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Abstract 

This paper examines the high-dimensional dependence modelling problem in the context of project risk 

assessment. As the dimension of uncertain performance units (i.e., itemized costs and activity times) in 

a project increases, specifying a feasible correlation matrix and eliciting relevant pair-wise information, 

either from historical data or with expert judgement, becomes practically unattainable or simply not 

economical. This paper presents a factor-driven dependence elicitation and modelling framework with 

scalability to large-scale project risks. The multi-factor association model (MFAM) accounts for 

hierarchical relationships of multiple association factors and provides a closed-form solution to a 

complete and mathematically consistent correlation matrix. Augmented with the structured association 

(SA) technique for systematic identification of hierarchical association factors, the MFAM offers 

additional flexibility of utilizing the minimum information available in standardized, ubiquitous project 

plans (e.g., work breakdown structure, resource allocation, or risk register), while preserving the 

computational efficiency and the scalability to high dimensional project risks. Numerical applications 

and simulation experiments show that the MFAM, further combined with extended analytics (i.e., 

parameter calibration and optimization), provides credible risk assessments (with accuracy comparable 

to full-scale simulation) and further enhances the realism of dealing with high-dimensional project risks 

utilizing all relevant information. 
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1 Introduction 

This paper tackles the problem of dependence modelling for large-scale project risk assessment. 

Dependence modelling constitutes an essential element of risk-adjusted project planning and predictive 

control, in particular for probabilistic cost estimates (GAO 2020; Garvey et al. 2016), stochastic 

network schedules (GAO 2015; Trietsch et al. 2012; van Dorp 2005), project-end outcome updates 

(Cho 2009; Kim 2015), and predictive performance tracking (Kim and Kwak 2018). Inter-dependence 

between project tasks is also one of the driving factors of project complexity along with the project size 

and the variety of tasks (Baccarini 1996; Tatikonda and Rosenthal 2000). Consequently, accounting for 

the nature and the degree of dependence is a demanding challenge for proper management of modern 

projects with increasing complexity and structural uncertainty (Mo et al. 2008; Williams 1999).  

The need for quantitative risk assessment as a decision support tool has been well recognized since 

several seminal papers in capital investments (Hertz 1964) and operations research (Malcolm et al. 1959; 

Van Slyke 1963). In practice, however, projects often behave in a way that clashes with what is expected 

from the best practices and standards for successful completion in time (Love et al. 2013; Schonberger 

1981) and within the budget (Flyvbjerg 2006; Love et al. 2013). Elementary statistics shows that project 

cost and time, as a risk-adjusted sum of random variables, tend to exceed the sum of their isolated 

marginal estimates when there exist positive inter-variable associations. Empirical data also suggest 

that (i) inter-variable correlations are commonly observed and (ii) ignoring correlation leads to 

systematic underestimation of the real risks (Chau 1995; Newton 1992; Skitmore and Ng 2002). 

Moreover, as the uncertainty dimension increases the percent underestimation of the total cost (or time) 

drastically increases (Garvey et al. 2016, p.322). Subsequently, a proper consideration of inter-variable 

dependence is widely emphasized as a crucial element of contingency settings and project risk 

assessment in general (GAO 2015, p.115; GAO 2020, p.155; NASA 2013, pp.33-37). 

In theory, dependence modelling can be straightforward. In a narrow sense, a vector of dependent 

random variables can be specified as a mixture of univariate marginals (X) and the corresponding 

correlation matrix (ΣX). 

 ~ ;Σ XX X Σ   (1) 

The correlation-driven dependent vector (XΣ) in Eq. (1) provides a mathematically rigorous 

representation. However, specifying a feasible correlation matrix is a data-intensive process. In practice, 

the burden of data collection for correlation specification can be unattainably challenging (Lurie and 

Goldberg 1998). In particular, high-dimensional dependence modelling can be overly restrictive, mostly 

due to three well-known challenges, which can be collectively referred to as the curse of dimensionality. 

First of all, the number of pairwise correlations required to fully specify a correlation matrix increases 

quadratically. Although the general perception of large-scale projects changes over time, projects with 

thousands or more activities are becoming increasingly common in practice (GAO 2015, pp.102-104; 

Safran 2020). For example, a risk model with 1,000 variables requires assessments of 1000C2 = 499,500 
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correlation coefficients. The burden of data collection in this scale, either from historical data or with 

expert judgment, would be practically unattainable, or simply not economical. Even more challenging, 

there are also situations where pair-wise correlations are restricted by the selection of marginal 

distributions (Demirtas and Hedeker 2011; Lurie and Goldberg 1998). A more detailed discussion on 

the curse of dimensionality will be presented in Section 2. 

A sensible way of dealing with the curse of dimensionality is to reconstruct the problem in a way 

that reduces the data collection and elicitation burden (Morgan et al. 1992). A decision maker may 

conveniently avert the dimensionality issues by adopting drastic simplification assumptions, while 

sacrificing the flexibility of representing various dependence combinations (Goh and Sim 2011; 

Trietsch et al. 2012). In the project control literature, Bayesian networks were examined as an analytic 

framework for factor modelling and adaptive project time updating (Cho 2009; van Dorp 2020). Cho 

(2009) presented a single-factor Bayesian model in which all activities in a project are influenced by a 

single resource factor. van Dorp (2020) also proposed a single-factor dependence model that employs 

a new family of power distributions, the two-sided power distributions, to represent the mode of a PERT 

(program evaluation and review technique) distribution. As a robust solution for large-scale risk 

analysis, however, single-factor approaches can be overly restrictive in the way that all pairwise 

correlations in the analysis are calibrated by a single factor. In these regards, a dependence model can 

be considered more realistic when it offers the flexibility of accounting for multiple risk factors 

commonly observed in real project settings. 

Methodologically, however, increasing the number of risk factors for dependence specification is 

also prohibited by the quantity and quality of the data available for corresponding parameter estimation. 

Whenever available, empirical data from past projects or expert assessments should be used. When a 

project is more predictable with a plethora of similar projects in the past, empirical data or subjective 

assessments by experts can be used. At the same time, there are more challenging projects with unique 

scope, innovative methodologies, and increased complexities in terms of component interfaces and 

project scales. These projects are as a rule less predictable and can be hardly characterized with 

quantitative data collected from past projects. Consequently, the nature and degree of risks inevitable 

in such one-of-a-kind projects cannot be fully quantified using empirical data alone. Here we observe a 

dilemma, somewhat inevitable in project risk assessment: the less there exist relevant empirical data 

from similar projects, the more the need for a sensible risk assessment increases. As a viable alternative, 

subjective assessments of the pair-wise correlations can be employed. Yet, the efficacy of subjective 

correlation assessments rapidly diminishes as the number of random variables increases mostly due to 

the mathematical consistency required for a feasible correlation matrix (See Section 2.1 for more details 

of this issue).  

