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ABSTRACT 17 
 18 
Classical efficiency studies on data envelopment analysis (DEA) consider all its inputs and outputs are desirable factors 19 
and real valued-data.  Additionally, the DEA models only focus either on input-oriented projection minimizing inputs 20 
for an inefficient decision making unit (DMU) while keeping outputs at their maximum level, or output-oriented 21 
projection maximizing outputs under the present level of input consumption.  To simultaneously deal with input excesses 22 
and output shortfalls maximizing both projections, this paper proposes a bi-objective DEA model in the context of 23 
undesirable factors and mixed integer requirements.  These factors and requirements were integrated into the objective 24 
function and constraints of the existing bi-objective models.  In addition, the proposed model estimates the returns to 25 
scale of DMUs that depends on the projections of input reduction and output augmentation.  The applicability and 26 
usefulness of the proposed model were tested using the dataset of 39 Spanish airports retrieved from the literature.  27 
Besides, the proposed model was compared with the three existing bi-objective DEA models in the literature to test its 28 
validity.   29 
 30 
Keywords: Data envelopment analysis; Mixed integer-valued data; Returns to scale; Undesirable factors 31 
 32 
 33 
1. Introduction 34 
 35 
Data envelopment analysis (DEA) measures the relative efficiency of a set of organisational units in various settings, 36 
called decision making units (DMUs).  The DMUs consume multiple inputs to produce multiple outputs.  The most well-37 
known DEA model is the CCR model, proposed by Charnes et al. (1978).  The CCR model measures the efficiency based 38 
on the oriented radial model: input or output oriented.  Later, Banker et al. (1984) integrated the economic concept of 39 
returns to scale (RTS) with the proposed variable returns to scale (VRS) model.  The RTS is a scale reflecting a 40 
proportionate increase in outputs resulting from a proportionate increase in inputs (Thanassoulis, 2001).  The RTS can 41 
be used as an economic measure to determine an efficiency level.  A DMU is efficient if it can maintain its current level 42 
of outputs with fewer inputs or increase the outputs with the same level of inputs.  It can be constant returns to scale 43 
(CRS), increasing returns to scale (IRS) or decreasing returns to scale (DRS).  The CRS reveals that any increase in 44 
inputs can proportionally produce any increase in outputs.  In contrast, the proportional changes of inputs less or greater 45 
than that of outputs reflect increasing returns to scale (IRS) or decreasing returns to scale (DRS) (Daraio & Simar, 2007; 46 
Sherman & Zhu, 2006).  However, the RTS technique of Banker et al. (1984) was only applicable for technical efficient 47 
DMUs.   48 
 49 
To classify the RTS for efficient and inefficient DMUs, a simple method based on two variants of oriented BCC models 50 
(input and output oriented) was then proposed by Golany and Yu (1997).  The model was proposed for desirable (good) 51 
and real values of inputs and outputs.  The desirable inputs (such as coal consumption) and outputs (such as gross 52 
domestic product) should be minimized and maximized to improve the performance of a DMU.  However, assuming all 53 
inputs and outputs as desirable factors and real valued-data may pose two main issues.  First, considering undesirable 54 
inputs and outputs (i.e., bad inputs (such as input waste in a recycling process) and outputs (such as CO2 emission) that 55 
their levels have to be maximized and minimized) as desirable factors in performance measures, as considered in 56 
literature reviews, may mislead decision makers of DMUs.  In reality, undesirable outputs and desirable inputs should 57 
be decreased, while desirable outputs and undesirable inputs should be increased in order to improve the performance of 58 
an inefficient DMU.  Thus, how to correctly treat both desirable and undesirable inputs and outputs should be studied.  59 
Second, simply rounding the real values of inputs and outputs to their nearest integer values may cause inaccurate and 60 
misleading efficiency evaluation (Hussain et al., 2016).  In reality, many input and output variables of DMUs are to be 61 
integer values, and their resulted unused or extra amount of the input and output variables calculated by DEA must also 62 
be integers.  For example, see the data and results of the airport application discussed in Section 4.  In such a case, the 63 
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integer values simply based on real-valued approximation would not be enough to accurately measure the DMUs’ 1 
efficiency.  Thus, how to treat inputs and outputs where some of their values are restricted to be integers should be 2 
examined.  Other issues related to RTS can also occur.  Therefore, how to identify the operation regions of evaluated 3 
DMUs where some of their inputs and/or outputs are simultaneously subject to undesirable factors and integer values 4 
should also be measured appropriately.   5 
 6 
Efficiency improvement of undesirable factors that considers undesirable inputs or outputs based on the concept of the 7 
radial DEA model has been conducted by many efficiency studies, such as Hwang et al. (2012), Färe et al. (1989), Seiford 8 
and Zhu (2002), Zhou and Ang (2008) and Tyteca (1997).  However, these studies only focused on the efficiency 9 
improvement from one side (inputs or outputs) and cannot simultaneously handle both inputs and outputs for 10 
improvement.  The simultaneous improvement in undesirable inputs and outputs can be achieved by treating them as 11 
desirable outputs and inputs, as introduced by Amirteimoori et al. (2006) and Vencheh et al. (2005).  However, all the 12 
studies were proposed in terms of radial models.  The main limitation of radial models is that the models assume the 13 
proportional changes of inputs or outputs and ignore the existence of slacks in efficiency scores (Rashidi et al., 2015).   14 
 15 
To cater for the limitation, a non-radial slack-based measure (SBM) model in the presence of undesirable outputs was 16 
first proposed by Tone (2003).  The model effectively deals with the slacks of desirable inputs and outputs, as well as 17 
the slacks of undesirable outputs and allows the desirable inputs and undesirable outputs to be decreased, and the 18 
desirable outputs to be increased at different rates.  Based upon the model of Tone (2003), many efficiency studies have 19 
been conducted, such as Chang (2013), Lee et al. (2014), Lozano and Gutiérrez (2011), Rashidi et al. (2015) and Zhang 20 
and Choi (2013).  All these studies considered various factors of undesirable outputs, such as waste water, delay time of 21 
airplane and CO2 emissions.  However, they ignored the real impact of both undesirable inputs and outputs on efficiency 22 
measures.  Both factors were then integrated into a non-radial DEA model, as conducted by the studies of Chen et al. 23 
(2012), Jahanshahloo et al. (2005) and Liu et al. (2010).  In spite of the salient features of the mentioned studies 24 
considering radial and non-radial models, they did not consider decision makers’ preferences on inputs and outputs.  To 25 
describe decision makers’ preferences, Wei et al. (2008) proposed a bi-objective general DEA model dealing with two 26 
projections of input reduction and output extension.  However, their model did not define the preferences on desirable 27 
and undesirable inputs and/or outputs.  These preferences were later considered by Liu et al. (2010) by proposing a non-28 
radial DEA model with undesirable inputs and outputs.   29 
 30 
However, Liu et al. (2010) assumed that all the values of desirable and undesirable inputs and outputs are real in their 31 
proposed method, conflicting with many managerial situations.  A CCR model considering some inputs and outputs as 32 
integer values was proposed by Lozano and Villa (2006).  Their model was improved by Lozano and Villa (2007) to 33 
include the technology of VRS.  Later, an axiom classifying inputs and outputs into the subsets of real and integer values 34 
was introduced by Kuosmanen and Matin (2009).  They proposed an input-oriented CCR model in mixed integer-valued 35 
DEA.  This model was then improved by Du et al. (2012) to introduce an output-oriented model under VRS.  To obtain 36 
more accurate efficiency measures, an input-oriented SBM model in mixed integer-valued data was considered by 37 
Khezrimotlagh et al. (2013).  However, their model did not consider decision makers’ preference in terms of integer-38 
valued data.  The integer requirements of inputs and outputs were integrated into a bi-objective DEA model by Wu and 39 
Zhou (2015).  Their model, however, considered all inputs and outputs as desirable factors.  Additionally, the model did 40 
not estimate the region of RTS (constant, increasing or decreasing) associated with a DMU under assessment, since it 41 
could only identify the values of inputs reduction and outputs augmentation when imposing relevant constraints.   42 
 43 
To consider decision makers’ preferences and estimate RTS in the presence of undesirable factors and mixed integer 44 
inputs and outputs, this paper proposes a methodology that develops a new bi-objective DEA model.  The methodology 45 
integrates undesirable factors, introduced in Liu et al. (2010), into the bi-objective model of Wu and Zhou (2015) and 46 
estimates RTS, utilizing the method of Golany and Yu (1997), for the case of undesirable factors and mixed integer 47 
valued-data.  Thus, the contribution of this paper resides in two main aspects.  In terms of the theoretical aspect, the 48 
proposed model can estimate the RTS for efficient and inefficient DMUs where some of their inputs and/or outputs are 49 
undesirable mixed integer values.  It also imposes the weak disposability assumption on undesirable inputs and outputs, 50 
increasing the applicability of the model in dealing with real-world problems.  In terms of the practical aspect, for the 51 
first time, this paper evaluates the efficiency and RTS of a system (i.e., Spanish airports) involving undesirable factors 52 
and mixed integer values of inputs and outputs.  To the best of authors’ knowledge, there have not been any efficiency 53 
studies attempting to propose undesirable factors and mixed integer values of inputs and outputs into a bi-objective DEA 54 
model.   55 
 56 
The rest of this paper is structured as follows.  Section 2 presents some previous studies on bi-objective models, 57 
undesirable factors and mixed integer requirements, serving the methodology of this paper.  The methodology of 58 
developing a new bi-objective model to estimate RTS with undesirable factors and mixed integer inputs and outputs is 59 
elaborated in Section 3.  Section 4 discusses the usefulness and applicability of the proposed model, using the empirical 60 
data of 39 Spanish airports.  The validity of the model was tested by comparing its results with the results obtained from 61 
the three existing models.  Finally, Section 5 presents the concluding remarks of this paper, summarizes its main 62 
contributions and suggests the directions for future research.   63 
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 1 
 2 
2. Preliminaries  3 
 4 
Assume that there are n DMUs needing to be measured their efficiency.  Each DMU consumes m inputs to produce s 5 
outputs, where xij denotes the amount of ith input consumed by the jth DMU, while yrj denotes the amount of the rth 6 
output produced by the same DMU.  Additionally, the amounts of xij and yrj are assumed to be non-negative.  The input-7 
oriented model for assessing the efficiency of an evaluated DMUo under the assumption of VRS was developed by 8 
Banker et al. (1984).  The model can be exhibited as follows: 9 
 10 

