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Abstract: Strategic customer behavior is strongly influenced by the level of information that
is provided to customers. Hence, to optimize the design of queueing systems, many studies
consider various versions of the same service model and compare them under different informa-
tion structures. In particular, two extreme versions are usually considered and compared: the
observable in which customers are informed about the number of customers in the system and
the unobservable in which they are only informed about the system parameters, e.g., arrival
and service rates. In the present work, we study a model that bridges these two versions. More
concretely, we assume that the system alternates between observable and unobservable periods.
We characterize and compute customer equilibrium joining/balking strategies and show that
the present model unifies and extends existing approaches of both heterogeneously observable
models and models with delayed observations. More importanly, our findings indicate that an
alternating information structure implies in general higher equilibrium throughput and social
welfare in comparison to both the observable and unobservable cases. We complement our re-
sults with numerical experiments and provide managerial insight on the optimal control of the
system parameters.

Keywords: Queueing Games; Strategic Customers; Equilibrium Strategies; Alternating Infor-
mation Structure

1 Introduction

The strategic customer behavior in queueing systems has received considerable attention since
the pioneering paper of Naor [20], who studied the M/M/1 queue from an economic viewpoint.
Naor assumed that the customers are active entities who decide whether to join or balk after
observing the queue length. He also considered the problem of a social planner and a monopolist
who take into account the customer strategic behavior when they aim to optimize the social
welfare and the profit respectively. The study of this observable version of the M/M/1 queue was
subsequently complemented by Edelson and Hildebrand [6] who considered the same problems
for the unobservable version of the system. In their model, the arriving customers are not allowed
to observe the number of customers in the system and make their decisions relying solely on
the knowledge of its operational and economic parameters. Since then, the literature has grown
considerably. Hassin and Haviv [12] and Hassin [11] survey the basic methodology and results
till 2003 and from 2003 till 2016 respectively. Stidham [24], in his monograph on optimal design
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of queueing systems, provides a comprehensive overview of the various fundamentals models in
the area.

One recurrent theme in the strategic queueing literature is the study of the effect of the
level of information that is provided to the customers on their strategic behavior. This is an
important theoretical issue per se, but it is also important for a social planner or a monopolist
that are interested in the optimal design of a given system. What is interesting is that the
effect of the level of information is ambiguous. Using the framework of the M/M/1 queue to
reduce the complexity of the problem, existing studies demonstrate that more information can
benefit or hurt the customers and/or the service provider, depending on various parameters and
structural assumptions of the underlying model, see e.g., Hassin [10], Chen and Frank [3], Guo
and Zipkin [8].

The results in this literature show that neither the observable nor the unobservable ver-
sions of the M/M/1 queue are preferable for the whole range of the underlying operational
and economic parameters. To gain further insight, a number of authors studied the M/M/1
queue with strategic customers under information structures that lie between the observable
and unobservable versions. To the best of our knowledge, there are three main ideas that have
appeared in the literature that bridge the observable and unobservable versions of the M/M/1
queue: partially observable models [5, 9, 23, 17, 13], heterogeneously observable models [4, 15]
and models with delayed observations [2, 14, 21]. We provide a brief overview of these results
in Subsection 1.2.

In the present paper, we develop an alternative model that bridges observable and unobserv-
able models and unifies preexisting approaches. Specifically, we consider a queueing system of
M/M/1 type with strategic customers, which alternates between observable and unobservable
periods: customers that arrive during observable periods see the number of present customers
before making their joining/balking decisions, whereas customers that arrive during unobserv-
able periods are only informed about the system parameters, e.g., arrival and service rates, but
not about the actual queue length.

1.1 Motivation, objectives and contribution

The model of the present study is motivated by a number of different situations that arise in
practice depending on whether the alternation between observable and unobservable periods
is intentional or unintentional. A first such situation occurs when the information-providing
mechanism has to respect some periodicity of the mode of operation of the system. For exam-
ple, a given system may have to follow the day-night alternation and some of its features should
be shut down in the night. An unintentional alternation between observable and unobservable
periods occurs when the information-providing mechanism is unreliable. In this case, the sys-
tem is observable as long as the mechanism operates properly, but it becomes unobservable
when it fails and is under repair. Finally, a third case occurs when the administrator of the
system intentionally stops to provide queue-length information for economic or other reasons,
but resumes the information provision later. This is reasonable under various scenarios, e.g., if
the information-providing mechanism is costly.

To understand how the information structure affects strategic customer behavior and system
performance, we study these situations under the unified framework of a First-Come-First-
Served (FCFS) M/M/1 queue that alternates between observable and unobservable periods.
Upon arrival, customers decide whether to join or balk given the information that they receive
from the system. In case that they enter the queue, they may renege (abandon the queue)
any time later. Some basic considerations about the optimal equilibrium strategies are fairly
straightforward in this setting. Customers that arrive at observable periods use Naor’s [20]
threshold strategy ne: they join if the queue is less than a particular length and balk otherwise.
Moreover, due to the FCFS discipline and the exponentially distributed service times, customers
that enter during observable periods do not have an incentive to renege at any subsequent time.
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In contrast, customers that arrive during unobservable periods, will enter with some probability
q that depends on their expected payoff. Such customers may have an incentive to renege at
the time of the first change to observable mode after their arrival instants. Regarding reneging,
they again follow a threshold strategy with tolerance ns (in terms of queue length) that is at
least as high as Naor’s threshold.

Based on these considerations, the search for equilibrium strategies can be restricted in the
class of strategies that are parametrized by two non-negative integer thresholds ne and ns, and
a probability q. We refer to such strategies as potentially equilibrium strategies (PES) and
denote them by (ne, ns, q)-(PES). Assuming that the population of customers adopts a PES,
the state of the system can be described by a Continuous Time Markov Chain (CTMC). This
enables the computation of the expected net benefit of a tagged customer that joins during an
unobservable period in terms of the steady-state distribution of the CTMC and in turn, the
equilibrium joining probability qe. More specifically, using that the number of customers in the
system is stochastically increasing in q and that their net benefit is strictly decreasing in q,
we derive that such an equilibrium joining probability qe always exists, is unique and can be
characterised via the system parameters. This concludes the technical analysis of the model
and provides the required tractability for numerical experiments on its economic, operational
and managerial aspects.

In this respect, our theoretical findings and experimental comparative statics indicate that
the alternating information structure crucially affects system performance. To study the re-
sponse of the equilibrium throughput and social welfare to the operational parameters of the
system that can be tuned by a central decision maker, we perform two sets of numerical exper-
iments (comparative statics): (i) in the fraction of time that the system remains unobservable
and (ii) in the duration of unobservable periods.

By controlling the fraction of time that the system remains unobservable, we show that
typically, a properly adjusted alternating system strictly improves over the continuously ob-
servable and continuously unobservable systems in terms of both equilibrium throughput and
social welfare. This bridges the two cases that have been considered by Chen and Frank [3],
who show that the observable and unobservable systems are preferable for high and low arrival
rates respectively. Regulating the fraction γ of informed customers (by tuning the fraction time
that the system is observable) has multiple effects on the system. In case of low arrival rates, an
increase in γ increases the customer entrance probability for the unobservable periods, but also
increases the abandonment probability since the system passes quickly from the unobservable to
the observable mode. This double effect is reversed in the case of high arrival rates. If reneging
is forbidden and the alternation between observable and unobservable periods becomes very
fast, then the present model reduces to the model of Hu, Li and Wang [15]. In this case, our
results indicate a unimodal equilibrium throughput which agrees with the findings of [15].

Turning to the second set of experiments, the control of the duration of the unobservable
periods can be equivalently viewed as control of the rate of announcements that reveal the queue
length to all present customers. The most interesting finding in this case is that the equilibrium
throughput and typically also the social welfare are optimized for durations (announcement
rates) strictly between 0 and∞. Decreasing the mean duration of unobservable periods between
observable periods of fixed mean length (and hence, increasing the announcement rate) increases
both the equilibrium joining probability and the reneging probability. The trade-off between the
two effects is not clear and this is the reason for the unimodality of the throughput. Finally, in
this setting and in the limiting case of very short observable periods, the present model reduces
to the model of Burnetas, Economou and Vasiliadis [2]. The above results are in agreement with
the findings of [2] which indicate that the equilibrium throughput is a non-monotonic function
of the announcement rate.

A main finding of the numerical experiments concerns the diverse changes in the performance
of the system that result from the complex interaction of its operational parameters. Their
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conflicting effects on main quantities, such as the joining probability, reneging probability or
the expected customer net benefit, preclude general conclusions on equilibrium behavior over
broad ranges of parameter values. For practical purposes, this implies that each different sets
of parameters should be analyzed individually. However, it also underlines the importance of
the derived equilibrium characterization that retains the functionality of the present model and
which enables the comparative statics analysis via numerical methods and tools.

We conclude our analysis with a third set of comparative statics on the economic parameters.
Specifically, we study the effect on customer strategic behavior of the fraction of the entrance fee
that is refundable and of the customers’ service valuation. Our results show that the equilibrium
throughput is an increasing or unimodal function in the refundable percentage. On the other
hand, all performance measures are increasing both in the service valuation and in the service–
entrance fee ratio for constant total (entrance and service) fee, as expected.

Our results imply that the alternating information structure of the present model unifies
other existing approaches by obtaining as limiting cases both the heterogeneously observable
model of [15] and the delayed observations model of [2]. Moreover, it significantly extends them:
by fine-tuning the mean durations of the observable and unobservable periods, the present model
can typically achieve higher equilibrium throughput and/or social welfare than the correspond-
ing optimal instances of the models in [2] and [15] under the same operational and economic
parameters. This comes at no cost in terms of tractability, since the current model always has
a unique equilibrium customer strategy that can be characterised via well behaved economic
quantities (customer net benefit). Hence, depending on the parameters that can be controlled in
a given system or application, the present model is of practical relevance for its optimal design
both from a social and a managerial perspective.