These observations indicate that the robustness of a solution to the dependence modelling problem 

for large-scale project risk analysis can be enhanced with three analytical features: multi-factor 

capability, applicability under limited empirical data, and dimensional scalability. Accordingly, the 
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objective of this article is set to present a multi-factor dependence modelling framework that provides 

the flexibility of addressing the limited data availability, while preserving the scalability to high-

dimensional project risks. To achieve this goal, we investigate a dependent vector that can be fully 

specified with three input elements: 

 ~ ; ,rX b r Ψ   (2) 

where b = (b1,…,bd)T is a vector of observable random variables of which marginals, { ( )}if f bb , 

(i=1,…,d) are specified independently prior to accounting for possible dependence; r = (r1,…,rK)T, is a 

vector of association factor (AF) variables that are elicited and specified as the proxy of the pairwise 

dependence between the base variables (b); and Ψ= [ψik] (i=1,…,d; k=1,…,K) is a d×K allocation matrix 

(AM) of binary elements, which defines the relationships between b and r.  

Specifically, we present an analytic framework with two stages: the structured association (SA) and 

the multi-factor association model (MFAM). First, the SA establishes a hierarchical structure of all 

relevant AFs identified in a project, providing a qualitative solution to the multi-factor capability and 

the applicability to limited data for a robust dependence model. Then, the MFAM transforms the 

qualitative SA information into a quantitative, mathematically consistent correlation matrix (Σr) of a 

vector of specified marginals. Adopting analytic (non-simulation) approaches (i.e., the second-moment 

approach), the MFAM offers a computationally efficient algorithm, readily scalable to high dimensional 

risk modelling and analysis. 

Note that inter-variable association may arise due to causal relationship between variables or a 

common factor that may affects two or more variables concurrently (Bolstad 2007, p.3). The key 

premise underlying our approach is that by selecting the AFs wisely a decision maker is able to establish 

a balance between the data availability and the modelling flexibility, while effectively mitigating the 

curse of dimensionality. A selection of the AFs can be considered wise if the marginal distributions of 

the factors and the corresponding allocation matrix can be elicited and specified using all relevant 

information readily available in standard project settings. In this paper, we focus on establishing 

stochastic association between project performance units (i.e., itemized costs and activity times, 

hereinafter PUs) using all relevant information accessible in standard project environments, for example, 

the work breakdown structure (WBS), resource plans, and a risk register (PMI 2013, p.163). It should 

be properly emphasized that project risk information from various sources is often available in 

unstructured forms (e.g., drawings, organizational plans, and resource plans) (Xing et al. 2019). In 

particular, a risk register is used to identify and track all relevant risks in a project and their attributes 

relevant to project outcomes (PMI 2013). The information embedded in such project plans is 

conspicuously observable and thus objective. Yet project plans exist, as a rule, in qualitative formats. 

In this study, we adopt an ontological approach to transform any qualitative association information 

reflected in project plans into quantitative dependence information expressed as a correlation matrix. 

Ontology, as a branch of philosophy, offers a flexible perspective on the evolving nature of projects 
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(Morris 2013, p.236). In analytic settings, ontology allows a framework that represents the knowledge 

in a domain as a set of concepts and their relationships (Rodger 2013) and has attracted growing 

attention in risk studies, for instance, in safety (Xing et al. 2019), supply chain (Palmer et al. 2018), and 

environment (Scheuer et al. 2013). 

The main contributions of this article can be highlighted in three aspects. 

 The SA-MFAM approach enhances the realism of dependence modelling by offering the flexibility 

of accounting for multiple risk factors observed in individual projects based on all relevant 

information readily available in individual projects. 

 The MFAM yields an analytic, closed-form solution to the correlation matrix, which can be further 

parameterized and calibrated meeting the limited data availability in individual projects.  

 Adopting a factor-driven approach, the MFAM always generates a mathematically consistent 

matrix, preserving the scalability to high-dimensional risk modelling and analysis. 

The rest of this article is organized as follows. The following section outlines the challenges in 

large-scale dependence modelling and presents the SA technique as a viable solution. Section 3 

formulates the MFAM. In Section 4, we carry out a set of credibility tests and evaluate the performance 

of MFAM against Monte Carlo simulation. Section 5 demonstrates the implications of dependence (or 

ignoring dependence) in project decision making using three SA-MFAM applications. Conclusions and 

future research issues are summarized in Section 6. 

2 Structured Association 

2.1 Large-scale correlation assessment 

Uncertainty models, in a generic setting, have a form of a joint distribution with three components: (i) 

a function of random variables in d-dimension, G(X), X = (X1,…,Xd)T, (ii) a set of univariate marginal 

distributions, { ( )}, 1,...,if f X i d X  and (iii) a set of dependence parameters, mostly in terms of a 

correlation matrix (i.e., a symmetric, positive semi-definite matrix with unit diagonal elements), 

([ ] : 1 1; 1 , )ij ij i j d      XΣ . 

In large-scale project risk analyses, the efforts to develop a fully-specified feasible correlation 

matrix are easily hindered by three factors: (i) high dimensionality, (ii) sample size required for 

adequate correlation estimates, and (iii) mathematical consistency required for a feasible correlation 

matrix (Bedford and Cooke 2002; Kim 2021; Kurowicka and Cooke 2006, p.84). As mentioned earlier, 

the high dimensionality alone causes a dire challenge in terms of the number of pairwise correlations. 

The schedule risk analysis for a medical center project discussed in GAO (2015, p.104), for example, 

involves 6,098 activities, in which the full-scale correlation matrix requires assessments of over 18.5 

million correlation coefficients. There are more practical challenges involved in the correlation-driven 

dependence approach. Inter-variable dependence is a delicate statistical property and data collection for 

quantitative dependence estimation can be unattainably burdensome. For instance, the sample size 
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required to detect a non-zero product-moment correlation between two random variables at a mild 

significance of α = 0.1 and the power of 1 – β = 0.8 is 617 for small effect size (0.10), 68 for medium 

effect size (0.30), and 22 for large effect size (0.50) (Cohen 1988, p.101). In large-scale projects with 

hundreds or thousands of PUs, collecting statistically meaningful data to elicit a full set of correlation 

coefficients can be unattainably challenging. Moreover, the temporary and unique nature of projects 

implies that objective data for dependence elicitation become less available for unique projects with 

rare constraints in which risk accounts are most needed. When objective data is not available, expert 

judgement can be a sensible alternative (Werner et al. 2017). However, matching statistical dependence 

measures with subjective judgements is not straightforward, even for trained statisticians (Clemen et al. 

2000).  

There is also a theoretical challenge. When a correlation matrix is constructed from independently 

conducted pair-wise assessments, the resulting correlation matrix is not guaranteed to be feasible. 

Consider three cost items in a project, say X1, X2, and X3, of which correlation matrix is fully specified 

with three correlation coefficients: ρ12, ρ13, and ρ23. When two of the three correlation coefficients are 

known, for instance, ρ12 = 0.6 and ρ13 = 0.3, the feasible range of ρ23 is restricted to [-0.58, 0.94], a sub-

set of the range of partial correlation coefficient, [-1, 1]. The loss of a feasible correlation space in high-

dimensional dependence models becomes substantial as the dimension increases (Ghosh and Henderson 

2003), making correlation-driven approaches even less attractive.  