    (1) 11 

s.t: 12 
  (1a) 13 

  (1b) 14 

     (1c) 15 

  (1d) 16 
     (1e) 17 

 18 
where  is a very small positive value (a non-Archimedean infinitesimal).  The value of  should be small enough to 19 
avoid an unbounded solution of the linear programming problem and achieve strongly efficient.  To prevent erroneous 20 
results due to the non-Archimedean  value, the two-stage approach can also be used (see Appendix A).  The assumption 21 
of VRS is imposed by convexity constraint (1c).  Non-negative multipliers used for calculating the linear combination 22 
of DMUs being evaluated is represented by constraint (1c).  Constraint (1e), meanwhile, ensures that the values of input 23 
and output slacks are non-negative (i.e., a non-negativity constraint)..  Hence, model (1) is used to evaluate the efficiency 24 
of DMUs whose target is to decrease inputs and maintain the existing level of outputs (input-oriented) to achieve the 25 
efficiency status of DMUo.  DMUo is fully-efficient if its efficiency score is equal to one (i.e., the optimal value of  is 26 
equal to one), and all its input and output slacks are equal to zero (i.e., the optimal values of  are equal to 27 
zero).  DMUo is weakly-efficient if the optimal value of  is equal to one, and there exists at least one of its slacks 28 
whose optimal value greater than zero.  Otherwise, DMUo is inefficient.   29 
 30 
On the other hand, the output-oriented BCC model of Banker et al. (1984) under the VRS assumption can be presented 31 
as follows:  32 
 33 

    (2) 34 

s.t: 35 
  (2a) 36 

  (2b) 37 

and constraints (1c)–1(e).   38 
 39 
In contrast to model (1), model (2) evaluates the efficiency of DMUs using the existing level of inputs while paying the 40 
attention to augment the level of outputs for inefficient DMUs (Wu & Zhou, 2015).  DMUo is efficient if the optimal 41 
value of  is equal to one and the optimal values of input and output slacks are equal to zero (i.e.,  0).  42 
Otherwise, DMUo is inefficient.  Additionally, each inefficient DMU can improve its performance by imitating peers of 43 
efficient DMUs (Ramanathan, 2003).  To solve models (1) and (2) and obtain their efficiency measures, the two-stage 44 
approach can be used (see Saranga, 2009, p.710).   45 
 46 
Classical DEA models, including the above two models, are salient tools for efficiency evaluation and provide the 47 
efficiency scores for efficient and inefficient DMUs.  The performance of an inefficient DMU can be improved using the 48 
efficiency projection, projecting each inefficient DMU onto the efficiency frontier constructed by efficient DMUs.  The 49 

1 1
min

m s

i r
i r
s so o oq e - +

= =

æ ö
- +ç ÷

è ø
å å

1
, 1, . . . , ,

n

j ij i i
j

x x s i mo o ol q -

=

= - =å

1
, 1, . . . , ,

n

j rj r r
j

y y s r so ol +

=

= + =å

1
1,

n

j
j
l

=

=å
0, 1, . . . , ,j j nl ³ =

, 0i rs so o
- + ³

e e

e

oq
, ,i rs s i ro o

- + "

oq

1 1
max

m s

i r
i r
s so o oy e - +

= =

æ ö
+ +ç ÷

è ø
å å

0
1

, 1, . . . , ,
n

j ij i i
j

x x s i mol -

=

= - =å

1
, 1, . . . , ,

n

j rj r r
j

y y s r so o ol y +

=

= + =å

oy is o
- = rs o

+ =



4 
 

efficiency projection aims to proportionally decrease (increase) inputs (outputs) while maintaining outputs (inputs) at 1 
their same levels regarding an oriented DEA model (input or output oriented).  However, the projection of oriented 2 
models often causes Pareto-inefficient portions of the production frontier (Lins et al., 2004).  Consequently, it is difficult 3 
for radial models to describe decision makers’ preferences.  The preferences should consider both projections1 to decrease 4 
inputs and increase outputs simultaneously.  Hence, both projections can be obtained by integrating the input-oriented 5 
and output-oriented models, i.e., by integrating the objective functions of models (1) and (2) to formulate a non-oriented 6 
DEA model dealing with a single objective function, as proposed by Golany and Yu (1997).  Their model differs from 7 
the studies conducted by Omrani et al. (2018), Goswami and Ghadge (2020) and Jiang et al. (2020), who proposed 8 
different versions of bi-objective models dealing with weight restrictions and separate two types of objective functions 9 
(i.e., input minimization and output maximization).  Their model also differs from other non-oriented DEA models (e.g., 10 
Banker et al., 2004; Seiford & Zhu, 1999; Tone, 2001), since it describes decision makers’ preferences by integrating the 11 
efficiency projections of input-oriented and output-oriented models (i.e., ) into the objective function and input 12 
and output constraints to formulate a bi-objective model dealing with a single objective function.  By integrating these 13 
projections, the model can reduce inputs and increase outputs simultaneously.  Therefore, the the objective function of 14 
the bi-objective model proposed by Golany and Yu (1997) can be presented in model (3).   15 
 16 

