.20 51 12.78 83 11.05 

20 9.30 52 13.00 84 10.90 

21 9.32 53 13.09 85 10.83 

22 9.28 54 13.07 86 10.85 

23 9.19 55 12.99 87 10.94 

24 9.10 56 12.90 88 11.10 

25 9.02 57 12.82 89 11.31 

26 8.95 58 12.78 90 11.52 

27 8.91 59 12.77 91 11.67 

28 8.90 60 12.80 92 11.70 

29 8.92 61 12.87 93 11.56 

30 8.96 62 12.95 94 11.18 

31 9.00 63 13.00 95 10.52 

32 9.00 64 13.00 96 9.50 

 

 

 

Table A-9. Prices (in €/kWh) obtained for the best solution of the hybrid approach and the optimal solution of the DBP for 

the Model SI with 15 min discretization. 

 
P1 P2 P3 P4 P5 P6 

 [1,28] [29,44] [45,56] [57,72] [73,84] [85,96] 

Hybrid approach 0.09960 0.27504 0.28360 0.08048 0.15400 0.14716 

DBP 0.09960 0.27504 0.28360 0.08040 0.15400 0.14728 

 

 

Table A-10. Prices (in €/kWh) obtained for the best solution of the hybrid approach and the optimal solution of the DBP for 

the Model SIAC with 15 min discretization. 

 
P1 P2 P3 P4 P5 P6 

 [1,28] [29,44] [45,56] [57,72] [73,84] [85,96] 

Hybrid approach 0.09960 0.27392 0.28284 0.08172 0.15480 0.14376 

DBP 0.09960 0.27108 0.27900 0.08040 0.15400 0.15716 

 

 