2.2 Structured association 

The itemized costs and activity times in a project are hardly isolated variables, statistically independent 

from each other. More likely, a certain degree of association tends to build up between closely linked 

PUs within a project, due to various common factors such as work types, combined contracts, renewable 

resources shared by multiple tasks, concurrent exposure to other internal (e.g., culture, organizational 

structure, project maturity) and external (e.g., weather, material suppliers, and labor markets) factors 

(GAO 2020, Chapter 12; Hulett 2011, Chapter 5; van Dorp 2005). It is sensible then to properly account 

for the inherent association binding multiple PUs as a coherent group, reflecting the distinct procedures 

of being planned and executed within a project.  

Definition 1: Structured Association 

Dependence in a broad sense is a measure of statistical association between random variables. The 

structured association (SA) is defined as the operational association between two or more 

performance units (PUs) in a project due to common factors emerging from, for example, (i) the 

inherent work attributes shared by the PUs and (ii) the way that PUs are planned and executed 

following the structured procedures and practices in project management.  

 

In this study, the SA is constructed as a set of hierarchical factors representing relative associations 

between project PUs. This section presents two distinct SA elicitation procedures: the top-down SA and 
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the bottom-up SA. The former extracts relative association information from the WBS of individual 

projects, whereas the latter from the common resources shared by multiple PUs. 

2.3 Top-down SA 

The WBS of a project shows a hierarchical decomposition of the total scope of a project (PMI 2013). 

A WBS represents hierarchical association between work items in terms of levels and work packages. 

Starting with the project itself (Level 1), work components are divided into smaller, more controllable 

items until the work item can be properly planned, executed, and tracked by a single entity (i.e., a person 

or an organization). When a work item on the upper level (“parent”) is decomposed into two or more, 

smaller items on a lower level (“children”), the 100 percent rule applies: the sum of the children’s scope 

is equal to the scope of the parent (PMI 2013). Work packages (WPs) are the work items at the lowest 

level(s) of a WBS. Thus, the total scope of a project is determined as the sum of all WPs in the WBS. 

In a similar sense, the total (direct) project cost is estimated from the sum of all WP costs. 

The WBS level method: 

From the nature of the hierarchical decomposition, it can be inferred that a WBS is a qualitative 

representation of the relative association between work items (Reinschmidt 2009). That is, the actual 

performance of the child items from a same parent tends to share a certain degree of operational 

association. Consider the WBS of a bridge project in Fig. 1 (a). The WBS was reconstructed from an 

actual schedule of a $230 million bridge project. The WBS consists of four levels and more than 20 

work packages (only the first nine are shown). Each item in the WBS is uniquely numbered with a 

hierarchical code system. For example, Item 1.1.2.1 is a WP at Level 4 with Item 1.1.2 as its parent.  

 
(a) WBS 

 
(b) SA tree of AFs 

Fig. 1 Top-down SA tree for a bridge project. 
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Reinschmidt (2009) introduced a simplified way of creating a correlation matrix by grouping the 

WPs under the same parent in terms of a level parameter. That is, the degree of correlation between two 

WPs is specified by the number of parent tasks shared by them. Then, the degree of association between 

the WPs in Fig. 1 (a) can be expressed with three parameters: ρ1, ρ2, and ρ3 for one, two, and three levels, 

respectively. Specifically, a degree of association function, ( , )i ja wp wp , between two WPs, wpi and 

wpj, can be defined as the number of parent levels shared by the two WPs: ( , )i ja wp wp 

#[{ }, { } { } ]
i jk k k wp k wpl l l l  , where lk denotes Level-k, { }

ik wpl ( { }
jk wpl ) denotes the set of levels 

associated with wpi (wpj), and #[•] is the cardinality function that counts the number of elements in a 

set. For example, 1 2 1 2 3( , ) #[{ , , }] 3a wp wp l l l  , 1 4 1 2( , ) #[{ , }] 2a wp wp l l  , and 1 7( , )a wp wp 

1#[{ }] 1l  . Then the correlation coefficient between two WPs is parameterized accordingly, as 

1 2 1 2 1 2 3( , | ( , )) ( , | 3)wp wp a wp wp wp wp    , 1 4 1 4( , | ( , ))wp wp a wp wp  1 4 2( , | 2)wp wp   , 

and 1 7 1 7 1 7 1( , | ( , )) ( , |1)wp wp a wp wp wp wp    . 

The WBS code method: 

In this paper, we generalize the WBS level method to a hierarchical multi-factor code method. 

Specifically, all parent items in a WBS are converted into independent AFs, r = (r1,…,rK)T. The primary 

merits from the extension are twofold. First, we can account for uneven associations between the work 

items within the same level. More importantly, we can account for the mixed effects of multiple AFs 

according to the level of details of individual WBS. For instance, the level 3 under ‘Sub Structure’ in 

Fig. 1 (a) may induce different degrees of associations from the level 3 under ‘Foundation’, due to the 

distinct properties of the two work types. Specifically, the association between wp1 (1.1.1.1) and wp4 

(1.1.2.1) is influenced by the marginal association induced by two parent items, 1.0 (Level 1) and 1.1 

(Level 2), whereas the association between wp4 (1.1.2.1) and wp7 (1.2.1.1) is affected by the association 

embedded in the global parent item, Bridge Project. Then, the hierarchy embedded in the WBS can be 

systematically transformed into a hierarchical factor tree as in Fig. 1 (b). Subsequently, we generalize 

the association operator as a union of two sets of AFs: ( , )i ja wp wp  { } { }
i jk k wp k k wpr r  . For example, 

1 4 1 2 4 1 2 5 1 2( , ) { , , } { , , } { , }a wp wp r r r r r r r r    and 1 7 1 2 4 1 3 6 1( , ) { , , } { , , } { }a wp wp r r r r r r r   .  

Note that the SA factors from the WBS code method can be grouped into two classes: the global 

factor and the local factors. The global factor works at the project level and influences all WPs in the 

project, whereas the local factors are applied to subgroups of the WBS. The global factor may represent 

soft performance factors at the project level (Williams 2003), for instance, the “project degree of 

dependence” in van Dorp (2020). From the combination of these factors, the top-down SA provides 

additional flexibility of specifying relative association imposed on project PUs in accordance with a 

pre-established WBS in a project.  
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2.4 Bottom-up SA 

Once a WBS is developed for a project, detailed planning for individual WPs follows. Resource 

planning and leveling plays a central role at this stage of project planning. Resource planning is a 

process of identifying all required resources and allocating them to individual tasks in an optimal way 

that satisfies the project objectives and relevant constraints. Naturally, resource planning involves 

strategic trade-offs between alternative courses of actions and optimization of the expected outcomes. 