    (3) 17 

s.t: 18 
constraints (1a), 2(b) and (1c)–1(e).   19 

 20 
To solve model (3) and obtain its optimal efficiency measures, the two-stage approach can be used.  Stage-1 calculates 21 
the input and output projections (i.e., ).  The calculated projections are then used in stage-2 to calculate the input 22 
and output slacks.  The two-stage approach is based on the transfomation of Cooper et al. (2006, p.53) (see also Saranga, 23 
2009, p.710).  The technical efficiency score for DMUo calculated by model (3) is presented using .  The model offers 24 
extra efficiency performance from the point of view of both inputs and outputs.  The efficiency of DMUs is measured 25 
by reducing the level of inputs and/or increasing the level of outputs simultaneously.  DMUo is said to be fully-efficient 26 
if and only if , which is equivalent to all the values of input and output slacks being zero.  However, the model of 27 
Golany and Yu (1997) did not consider the effect of undesirable factors of inputs and/or outputs on efficiency measures.  28 
These factors were considered by many efficiency studies (e.g., Amirteimoori et al., 2006; Färe & Grosskopf, 2004; 29 
Jahanshahloo et al., 2005; Vencheh et al., 2005).  However, these studies ignored decision makers’ preferences.  The 30 
preferences for the case of undesirable inputs and outputs were later considered in Liu et al. (2010), who combined both 31 
oriented BCC models in the presence of undesirable factors.  They then proposed a new bi-objective DEA model 32 
simultaneously dealing with desirable-undesirable inputs and outputs, as presented in model (4).   33 
 34 

 (4) 35 

s.t: 36 
  (4a) 37 

  (4b) 38 

  (4c) 39 

  (4d) 40 

    (4e) 41 
, 42 

and constraints (1c)–1(d).   43 
 44 
We assume that the inputs and outputs of model (4) can each be partitioned into the subsets of desirable (D) and 45 
undesirable (U).  Thus,  and , where , 46 

 
1 Projection is the operation where the efficiency of an inefficient DMU is improved by omitting its inputs excess and/or outputs shortfall and 
decreasing its inputs and/or increasing its outputs (see Cooper et al., 2011; Tone, 2001). 
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, and m and s are defined as in model (1).  The index sets of , ,  and  are confined to the desirable and 1 
undesirable inputs and outputs.   2 
 3 
In many real life settings, some inputs and outputs are restricted to integer values, such as student enrolment and patents 4 
at a university and passengers at an airport.  The idea of dealing with some inputs and outputs as integer values 5 
(commonly known as mixed integer) was first laid out by Lozano and Villa (2006).  Their model, however, did not 6 
comply with the properties of DEA proposed by Banker et al. (1984) (i.e., convexity condition, returns to scale and free 7 
disposability2), leading to overestimating the efficiency measures.  To obtain accurate efficiency measures, Kuosmanen 8 
and Matin (2009) proposed new axioms (natural divisibility and natural disposability) and derived a new production 9 
possibility set (PPS) for the BCC model of Banker et al. (1984).  The new axioms appropriately classified inputs and 10 
outputs into real and integer values, which significantly contributed to the development of a new version of input-oriented 11 
model in mixed integer-valued DEA.  The model was then extended by Du et al. (2012) for the output-oriented VRS 12 
model to deal with an integer valued dataset.   13 
 14 
According to Lozano and Villa (2006), the inputs and outputs can be classified into the subsets of non-integer (NI) and 15 
integer (IN).  Thus,  and  where I and R are defined as in model 16 
(4), and , ,  and  are the index sets of real and integer inputs and outputs.  The index sets of real and integer 17 
inputs (i.e.,  and ), as well as the subsets of real and integer outputs (i.e.,  and ) should be mutually disjoint 18 
(i.e., each input or output cannot involve the two conditions of reality and integrality simultaneously) (see Taleb et al., 19 
2018).  The integer inputs and outputs are subject to the integrality condition of inputs and outputs without violating the 20 
generality (Matin & Kuosmanen, 2009).   21 

By assuming that  as the pairs of input and output vectors of n DMUs, and all data are non-negative but 22 
at least one component of every input and output vector is positive (i.e., , ), the 23 
PPS of the mixed integer-valued DEA proposed by Lozano and Villa (2006) can be written as follows: 24 
 25 

 (6) 26 

 27 
where, 28 
 29 

, 30 

. 31 

 32 
Despite the improvements in dealing with the integer requirements of radial DEA models, some studies (e.g., Du et al., 33 
2012; Kuosmanen & Matin, 2009) ignored the impact of decision makers’ preferences on efficiency measures.  The 34 
preferences and the integer requirements were later integrated into a non-radial model by Wu and Zhou (2015) termed 35 
the bi-objective integer-valued DEA model, which is as follows:   36 
 37 

  (7) 38 

s.t: 39 

 40 

 41 

 42 

 43 

, 44 
and constraints (1c)–1(d) and 4(e).   45 

 46 

 
2 Free disposability refers to any additional amounts of inputs that can always be reduced without effecting the existing level of outputs (see Liu et 
al., 2010).  
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Model (7) considers decision makers’ preferences in both formulas of real and integer inputs and outputs to provide the 1 
management of DMUo  with accurate efficiency measures.  DMUo is fully-efficient if and only if its efficiency score 2 
(i.e., ) is equal to one, which is equivalent to all the slacks of real and integer inputs and outputs being zero (3 

).  The non-radial slacks of real and integer inputs and outputs, which are  4 
and , reflect the difference between their reference set (convex combination) and the related inputs or outputs of 5 
DMUo (Du et al., 2012).  The two constraints ( ) guarantee their equivalence to the oriented BCC model.  6 
The optimal values of the two projections  and  obtained from the model’s objective function can be used to 7 
estimate the RTS of DMUo, as proposed by Golany and Yu (1997).   8 
 9 
Position of this paper: Undesirable inputs and outputs (e.g., Liu et al., 2010), and integer requirements (e.g, Wu & Zhou, 10 
2015) of non-radial measurement have been integrated into the bi-objective DEA model (e.g., Golany & Yu, 1997) to 11 
estimate RTS.  Integrating these factors and requirements into the existing bi-objective models is the aim of this paper.  12 
The integration should avoid the existence of any methodological bias, which can be measured by comparing the 13 
proposed model with the existing models.   14 
 15 
RTS is utalized to categorize the operating region of a DMU under evaluation whether it is operating within the CRS, 16 
IRS or DRS region based on the relation between input and output quantities. RTS are considered to be increasing (or 17 
decreasing) if a proportional increase in all the inputs results in a more (or less) than proportional increase in the outputs. 18 
The initial idea of estimating  RTS was first prepared in Banker (1984) and Banker et al. (1984) by imposing a convexity 19 
constraint into the CCR model.  The constraint ensures that DMUs operated at various scales (CRS, IRS or DRS) are 20 

identified as efficient and can be represented by , where  is a scalar, whose value is non-negative.  If the 21 

efficiency value of CCR model is equal to the efficiency value of BCC model for a DMU under evaluation, the RTS is 22 
constant. In this case, ∑ 𝜆!! = 1 in any CCR outcome. Otherwise, if these efficiency values are not equal and ∑ 𝜆!! < 1 23 
(or ∑ 𝜆!! > 1) in any CCR outcome, RTS is increasing (or decreasing).  See Seiford and Zhu (1999).  The efficient 24 
frontier3  is formed by convex linear combinations of efficient DMUs (Ramanathan, 2003).  In terms of VRS, RTS has 25 
an unobscured meaning only if a DMU under assessment is on the efficient frontier.  On the one hand, CRS of an efficient 26 
DMU reflects that any increase in inputs cannot increase efficiency, since this technique assumes that the relationship 27 
between the efficiency and the scale of operations is not significant.  IRS, meanwhile, reflects that any increase in inputs 28 
will produce a high increase in the outputs’ level.  Any increase in inputs producing a small increase in outputs prevails 29 
DRS.  On the other hand, the estimation of RTS for an inefficient DMU can be measured if the DMU can be improved 30 
to be efficient (Saranga, 2009; Seiford & Zhu, 1999).   31 