1.2 Literature review

Hassin [10] compared the observable and the unobservable versions of the M/M/1 queue with
strategic customers regarding their joining/balking dilemma, by focusing on the social welfare
and a monopolist’s profit under a profit-maximizing admission fee. Let λ and µ denote respec-
tively the arrival and service rate of a M/M/1 queue, R be the service value and C be the
waiting cost per time unit for the customers. Hassin showed that if Rµ ≤ 2C, then the profit
under a profit-maximizing admission fee is larger for the observable model, for all λ > 0. Hence,
a profit maximizer prefers to reveal the queue length to the customers. If, however, Rµ > 2C,
then the profit under a profit-maximizing admission fee is larger for the observable model, if
and only if λ ≥ λZ for some unique threshold arrival rate, λZ . Thus, in this case, a profit
maximizer prefers to reveal the queue length only when λ ≥ λZ . In other words, there is a
range of the parameters (Rµ > 2C and λ < λZ), for which the provision of more information to
the customers hurts the service provider. The same properties also hold for the social welfare
under a profit-maximizing fee, but with a different critical value λS in place of λZ . Thus, there
is a range of the parameters (λ < λS), for which the provision of more information hurts the
society as a whole.

Chen and Frank [3] compared the observable and the unobservable versions of the M/M/1
queue by focusing on the equilibrium effective arrival rate (which is the same as the throughput
since there are no abandonments), under an arbitrary fixed admission fee. For a given potential

arrival rate λ, let λ
(o)
e (λ) and λ

(u)
e (λ) denote the corresponding equilibrium effective arrival

rates in the observable and unobservable versions respectively. Chen and Frank proved that

λ
(o)
e (λ) − λ

(u)
e (λ) monotonically increases in λ and there exists a critical value λ∗ such that

λ
(o)
e (λ∗) − λ(u)e (λ∗) = 0. Therefore, to attract more customers to the system, it is advisable to

conceal the queue length for potential arrival rates λ with λ < λ∗, and to reveal it when λ > λ∗.
Shone, Knight and Williams [22] considered the same problem of comparing the equilibrium

throughputs, λ
(o)
e and λ

(u)
e , between the observable and unobservable versions of the M/M/1
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queue. They provided necessary and sufficient conditions on the system parameters under which
the equilibrium effective arrival rates are equal in the two versions. Moreover, they investigated
the behavior of the equilibrium effective arrival rates as functions of the normalized service value
Rµ
C . In particular, they showed that the number of distinct normalized service values for which

λ
(o)
e = λ

(u)
e is monotonically increasing with respect to the utilization rate ρ = λ

µ and tends to
infinity as ρ→ 1.

Guo and Zipkin [8] compared the observable, unobservable and workload observable versions
of the M/M/1 queue, under a general reward-cost structure that generalizes the standard Naor’s
linear reward-cost structure. Under this framework, the service value is R, but a customer’s
waiting cost is θE[c(W )], where W stands for the waiting time, c(w) is a common basic cost
function for all customers, and θ is a customer-specific parameter that represents the sensitivity
to delay. In other words, a customer with delay sensitivity θ has expected utility R−θE[c(W )],
if she decides to join. The authors showed that the maximum equilibrium throughput of the
system is achieved at different information levels according to the values of the underlying pa-
rameters. Wang, Cui and Wang [25] consider an M/M/1 queueing system with a pay-for-priority
option, and study customers joint decisions between joining/balking and pay-for-priority. They
compare the servers revenue between the observable and the unobservable settings and inter-
estingly, find that the service provider is better off with the observable setting when the system
load is either low or high, but benefits more from the unobservable setting when the system
load is medium.

The main conclusion from these studies is that the primary factor that determines whether
information is good or bad for the service provider and the customers is the distribution function
of the customer delay sensitivity and not the common basic cost function. As mentioned above,
the relevant literature has reported three main approaches that aim to bridge the observable
and unobservable versions of the M/M/1 queue: partially observable models, heterogeneously
observable models and models with delayed observations.

In partially observable models, the state-space of the queue length of the M/M/1 queue is
partitioned into subsets and the arriving customers are not informed about the exact queue
length, but rather about the subset it belongs to. In other words, the waiting space can be
considered to be ‘compartmented’ and the customers are informed only about the compart-
ment in which they are going to be placed. Economou and Kanta [5] considered the case of
regular compartmentalization (all compartments being of the same size), and showed that an
ideal compartment-size exists, and it may be strictly between 1 (which corresponds to the ob-
servable version) and ∞ (which corresponds to the unobservable version). Guo and Zipkin [9]
considered the general case of compartments with possibly different sizes and proved several
interesting results about the comparison of two partitions of the state-space, one a refinement
of the other. More recently, Simhon, Hayel, Starobinski and Zhu [23] considered the M/M/1
queue with strategic customers that face the dilemma of joining/balking when the administrator
informs the customers about the current queue length only when it is short, i.e., when it does
not exceed a certain threshold D. This corresponds to the partition of the state-space to the
subsets {0}, {1}, {2}, . . . , {D} and {D+ 1, D+ 2, . . .}. The authors proved that the equilibrium
throughput is a monotone function of D and hence, if the administrator’s goal is to maximize
throughput, then the optimal policy is one of the extremes, either the observable or the unob-
servable queue. Kim and Kim [17] considered the generalization of the last model, by assuming
that the customers are informed about the current queue length only when it belongs to an ar-
bitrary subset O. The authors proved the counter-intuitive result that the optimal partition for
the maximization of the throughput of the system corresponds to a set O that contains all the
states above a threshold, i.e., it is preferable to allow the customers to observe the queue length
only when it is large! Finally, Hassin and Koshman [13] considered a model where the arriving
customers are only informed about whether the queue length is less than an exogenously given
threshold N or not. They focused on the profit maximization problem for the dynamic pricing
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version of this model (i.e., different prices are offered to the customers according to whether
the queue length is below N or not) and proved the interesting result that the choice of N = 1
(meaning that customers are informed only if the server is idle) guarantees at least half of the
maximum value that can be generated by the system.

In heterogeneously observable models, the population of customers is divided into informed
and uninformed customers, i.e., only a fraction of customers is allowed to observe the queue
length before making their decisions. Two such models have been studied by Economou and
Grigoriou [4] and Hu, Li and Wang [15]. Economou and Grigoriou determined the equilibrium
strategies in the case where the service values and the waiting costs are different for informed
and uninformed customers. Hu, Li and Wang proved that throughput and social welfare are in
general unimodal and not monotonous in the fraction of informed customers. In other words,
information heterogeneity in the population can lead to more efficient outcomes in terms of
the system throughput or social welfare than information homogeneity. Moreover, they showed
that for an overloaded system (with utilization factor sufficiently higher than 1), social welfare
always reaches its maximum when some fraction of customers is uninformed.

In models with delayed observations, the customers decide whether to join or balk without
knowing the state of the system, but later on they are informed about their current position
and may renege. Burnetas, Economou and Vasiliadis [2] considered the M/M/1 queue where
the administrator of the system makes periodic announcements to the customers about their
current positions. The model was motivated by a situation that occurs when people submit
petitions through certain web-based systems. Then, upon submission, the customers receive a
confirmation message with the registration number of their petition. Later on, they learn the
number of pending petitions in front of them. This is done either by periodic refreshments of a
web page that indicates the registration number of the currently processed petition or by periodic
bulk emails that announce the status of the pending petitions. The authors have shown that the
equilibrium throughput is a non-monotonic function of the announcement rate. This implies
that there exists an ideal announcement rate, strictly between 0 and ∞, that maximizes the
throughput. In other words, some delay in providing information to the customers is beneficial
in terms of throughput. Another model with delayed observation characteristics is the so-called
‘armchair decision’ problem introduced by Hassin and Roet-Green [14] (see also Roet-Green
[21]). In this model, the customers observe the queue length before reaching it, using probably
some web-based application. Then, they decide whether to leave their armchairs and go to the
service facility or not, but when they arrive at the system, they are informed about the current
queue length and should make their second decision, to join or balk. For more papers and
thorough overviews of the results that concern the control of information in queueing systems
with strategic customers, see Section 3.5, Information Control, in Hassin [11] and the recent
review paper of Ibrahim [16].

The rest of the paper is organized as follows: In Section 2, we define the model with
the underlying reward-cost structure and derive sufficient conditions for customer equilibrium
strategies. Section 3 presents our computations on system performance that lead to the char-
acterization of equilibrium customer strategies in Section 4. In Section 5, we perform a number
of numerical experiments and conclude our analysis with some useful take-away messages and
managerial insight in Section 6. Some technical material is presented in Appendix A.

2 Model and strategies

We consider an M/M/1 queue with arrival rate λ and service rate µ, where arriving customers
decide whether to join or balk. The system alternates between unobservable and observable
periods that are exponentially distributed with rates θ and ζ, respectively. The customers are
homogeneous in their valuations. More specifically, each one of them values service R units and
accumulates costs at rate C, as long as she stays in the system, either waiting or being served.
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The administrator of the system imposes an entrance fee fe, which is paid by each customer
who decides to join. Moreover, he imposes a service fee fs which is paid only by those customers
that receive service. There is also a refund r which is given to customers that decide to renege
before their service has been completed. The refund may be positive (partial or full refund of
the entrance fee) or negative (which means that there is a penalty for an abandonment) or even
−∞ (meaning that reneging is impossible or forbidden).