As a result, resource constraints across multiple activities build up in a project, creating additional 

dependence between activities, which may trigger additional sensitivity (Song et al. 2021) and increased 

risks in activity times and costs (Asadabadi and Zwikael 2021). 

The bottom-up SA elicits inter-variable association information from such deliberate planning 

efforts of resource utilization and schedule optimization, which is broadly referred to as resource-

leveling. It is worth noting that resource allocation plans in a project may change according to the 

priority of the project. As a result, the bottom-up SA approach may provide additional insights into the 

nature and properties of project-specific inter-variable association, which cannot be obtained from 

empirical data collected from past projects. Consider two alternative plans for a sub-project in Fig. 2. 

The sub-project has six WPs of which costs and times are estimated as, for illustration purposes, $1,000 

and one week, uniformly across all WPs. The first plan (Alternative 1) involves one crew (Crew A) and 

one crane. That is, all the six WPs are carried out in a sequence by a single crew. In addition, one crane 

is used for wp2 and wp6. As a result, the sub-project duration is six weeks. Suppose that the sub-project 

forms the critical path of the whole project and the project considers accelerating the schedule as in 

Alternative 2. The project adopts the fast-tracking technique and divides the sub-project into two 

parallel groups: {wp1, wp2, wp3} and {wp4, wp5, wp6}. Moreover, each group is carried out by 

independent crews, Crew A and Crew B, respectively. As a result, the sub-project may finish three 

weeks earlier.  

 

Fig. 2 Resource-driven bottom-up SA. 

When two or more tasks share a resource in a project, a certain degree of association tends to build 

up in their actual performance. Such an association may not be purely statistical, but somewhat 

operational in that the degree of association is induced by the way that the tasks are planned and carried 

out at the operational level. Specifically, the WP times and costs are often intertwined via the production 

rate of the allocated resources. Consider the generic formulas for time and cost estimates of typical 

construction items: 
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 ; ( )(1 & ) ( )(1 & )i
i i i i i i i i

i

q
time cost m l e O P m u time O P

p
           (3) 

where qi is the work quantity; pi is the production rate of allocated resources (i.e., labor and equipment); 

mi is the material cost; li is the labor cost; ei is the equipment cost; ui is the renewable resource (labor 

plus equipment) rate per time unit; and O&P is the overhead and profit rate. The O&P is typically 

determined at the project level, while all the other quantities are estimated for individual tasks.  

Itemized estimates as in Eq. (3) indicate that task times and costs are influenced by the detailed 

resource allocation and the performance of the resources. Specifically, the production rate (pi) is a 

crucial attribute of renewable resources. Skilled labors and crane operators would have better and more 

predictable production rates than those with limited experience or training. Likewise, a larger crane 

shared by multiple tasks would concurrently influence the production rates of the tasks. As a result, the 

production rate of a shared resource would affect both the times and costs of the associated activities. 

From these observations, the bottom-up SA establishes a hierarchical tree structure from detailed 

resource plans at the lower levels of an individual project. For example, schematic dependence 

structures underlying the two alternatives in Fig. 2 can be established in terms of three AFs: Crew A, 

Crew B, and Crane. The resulting factor loading diagrams in Fig. 3 indicate that the actual performance 

of the WPs may have different association structures depending on the specifics of the allocated 

resources. The cost and time performance of Alternative 1 are influenced by two AFs: r1 (Crew A) and 

r2 (Crane), whereas the performance of Alternative 2 is influenced by three AFs: r1, r2, and r3 (Crew B). 

Then, an association function between two work packages can be defined accordingly. For example, 

2 6 1 2 1 2( , ; .1) { , } { , }a wp wp Alt r r r r   1 2{ , }r r , whereas 2 6( , ; .2)a wp wp Alt  1 2 2 3 2{ , } { , } { }r r r r r  . 

 

Fig. 3 Resource-driven factor loading. Note that r1, r2, and r3 represent the SA induced by Crew 
A, Crane, and Crew B, respectively. 

2.5 SA elicitation characteristics 

The SA approaches provide a systematic way of parameterizing the relative degree of association 

between relevant PUs in a project. Note that a set of hierarchical factors can be constructed in a more 

trivial way. For instance, risk events identified in a risk register can be structured according to the risk 

breakdown structure. In this regard, the AFs and their relationships with the individual PUs can be 

constructed utilizing all relevant information available in individual projects. Accordingly, the SA 

transforms as-is project plans to a hierarchical dependence structure of a finite set of AFs. Specifically, 

the SA elicitation procedures can be characterized by three features.  
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 Project-specific association. Each project is unique in one way or another, and the most reliable 

information on the internal dynamics between the PUs would be available inside. The SA utilizes 

qualitative information generated in individual projects. An ideal WBS for the same project may 

change across project organizations, reflecting the relative strengths and strategies of individual 

organization. Project resource plans are optimized in a way that maximizes the efficiency of 

available resources while minimizing detrimental effects on project outcomes. The SA 

systematically reflects such unique features of individual projects in terms of the structured AFs. 

 As-is information. The primary sources of the SA elicitation are standard documents available in 

most projects. The WBS-driven SA represents a top-down perspective on the inter-variable 

association structure, whereas the resource-driven SA accounts for a bottom-up perspective. The 

two approaches are not necessarily mutually exclusive but complementary by nature. Not discussed 

in detail here, but risks documented in a risk register would also serve as a reliable source of AFs. 

 Dimensional scalability. Utilizing the hierarchical nature of project planning procedures, SA 

approaches provide intuitive structures of which parameters can be systematically elicited by expert 

judgement or other relevant information. As a result, the SA approaches provide a robust solution 

scalable to large-scale projects with a marginal burden of factor elicitation and data collection.  

The AFs in the SA approaches represent plausible association between the PUs in a project. An AF 

is not necessarily a cause that directly affects the uncertainty of individual PUs. In this regard, the AFs 

in this study need to be distinguished from the “systemic bias across a project” in the linear association 

(Trietsch 2005; Trietsch et al. 2012) or the risk drivers (Hulett 2011) as a cause of dependence. More 

specifically, these models are designed to induce dependence by influencing the marginal distributions 

(i.e., their expected values and/or variabilities). Conceptually, the AF in this paper is a broader concept, 

encompassing the causal relationships. As a result, the SA provides additional flexibility in the way that 

the dependence specification can be decoupled from the specification of the marginals. These issues 

will be further discussed in Section 3.4 and Section 5. 

To be effective, the SA approaches need to overcome two methodological restrictions. The AFs 

elicited from project plans are qualitative by nature. The relative significance of individual AFs and 

their confounding effects on project performance need to be quantitatively assessed and transformed 

into coherent correlation coefficients. For instance, a potential difference between the dependence 

induced by 1 1 2{ } { , }r r r  for (wp1, wp2) and 1 2 2 3{ , } { , }r r r r  for (wp2, wp6) in the Alternative 2 of Fig. 