 32 
The three conditions depend on the most productive scale size (MPSS) of Banker (1984).  In this approach, if a DMU is 33 
lower than MPSS, then its efficiency can be increased by increasing scale (IRS); otherwise, its efficiency can be increased 34 
by decreasing scale (DRS).  In contrast, the scale of an efficient DMU can be changed without affecting its efficiency 35 
(CRS).  However, the issue related to linear dependency (the optimal solution to the formulation of linear programming 36 
is unique) has raised with these conditions, as argued by Banker and Thrall (1992) and Zhu and Shen (1995).  Thus, 37 
Banker and Thrall (1992) proposed a technique to handle the general case of non-unique optimal solutions.  The technique 38 
requires to knowledge all optimal solutions by solving two auxiliary models of linear programming for DMUo being 39 
evaluated.  A simple procedure based upon two formulations of linear programming of the BCC model (input- and 40 
output-oriented models) to estimate the RTS was later proposed by Golany and Yu (1997).  Their technique differs from 41 
previous techniques of RTS, since it depends on the efficiency projections of input reduction and output augmentation 42 
(i.e., ) obtained by the two oriented models.  The model of Golany and Yu (1997) provides a precise 43 
classification of RTS (CRS, IRS or DRS).   44 
 45 
In the meantime, the concept of RTS with undesirable outputs has been extended by several studies, such as Sueyoshi 46 
and Goto (2011b, 2012, 2013), to include environmental performance by proposing Damages to Scale (DTS).  The 47 
mathematical concepts of DTS and RTS are basically the same.  However, they are completely different in their 48 
economical implications.  For example, in the operational performance of undesirable outputs, the increasing DTS 49 
(IDTS) implies that a proportionate increase in inputs results in a greater proportionate increase in undesirable outputs.  50 
This indicates that if the operational size of a DMU is increased, then the DMU produces more undesirable outputs—51 
more damages.  The operational size of the DMU should, thus, be decreased to enhance its environmental efficiency 52 
(Sueyoshi & Goto, 2011a).  The decreasing DTS (DDTS), meanwhile, implies that a proportionate increase in inputs 53 

 
3 A frontier that is formed by the efficient DMUs being evaluated and envelops all inputs and outputs of the production possibility set (Avkiran, 
2001; Taleb et al., 2018, p.20). 
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results in a less proportionate increase in undesirable outputs.  The operational size of the DMU should, thus, be increased 1 
to enhace its environmental efficiency.   2 
 3 
 4 
3. Proposed methodology 5 
 6 
Previous studies introduced by Liu et al. (2010), Golany and Yu (1997) and Wu and Zhou (2015) have provided 7 
significant contributions to the bi-objective DEA literature.  However, no studies have considered the real impact of both 8 
undesirable factors and mixed integer values of inputs and outputs on efficiency measures and then classified the region 9 
of RTS.  To enable the bi-objective model to deal with real-life situations, this paper proposes a methodology to integrate 10 
both undesirable factors and integer requirements into model (3) under the weak disposability assumption4 and then 11 
propose a new bi-objective DEA model in the presence of undesirable factors and mixed integer-valued data.  Note that 12 
weak disposability is imposed to handle the situations where the decrease of any undesirable outputs of a system would 13 
typically decrease its other desirable outputs, and the increase of any undesirable inputs would also increase other 14 
desirable inputs, as observed in many real-life systems (for example, see the case application in Section 4).  If the weak 15 
disposability assumption is dropped from the proposed model, the model will then lose its ability to handle the features.  16 
However, its contribution to literature will still be new since the model proposes undesirable factors in the context of 17 
mixed integer inputs and outputs for measuring returns to scale that has not been considered in previous  studies (e.g., 18 
Liu et al., 2010; Golany & Yu, 1997; Wu & Zhou, 2015).   19 
 20 
Since the inputs and outputs can be classified into the subsets of desirable (good) and undesirable (bad) and mixed integer 21 
values, the mathematical description of the proposed model is expressed as follows: 22 
 23 

   (8) 24 
 25 

 26 
In expression (8), we partition I as  and  where  and  are the 27 
index sets of desirable real inputs and outputs, and  and  are the index sets of desirable integer inputs and outputs.  28 
In addition,  and  are the index sets of undesirable real inputs and outputs, and  and  are the index sets of 29 
undesirable integer inputs and outputs.  The basic assumption of desirable inputs and outputs in DEA models is strong 30 
disposability, while the basic assumption of undesirable inputs and outputs is weak disposability.  In this paper, the weak 31 
disposability assumption of the undesirable inputs and outputs is imposed on the proposed PPS, while the strong 32 
disposability assumption is imposed on the desirable inputs and outputs.   33 
 34 
The PPS of our proposed model can be considered as an extension of the PPS of the mixed integer-valued DEA proposed 35 
by Lozano and Villa (2006) by accommodating it for both undesirable factors and mixed integer-valued data.  It can be 36 
defined in the same manner as the PPS provided in expression (6).   37 
 38 
The PPS should satisfy the following two conditions: 39 

i. Undesirable mixed integer inputs and outputs are weakly disposable 40 
ii. Desirable and undesirable mixed integer inputs and outputs are null-joint5 41 

 42 
The first condition states the weak disposability assumption for undesirable inputs and outputs, while the second 43 
condition states that all undesirable inputs and outputs can be eliminated if and only if the production process of an 44 
evaluated DMU is ceased, i.e., producing desirable inputs and/or outputs without simultaneously producing some 45 
undesirable inputs and/or outputs is technically infeasible (see Bi et al., 2012; Li & Hu, 2012).  For example, the desirable 46 
outputs of generated electricity are always accompanied with the undesirable output of sulfur dioxide pollution.  Without 47 
the pollution, electricity cannot be generated.  Additionally, our bi-objective model integrates the objective functions of 48 
two oriented BCC models (input- and output-oriented) to deal with a single objective function in terms of undesirable 49 
factors and mixed integer-valued data.  Hence, the proposed bi-objective model in the context of undesirable factors and 50 
mixed integer inputs and outputs is expressed in model (9).   51 
 52 

 
4 The weak disposability assumption assumes that any increase in undesirable inputs will also increase certain desirable inputs and any decrease in 
undesirable outputs will also decrease desirable outputs (Lozano et al., 2013).  However, the weak or strong disposability assumption in a DEA model 
must be based on the nature of a case application that it handles (Liu et al., 2010).   
5 From the side of inputs, null-joint reflects that desirable inputs can be accompanied with undesirable inputs, if the former is consumed.  From the 
side of outputs, null-joint reflects that undesirable outputs cannot be produced if the production process is ceased.   
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 (9) 1 

s.t:  2 
 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

, 11 

 12 
 13 

 14 
As considered in Section 2,  is a very small positive value6.   and  denote the two projections having a salient 15 
role in measuring efficiency from both sides of the reduction in desirable inputs and undesirable outputs, as well as the 16 
augmentation in desirable outputs and undesirable inputs.  Hence, these projections provide extra performance by 17 
simultaneously dealing with a single objective function of input minimization and output maximization.  Therefore, the 18 
best improvement in the productivity of DMUo (i.e., technical and scale efficiency) can be found by minimizing the ratio 19 

 or maximizing its reciprocal .  In this case,  is to reduce the slacks of desirable inputs, while  is to augment 20 

the slacks of desirable outputs, subject to the constraints defining PPS.  The non-radial slacks of desirable real and integer 21 
inputs and outputs are denoted by , ,  and .  These slacks reflect the difference between the 22 
model’s convex combination of desirable mixed integer inputs and outputs and related inputs and outputs.  Observe that 23 
undesirable output slacks are not included in model (9).  The reason for not including the undesirable slacks of inputs 24 
and outputs is that model (9) has been formulated under weak disposability of undesirable factors to ensure that any 25 
increase in undesirable inputs will increase desirable inputs, and any decrease in undesirable outputs will also decrease 26 
desirable outputs.  This assumption suits the nature of undesirable inputs and outputs in many real-life applications, e.g., 27 
the considered case application in Section 4.   28 
 29 
All these projections and slacks represent the optimal values to model (9).  The efficiency scores of the model are 30 
computed based on the slacks of desirable inputs and outputs.  The slacks provide the obvious view on which variables 31 
cause an evaluated DMU to be technically inefficient.  With the results of these slacks, the directions for improvement 32 
are easily obtained for each desirable input and output.  Note that the constraints of desirable and undesirable integer 33 
inputs and outputs are formulated as inequalities, since the convex combinations of the efficient frontier are not always 34 
to be integer values.  The reference targets of desirable and undesirable integer inputs and outputs need not to be equal 35 
to their projections on the efficient frontier.  However, they must be controlled by their convex combinations of efficient 36 
DMUs (see Chen et al., 2012; Taleb et al., 2018).  Hence, the reference set of the integer DEA model is free from integer 37 
conditions (Du et al., 2012).  Additionally, since model (9) imposes the weak disposability assumption on undesirable 38 
inputs and outputs, as considered in formula (9), the constraints of real inputs and outputs are formulated to be as equality.  39 
The equality form of the undesirable input and output constraints makes the current level of undesirable input and output 40 