We assume that the customers are strategic and risk neutral, in the sense that they want to
maximize their expected net benefit, knowing that the others have similar objectives. During
observable periods, the customers are informed about the queue length upon arrival and then
make their joining/balking decisions, whereas in unobservable periods, they make their join-
ing/balking decisions relying solely on their knowledge of the system parameters. All customers
are informed about their current positions when the system enters an observable period and
any time, they may decide to renege.

To avoid trivial cases, we assume throughout the paper that the following two conditions
hold:

R > fe + fs +
C

µ
, (2.1)

and
r ≤ fe. (2.2)

Condition (2.1) ensures that the value of service is high enough so that a customer that
observes an empty system prefers to join; otherwise the system would be continuously empty.
Condition (2.2) ensures that there are no customers that enter and remain in the system only
instantaneously. Indeed, if r > fe, then even a customer who observes a huge queue length
upon arrival is willing to enter, but will renege immediately.

To analyze customer strategic behavior, we should take into account that the arriving cus-
tomers face the dilemma of whether to join or balk upon arrival, and then, the joining customers
continuously face the dilemma of whether to stay or renege.

If a customer arrives at an observable period and finds n customers in the system, then she
enters if and only if R− fe − fs − C n+1

µ ≥ 0 or equivalently if

n+ 1 ≤
⌊
µ(R− fe − fs)

C

⌋
= ne. (2.3)

Hence such a customer uses Naor’s threshold and enters if her position in the system after
joining is at most ne, given by (2.3). If she enters, it is certain that she will stay in the system
till her service completion, because no matter what the other customers do, her expected net
benefit will be non-negative at all subsequent moments (because of the FCFS discipline and the
Markovian framework).

If a customer arrives at an unobservable period, then she will enter with some probability q.
If she enters, then she will certainly stay till the first time that the system becomes observable
or till her service completion, whatever occurs first (again because of the assumption of expo-
nentially distributed times). Suppose that the system becomes observable before the service
completion of a customer that joined in an unobservable period. If n is the current position of
the customer, then she will stay if and only if R− fs − C n

µ ≥ r or equivalently if

n ≤
⌊
µ(R− r − fs)

C

⌋
= ns. (2.4)

Note that fe does not play any role for this decision, since it is refundable only to the extent
specified by r. Of course, if the tagged customer decides to stay after the moment that the
system becomes observable, then she will stay till her service completion, as her expected
benefit cannot deteriorate. Note, also, that

ne ≤ ns
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Economic parameters

R > 0 customer service valuation

C > 0 customer waiting cost per time unit in the system

fe ≥ 0 entrance fee

fs ≥ 0 service fee

r r ≥ 0: refund to reneging customers

r < 0: penalty for abandonment

r = −∞: reneging is forbidden

Operational parameters

mode 1 observable system

mode 0 unobservable system

λ > 0 arrival rate

µ > 0 service rate

θ > 0 exponential rate of the duration of unobservable periods

ζ > 0 exponential rate of the duration of observable periods

B > 0 mean duration of an information cycle: B = 1/ζ + 1/θ

γ ∈ (0, 1) fraction of customers who arrive at observable mode: γ = θ/(ζ + θ)

(ne, ns, q) potential equilibrium strategy (PES)

ne ≥ 0 join/balk threshold (Naor’s) at arrival instants during observable mode

ns ≥ 0 stay/renege threshold at change instants from unobservable to observable mode

q ∈ [0, 1] joining probability in unobservable mode

Performance measures

qe ∈ [0, 1] equilibrium joining probability in unobservable mode

µe ≥ 0 equilibrium throughput: mean number of service completions per time unit

Se ≥ 0 equilibrium social welfare per time unit

Table 1: Model parameters and notation

because of condition (2.2). From the above discussion, we conclude that an equilibrium strategy
should

• prescribe enter if the offered position for an arriving customer during an observable period
is at most ne given by (2.3),
• prescribe enter with some probability q if a customer arrives during an unobservable

period, and
• prescribe stay if the position of a customer at the time of a change from an unobservable

to observable mode is at most ns given by (2.4).

Thus, a potential equilibrium strategy (PES) should satisfy the above three conditions and will
be referred to as an (ne, ns, q)-PES. Note that only q remains to be determined. All model
parameters are summarized for convenience in Table 1.

3 Customer expected net benefit

Suppose that the population of the customers adopts an (ne, ns, q)-PES and consider a tagged
customer. Her best response against the (ne, ns, q)-PES will necessarily be an (ne, ns, q

′)-PES,
with a possibly different joining probability q′. This follows from the discussion in Section
2. To compute the best response of the tagged customer, suppose that she arrives during an
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unobservable period and let U(ne, ns, q) be her expected net benefit if the other customers follow
the (ne, ns, q)-PES and the tagged customer decides to join and will use the same threshold ns
for staying/reneging as the other customers at the time where the system becomes observable.

To determine U(ne, ns, q), we condition on the number of customers N−q that are present in
the system just before the arrival of the tagged customer (noting that N−q is not observable for
her). Then,

U(ne, ns, q) =
∞∑
n=0

Pr[N−q = n]U(n;ns), (3.1)

where U(n;ns) stands for the conditional expected net benefit of the tagged customer if she
decides to join, given that n customers are present in the system upon her arrival (excluding
herself) and all of them use the same reneging threshold ns. Note that U(n;ns) is indepen-
dent from the strategy parameters ne, q, and the operational model parameters λ, ζ. Also, the
subscript q in N−q is present to emphasize the dependence on q which is crucial in several deriva-
tions. To evaluate U(ne, ns, q) using (3.1), we start with computing the conditional expected
values U(n;ns).

Theorem 3.1. The conditional expected net benefit of an arriving customer if she decides to
join, given that n customers are present in the system upon her arrival and all of them use the
reneging threshold ns is given by

U(n;ns) =

{
R− fe − fs − C(n+1)

µ if 0 ≤ n < ns
r − fe − C

θ + (R− r − fs − Cns
µ + C

θ )( µ
µ+θ )n+1−ns if n ≥ ns.

(3.2)

Proof. Consider a tagged customer that arrives and decides to join during an unobservable
period. Suppose that the system has n other customers at that moment. We consider two cases
according to whether n < ns or not.

In the first case, where n < ns, the customer will certainly complete her service. Therefore,
she will receive the service reward R and will pay the entrance and service fees, fe and fs.
Moreover, her sojourn time in the system will be the sum of n+1 service times and we conclude
with the first branch of (3.2).

In the second case, where the tagged customer arrives when there are n ≥ ns customers
and decides to join, let X be the time till the beginning of the first observable period after her
arrival and K be the number of service completions that occur during X. Let Un be the net
benefit of the tagged customer. Then, by conditioning on X and K we have

U(n;ns) =

∫ ∞
0

∞∑
k=0

E[Un | X = x,K = k] Pr[K = k | X = x]fX(x)dx, (3.3)

where fX(x) is the probability density of X. Note that fX(x) = θe−θx, x > 0, because of the

memoryless property of the exponential distribution, and that Pr[K = k | X = x] = e−µx (µx)k

k! ,
k ≥ 0, assuming that the server is always busy during time X. Moreover, the conditional mean
value E[Un | X = x,K = k] is given by

E[Un | X = x,K = k] =


−fe − Cx+ r, if 0 ≤ k ≤ n− ns,
−fe − C

(
x+ n+1−k

µ

)
+R− fs, if n− ns + 1 ≤ k ≤ n,

−fe − C (n+1)x
k+1 +R− fs, if k ≥ n+ 1.

(3.4)

Indeed, to justify (3.4), we notice that there are three cases regarding the tagged customer:

Case I: At the beginning of the first observable period after her arrival, the tagged customer
occupies a position greater than ns.
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In this case, the number of service completions k is such that n + 1 − k ≥ ns + 1, i.e.,
k ≤ n−ns. The tagged customer will renege at time x, so her sojourn time in the system
is the time till the first announcement x. Therefore, she will pay fe upon entrance, suffer
waiting cost Cx and receive the refund r upon abandonment. So, we conclude the first
branch of (3.4).

Case II: At the beginning of the first observable period after her arrival, the tagged customer
occupies a position less than or equal to ns.
In this case, the number of service completions k is such that 1 ≤ n + 1 − k ≤ ns, i.e.,
n−ns+1 ≤ k ≤ n. The tagged customer will not renege and has to wait for the completion
of n + 1 − k service times after the beginning of the observable period that followed her
arrival. Her mean sojourn time in the system will be x+ n+1−k

µ . Therefore, she will suffer

waiting cost C(x + n+1−k
µ ) and the net service value will be R − fe − fs, so we conclude

the second branch of (3.4).
Case III: At the beginning of the first observable period after her arrival, the tagged customer has

already been served.
In this case, the number of service completions k is such that k ≥ n + 1. In the interval
of length x, till the beginning of the observable period, there were k events in the Poisson
process of the service completions and the departure of the tagged customer corresponds
to the (n + 1)-th event of these k events. But then, the conditional distribution of the
departute time of the tagged customer given x coincides with the (n + 1)-order statistic
of k i.i.d. uniform random variables in [0, x] (see e.g., Campbell’s Theorem in Section 5.3

of Kulkarni [18]). Its mean value is (n+1)x
k+1 , so the waiting cost for the tagged customer is

C (n+1)x
k+1 , while the net service value is R− fe − fs. We conclude with the third branch of

(3.4).

We can now insert (3.4) into (3.3) and we obtain

U(n;ns) =

∫ ∞
0

n−ns∑
k=0

(−fe − Cx+ r)e−µx
(µx)k

k!
θe−θxdx

+

∫ ∞
0

n∑
k=n−ns+1

(−fe − Cx− C
n+ 1− k

µ
+R− fs)e−µx

(µx)k

k!
θe−θxdx

+

∫ ∞
0

∞∑
k=n+1

(−fe − C
(n+ 1)x

k + 1
+R− fs)e−µx

(µx)k

k!
θe−θxdx.