3 needs to be explicitly accounted for. Also, the SA requires an analytic mechanism that numerically 

computes the combined effect of multiple AFs. To address these issues, a computationally efficient 

analytic (non-simulation) model is formulated and presented in the following section. 

3 Multi-factor Association Model 

The SA-induced dependence between PUs involves, as a rule, multiple factors. This section presents a 

multi-factor association (MFA) model that transforms the relative association information embedded in 
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a hierarchical set of multiple AFs into a mathematically consistent correlation matrix. Characteristic 

properties and practical implementation options of the MFA model are also highlighted.  

3.1 Multi-factor association 

The key notations used in the derivation are summarized below. 

 (•): a row vector of variables. 

 {•}: a set of elements. 

 X = (X1,…, Xd)T: a d×1 vector of factored variables. 

 b = (b1,…, bd)T: a d×1 vector of base variables. 

 r = (r1,…, rK)T: a K×1 vector of AFs. 

 θi: a set of AFs associated with bi. 

 
i

i ik
k

R r


 : an aggregate factor as a product of the AFs associated with bi. 

 E[•]: the expectation operator that returns the mean value of a variable. 

 V[•]: an operator that returns the variance of a variable. 

 σ[•]: an operator that returns the standard deviation of a variable.  

 ρ[•,•]: the correlation coefficient between two random variables. 

Consider a vector of d random variables X = (X1,…, Xd)T. The marginal distributions and the 

dependence between the marginals are modeled following two steps. First, the a priori estimates of the 

marginals of X are represented in terms of d independent variables, b = (b1,…, bd)T. Second, the possible 

association between the marginals is specified using a set of AFs, r = (r1,…, rK)T. Then we model a 

dependent vector X in terms of the product of all AFs linked to individual base variables. 

 { } { },
i

i i i i ik
k

X R b R r


    (4) 

where i =1,…,d; Ri is an aggregate factor defined as a product of the AFs (rik) linked to a variable bi, 

and; θi is a set of AFs associated with bi. Since the marginals of X are constructed from b multiplied by 

the relevant AFs, the former is referred to as ‘factored’ variables, whereas the latter is referred to as 

‘base’ variables hereinafter. For ease of reference, a d-variate vector with K AFs is referred to as the K-

th order d-variate MFA model and denoted as MFA[d, K]. Note that when two aggregate factors, Ri and 

Rj, share a set of common AFs the corresponding factored variables, Xi and Xj, become statistically 

dependent: i j    [ , ] 0i jX X  , where [ , ]i jX X  is the correlation coefficient of Xi and Xj. 

For example, a MFA[4,3] model is shown in Fig.4. The arrows in Fig. 4 represent the mapping 

relationships between the base variables and the AFs. From the relationships, four aggregate factors can 

be construction accordingly: R1 = r1×r2, R2 = r1×r3, R3 = r1×r2×r3, and R4 = r1. 
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Fig. 4 MFA[4,3] model. 

3.1.1 Normalizing AFs 

The factored variable in Eq. (4) indicates that the effects of individual AFs on the base variables can be 

uneven with distinct combinations of relevant AFs (θi ≠ θj). When multiple AFs are in play, the 

simplicity of dependence specification and the computational efficiency can be significantly improved 

by normalizing the Ri’s with respect to the entire AF vector, r. To this end, we introduce the allocation 

matrix (Ψ) as a systematic way of loading a set of K AFs onto a d-variate random vector.  

   1
,

0 otherwise
k i

ik ik
d K

r 
 



  


Ψ   (5) 

where i = 1,…,d and k = 1,…, K. Ψ is a d×K matrix with binary indicators. For example, the MFA[4,3] 

model in Fig. 4 includes one global AF (r1) that influences all the random variables and two local AFs 

(r2 and r3) that have limited impacts only on the relevant variables. Then the corresponding allocation 

matrix is constructed as: 

 

1 1 0

1 0 1

1 1 1

1 0 0

 
 
 
 
 
 

Ψ   

Given a set of K AFs and the corresponding allocation matrix, a factored variable (Xi) can be 

expressed without loss of generality as a product of the entire AFs, kr r : 

 
1

ik
K

i i i k ik
X Rb r b


    (6) 

Eq. (6) normalizes Eq. (4) in terms of the global K replacing the local association sets (θi’s) for 

individual marginals.  

3.1.2 MFA variable properties 

An algebraic model for the mixed effects of multiple AFs on the pairwise correlation between random 

variables is formulated using the first two moments of the base variables and the AFs. The second-

moment approach, also referred to as the method of moment (MOM), has been effectively used in 

uncertainty modelling (Morgan et al. 1992) and project risk studies (Kim 2019). Accordingly, the base 
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variables and the AFs are specified in terms of their means and variances. That is, ~ [ ], [ ]i i ib E b V b  

and ~ [ ], [ ]k k kr E r V r . Then the mean and variance of a factored variable are expressed as a product 

of independent variables. 

Theorem 1. Product of Random Variables (Garvey et al. 2016)(p.204) 

Consider the product of K random variables, 

 1 2 KR r r r    (7) 

If {rk} (k=1,…,K) are independent and their marginal means and variances are known, the mean and 

variance of the product of the variables are computed as: 

 
1

[ ] [ ]
K

kk
E R E r


   (8) 

 2 2 2 2

1 1 1 1
[ ] [ ] [ ] ( [ ] [ ] ) [ ]

K K K K

k k k k kk k k k
V R E r E r V r E r E r

   
          (9) 

Note that the mean of the product of independent variables is the product of the means of the 

variables, whereas the variance of the product of independent variables is the product of the means 

of the squared variables minus the product of the squared means of the variables.  

Proof. See Appendix A. █ 

 

The mean and variance in Theorem 1 are exact no matter what the distributions over the component 

variables. If the rk’s are lognormal, the product variable will be exactly lognormal. Even if the rk’s are 

not lognormal, the central limit theorem indicates that the distribution of R will approximately approach 

to the lognormal as K increases, provided the rk’s are independent.  

From Theorem 1, the first two moments of factored variables in Eq. (6) are expressed as: 

 
1

[ ] [ ] [ ] [ ]ik
K

i i i k ik
E X E R b E r E b


    (10.a) 

 2 2 2 2

1 1
[ ] [ ] [( ) ] [ ] [ ] [ ]ik ik

K K

i i i k i k ik k
V X V R b E r E b E r E b 

 
      (10.b) 

Eqs. (10) are collectively referred to as the MFA formulas. 

3.2 MFA correlation 

The MFA formulas provide a closed-form solution to the construction of a complete correlation matrix 

for the factored variables. Given a set of AFs (r) and the corresponding allocation matrix (Ψ), the 

pairwise covariance between two factored variables, Xi and Xj, is 
1 1

[ , ]jkik
K K

k i k jk k
Cov r b r b

   . 