 
6 In this study we assumed that . However, we further use the two-stage procedure to double check the provided results and make sure that there 
are no any erroneous results by replacing  (see Appendix A).   
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of a DMU being evaluated is the same as that of the reference set (linear combination) of other DMUs.  Therefore, the 1 
slacks of inputs and outputs are eliminated from these constraints.  Note that model (9) is proposed under the technology 2 
of VRS, since it assumes that any increase in inputs will cause an increase in outputs disproportionately.   3 
 4 
Definition 1.  A DMUo evaluated by model (9) is said to be fully-efficient if and only if its efficiency score is equal to 5 
one, .  This condition is equivalent to all slacks being to zero.  Otherwise, DMUo is inefficient.  Thus, performance 6 
of an inefficient DMUo should be appropriately improved by decreasing its desirable (undesirable) inputs (outputs) and 7 
increasing its desirable (undesirable) outputs (inputs).   8 
 9 
In model (9), the accurate efficiency scores and targets can be derived in both mixed integer requirements and desirable 10 
and undesirable factors.  The value of  is less than or equal to one, and DMUo is efficient if and only if .   11 
 12 
Remark 1.  It can be noted that the efficiency values of model (9) are mostly less than the efficiency values of existing 13 
model (4) of Liu et al. (2010).  In model (4), all the values of desirable and undesirable inputs and outputs were assumed 14 
to be considered as real values.  Meanwhile, by integrating mixed integer desirable and undesirable inputs and outputs 15 
in model (9) and adding the relevant constraints into the model in comparison with model (4), it is expected that the 16 
efficiency scores of model (9) to be less than the efficiency scores provided by model (4).  However, it would be possible 17 
that the efficiency values in model (9) be equal to or greater than the efficiency measures of model (4) in certain cases 18 
(see the efficiency results of model (9) and the efficiency values of the model of Liu et al. (2010) reported in Table 3).   19 
 20 
Up to this point, the efficiency measures of model (9) have been identified.  In model (9), the two projections  21 
are to reduce desirable inputs and increase desirable outputs simultaneously.  Besides, these projections have a vital role 22 
in estimating the RTS region of DMUo.  Figure 1 displays four identified regions of RTS in the two dimensional space 23 

 and .   24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 

Figure 1.  Projection regions of RTS for DMUo (Source: Golany and Yu (1997)) 40 
 41 
 42 
Hence, in terms of undesirable factors and mixed integer requirements, the projection regions of RTS estimated by model 43 
(9) can be identified as follows: 44 
 45 

a)  indicates that RTS is decreasing 46 
b)  indicates that RTS is increasing 47 
c)  indicates that RTS is constant 48 
d)  or  indicates that evaluated DMUo is technically inefficient 49 

 50 
In region (a), the values of both projections are smaller than one, and  is absolutely smaller than .  This means that 51 
the PPS of DMUo is feasible.  The feasibility can be achieved when DMUo uses fewer desirable inputs to produce less 52 
desirable outputs.  To do so, DMUo reduces desirable inputs by a large factor than the reduction in the desirable outputs 53 
(i.e., DRS situation).  Meanwhile, DMUo is projected on the region of IRS when it uses a small level of desirable inputs 54 
to produce more desirable outputs.  To achieve this, it decreases desirable inputs by a small factor than the expansion in 55 
the desirable outputs.  Since the features of desirable factors are opposite to that of undesirable factors, the DRS situation 56 
can also be identified in terms of undesirable factors, when DMUo uses fewer undesirable inputs to produce less 57 
undesirable outputs.  However, in doing so, it decreases undesirable outputs by a large factor than the expansion in the 58 
undesirable inputs.  IRS for undesirable factors can be identified when DMUo uses more undesirable inputs to produce 59 
less undesirable outputs by increasing undesirable inputs by a large factor than the reduction in the undesirable outputs.  60 
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In contrast, efficient DMUo is projected on CRS when both projections of decreasing (increasing) desirable inputs 1 
(desirable outputs) or increasing (decreasing) undesirable inputs (undesirable outputs) are equal to one.  To obtain the 2 
efficiency scores and reference targets for the efficient and inefficient DMUs evaluated by model (9), we run a two-stage 3 
approach, as presented in Appendix B.  Model (9) that integrates undesirable inputs and outputs with mixed integer-4 
valued data and estimates RTS involves three scenarios, as shown in Figure 2.   5 
 6 

 7 
Figure2.  Flowchart of the new bi-objective DEA model 8 

 9 
 10 
4. Case application  11 
 12 
To test the applicability and usefulness of model (9), this paper utilises the dataset of 39 Spanish airports retrieved from 13 
a study conducted by Lozano et al. (2013).  Each airport is an independent DMU utilising five inputs and five outputs.  14 
The resources related to the desirable integer inputs of the airports are apron capacity (APRON), total run way 15 
(RUNAREA), the number of baggage belts (BAGB), the number of gates (BOARDG) and the number of check-in 16 
counters (CHECKIN).  The outputs are classified into two classes: desirable and undesirable mixed integer values.  The 17 
desirable integer outputs are aircraft traffic movements (ATM), annual passenger movement (APM), while a real 18 
desirable output is cargo handled (CARGO).  The integer and real undesirable outputs are the number of delayed flights 19 
(NDF) and accumulated flight delays (AFD).  More details about the units of measurement and the variable description 20 
can be found in Lozano and Gutiérrez (2011) and Lozano et al. (2013).  Based on the input and output variables, the 21 
efficiency of the airports was then calculated using model (9), as considered in the next subsection.   22 
 23 
 24 
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4.1 Numerical results 1 
 2 
To calculate the efficiency measures7 of the 39 airports, stage-1 of model (9) considered in model (B.1), Appendix B 3 
was first run.  Depending on the efficiency measures obtained from stage-1, stage-2 was then run to calculate the slacks 4 
of the considered desirable mixed integer inputs and outputs.  The resulted measures calculated under the assumption of 5 
VRS are outlined in Table1.   6 
 7 

Table 1.  Efficiency measures of the proposed bi-objective DEA model 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 

 44 
 45 
To achieve the efficiency status, each airport should increase its desirable outputs and decrease its desirable inputs 46 
simultaneously or reduce its undesirable outputs, which in turns decreases some desirable outputs (i.e., weak 47 
disposability).  The increase (decrease) of undesirable inputs (outputs) cannot occur without sacrificing other inputs and 48 
outputs.  Otherwise, if the level of undesirable inputs and/or outputs is immoderate, the airport will be considered as 49 
inefficient and potential improvement needs to be computed.  The efficiency score , the desirable integer input slack 50 
( ) and the desirable mixed integer output slacks ( , ) calculated by model (9) for each airport are 51 
revealed in Table 1.  Note that Table 1 does not show the slacks of integer and real undesirable outputs, NDF and AFD, 52 
since both of the slacks have been ignored in the objective function and constraints of model (9).  The main reason for 53 
this is that model (9) imposes the weak disposability assumption of undesirable  outputs.  As defined in Definition 1, the 54 
slacks of desirable mixed integer inputs and outputs of each efficient DMU are equal to zero, while some or all input and 55 
output slacks of each inefficient DMU are positive values.   56 
 57 
The overall efficiency scores of the airports range from 0.4515 to 1.00 with the average of 0.8744.  As observed, 23 out 58 
of the total 39 airports are efficient, while the other 16 airports are inefficient.  For inefficient airports, the average 59 
efficiency score is 0.6940.  The obtained results are remarkable, since 23 airports (i.e., 58.97%) are technical efficient, 60 