Evaluating the integrals (using the formula
∫∞
0 xhe−νxdx = h!

νh+1 ) and grouping similar terms
yields

U(n;ns) =− fe + r

n−ns∑
k=0

µkθ

(µ+ θ)k+1
+ (R− fs)

∞∑
k=n−ns+1

µkθ

(µ+ θ)k+1

− C 1

µ

n−ns∑
k=1

kµkθ

(µ+ θ)k+1
− Cn+ 1

µ

∞∑
k=n−ns+1

µkθ

(µ+ θ)k+1
, n ≥ ns.

Evaluating the geometric sums and grouping equal terms yields after some simplifications the
second branch of (3.2).

To proceed with the computation of U(ne, ns, q) using (3.1), we need to compute the prob-
abilities Pr[N−q = n]. These probabilities can be computed by studying the dynamics of the
system, when the population of customers follow the (ne, ns, q)-PES. Indeed, under this strategy,
the state of the system is described by a continuous-time Markov chain (CTMC) {(N(t), I(t)) :
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t ≥ 0}, where N(t) records the number of customers in the system at time t, while I(t) denotes
the mode of operation (I(t) = 1 during observable periods and I(t) = 0 during unobservable
periods). The state-space of {(N(t), I(t))} is SN,I = {(n, 0) : n ≥ 0}∪{(n, 1) : 0 ≤ n ≤ ns} and
the corresponding transition diagram is shown in Figure 1.

0, 1 1, 1 . . . ne − 1, 1 ne, 1 ne + 1, 1 . . . ns − 1, 1 ns, 1

0, 0 1, 0 . . . ne − 1, 0 ne, 0 ne + 1, 0 . . . ns − 1, 0 ns, 0 ns + 1, 0 . . .

λ λ λ λ

λq λq λq λq λq λq λq λq λq λq

µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ

ζ ζ ζ ζ ζ ζ ζθ θ θ θ θ θ θ

θ
θ

Figure 1: Transition diagram of the system state, when the customers follow the (ne, ns, q)-PES.

Its transition rates are given by

q(n,i)(m,j) =



λq if i = j = 0, n ≥ 0, m = n+ 1,
µ if i = j = 0, n ≥ 1, m = n− 1,
λ if i = j = 1, 0 ≤ n ≤ ne − 1, m = n+ 1,
µ if i = j = 1, 1 ≤ n ≤ ns, m = n− 1,
θ if i = 0, j = 1, 0 ≤ n ≤ ns − 1, m = n,
θ if i = 0, j = 1, n ≥ ns, m = ns,
ζ if i = 1, j = 0, 0 ≤ n ≤ ns, m = n,
0 otherwise.

Denote by (p(n, i) : (n, i) ∈ SN,I) its steady-state distribution. Then,

Pr[N−q = n] =
p(n, 0)∑∞

m=0 p(m, 0)
. (3.5)

Therefore, we need to compute (p(n, i) : (n, i) ∈ SN,I). The distribution (p(n, i)) is the unique
normalized solution of the following balance equations:

(λ+ ζ)p(0, 1) = θp(0, 0) + µp(1, 1), (3.6)

(λ+ µ+ ζ)p(n, 1) = λp(n− 1, 1) + θp(n, 0) + µp(n+ 1, 1), 1 ≤ n ≤ ne − 1, (3.7)

(µ+ ζ)p(ne, 1) = λp(ne − 1, 1) + θp(ne, 0) + µp(ne + 1, 1), (3.8)

(µ+ ζ)p(n, 1) = θp(n, 0) + µp(n+ 1, 1), ne + 1 ≤ n ≤ ns − 1, (3.9)

(µ+ ζ)p(ns, 1) = θ
∞∑

n=ns

p(n, 0), (3.10)

(λq + θ)p(0, 0) = ζp(0, 1) + µp(1, 0), (3.11)

(λq + µ+ θ)p(n, 0) = λqp(n− 1, 0) + ζp(n, 1) + µp(n+ 1, 0), 1 ≤ n ≤ ns, (3.12)

(λq + µ+ θ)p(n, 0) = λqp(n− 1, 0) + µp(n+ 1, 0), n ≥ ns + 1. (3.13)

Solving the system of the balance equations and the normalization equation∑
(n,i)∈SN,I

p(n, i) = 1, (3.14)

and using (3.1), (3.2) and (3.5), we can compute U(ne, ns, q) which is the key quantity for
deriving the customer equilibrium behavior. The system of the balance equations and the
normalization equation is quite involved. However, it can be reduced easily to a finite linear
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system because of the homogeneous 1-dimensional nature of the model for n ≥ ns + 1. Indeed,
(3.13) is a homogeneous linear second-order difference equation. Therefore, its solution is

p(n, 0) = c+ρ
n
+ + c−ρ

n
−, n ≥ ns, (3.15)

where ρ+ and ρ− are the roots of the corresponding characteristic equation

µx2 − (λq + µ+ θ)x+ λq = 0 (3.16)

and c+, c− constants to be determined (see e.g., Section 2.3 in Elaydi [7]). Therefore,

ρ+,− =
λq + µ+ θ ±

√
(λq + µ+ θ)2 − 4λqµ

2µ
. (3.17)

It is easy now to see that ρ+ > 1, whereas 0 < ρ− < 1. Because of the normalization equation,∑∞
n=ns

p(n, 0) <∞, so necessarily the coefficient c+ of ρ+ in (3.15) should be 0. Hence, (3.15)
becomes

p(n, 0) = c−ρ
n
− =

(
λq + µ+ θ −

√
(λq + µ+ θ)2 − 4λqµ

2µ

)n
p(ns, 0), n ≥ ns. (3.18)

Now, equation (3.10) is written as

(µ+ ζ)p(ns, 1) =
θ

1− ρ−
p(ns, 0), (3.19)

and equation (3.12) for n = ns reduces to

(λq + µ+ θ)p(ns, 0) = λqp(ns − 1, 0) + ζp(ns, 1) + µρ−p(ns, 0).

The latter can be also written as

(
θ

1− ρ−
+ µ)p(ns, 0) = ζp(ns, 1) + λqp(ns − 1, 0), (3.20)

using that ρ− satisfies (3.16). Now, equations (3.6)-(3.9), (3.19), (3.11), (3.12) for 1 ≤ n ≤ ns−1
and (3.20) show that (p(n, i) : i = 0, 1 and 0 ≤ n ≤ ns) satisfies the balance equations of the
finite non-homogeneous Quasi-Birth-Death (QBD) process that results from the original chain
in Figure 1, when the states (n, 0) for n ≥ ns + 1 are omitted and the rate from (ns, 0) to
(ns, 1) becomes θ/(1−ρ−). Indeed, this finite QBD process, with transition rate diagram given
in Figure 2, is the censored process that results from the original chain observed only while it
stays in states with n ≤ ns (for details see [19], Chapter 5, in particular Section 5.5). Hence,
(p(n, i) : i = 0, 1 and 0 ≤ n ≤ ns) can be effectively computed up to a normalization constant by
using any general algorithm for the computation of the steady-state distributions of finite QBD
processes (see e.g., [19], Chapter 12 or [1], Section 7.2.1). Then, the remaining steady-state
probabilities p(n, 0), n ≥ ns+1, are computed up to the same normalization constant by (3.18).
Finally, the normalization constant is computed using the normalization equation (3.14). Note
that the algorithms for the computation of the steady-state probabilities of a finite QBD are
very fast since they are of block-Gaussian elimination type that exploit the block-tridiagonal
form of the transition rate matrix.
We now proceed to obtain a formula for U(ne, ns, q). By (3.1) and (3.5), we have that

U(ne, ns, q) =
∞∑
n=0

p(n, 0)∑∞
m=0 p(m, 0)

U(n;ns) =
ζ + θ

ζ

∞∑
n=0

p(n, 0)U(n;ns), (3.21)
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0, 1 1, 1 . . . ne − 1, 1 ne, 1 ne + 1, 1 . . . ns − 1, 1 ns, 1

0, 0 1, 0 . . . ne − 1, 0 ne, 0 ne + 1, 0 . . . ns − 1, 0 ns, 0

λ λ λ λ

λq λq λq λq λq λq λq λq

µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ

ζ ζ ζ ζ ζ ζ ζθ θ θ θ θ θ θ/(1− ρ−)

Figure 2: Transition diagram of the censored process in the set of states with n ≤ ns.

because {I(t)} is a 2-state CTMC with rate q01 = θ and q10 = ζ and so we conclude that∑∞
m=0 p(m, 0) = ζ

ζ+θ . To evaluate the sum in (3.21), we decompose it in two sums according to
the two branches of (3.2). We have:

ns−1∑
n=0

p(n, 0)U(n;ns) =

ns−1∑
n=0

p(n, 0)

(
R− fe − fs −

C(n+ 1)

µ

)
, (3.22)

∞∑
n=ns

p(n, 0)U(n;ns) =

∞∑
n=ns

p(n, 0)

(
ra − fe −

C

θ

)

+

∞∑
n=ns

p(n, 0)

(
R− ra − fs −

Cns
µ

+
C

θ

)(
µ

µ+ θ

)n+1−ns

. (3.23)

The right-hand sides of (3.22)-(3.23) can be written more compactly in terms of the following
partial generating functions of the steady-state distribution (p(n, i) : (n, i) ∈ SN,I), that corre-
spond to the various groups of states that appear in the transition diagram (except from the
state (ns, 1) which forms a group by itself):