However, an analytic solution to the covariance is not trivial when the mapping of AFs to base variables 

is non-uniform. To solve this problem, we apply a subset approach. The goal is to formulate a 

computationally efficient algorithm that converts the factor-driven specification ; ,b r Ψ  to a 

complete correlation coefficient matrix, Σr. 
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Let θi and θj denote two sets of AFs associated with bi and bj, , respectively. For example, the 

MFA[4,3] in Fig. 4 indicates that 1 1 2 2 1 3 3 1 2 2{ , }, { , }, { , , }r r r r r r r     , and 4 1{ }r  . Without loss of 

generality, θi and θj can be expressed as a union of two sub-sets: 

 i i j i j      and j i j j i      (11) 

where i j   is the intersection of θi and θj, whereas i j   (or j i  ) is the set difference of θi and θj (or 

θj and θi). That is, \ { | }i j i j k i k jr r          (the relative complement of θj in θi). For example, 

if i = j, i j i j      and i j j i     hold. Subsequently, for i ≠ j, the covariance between two 

factored variables linked by arbitrary sets of AFs can be represented with three aggregate factors:  

 , ,
i j i j j i

i j k i j k j i kk k k
R r R r and R r

    
    

       (12) 

Then, the covariance of two factored variables is generalized into: 

 
1 1

[ , ] , [ , ]jkik
K K

i j k i k j i j i j i i j j i jk k
Cov X X Cov r b r b Cov R R b R R b

    
       (13) 

where , ,i j i j j iR R R   ,bi, and bj are independent, by definition. Introducing i i j ig R b  and 

j j i jg R b , the covariance of Xi and Xj is expressed as 

 [ , ] [ , ] [( [ ])( [ ])]i j i j i i j j i j i i j i i j j i j jCov X X Cov R g R g E R g E R g R g E R g           (14) 

which can be further elaborated as: 

 
2 2

2 2

[ , ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

i j i i j j i j i j i j i j

i j i j i j i j i j i j

Cov R g R g E R g g E R E g E g

E R E g E g E R E g E g V R E g E g

   

  

 

  
  (15) 

Then, from [ ] [ ]i i j iE g E R b  and [ ] [ ]j j i jE g E R b ,  

 [ , ] [ ] [ ] [ ] [ ] [ ]i j i j i j i j i jCov X X V R E R E b E R E b     (16) 

where [ ] [ ] [ ]i j i i j iE R b E R E b   (and [ ] [ ] [ ]j i j j i jE R b E R E b  ) holds because i jR   ( j iR  ) and bi (bj) 

are independent. 

Eq. (16) indicates that a non-zero covariance is induced by the common aggregate factor, i jR  . 

This is intuitive because, if i j   , the covariance should be zero because [ ] 0i jV R   .  

From Eqs. (10) and (16), a correlation coefficient between factored variables is computed by  

 
[ ] [ ] [ ] [ ] [ ]

[ , ] [ , ]
[ ] [ ]i j

i j i j i j i j
i j i j

i i j j

V R E R E b E R E b
i j Correl X X

V R b V R b




  
     (17) 

Eq. (17) indicates that the correlation between two factored variables can be systematically computed 

using only the first two moments of the AFs and the corresponding base estimates, bi and bj. Specifically, 

 2 2[ ] [ ] [ ]
i j i j

i j i j k kk k
V R E r E r

  
   

     (18.a) 

 [ ] [ ]  and  [ ] [ ]
i j j i

i j i j k j i i j kk k
E R E r E R E r

  
    

     (18.b) 
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3.3 MFA programming 

The computation of the aggregate factor moments in Eq. (18) can be cumbersome, involving products 

of uneven sub-sets of AFs for i and j. The additional burden can be immense in high dimensional risk 

modelling. Yet, the computational efficiency and the scalability to large-scale cases can be considerably 

improved by adopting the Hadamard formulation (Fallat and Johnson 2007; Styan 1973).  

3.3.1 Hadamard formulation 

Given Ψ and two factored variables Xi, and Xj, we introduce a union identity vector, 1; ;( ,..., )ij ij K ijd dD , 

which is defined as a vector of binary indicators of the elements of i j   with respect to the entire AFs.  

 ;
1,...,

1 1
{ }

0
ik jk

k ij
k K

if
d

otherwise

 



 
 


  (19) 

Note that ;k ij ik jkd     holds and Dij can be algebraically generated as the Hadamard product of two 

row vectors of Ψ, ψi• and ψj•, where ψi• (ψj•) is a vector of the i-th (j-th) row of Ψ. Then, given Ψ, a 

union identity vector of an arbitrary pair of factored variables can be systematically constructed. 

Specifically, the aggregate factors in Eq. (12) can be consistently represented with respect to the whole 

set of AFs. 

 ;

1

k ij
K d

i j kk
R r 

 ; ;

1

ik k ij
K d

i j kk
R r 

 
 ; and ;

1

jk k ij
K d

j i kk
R r 

 
   (20) 

Moreover, the correlation coefficient in Eq. (17) can be rewritten as: 

 
   

; ; ; ;22

0.50.5 222 2 2 2 2 2

[ ] [ ] [ ] [ ] [ ] [ ]
[ , ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

k ij k ij ik k ij jk k ij

jk jkik ik

d d d d
k k k k i j

i j

k i k i k j k j

E r E r E r E r E b E b
i j

E r E b E r E b E r E b E r E b

 

  


 






  

   
   

 (21) 

where all the products hold for k = 1,…, K.  

Formulating correlation coefficients in terms of unified indices as in Eq. (21) provides a significant 

computational advantage. Note that the product function is available in most programming languages 

(e.g., prod() function in Matlab and R). In particular, the PRODUCT() in Microsoft Excel is a viable 

option. To this end, the correlation coefficient in Eq. (21) can be rewritten in a vector format as: 

 ( ) 2( ) ( ) ( )

0.50.5 22 2 2

( ) ( )
[ , ]

( )( ) ( )( ) ( )( ) ( )( )

i j i j i i j j i j

j ji i

rs r r r b i b j

i j

rs bs i r b i rs bs j r b j

i j

         

  


         

  

 






       

   
   

E E E E E E

E E E E E E E E

       

  
 (22) 

where Ers and Er are vectors of 2{ [ ]}kE r  and { [ ]}kE r  (k = 1,…,K), respectively, and ◦ is the 

Hadamard product operator for entry-wise computation (Fallat and Johnson 2007). For instance, ψi•◦ψj• 

in Eq. (22) returns a vector of (ψi1×ψj1,…,ψiK×ψjK), which is identical to the union identity vector (Dij) 

in Eq. (19). Also, the Hadamard power of a vector is defined as an entry-wise power function (Fallat 

and Johnson 2007). For instance, 2( )i j

r
  E    in Eq. (22) returns 1; ;2 2

1( [ ] ,..., [ ] )ij K ijd d
KE r E r , which is 

identical to the index formulation in Eq. (21).  
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3.3.2 Vector formulation of correlation matrix 

The Hadamard formulation of the AF-induced correlation can be readily programmed into a closed-

form vector formulation of a correlation matrix. For instance, in Microsoft Excel, the product term of 

2( )i j

r
  E  

 is computed by “{=PRODUCT(Er^(2*INDEX(Ψ,i,0)*INDEX(Ψ,j,0)))}”, where Er is a 

(K×1) cell range and Ψ is a (d × K) cell range of the allocation matrix. Note that the “{” and “}” in the 

formula are automatically inserted when the formula is entered by pressing Ctrl+Shift+Enter in Excel, 

forcing the arrays in the formula be computed entry-wise.  