 
 7 The calculation of efficiency measures was performed using Lingo software version 14.   
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1 0.8512 0 25311 1 0 3 0 0 0 
2 0.6024 0 223788 0 1 0 0 212 215.0789 
3 1 0 0 0 0 0 0 0 0 
4 0.5681 10 136548 2 0 0 0 0 6691.7370 
5 0.8142 0 109740 2 10 0 0 0 7833.8890 
6 0.7281 0 1185341 4 10 18 0 392 104.0687 
7 1 0 0 0 0 0 0 0 0 
8 0.7680 0 21237 0 0 3 0 0 8.1222 
9 1 0 0 0 0 0 0 0 0 

10 1 0 0 0 0 0 0 0 0 
11 0.8510 16 49211 2 0 0 5 0 2007.5710 
12 1 0 0 0 0 0 0 0 0 
13 1 0 0 0 0 0 0 0 0 
14 1 0 0 0 0 0 0 0 0 
15 1 0 0 0 0 0 0 0 0 
16 1 0 0 0 0 0 0 0 0 
17 1 0 0 0 0 0 0 0 0 
18 1 0 0 0 0 0 0 0 0 
19 0.8793 0 121 0 2 13 0 0 2297.7730 
20 0.4622 11 295166 1 3 0 0 926 1421.3550 
21 1 0 0 0 0 0 0 0 0 
22 1 0 0 0 0 0 0 0 0 
23 1 0 0 0 0 0 0 0 0 
24 1 0 0 0 0 0 0 0 0 
25 1 0 0 0 0 0 0 0 0 
26 0.8562 0 138809 0 0 0 0 430 0 
27 1 0 0 0 0 0 0 0 0 
28 0.7691 0 255052 2 0 0 0 818 63.3358 
29 0.5424 0 29057 0 0 0 0 0 0 
30 0.7115 0 34297 0 1 0 0 0 825.7285 
31 0.6108 17 340427 4 15 6 0 353 6484.7750 
32 1 0 0 0 0 0 0 0 0 
33 1 0 0 0 0 0 0 0 0 
34 1 0 0 0 0 0 0 0 0 
35 1 0 0 0 0 0 0 0 0 
36 1 0 0 0 0 0 0 0 0 
37 0.4515 0 144177 0 1 0 0 0 737.4975 
38 0.6391 0 38346 0 0 0 0 0 1191.5830 
39 1 0 0 0 0 0 0 0 0 



12 
 

and the efficiency scores of most of the inefficient airports are relatively high.  To assist the inefficient airports identify 1 
their benchmarks, model (9) provides their potential improvement in the context of desirable and undesirable mixed 2 
integer inputs and outputs.  As shown in Table 1, the inefficiencies are related to desirable mixed integer input and output 3 
of their run areas and cargos handled.  These input and output reflect the main sources of inefficiency.  The excesses 4 
(and shortfalls) in the desirable input and output should properly be managed by the airport management.   5 
 6 
Identifying the operational region of RTS for the airports, determining the operational behaviour of their inputs and 7 
outputs, would be helpful for decision makers.  Based on the four conditions of RTS in Section 3, the projections of 8 
desirable (undesirable) input (output) reduction and desirable (undesirable) output (input) augmentation in the presence 9 
of mixed integer-valued data were calculated using model (B.1) in Appendix B.  The model simultaneously minimizes 10 
the projections of desirable inputs and undesirable outputs while maximizing the projections of desirable output and 11 
undesirable inputs.  The optimal values of these two projections for the airports are reported in Table 2.   12 
 13 

Table 2.  Returns to scale identification for 39 Spanish airports 14 
DMU   RTS 

1 1.5727 1.8475 Increasing 
2 1.6293 2.7043 Increasing 
3 1 1 Constant  
4 1.8990 3.3425 Increasing 
5 2.4042 2.9527 Increasing 
6 7.5191 10.1599 Increasing 
7 1 1 Constant 
8 0.6672 0.8684 Decreasing  
9 1 1 Constant 

10 1 1 Constant 
11 1.2633 1.4845 Increasing 
12 1 1 Constant 
13 1 1 Constant 
14 1 1 Constant 
15 1 1 Increasing 
16 1 1 Constant 
17 1 1 Constant 
18 1 1 Constant 
19 1.2619 1.4335 Increasing 
20 3.9871 6.1609 Increasing 
21 1 1 Constant 
22 1 1 Constant 
23 1 1 Constant 
24 1 1 Constant 
25 1 1 Constant 
26 2.2896 2.6312 Increasing 
27 1 1 Constant  
28 2.3007 2.9811 Increasing 
29 1.6488 3.0380 Increasing 
30 1.3082 1.8296 Increasing 
31 3.0363 3.1598 Increasing 
32 1 1 Constant 
33 1 1 Constant 
34 1 1 Constant 
35 1 1 Constant 
36 1 1 Constant 
37 1.3758 2.9522 Increasing 
38 1.4525 2.2586 Increasing  
39 1 1 Constant 

 15 
Table 2 presents the classification of RTS for efficient and inefficient airports.  Observe that 23 airports are classified in 16 
the CRS region, since they are efficient, and their projections of desirable-undesirable inputs and outputs are equal to 17 
one.  15 inefficient airports are functioned in the IRS region, while only one inefficient airport is operated in the DRS 18 
region.  Thus, IRS represents the appropriate operating region for the majority of the VRS inefficient Spanish airports.  19 
This implies that the scale level of most of the inefficient airports is not optimal.  Hence, the airports operated in the IRS 20 
region have excess capacities.  Any additional unit of desirable inputs and/or undesirable outputs will cause a high 21 
increase in the desirable outputs and/or undesirable inputs.  Thus, the airports operated in the IRS region need to focus 22 
on their operations to fairly increase (decrease) desirable (undesirable) outputs to achieve most productive scale size 23 
(Banker, 1984).  In the same context, any increase in the desirable inputs and/or undesirable outputs which could cause 24 
a small increase in the desirable outputs and/or undesirable inputs simultaneously can be denoted by DRS.  The desirable 25 
(undesirable) outputs of the DRS airport should appropriately be increased (decreased).  All these efficiency measures 26 
have been obtained in terms of desirable-undesirable factors and mixed integer-valued data.  Thus, the importance of 27 
proposing these factors into the existing bi-objective DEA models needs to be illustrated.   28 
 29 
 30 

oq oy
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4.2 Illustration and validation of the proposed model 1 
 2 
To illustrate the main difference between model (9) and the studies conducted by Golany and Yu (1997), Liu et al. (2010) 3 
and Wu and Zhou (2015) in terms of efficiency scores and RTS, model (9) considers three specific aspects (i.e., 4 
undesirable factors, integer-valued data and RTS).  The efficiency scores and RTS classification obtained from model 5 
(9) and the three existing models were calculated and shown in Table 3.   6 
 7 
Table 3.  Efficiency measures of the proposed model and the existing models 8 

DMU Efficiency 
scores of 
model (9) 

Efficiency 
scores of the 

model of 
Golany and 
Yu (1997)  

Efficiency 
scores of the 

model of Liu et 
al. (2010) 

Efficiency 
scores of the 
model of Wu 

and Zhou 
(2015) 

RTS of 
model (9) 

RTS of the 
model of 

Golany and 
Yu (1997) 

RTS of the 
model of Liu 
et al. (2010) 

RTS of the 
model of Wu 

and Zhou 
(2015) 

1 0.8512 0.9125 0.9623 1 Increasing Increasing Inefficient  Constant  
2 0.6024 0.2017 1 0.3791 Increasing Increasing Constant  Inefficient  
3 1 1 1 1 Constant  Constant  Constant  Constant  
4 0.5681 0.4357 0.5749 0.4395 Increasing Increasing Inefficient  Inefficient  
5 0.8142 0.7072 0.8690 0.7727 Increasing Increasing Inefficient  Inefficient  
6 0.7281 0.7516 1 1 Increasing Increasing Constant  Constant  
7 1 1 1 1 Constant Constant Constant  Constant  
8 0.7680 0.8170 0.7863 0.8170 Decreasing  Increasing Inefficient  Inefficient  
9 1 1 1 1 Constant Constant Constant  Constant  