P0a(z) =

ne−1∑
n=0

p(n, 0)zn, P0b(z) =

ns−1∑
n=ne

p(n, 0)zn−ne , P0c(z) =
∞∑

n=ns

p(n, 0)zn−ns (3.24)

P1a(z) =

ne−1∑
n=0

p(n, 1)zn, P1b(z) =

ns−1∑
n=ne

p(n, 1)zn−ne . (3.25)

Indeed, equations (3.22)-(3.23) assume the form

ns−1∑
n=0

p(n, 0)U(n;ns) =

(
R− fe − fs −

C

µ

)
P0a(1)− C

µ
P ′0a(1)

+

(
R− fe − fs −

C

µ

)
P0b(1)− C

µ
P ′0b(1)− Cne

µ
P0b(1), (3.26)

∞∑
n=ns

p(n, 0)U(n;ns) =

(
ra − fe −

C

θ

)
P0c(1)

+

(
R− ra − fs −

Cns
µ

+
C

θ

)
µ

µ+ θ
P0c

(
µ

µ+ θ

)
. (3.27)

Combining (3.21) with (3.26)-(3.27) yields an expression for U(ne, ns, q) which is reported in
the following Theorem.
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Theorem 3.2. The unconditional expected net benefit of an arriving customer if she decides to
join, given that the population of the customers follow the (ne, ns, q)-PES is given by

U(ne, ns, q) =
ζ + θ

ζ

[
(R− fe − fs −

C

µ

)(
P0a(1) + P0b(1))− Cne

µ
P0b(1)

+

(
ra − fe −

C

θ

)
P0c(1)− C

µ

(
P ′0a(1) + P ′0b(1)

)
+

(
R− ra − fs −

Cns
µ

+
C

θ

)
µ

µ+ θ
P0c

(
µ

µ+ θ

)]
.

The probability generating functions that are needed to evaluate U(ne, ns, q) can be computed
either using the steady-state probabilities that are obtained via the finite QBD approach that
we described above, or directly using a generating function approach. The latter approach is
interesting and efficient, but quite involved. So we describe it in detail in the Appendix of the
paper. Because of its complexity, it may be preferable than the former approach only when ns
is large, in which case the finite QBD approach is computationally costly. Having determined
the unconditional expected net benefit function U(ne, ns, q), we can now proceed towards the
characterization and computation of the equilibrium strategies.

4 Monotonicity properties and equilibrium behavior

In this section, we characterize the equilibrium customer behavior using the performance eval-
uation results for the model under an (ne, ns, q)-PES that were reported in Section 3. We first
derive several monotonicity properties of the model associated with the functions U(n;ns) and
U(ne, ns, q) which are crucial for the study of the equilibrium customer behavior.

Proposition 4.1. The steady-state number, N−q , of customers in the system at arrival instants
during unobservable periods, when the (ne, ns, q)-PES is followed by the customer population, is
stochastically increasing in q.

Proof. Consider two systems, 1 and 2, with identical operational parameters λ, µ, θ and ζ, and
identical economic parameters R and C, where the customers have adopted the thresholds ne
and ns given by (2.3) and (2.4), respectively. The two systems differ only in the join probability
q when customers arrive during an unobservable period. More concretely, we suppose that the
customers enter with probability q(i) when they arrive at an unobservable period of system i, for
i = 1, 2. Suppose that q(1) < q(2) and let {(N (i)(t), C(i)(t))} be the CTMC describing system i,
for i = 1, 2. We construct a coupling of the two processes that represent the states of the two
systems as follows:

The observable and unobservable periods alternate identically in the two systems. The
service completions are identical in the two systems and are generated by the same Poisson
process {M(t)} with rate µ (when any of the two systems is empty, the Poisson generated
events do not have any influence on the corresponding state 0 of {N (i)(t)}). The arrivals at
system 2 are generated by a Poisson process {Λ(2)(t)} with rate λq(2). On the other hand, for
system 1, we assume that an arrival occurs at an event of the Poisson process {Λ(2)(t)} with
probability q(1)/q(2). This ensures that the arrivals at system 1 constitute a Poisson process
{Λ(1)(t)} with rate λq(1).

A comparison of the coupled realizations of the two processes {N (1)(t)} and {N (2)(t)} shows
that both processes move one step to the left, when an event at the service completion Poisson
process {M(t)} occurs. Moreover, whenever a change happens in the informational process, from
the observable to the unobservable mode, whichever of the processes {N (1)(t)} and {N (2)(t)}
are above ns at the change instant moves to state ns. If only one of them is above ns, then
only this process is influenced. Finally, when an event of the Poisson process {Λ(2)(t)} occurs,

14



the process {N (2)(t)} certainly moves one step to the right, while the process {N (1)(t)} moves
one step to the right with probability q(1)/q(2). Therefore, a moment of reflection shows that
if the processes {N (1)(t)} and {N (2)(t)} start from n(1) and n(2) customers respectively with
n(1) ≤ n(2), then the sample-path of {N (1)(t)} remains ‘under’ the corresponding sample-path
of {N (2)(t)} for all t. This proves that {N (1)(t)} ≤st {N (2)(t)}. In particular, if we consider
the two systems only during their unobservable periods, we conclude that the sample-path
of {N (1)(t)} remains ‘under’ the corresponding sample-path of {N (2)(t)} so the corresponding
steady-state distributions are also stochastically ordered. But during unobservable periods, the
arrival processes at both systems are Poisson, so the steady-state distributions of the number
of customers in continuous time and at arrival instants coincide (by applying the Poisson-
Arrivals-See-Time-Averages (PASTA) result). Therefore, if we denote by N−

q(i)
the steady-state

distribution of the number of customers in system i at arrival instants when the system is
unobservable, i = 1, 2, we conclude that N−

q(1)
≤st N−q(2) .

Proposition 4.2. The conditional expected net benefit function U(n;ns) is strictly decreasing
in n, for any fixed reneging threshold ns.

Proof. Proof The top branch of U(n;ns) of (3.2) is obviously strictly decreasing in n. The
bottom branch is also strictly decreasing in n. Indeed, by the definition of ns (see (2.4)), we
have that R − fs − C ns

µ ≥ r, so the coefficient R − r − fs − Cns
µ + C

θ in the bottom branch of

(3.2) is positive. Moreover, ( µ
µ+θ )n+1−ne is strictly decreasing in n.

It remains to show that U(n;ns) remains strictly decreasing at its turning point from the
top branch to the bottom, i.e., that

R− fe − fs −
Cns
µ

> r − fe −
C

θ
+ (R− r − fs −

Cns
µ

+
C

θ
)

µ

µ+ θ
.

After some simplification, this is equivalently written as R− r−fs− Cns
µ + C

θ > 0 which is valid
by the definition of ns.

Proposition 4.3. The unconditional expected net benefit function U(ne, ns, q) is strictly de-
creasing in q, for fixed thresholds ne and ns.

Proof. For fixed ns, we have that U(n;ns) does not depend on q, nor on ne, so we can write
(3.1) as

U(ne, ns, q) = E[U(N−q ;ns)],

where N−q is the random variable that was defined in the statement of Proposition 4.1. Now,
U(n;ns) is strictly decreasing in n because of Proposition 4.2 and N−q is stochastically increasing
in q by Proposition 4.1. Therefore, q1 < q2 implies that U(ne, ns, q1) = E[U(N−q1 ;ns)] >
E[U(N−q2 ;ns)] = U(ne, ns, q2).

We are now ready to state and prove the characterization of equilibrium customer strategies.

Theorem 4.1. An equilibrium strategy always exists and is unique. It is the (ne, ns, qe)-PES
with ne, ns and qe given respectively from (2.3), (2.4) and

qe =


0 if U(ne, ns, 0) ≤ 0,
q∗e if U(ne, ns, 1) < 0 < U(ne, ns, 0),
1 if U(ne, ns, 1) ≥ 0,

where q∗e is the root of the equation U(ne, ns, q) = 0 with respect to q in (0, 1) (which exists and
is unique when U(ne, ns, 1) < 0 < U(ne, ns, 0)).
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Proof. Proof We have already shown during the discussion in Section 2, that an equilibrium
strategy is necessarily an (ne, ns, q)-PES with ne and ns given by (2.3) and (2.4), respectively.
Assume that the population of customers follows the (ne, ns, q)-PES and consider a tagged
customer. We have the following three cases:

Case I: q = 0.
Then, the best response of the tagged customer against (ne, ns, 0) is the same strategy,
if and only if, the customer prefers to balk if she finds the system at the unobservable
mode upon arrival. Therefore, the (ne, ns, 0)-PES is an equilibrium strategy if and only
if U(ne, ns, 0) ≤ 0.

Case II: q ∈ (0, 1).
Then, the best response of the tagged customer against (ne, ns, q) is the same strategy, if
and only if, the customer is indifferent between joining and balking if she finds the system
at the unobservable mode upon arrival. Therefore, the (ne, ns, q)-PES is an equilibrium
strategy if and only if U(ne, ns, q) = 0. However, because of the strict monotonicity of
U(ne, ns, q) with respect to q (by Proposition 4.3), we have that the equation U(ne, ns, q) =
0 has a solution in (0, 1) if and only if U(ne, ns, 1) < 0 < U(ne, ns, 0) and in this case, it
is unique.

Case III: q = 1.
Then, the best response of the tagged customer against (ne, ns, 1) is the same strategy,
if and only if, the customer prefers to join if she finds the system at the unobservable
mode upon arrival. Therefore, the (ne, ns, 1)-PES is an equilibrium strategy if and only
if U(ne, ns, 1) ≥ 0.