A generic algorithm for the MFA correlation computation is presented below. 

MFA Algorithm (MFAA): 

S.1 Read input parameters ; ,b r Ψ . 

   §1.1 Read the base variables, b = (b1,…, bd)T: the means ( bE ) and variances ( bV ). 

   §1.2 Read the association factors, r = (r1,…, rK)T: the means ( rE ) and variances ( rV ). 

   §1.3 Read the allocation matrix, Ψ (d×K). 
S.2 Compute auxiliary parameter vectors rsE  and bsE .  

   §2.1 2 2{ [ ]}bs i b bE b  E V E    

   §2.2 2 2{ [ ]}rs k r rE r  E V E   

S.3 Compute the means and variances of the factored variables, X = (X1,…, Xd)T. 

   §3.1  ( )( ) , 1,...,i
X r b i i d  E E E  

   §3.2  2 2( )( ) ( )( ) , 1,...,i i
X rs bs i r b i i d     V E E E E    

S.4 Compute the aggregate factor moments. 

   §4.1 
( ) 2( )[ ] i j i j

i j rs rV R       

   E E   
  

   §4.2 
( )[ ] i i j

i j rE R     
 E  

  

   §4.3 
( )[ ] j i j

j i rE R     
 E  

  

S.5 Generate the correlation coefficient matrix (i =1,…,d; j =1,…,d) 

   §5.1 
0.5

[ ] [ ] [ ]( ) ( )

( , | , , ) ( ) ( )

1

i j i j j i b i b j

X i X j

V R E R E R
if i j

i j

if i j

  


    




r

E E

Σ b r Ψ V V  (23) 

 

3.4 Factor-driven project cost and time risk modelling 

3.4.1 Project cost risk 

A salient advantage of the closed-form correlation solution in Eq. (23) is that the effects of AFs on the 

marginals can be separated from the effects of the AFs on inter-variable dependence. As a result, the 

factor-induced correlation matrix (Σr) can be used either with the base random vector (b) or the factored 

random vector (X) in order to generate a vector of dependent variables. In project risk studies, a 

dependent vector of specified marginals (b or X) and a feasible correlation matrix (Σr) provides 
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additional flexibility for modelling large-scale project cost risks. Specifically, when project cost is 

estimated as the sum of the itemized estimates of the project’s work packages (GAO 2020; Garvey et 

al. 2016), the MFA offers two options for robust project cost risk assessment. 

 Base project cost (Cb) with the factor-induced correlation (Σr):  

 
1

[ ] [ ] and [ ]
d T

ii
E C E b V C


 b b b r bσ Σ σ   (24) 

 Factored project cost (CX) with the factor-induced correlation (Σr):  

 
1

[ ] [ ]   and   [ ]
d T

ii
E C E X V C


 X X X r Xσ Σ σ   (25) 

where 1( [ ],..., [ ])T
dV b V bbσ  and 1( [ ],..., [ ])T

dV X V XXσ . 

3.4.2 Project time risk 

Project schedule risk is different. Project duration is determined by the longest path (the critical path) 

in a network schedule. With uncertainty into account, the project schedule risk is also influenced by the 

network complexity (i.e., multiple paths) along with the variabilities and possible correlation of activity 

times (Schonberger 1981). A robust way to capture the impacts of network complexity is Monte Carlo 

simulation, which inevitably involves random sampling of dependent vectors (Van Slyke 1963). 

The MFA model provides factor-driven sampling procedures, which are distinguished from the 

conventional correlation-driven sampling in two notable ways. First, the MFA approach provides a 

computationally efficient procedure for high-dimensional random sampling. Factor-driven sampling 

generates dependent random vectors arithmetically from simple multiplication of independent 

distributions, without any constraints on the resulting correlation matrix or other sophisticated 

computations, for example, the Cholesky decomposition for normal joint distributions or the “NORmal 

To Anything” (NORTA) method (Cario and Nelson 1997). Second, more importantly, the MFA 

approach generates pair-wise correlations from dependent random samples (See Eq. (23)), not the other 

way around as in the correlation-driven sampling. As a result, the resulting correlation coefficient matrix 

is always mathematically consistent, satisfying the positive semi-definite property.  

Proposition 1. 

A factor-driven correlation matrix, ( , | , , )i jrΣ b r Ψ  in Eq. (23), is always mathematically consistent 

(i.e., symmetric, positive semi-definite, and with unit diagonal elements) in that there exist ainfinite 

number of dependent random samples that asymptotically match the correlation matrix. 

Proof: Given a vector of independent marginals b = (b1,…, bd)T and a vector of AFs r = (r1,…, rK)T, the 

MFA can draw an infinite number of dependent random vectors by multiplying the variables (Eq. 

(4)) according to the allocation matrix Ψ=[ψik] (i = 1,…,d; k = 1,…,K). Therefore, the existence of a 

non-zero dependent random vector is guaranteed by the arithmetic nature of the sampling procedure.

Then, the corresponding correlation matrix is always positive semi-definite in the sense that there 

always exist an infinite number of corresponding dependent random vectors. 
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3.4.3 Decoupling dependence from marginals 

Proposition 1 suggests that the MFA-induced correlation matrix can be seamlessly implemented with 

any dedicated simulation software without any restrictions of mathematical consistency check or 

correlation adjustments. In practice, the MFA sampling can be implemented in two modes: 

 Full-MFA sampling: Dependent random vectors are generated for the factored variables {Xi}, i = 

1,…,d, while satisfying the factor-induced correlation Σr.  

 Base-MFA sampling: Dependent random vectors are generated for the base variables {bi}, i = 

1,…,d, while satisfying the factor-induced correlation Σr. In this case, the marginals are decoupled 

from the correlation matrix. 

The full-MFA sampling accounts for the effects of AFs on the variance of the marginals. That is, 

the AFs affect both the marginals and the inter-variable correlations. Specifically, Eq. (10.b) indicates 

that the variance of a factored variable is always greater than or equal to the variance of the 

corresponding base variable, V[Xi]≥V[bi], where the equality holds when i   . In practice, there are 

situations where an increase of marginal variances due to AFs is supported by empirical evidence. For 

instance, the AFs can be calibrated using historical cost overruns (or schedule delays). A possible 

discrepancy between a base estimate and the factored variable can be attributed to the biases in 

individual marginals as well as the factor-induced dependence. 