10 1 0.3209 1 1 Constant Constant  Constant  Constant  
11 0.8510 0.6393 0.8511 0.6393 Increasing Increasing  Inefficient  Inefficient  
12 1 1 1 1 Constant Constant  Constant  Constant  
13 1 1 1 1 Constant Constant  Constant  Constant  
14 1 0.7863 1 0.9375 Constant Increasing  Constant  Inefficient  
15 1 1 0.7934 1 Constant Constant  Inefficient  Constant  
16 1 1 1 1 Constant Constant  Constant  Constant  
17 1 0.2014 1 0.6745 Constant Increasing  Constant  Inefficient  
18 1 0.8794 1 1 Constant Increasing  Constant  Constant  
19 0.8793 0.7668 0.8502 0.8032 Increasing Increasing  Inefficient  Inefficient  
20 0.4622 0.6034 1 1 Increasing Increasing  Constant Constant 
21 1 1 1 1 Constant Constant Constant  Constant 
22 1 1 1 1 Constant Constant  Constant  Constant  
23 1 0.7042 1 1 Constant Increasing  Constant  Constant  
24 1 1 1 1 Constant Constant  Constant  Constant 
25 1 1 1 1 Constant Constant  Constant  Constant  
26 0.8562 0.9120 1 1 Increasing Increasing  Constant  Constant  
27 1 1 1 1 Constant  Constant  Constant  Constant  
28 0.7691 0.8143 1 1 Increasing Increasing Constant  Constant  
29 0.5424 0.6172 0.6256 0.8168 Increasing Increasing Inefficient Inefficient  
30 0.7115 0.7040 0.7290 0.7398 Increasing Increasing  Inefficient  Inefficient 
31 0.6108 0.4501 0.6576 0.4539 Increasing Increasing  Inefficient  Inefficient  
32 1 1 1 1 Constant Constant Constant Constant 
33 1 0.8813 1 0.9015 Constant Decreasing  Constant  Inefficient  
34 1 1 1 1 Constant Constant  Constant  Constant  
35 1 0.7592 1 0.7761 Constant Increasing  Constant  Inefficient  
36 1 1 1 1 Constant Constant  Constant  Constant  
37 0.4515 0.5083 0.4775 0.5748 Increasing Increasing  Inefficient  Inefficient  
38 0.6391 0.6704 0.6622 0.7448 Increasing  Increasing  Inefficient  Inefficient  
39 1 1 1 1 Constant Constant  Constant  Constant  

 9 
Compared to Golany and Yu (1997), for most of the airports, model (9) produces greater or equal efficiency scores except 10 
for ten airports, i.e., DMU1, DMU6, DMU8, DMU20, DMU26, DMU28, DMU29, DMU30, DMU37 and DMU38.  11 
Additionally, model (9) improved the solution by registering some inefficient airports obtained from those provided by 12 
the models of Golany and Yu (1997), Liu et al. (2010), and Wu and Zhou (2015) as efficient.  This illustrates that a DMU 13 
can increase its performance when undesirable factors are integrated with integer requirements.  As a result, model (9) 14 
reported that 23 airports are efficient compared to the model of Golany and Yu (1997) of only 16 airports being efficient.  15 
The average efficiency scores of all airports in model (9) (0.8744) is greater than that of the model of Golany and Yu 16 
(1997) (0.7960).   17 
 18 
Due to imposing the two additional constraints of input reduction and output augmentation into the model of Liu et al. 19 
(2010), its resulted efficiency scores are greater than or equal to that of model (9) (see Remark 1).  Thus, there is a higher 20 
number of efficient airports under the model of Liu et al. (2010), i.e., 27 of the total 39 airports.  Similarly, most of the 21 
efficiency scores calculated by model (9) are less than or equal to that of the model of Wu and Zhou (2015).  As such, 22 
the efficiency scores of 29 airports reported by the the model of Wu and Zhou (2015) are greater than or equal to that of 23 
model (9).  This is because Wu and Zhou (2015) impose additional constraints for the two projections of input reduction 24 
and output augmentation.  We illustrate that imposing projections of input reduction and output augmentation into these 25 
two existing models could increase the efficiency scores.  Therefore, the following remark can be deduced:  26 
 27 
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Remark 2.  The technical efficiency score  identified from the integrated bi-objective in model (9) is mostly less than 1 
or equal to the technical efficiency score identified from the existing models, i.e., Liu et al. (2010), and Wu and Zhou 2 
(2015).  The main reason for this is that model (9) simultaneously deals with undesirable factors and integer requirements, 3 
reflecting the consistency of model (9) with underlying technology of these factors and requirements.  Besides, the 4 
constraints of model (9) assure that production of the reference group is feasible.   5 
 6 
Moreover, the validation of model (9) in terms of RTS was also measured.  The RTS regions estimated by model (9) and 7 
the three existing models are presented in Table 3.  It can be observed that the RTS regions obtained by model (9) and 8 
the model of Golany and Yu (1997) are almost the same, since both models apply the same features in calculating the 9 
projections of input reduction and output augmentation for RTS identification.  Out of the 39 airports, only seven airports 10 
have changed their RTS regions.  For example, inefficient DMUs 14 and 17 improve their performance to be efficient 11 
units in model (9).  For this, their RTS regions have changed from IRS to CRS.  As described, the efficiency scores of 12 
the airports calculated by model (9) are mostly smaller or equal to that obtained from Liu et al. (2010).  As a result, 16 13 
airports have changed their RTS regions.  Additionally, as considered in Remark 2, the efficiency scores calculated by 14 
model (9) are mostly less than or equal to that obtained from the bi-objective model of Wu and Zhou (2015).  However, 15 
the models of Golany and Yu (1997) and Liu et al. (2010) cannot identify the RTS of inefficient DMUs.  Contrastingly, 16 
model (9) can identify the RTS of all inefficient DMUs (i.e., IRS or DRS) because it does not impose additional 17 
constraints to identify projections of input reduction and output augmentation.   18 
 19 
 20 
5. Conclusions 21 
 22 
Some inputs and outputs in many settings are simultaneously undesirable factors with mixed integer-valued data.  This 23 
situation cannot be handled by classical DEA models that consider all inputs and outputs are desirable factors and real-24 
valued data.  For this, their reference targets are likely to be desirable and real values, limiting their implementation in 25 
real settings.  Thus, this paper proposes a new bi-objective DEA model that can simultaneously handle undesirable factors 26 
and mixed integer values of inputs and outputs.  The undesirable factors and integer requirements were integrated into 27 
the standard bi-objective model to obtain more precise efficiency scores and reference targets.  The proposed model was 28 
run on a data set of flight delays resulting from airport traffic overcrowding to evaluate the efficiency of 39 Spanish 29 
airports in the year 2008.  Each airport was considered as an independent DMU, whose efficiency score and inputs-30 
output slacks should be calculated to improve its performance.  The model is novel for two reasons.  First, it 31 
simultaneously integrates undesirable factors and mixed integer inputs and outputs to estimate RTS for efficient and 32 
inefficient DMUs.  Second, it evaluates the efficiency of a real life setting, i.e., an airport system where these factors are 33 
to be taken into account to accurately evaluate its efficiency which has not been considered in the literature.   34 
 35 
Additionally, the model has contributed to the literature in the context of estimating RTS, since it can identify RTS of 36 
efficient and inefficient DMUs by identifying four conditions of RTS classification in the presence of undesirable factors 37 
and mixed integer values.  The four conditions depend on the projections of input reduction and output augmentation.  38 
Hence, the regions of RTS for airports have been identified under the VRS technique.  Efficient airports are identified 39 
under the CRS region, while inefficient airports are identified under the DRS or IRS region.  The results of RTS show 40 
that most of the inefficient airports are classified under IRS, implying that their scale level is not optimal.   41 
 42 
To measure the effect of integrating the undesirable factors and mixed integer values of inputs and outputs on an 43 
organization’s activities, particularly in airport operations, we illustrate the validity of the model by comparing its 44 
efficiency measures with that obtained from the existing models, conducted by Golany and Yu (1997), Liu et al. (2010) 45 
and Wu and Zhou (2015).  These existing models did not take into account the simultaneous effect of undesirable factors 46 
and mixed integer requirements on efficiency measures, producing inaccurate efficiency evaluation.  Compared to the 47 
bi-objective model of Golany and Yu (1997), the proposed model mostly calculated greater or equal efficiency scores, 48 
revealing the significance of integrating undesirable factors and mixed integer values.  In contrast, the efficiency scores 49 
resulting from the proposed model were mostly less than or equal to that resulting from the bi-objective model of Liu et 50 
al. (2010) and were most likely to be less than or equal to that resulting from the bi-objective model of Wu and Zhou 51 
(2015).  The main reason is that the models of Liu et al. (2010) and Wu and Zhou (2015) impose two additional constraints 52 
to determine the parameter values of inputs reduction and outputs augmentation.  Meanwhile, the values of these 53 
projections can be easily determined using the proposed model and the model of Golany and Yu (1997).  Therefore, the 54 
classification of the RTS for most DMUs resulting from the bi-objective models of Liu et al. (2010) and Wu and Zhou 55 
(2015) is relatively different to that of the proposed model, while the RTS resulting from the existing model of Golany 56 
and Yu (1997) is most likely similar with that of the proposed model.   57 
 58 
The proposed model can simultaneously deal with mixed integer desirable and undesirable inputs and outputs.  However, 59 
due to the unavailability of undesirable inputs in the dataset, this paper only dealt with mixed integer desirable inputs 60 
and desirable and undesirable outputs of Spanish airports.  A specific feature of the proposed model considers inputs that 61 
are beyond the control of a DMU (i.e., non-discretionary).  This means that the DEA model should not reduce inputs 62 
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below their current level.  Another direction of this paper would be to explore a network DEA model dealing with 1 
undesirable factors and integer requirements.  Besides that, future studies can capture the dynamic nature of DMUs with 2 
panel data rather than cross-sectional data.   3 
 4 
 5 
Appendix A.  How to deal with  if it leads to any erroneous results.   6 
 7 
We first consider the following VRS model (Banker et al., 1984): 8 
 9 