Theorem 4.1 has far-reaching implications in terms of the economic and operational analy-
sis of the alternating information structure. By establishing existence of a unique equilibrium
and by characterizing it in terms of the well behaved customer expected net benefit (cf. The-
orem 3.2), it essentially states that the current model remains tractable despite its increased
complexity over other benchmark approaches, [15, 2]. This structure can be utilized to study
the model’s performance in equilibrium via numerical comparative statics on its operational
and economic parameters.

5 Effects of the alternating observational structure: Numerical
experiments

As previously mentioned, the alternation between observable and unobservable periods repre-
sents a number of different situations that arise in practice. These situations determine which
parameters can be controlled by a decision maker and hence, the ways in which system perfor-
mance can be improved. Our objective is to study such effects on strategic customer behavior
and to derive managerial insight on optimizing system design.

Specifically, we are interested in the behavior of the equilibrium joining probability qe, the
equilibrium throughput of the system µe = µ(1 − p(0, 0) − p(0, 1)) (i.e., the number of service
completions per time unit) and the equilibrium social welfare

Se = Rµe + rae − CE[Nqe ],

where ae =
∑∞

n=ns+1(n − ns)θp(n, 0) is the mean abandonment (reneging) rate in equilibrium
and E[Nqe ] is the mean number of customers in the system given by

E[Nqe ] =

ns∑
n=0

np(n, 1) +

∞∑
n=0

np(n, 0).

16



For this analysis, we consider three sets of numerical experiments. The first set studies the
effect of the fraction of time that the system is observable in Section 5.1, whereas the second
studies the effect of the duration of the unobservable periods in Section 5.2. Finally, the third
studies the influence of the percentage of the entrance fee which is refundable when a customer
reneges (i.e., the fraction r/fe) in Section 5.3.

5.1 Fraction of time that the system is observable

First, we study the effect on strategic customer behavior of the fraction of time that the system
is observable, γ ∈ [0, 1], when the mean information cycle of the system – consisting of an
unobservable and an observable period – is kept fixed. To this end, for a given mean information
cycle of the system B, we set θ = 1

(1−γ)B and ζ = 1
γB , so that 1/θ+ 1/ζ = B, and let γ vary in

[0, 1]. Our objective is to study whether there exists an ideal fraction of time, strictly between
0 and 1, for which the system should be observable given the duration B.

We first consider an instance with fixed mean information cycle, B = 0.1 (high frequency
of alternations), and provide the plots of the joining probability qe, the throughput µe and the
social welfare Se, when the customers follow the equilibrium strategy, as functions of γ in the
three panels of Figure 3. In each panel, we plot three curves for the arrival rates λ = 0.8, 1.1
and 2.3, respectively. The rest of the parameters are kept fixed: the service rate is set µ = 1 and
the economic parameters are R = 4, C = 1, fe = fs = 0 and r = −30. The choices B = 0.1 and

Figure 3: Customer’s joining probability, throughput and social welfare with respect to γ for
λ = 0.8, 1.1, 2.3 and for B = 0.1, µ = 1, R = 4, C = 1, fe = fs = 0 and r = −30.

r = −30 represent that the alternations in the information periods are almost instantaneous
and that reneging is prohibited. In this case, γ corresponds to the fraction of customers that
observe the queue length upon arrival. The rest of the parameters are the same as in Hu, Li
and Wang [15]. The resulting plots of Figure 3 coincide with their findings, cf. Figures 3, 4
and 5 in [15], and confirm that their model can be derived as a limiting case of the alternating
information structure.

The present model allows a greater degree of control on the fraction of time that the system is
observable and hence, it is not surprising that the equilibrium throughput is usually a unimodal
function of γ. This is in agreement with the findings in [15], who proved that the equilibrium
throughput and the equilibrium social welfare are in general unimodal and not monotonous in
the fraction γ of informed customers. Similarly, Chen and Frank [3] have shown that regarding
equilibrium throughput maximization, the observable version of the M/M/1 queue is preferable
for high values of λ, whereas the unobservable version is preferable for low values of λ. Indeed,
when λ is high, in the unobservable version no customer enters, whereas some customers do
enter in the observable counterpart (those few that find the system in low congestion). The
opposite happens when λ is low, i.e., all customers enter in the unobservable case, whereas not
all customers enter in the observable case.
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Regulating γ and keeping all other parameters fixed has multiple effects on the system. In
case of low arrival rates λ, an increase in γ increases the customer entrance probability for the
unobservable periods, but it also increases the abandonment probability since the system passes
quickly from the unobservable to the observable mode. This double effect is reversed in the case
of high arrival rates. Moreover, tuning γ changes the composition of the customers’ population,
which in turn, changes the join-or-balk game among the customers. The population consists of
two different subpopulations of customers and the solution of the game becomes more intricate.

To understand the effect of γ for different frequencies of alternation between observable
and unobservable periods, we perform a second experiment with increasing values of the mean
information cycle B = 0.1, 10, 100. We set the arrival rate at λ = 1.1 (also used by [15]) and
keep the rest of the parameters as in Figure 3. The results are shown in Figure 4. The main

Figure 4: Customer’s joining probability, throughput and social welfare with respect to γ for
B = 0.1, 10, 100 and for λ = 1.1, µ = 1, R = 4, C = 1, fe = fs = 0 and r = −30.

observation in Figure 4 is that given sufficient control on the duration of the information cycle,
the alternating information structure can lead to increased social welfare in comparison to the
information heterogeneity of [15]. This is achieved for intermediate values of γ for which the
line for B = 0.1 ([15]) lies below the lines of both B = 10 and B = 100 (longer information
cycles and hence, lower frequency of alternations). To allow comparisons, reneging has been
kept prohibited in all these plots by setting r = −30. However, allowing customers to renege
can further improve system performance.

A second feature that is revealed by the plots of Figures 3 and 4 is the concurrence of the
value of γ in which the equilibrium joining probability hits 1, the mode in the equilibrium
throughput and the tipping point in social welfare. This remains true for the social welfare if
the joining probability hits instead 0, but not for the equilibrium throughput which remains
increasing, cf. plots for λ = 2.3 in Figure 3 (the terms increasing and decreasing should
be understood in a weak manner, i.e., non-decreasing and non-increasing, respectively). The
explanation is based again on the previous discussion: as γ increases, it influences the joining and
abandonment equilibrium probabilities towards the same direction (both probabilities increase
or decrease). But when the joining probability hits its extreme value, 1 or 0, as γ varies, the
effect of further increasing γ on the joining probability ceases to exist, whereas the effect on the
abandonment probability continues. In short, Figures 3 and 4 illustrate the following

• The equilibrium joining probability is increasing in γ for low values of λ and decreasing in
γ for high values of λ. The equilibrium throughput is an increasing or unimodal function
of γ. Its mode coincides with the point at which qe reaches 1. The equilibrium social
welfare slope changes abruptly when qe reaches 1. For certain values of γ, it is higher for
information cycles of higher duration B.
• The equilibrium joining probability is decreasing in λ, the equilibrium throughput is in-

creasing in λ, whereas the equilibrium social welfare is non-monotonic in λ.
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• The equilibrium joining probability is decreasing in B, whereas the equilibrium throughput
and the equilibrium social welfare are non-monotonic in B.

5.2 Duration of unobservable periods

Next, we turn to the effect of the duration of the unobservable periods, as expressed by varying
values of θ, on strategic customer behavior. At the limiting case, in which the duration of the
corresponding observable periods is very short (almost instantaneous), i.e., for large values of ζ,
the alternating information structure reduces to an announcement model with announcement
rate θ. This is precisely the setting studied in Burnetas, Economou and Vasiliadis [2]. In
their framework, [2] show that the equilibrium throughput is a non-monotonic function of the
announcement rate θ, when all other parameters are kept fixed.

To recover this result, in the first scenario, we let θ vary in (0, 10) for three different ar-
rival rates λ = 7, 10, 40 and select ζ = 300 to model very short observable periods (almost
instantaneous announcements). In all cases, the economic parameters R = 5, C = 10, and
fe = fs = r = 0 and the operational parameter µ = 8 have been kept fixed. The equilibrium
perfomance measurers qe, µe and Se are plotted as functions of θ in the three panels of Figure
5. The three curves in each panel correspond to the different values of λ.

Figure 5: Equilibrium joining probability, throughput and social welfare with respect to θ, for
λ = 7, 10, 40, when ζ = 300, µ = 8, R = 5, C = 10, fe = fs = r = 0.

The most interesting finding is that the ideal rate θ for maximizing equilibrium throughput
lies strictly between 0 and ∞. This can be seen for the curves that correspond to λ = 7 and 10
and is also true for the curve with λ = 40 which attains its mode outside the selected range of
θ. This happens because increasing θ has two opposing effects: On the one hand, it increases
the equilibrium joining probability, because the uninformed customers become more willing to
enter, knowing that they will be informed more quickly. On the other hand, it increases the
reneging probability, because an uninformed customer who has joined the system during a high
congestion period will abandon the system earlier. The trade-off between the two effects is not
clear and this is the reason for the unimodality of the throughput.

The flexibility of the current information structure can be utilized to improve over the
benchmark model of [2]. To see this, we consider a second experiment with decreased values of
ζ = 1, 10, 100. Lower values of ζ correspond to longer observable periods. We set the arrival
rate at λ = 40, and keep the rest of the parameters as in Figure 5. We let θ to take values in
[0, 200]. The results on the equilibrium performance measures qe, µe and Se are shown in the
three panels of Figure 6.