,      (A.1) 10 
s.t: 11 

 12 

 13 

 14 

 15 
, 16 

 17 
which is employed for stage I.  Assuming that  is the optimal value of  in linear programming model (A.1), we 18 
further consider stage II, in which the slacks are maximized in the following model: 19 

 20 

       (A.2) 21 

s.t: 22 

 23 

 24 

 25 

 26 
, 27 

 28 
where  is the value obtained by solving model (A.1) in Phase I.  DMUo is fully efficient if  is equal to one and the 29 
optimal values of the slacks (i.e., ) in model (A.2) are equal to zero.  If we want to join models (A.1) and 30 
(A.2) together in a single objective, the VRS in model (1) can be considered (see Cooper, Seiford, & Tone, 2000).  In 31 
this study, we assumed that .  However, we cannot deduce that a small value of  yields accurate results, since 32 
it depends on a data set (see Ali & Seiford, 1993, p.293; Cooper et al., 2006, p. 70-71).  In certain cases, it may lead to 33 
erroneous results by replacing .  We further use the two-stage procedure similar to the above mentioned 34 
procedure in our proposed method which accomplishes all that is required.  In this case, we will be able to double check 35 
the results provided by replacing  and make sure that there is no any erroneous results (see Cooper, Seiford, & 36 
Tone, 2000).   37 
 38 
Appendix B 39 
 40 
Stage-1 41 

       (B.1) 42 

s.t:  43 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 
 11 
Stage-1 determines the efficiency value,  and  for DMUo being evaluated.   12 
 13 
Stage-2 14 
 15 
Stage-2 determines the maximum value of the sum of desirable mixed integer input excess and desirable mixed integer 16 
output shortfalls for DMUo.  Thus, the mathematical formula of stage-2 is the same of that presented in model (9).  In 17 
this two-stage bi-objective model, DMUo is considered as fully-efficient if and only if (i) , and (ii) all desirable 18 
inputs and outputs slack are equal zero.  If only condition (i) is satisfied, then  is termed as weakly-efficient.  If 19 
conditions (i) and (ii) are not prevail, then DMUo is technically inefficient.   20 
 21 
To solve Stage-1 and Stage-2, the transformation of Cooper et al. (2006) is used.  For example, the Lingo statements for 22 
DMU1 are as follows: 23 
 24 
Stage-1 for DMU1 25 

 26 
min = t1/t2 ; 27 
 28 
5 * x1 + 2 * x2  +  . . .  + 18 * x39 <= t1 * 5; 29 
87300 * x1 + 162000 * x2 +  . . .  +  157500 * x39 <= t1 * 87300; 30 
3 * x1 + x2 +  . . . + 2 * x39 <= t1 * 3; 31 
4 * x1 + 2 * x2 +  . . . + 3 * x39 <= t1 * 4; 32 
10 * x1 + 4 * x2 +  . . . + 7 * x39 <= t1 * 10; 33 
17.719 * x1 + 2.113 * x2 +  . . . + 12.225 * x39  >= t2 * 17.719; 34 
1174.970 * x1 + 19.254 * x2 +  . . . + 67.818 * x39 >= t2 * 1174.970; 35 
283.571 * x1 + 8.924 * x2 +  . . . + 34989.727 * x39 >= t2 * 283.571; 36 
1218 * x1 + 58 * x2 +  . . . + 669 * x39 <= t1 * 1218; 37 
23783.4 * x1 + 1376.5 * x2 +  . . . + 11585.8 * x39 <= t1 * 23783.4; 38 
x1 +  x2 +  . . . + x39 = 1; 39 

 40 
Stage-2 for DMU1 41 
 42 

min = 0.851 - 0.000001 * ((DIIS1 + DIIS2 + DIIS3 + DIIS4 + DIIS5 + DIOS1 + DIOS2 + DROS1)); 43 
 44 
5 * x1 + 2 * x2 +  . . . + 18 * x39 <= (t1 * 5) - DIIS1; 45 
87300 * x1 + 162000 * x2 +  . . . + 157500 * x39 <= (t1 * 87300) - DIIS2; 46 
3 * x1 + x2 +  . . . + 2 * x39 <= (t1 * 3) - DIIS3; 47 
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4 * x1 + 2 * x2 +  . . . + 3 * x39 <= (t1 * 4) - DIIS4; 1 
10 * x1 + 4 * x2 +  . . . + 7 * x39 <= (t1 * 10) - DIIS5; 2 
17.719 * x1 + 2.113 * x2 +  . . . + 12.225 * x39  >= (t2 * 17.719) + DIOS1; 3 
1174.970 * x1 + 19.254 * x2 +  . . . + 67.818 * x39 >= (t2 * 1174.970) + DIOS2; 4 
283.571 * x1 + 8.924 * x2 +  . . . + 34989.727 * x39 = (t2 * 283.571) + DROS1; 5 
1218 * x1 + 58 * x2 +  . . . + 669 * x39 <= (t1 * 1218); 6 
23783.4 * x1 + 1376.5 * x2 +  . . . + 11585.8 * x39 = (t1 * 23783.4); 7 
x1 +  x2 +  . . . + x39 = 1; 8 
t1= 1.5727 ; 9 
t2= 1.8475; 10 
@GIN (DIIS1); 11 
@GIN (DIIS2); 12 
@GIN (DIIS3); 13 
@GIN (DIIS4); 14 
@GIN (DIIS5); 15 
@GIN (DIOS1); 16 
@GIN (DIOS2); 17 

 18 
where, x1, …, x39 are DMUs being evaluated, t1 and t2 are the projections of input reduction and output augmentation 19 
whose values are calculated by the model’s objective function, 0.000001 is a non-Archimedean infinitesimal value, 20 
DIIS1, DIIS2, DIIS3, DIIS4, DIIS5, DIOS1, DIOS2 are desirable integer input and output slacks, DROS1 is a desirable 21 
real output slack and @GIN is Lingo’s function to restrict inputs and outputs as integer values.   22 
 23 
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