The main conclusion that can be drawn from the diversity of the plots is the high dependence
of the performance measures, in particular of the equilibrium joining probability and social
welfare, on the interplay between the operational model parameters. Due to the their opposing
effects, general statements cannot be formulated for broad ranges of parameters’ values. For

19



Figure 6: Customer’s joining probability, throughput and social welfare with respect to θ for
ζ = 1, 10, 100 and for λ = 40, µ = 8, R = 5, C = 10, fe = fs = r = 0.

practical situations, this suggests the necessity for a case-by-case analysis to test each set of
candidate parameters individually but also indicates the broad applicability of the present
model. From an analytic perspective, it underlines the significance to derive the equilibrium
of the system and perform in turn comparative statics via the currently employed numerical
methods and tools.

More concretely, as can be seen from the first panel in Figure 6, the equilibrium joining
probability, is eventually increasing in θ and ultimately reaches 1 for any value of ζ. As θ
increases, the uninformed customers know that they will learn the system state very quickly, so
they have a strong incentive to join, independently of the value of ζ. If the observable periods
are not long, here ζ = 100, then uninformed customers have an incentive to join as θ increases,
since reneging becomes easier. For longer observable periods, here ζ = 1, the system becomes
occupied by the informed customers which disincentivizes uninformed customers to join and
explains the drop in the ζ = 1 curve in the first panel for intermediate values of θ.

Finally, the equilibrium throughput quickly reaches its maximal possible value µe = 8,
whereas the social welfare behaves non-monotonically in both θ and ζ after an initial steep
increase for low values of θ. Indeed, for values of θ close to 0, the model essentially corresponds
to an unobservable queue. Since the arrival rate, λ = 40, is much higher than the service rate,
µ = 1, uninformed customers are incentivized to balk, (see also [3]). This leaves the system
uncongensted for customer arriving at the short observable periods and leads to a sharp increase
in equilibrium social welfare. However, as θ increases further, the effects become mixed. Again,
an abrupt change in all curves occurs when the equilibrium joining probability hits 1. In short,
some general statements that can be formulated based on the results in Figures 5 and 6 are the
following

• The equilibrium joining probability is a non-monotonic function of θ. However, it is even-
tually increasing in θ and ultimately reaches 1. The equilibrium throughput is increasing
or unimodal in θ, whereas the equilibrium social welfare is non-monotonic.
• The equilibrium joining probability is decreasing in λ, the equilibrium throughput is in-

creasing in λ and the social welfare non-monotonic in λ.
• The equilibrium throughput is decreasing in ζ, whereas the equilibrium joining probability

and social welfare are non-monotonic in ζ.

5.3 Fraction of refundable entrance fee

In the last set of experiments, we study the effect of the fraction of the entrance fee that is
refundable, i.e., of r/fe for r ∈ [0, fe], on the strategic customer behavior. The perfomance
measures qe, µe and Se have been plotted in the three panels of Figure 7 as functions of r/fe
in [0, 1] for three different service valuations, R = 7, 10 and 15. In all cases, the operational
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parameters have been kept fixed at λ = 1.3, µ = 1, ζ = 10 and θ = 1 and the remaining
economic parameters at C = 1, fe = 5 and fs = 0.

Figure 7: Customer’s joining probability, throughput and social welfare with respect to r
fe

for
R = 7, 10, 15 and for λ = 1.3, µ = 1, ζ = 10, θ = 1, C = 1, fe = 5 and fs = 0.

The main finding is the discontinuity of all equilibrium measures which is caused by the
discrete changes in the reneging threshold ns as r/fe varies. At the points of change, the
equilibrium measures undergo abrupt changes or jumps (depicted as vertical lines in the plots).
In each interval of continuity, the value of ns remains the same. Then, an increase in r/fe
makes the uninformed customers more willing to enter and abandon later if they find a high
congestion. So, again the joining probability and the abandonment probability both increase
and their trade-off is not clear.

In a second scenario, we use the same operational and economic parameters λ = 1.3, µ =
1, ζ = 10, θ = 1, and C = 1, but we now fix R = 7 and fe + fs = 5. Again, we let r/fe vary
in [0, 1]. We examine three different scenarios for different values of fe = 1, 3 and 5. Our aim
is to model the situation in which the total fee is decomposed in two parts, the entrance and
the service fees, and study effect of the percentage of the entrance fee that is refundable. The
performance measures are plotted in the three panels of 8.

Figure 8: Customer’s joining probability, throughput and social welfare with respect to r
fe

for
fe = 1, 3, 5 and for λ = 1.3, µ = 1, ζ = 10, θ = 1, R = 7, C = 1 and fs = 5− fe.

The rest of the findings of Figures 7 and 8 are fairly intuitive. All equilibrium performance
measures improve as the service valuation R increases or as the service fee fs increases for a
given sum fe + fs of entrance and service fees. While the equilibrium joining probability and
social welfare also improve as the ratio r/fe tends to 1, this may not necessarily be true for
the equilibrium throughput, which may decrease, at least marginally, as can be inferred from
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the R = 15 and R = 7 plots in the middle panel of 7. Yet, in all other cases, the equilibrium
increases as well. In short, the findings of Figures 7 and 8 are the following

• The equilibrium joining probability is an increasing function of r/fe, the equilibrium
throughput is an increasing or unimodal function of r/fe and the equilibrium social welfare
is monotonic in each interval of continuity but in general, it is a non-monotonic function
of r/fe. All equilibrium performance measures are discontinuous functions of r/fe.
• All equilibrium performance measures are increasing in R and in the ratio fs/fe for con-

stant fe + fs.

The results of all experiments are summarized in Table 2.

Effect Variables Equilibrium performance measures

axes plots qe µe Se

Fraction of time

that the system

is observable

γ ↑ for low λ,

↓ for high λ

↑ or ∧ ↑ or ∧

λ ↓ ↑ ×
B ↓ × ×

Duration of un-

observable periods

θ × ↑ or ∧ ×
λ ↓ ↑ ×
ζ × ↓ ×

Fraction of

refundable fee

r/fe ↑ ↑ or ∧ ×
R ↑ ↑ ↑
fs/fe ↑ ↑ ↑

Table 2: Equilibrium performance measures in the numerical experiments: qe denotes the equi-
librium joining probability, µe the equilibrium throughput and Se the equilibrium social wel-
fare. Symbol ↑ stands for non-decreasing, ↓ for non-increasing, ∧ for unimodal and × for
non-monotonic nor unimodal. In column Variables, the field axes refers to the variables that
appear in the horizontal axes of the panels in each figure and the field plots to the variables
that yield the three different plots in each panel.

6 Summary and conclusions

In the present paper, we considered an M/M/1 queue that alternates between exponentially
distributed observable and unobservable periods and which bridges the extremal cases of con-
tinutously observable and unobservable systems. While this model unifies and generalizes the
existing approaches of [15] and [2], it remains analytically tractable since it always has a unique
equilibrium that can be characterised via the system parameters. This allows for a comprehen-
sive experimentation on the operational and economic system parameters to gain managerial
insight. A main conclusion is that the equilibrium throughput and the corresponding social wel-
fare are typically greater when an ideal level of alternation between observable and unobservable
mode is used instead of the system being continuously observable or unobservable.

Our results imply that sufficient flexibility to control the information structure of a given
queueing system improves its performance both from a managerial and a social perspective.
Thus, apart from its practical relevance, the present model may also provide a benchmark for
future studies in this direction. One interesting research problem is to extend the analysis
in the case where the unobservable and observable periods are of constant lengths and not
exponentially distributed. This seems quite difficult from an analytical point of view, but even
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a numerical study deserves attention. Another interesting direction for future research concerns
the case where the alternation between the observable and unobservable modes of the system
is not static (i.e., specified by the exponential rates θ and ζ) as in the present study, but can
be dynamically controlled by the administrator of the system.
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Appendix A Computation of the partial generating functions

of the steady-state distribution

To obtain the partial generating functions, defined in (3.24) and (3.25), of the steady-state

probabilities p(n, i), when a given (ne, ns, q)-PES is used by the population of customers, we

use the following approach. First, we multiply the balance equations for p(n, i) in (3.6)-(3.13) by

the appropriate power zn and add them to obtain equations for the partial generating functions

up to a few boundary probabilities to be determined later. We then solve the latter equations

using standard algebraic methods.

A.1 Equations for the partial generating functions

By multiplying (3.7) with zn and summing for 1 ≤ n ≤ ne − 1 we obtain

(λ+ µ+ ζ)P1a(z)− µp(0, 1) = λ

ne−1∑
n=1

p(n− 1, 1)zn + θ

ne−1∑
n=0

p(n, 0)zn + µ

ne−1∑
n=0

p(n+ 1, 1)zn

which reduces after straightforward algebraic manipulations to

[
(λ+ µ+ ζ)z − λz2 − µ

]
P1a(z)− θzP0a(z)

= µ(z − 1)p(0, 1)− λp(ne − 1, 1)zne+1 + µp(ne, 1)zne . (A.1)

Similarly, we derive a second equation for the generating functions P0a(z) and P1a(z), multi-

plying (3.12) by zn and summing for 1 ≤ n ≤ ns, along with (3.11). A bit of algebra yields

[
(λq + µ+ θ)z − λqz2 − µ

]
P0a(z)− ζzP1a(z)

= µ(z − 1)p(0, 0)− λqp(ne − 1, 0)zne+1 + µp(ne, 0)zne . (A.2)
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Equations (A.1), (A.2) can be written in matrix-form as −θz (λ+ µ+ ζ)z − λz2 − µ

(λq + µ+ θ)z − λqz2 − µ −ζz

 ·
 P0a(z)

P1a(z)

 =

 N0a(z)

N1a(z)

 , (A.3)

where

N0a(z) = µ(z − 1)p(0, 1)− λp(ne − 1, 1)zne+1 + µp(ne, 1)zne (A.4)

N1a(z) = µ(z − 1)p(0, 0)− λqp(ne − 1, 0)zne+1 + µp(ne, 0)zne . (A.5)

Next, we derive a linear system for the generating functions P0b(z) and P1b(z) following the

same procedure. More specifically, multiplying (3.9) with zn−ne for ne + 1 ≤ n ≤ ns − 1 and

summing them together with (3.8) yields

(µ+ ζ)

ns−1∑
n=ne

p(n, 1)zn−ne = λp(ne − 1, 1) + θ

ns−1∑
n=ne

p(n, 0)zn−ne + µ

ns−1∑
n=ne

p(n+ 1, 1)zn−ne .

which can be written in a simplified form as

[(µ+ ζ)z − µ]P1b(z)− θzP0b(z) = λzp(ne − 1, 1)− µp(ne, 1) + µp(ns, 1)zns−ne . (A.6)

A second equation for P0b(z) and P1b(z), can be derived from (3.12), multiplying with zn−ne

and summing over all ne ≤ n ≤ ns − 1. It yields

[
(λq + µ+ θ)z − λqz2 − µ

]
P0b(z)− ζzP1b(z)

= −λqp(ns − 1, 0)zns−ne+1 + µp(ns, 0)zns−ne + λqp(ne − 1, 0)z − µp(ne, 0). (A.7)

Again, (A.6), (A.7), can be written in matrix-form as −θz (µ+ ζ)z − µ

(λq + µ+ θ)z − λqz2 − µ −ζz

 ·
 P0b(z)

P1b(z)

 =

 N0b(z)

N1b(z)

 , (A.8)

where

N0b(z) = µp(ns, 1)zns−ne + λp(ne − 1, 1)z − µp(ne, 1), (A.9)

N1b(z) = −λqp(ns − 1, 0)zns−ne+1 + µp(ns, 0)zns−ne + λqp(ne − 1, 0)z − µp(ne, 0). (A.10)

For deriving an equation for P0c(z), we multiply (3.12) and (3.13) with zn−ns and sum over all
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n ≥ ns. We have that

(λq + µ+ θ)
∞∑

n=ns

p(n, 0)zn−ns = λq
∞∑

n=ns

p(n− 1, 0)zn−ns + ζp(ns, 1) + µ
∞∑

n=ns

p(n+ 1, 0)zn−ns ,

which reduces easily to

[
(λq + µ+ θ)z − λqz2 − µ

]
P0c(z) = N0c(z), (A.11)

where N0c(z) = λqp(ns − 1, 0)z + ζp(ns, 1)z − µp(ns, 0). Hence, the balance equations (3.6)-

(3.13) have been transformed into equations (A.3), (A.8) and (A.11) for the partial generating

functions, which can be in turn easily expressed in closed form as rational functions of z via

Cramer’s rule. It remains to obtain the boundary probabilities that appear in N0a(z), N0b(z),

N0c(z), N1a(z) and N1b(z). To this end, we will use the balance equation (3.10) and the

normalization equation (3.14) that have not been used yet. However, these are only 2 equations

in the 9 unknown boundary probabilities. The additional required equations will be derived

from the roots of the determinants of the linear systems (A.3), (A.8) and the roots of the

coefficient of P0c(z) in (A.11).

A.2 Roots of the denominators of the partial generating functions

Starting with the P0c(z), we define

Dc(z) = (λq + µ+ θ)z − λqz2 − µ, (A.12)

which is the coefficient of P0c(z) in (A.11). Since Dc(0) = −µ < 0, Dc(1) = θ > 0 and

limz→∞Dc(z) = −∞, it follows from Bolzano’s Theorem that there exist real roots zc,1 ∈ (0, 1)

and zc,2 ∈ (1,∞) of Dc(z) which are given by

zc,1, zc,2 =
λq + µ+ θ ∓

√
(λq + µ+ θ)2 − 4λqµ

2λq
. (A.13)

Next, we derive the roots of the determinant Db(z) of the linear system (A.8). We have that

Db(z) = det

 −θz (µ+ ζ)z − µ

(λq + µ+ θ)z − λqz2 − µ −ζz


= (λq(µ+ ζ)z2 − (λq + µ+ θ + ζ)µz + µ2)(z − 1).
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Therefore, Db(z) = 0 has three roots, i.e., zb,1 = 1 and

zb,2, zb,3 =
(λq + µ+ θ + ζ)µ∓

√
(λq + µ+ θ + ζ)2µ2 − 4λq(µ+ ζ)µ2

2λq(µ+ ζ)
.

Similarly, for the determinant Da(z) of the linear system (A.3) we have

Da(z) = det

 −θz (λ+ µ+ ζ)z − λz2 − µ

(λq + µ+ θ)z − λqz2 − µ −ζz


= (−λ2qz3 + λ(µ+ θ + (λ+ µ+ ζ)q)z2 − µ(λq + µ+ θ + ζ + λ)z + µ2) · (z − 1).

Therefore, Da(z) = 0 has four roots, i.e., za,1 = 1 and the three roots of the cubic equation

−λ2qz3 + λ(µ+ θ + (λ+ µ+ ζ)q)z2 − µ(λq + µ+ θ + ζ + λ)z + µ2 = 0,

which can be calculated by the general formula for the roots of a cubic equation and are denoted

as za,k, for k = 2, 3, 4.

A.3 Computation of the partial generating functions

In this section, we provide a simple procedure for the computation of the partial generating

functions. Solving (A.11) for P0c(z) yields

P0c(z) =
(λqp(ns − 1, 0) + ζp(ns, 1))z − µp(ns, 0)

[(λq + µ+ θ)z − λqz2 − µ]
. (A.14)

Since zc,1 given by (A.13) (with the minus sign), is a root of the denominator of P0c(z) inside

the closed unit disc, then it should necessarily be a root of its numerator, as P0c(z) is known to

converge in the closed unit disc (as a probability generating function). Hence, the numerator in

(A.14) is a multiple of z−zc,1, whereas the denominator can be factored as −λq(z−zc,1)(z−zc,2).

Thus, (A.14) can be rewritten as

P0c(z) =
C(z − zc,1)

(z − zc,1)(z − zc,2)
=

C

z − zc,2
,

where C is a constant. But P0c(0) = p(ns, 0), so we conclude that C = −zc,2 p(ns, 0). Recall,

now, that zc,1, zc,2 are roots of the quadratic equation in (A.12), thus zc,1 · zc,2 = µ
λq . Therefore

P0c(z) assumes the form

P0c(z) =
p(ns, 0)

1− λqzc,1
µ z

=
∞∑

n=ns

p(ns, 0)(
λqzc,1
µ

)n−nszn−ns . (A.15)
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For the derivation of P0b(z), P1b(z) and P0a(z), P1a(z), we apply Cramer’s rule to the linear

systems (A.8) and (A.3), respectively. Therefore, for z 6= z1,b, z2,b, z3,b, we have P0b(z)

P1b(z)

 =

 −ζzN0b(z)−[(µ+ζ)z−µ]N1b(z)
Db(z)

−θzN1b(z)−[(λq+µ+θ)z−λqz2−µ]N0b(z)

Db(z)

 , (A.16)

and for z 6= z1,a, z2,a, z3,a, z4,a we have

 P0a(z)

P1a(z)

 =

 −ζzN0a(z)−[(λ+µ+ζ)z−λz2−µ]N1a(z)

Da(z)
−θzN1a(z)−[(λq+µ+θ)z−λqz2−µ]N0a(z)

Da(z)

 . (A.17)

Now, we have to compute the boundary probabilities that appear in N0a(z), N0b(z), N1a(z),

N1b(z) and p(ns, 0). These are 9 probabilities: p(0, 0), p(0, 1), p(ne− 1, 0), p(ne− 1, 1), p(ne, 0),

p(ne, 1), p(ns − 1, 0), p(ns, 0) and p(ns, 1) (see (A.4),(A.5),(A.9),(A.10) and (A.15)).

Rewriting (3.10) (that has not been used for the derivation of the equations that govern the

partial generating functions) in terms of P0c(z) yields

(µ+ ζ)p(ns, 1) = θP0c(1) =
θp(ns, 0)

1− λqzc,1
µ

and, we obtain

p(ns, 1) =
θ

(µ+ ζ)(1− λqzc,1
µ )

p(ns, 0). (A.18)

So, we have expressed p(ns, 1) in terms of p(ns, 0). Next, to obtain the rest 7 unknown

probabilities in terms of p(ns, 0), we exploit the fact that the numerator of P0b(z) given in

(A.16), and the numerator of P0a(z) given in (A.17) should vanish for z = zb,1, zb,2, zb,3 and for

z = za,1, za,2, za,3, za,4, respectively, because these partial generating functions are polynomials

and cannot have singularities (poles). Therefore, we obtain the following 7 equations, one for

each root of the corresponding denominator, to obtain the remaining 7 probabilities p(0, 0),

p(0, 1), p(ne−1, 0), p(ne−1, 1), p(ne, 0), p(ne, 1) and p(ns−1, 1) in terms of p(ns, 0). These are:

−ζzb,iN0b(zb,i)− [(µ+ ζ)zb,i − µ]N1b(zb,i) = 0, for i = 1, 2, 3, (A.19)

−ζza,iN0a(za,i)−
[
(λ+ µ+ ζ)za,i − λz2a,i − µ

]
N1a(za,i) = 0, for i = 1, 2, 3, 4. (A.20)

Finally, p(ns, 0) is determined using the normalizing equation, and the derivation of the partial

generating functions is completed. In practice, one assigns an arbitrary positive value to p(ns, 0)

(e.g., p(ns, 0) = 1), then computes the other boundary probabilities using (A.18) and solving

the linear system of (A.19) and (A.20) and finally normalizes the solution so that the total

steady-state probability be 1.
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