The base-MFA sampling offers an alternative to the full-MFA sampling, numerically decoupling 

marginals from dependence specification. In practice, there are also situations in which a variance 

increase in individual marginals can be considered duplicative in that possible effects of the AFs on the 

aggregate uncertainty are accounted for primarily in terms of the factor-induced dependence. The base-

MFA sampling eliminates the risk of unwarranted variance increase. The base-MFA sampling proceeds 

following three steps. First, generate a large set of dependent random vectors using the full-MFA 

sampling. Then, scale rates (τi) are numerically computed for individual marginals from the simulated 

samples of the factored variables. Lastly, the simulated random samples of the factored variables are 

numerically adjusted using the scale rates.  

Base-MFA Sampling Algorithm: 

S.1 Generate dependent random vectors using the full-MFA sampling. 

   1.a Draw random samples from the base estimates ,{ }i i sbb  , (s = 1,…,S),  

      where S is the sample size in a simulation. 

   1.b Draw random samples from the AFs ,{ }k k srr  , (s = 1,…,S). 

   1.c Generate dependent random samples: , , ,{ } { }i i s i s i sX R b X    , where , ,1
ik

K

i s k sk
R r


  . 

S.2 Compute the scale rates for individual marginal variables: 

  0.5( [ ] [ ])i i iV V b  X   

   where [ ]iV X  is the variance of the factored samples and [ ]iV b  is the variance of the base 

   marginals. 
S.3 Adjust the variance of simulated random numbers to match the base variable variances: 
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 , ,[ ] ( [ ])i s i i s i iy E b X E    X    (26) 

   where [ ]iE X  is the mean of the factored samples and ,i sy  is a random number that matches 

   the variance equality constraint: [ ] [ ]i iV V by , where ,{ }i i syy  , (s =1,…,S). 

4 Credibility Test 

A test project is analyzed to demonstrate the performance (i.e., accuracy, robustness, and computational 

efficiency) of the MFA analysis as compared against Monte Carlo simulation. The project parameters 

are designed in a way that challenges the primary premise underlying the MFAM (i.e., the MOM 

approximation). Specifically, the test settings account for three control factors: (i) asymmetricity of 

variables, (ii) effects of base distribution types (PERT-beta vs. triangular distribution), and (iii) effects 

of AF distribution types: (normal vs. lognormal). 

4.1 Project settings 

Consider a project with four WPs: wp1, wp2, wp3, and wp4. The base costs of the WPs (b1, b2, b3, and b4) 

are estimated using the three-point technique: a lower bound (o), a most likely estimate (m), and an 

upper bound (p). The project has identified three AFs: r1, r2, and r3. The base WP costs are set uniformly 

as oi = 3, mi = 4, and pi = 9 (i =1,…,4). Note that the base estimates are strongly skewed to the pessimistic 

side with the one-to-five ratio to the lower and upper bounds. The mean and standard deviation of the 

AFs are set by expert judgment as: E[r1] = 1.1 and σ[r1] = 0.1; E[r2] = 1.1 and σ[r2] = 0.2; E[r3] = 1.1 

and σ[r3] = 0.3, which account for a uniform, on average, 10% cost growth in all WPs as well as uneven 

standard deviations between 0.1 and 0.3. Lastly, we adopt the allocation matrix shown in Fig. 4. As a 

result, possibly uneven degrees of dependence are induced across the six correlations (ρ12, ρ13, ρ14, ρ23, 

ρ24, and ρ34) between the WP costs. Consequently, four test cases are set up, as summarized in Table 1. 

Table 1. Credibility test settings. 

Cases 
Base WP costs, (i =1,…,4) Association factors, (k =1,2,3) 

Allocation matrix
Distribution types (E[bi], σ[bi]) Distribution types (E[rk], σ[rk]) 

Case 1 bi ~ PERTBeta (4.667, 1.016) rk ~ Normal 
r1 ~ (1.1, 0.1) 
r2 ~ (1.1, 0.2) 
r3 ~ (1.1, 0.3) 

1 1 0

1 0 1

1 1 1

1 0 0

 
 
 
 
 
 

Ψ  
Case 2 bi ~ PERTBeta (4.667, 1.016) rk ~ LogNormal 

Case 3 bi ~ Triangular (5.333, 1.312)  rk ~ Normal 

Case 4 bi ~ Triangular (5.333, 1.312) rk ~ LogNormal 

 

The two base distributions and the lognormal AF distributions used in the analysis are presented in 

Fig. 5. Note that the MFAM yields a Pearson’s product moment correlation matrix using only the first 

two moments of the base and AF distributions. As a result, the mean and standard deviation of the base 

WP costs change according to the distribution type. When the PERTBeta distribution is used to match 

the three-point estimates (3,4,9) as in Case 1 and 2, E[bi] = 4.667 and σ[bi] = 1.016. These values need 

to be adjusted to E[bi] = 5.333 and σ[bi] = 1.312 for the Triangular WP costs in Case 3 and 4. More 

specifically, the beta shape parameters (α, β) matching a PERT three-point estimate (o, m, p) are solved 
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by imposing the mean and mode equality conditions on the beta(α,β,o,p) and the PERT(o,m,p): 

E[x|Beta(α,β,o,p)] = E[x|PERT(o,m,p)] and Mode[x|Beta(α,β,o,p)] = Mode[x|PERT(o,m,p)]. 

 
4

( )
6

i i i i
i i i

i i

o m p
o p o


 

  
  


 and 

( 1) ( 1)

2
i i i i

i
i i

o p
m

 
 
  


 

   (27) 

For example, given (oi,mi,pi)=(3,4,9), 1 4( ) ( )i i i i im o p o     =1.667 and 1i  

4( ) ( )i i i ip m p o   = 4.333. Then the corresponding mean and variance of the PERTBeta are solved 

as 4.667 ( ( 4 ) 6i i io m p   ) and 1.0162 ( 2 2( ) [( 1)( ) ]i i i i i i i ip o          ), respectively.  

 

(a) Base distributions 

 

(b) AF distributions (lognormal) 

Fig. 5. The base estimates and the AF distributions. 

4.2 MFA analysis 

Two MFA[4,3] models (for Case 1 and 2, and Case 3 and 4, respectively) are programmed in Excel 

spreadsheet. The PERTBeta MFA analysis for Case 1 and 2 is shown in Fig. 6. It is noteworthy that the 

MFA[4,3] model in Fig. 6 shows the MFA analysis in its entirety, and the MFA algorithm was fully 

programmed using only the basic functions in Microsoft Excel. Details of the spreadsheet formulas are 

presented in Appendix B. The spreadsheet MFA model illustrates the compactness and computational 

efficiency of the MFA approach. From a practical perspective, the most noteworthy point would be that 

the MFAM provides a closed-form solution to the factor-induced correlation matrix with only a 

marginal burden of data collection and modelling.  

The MFA[4,3] analysis in Fig. 6 also shows the summary statistics of the project cost (the sum of 

all the WP costs) under two scenarios: (i) the base project cost from the independent base WP costs and 

(ii) the factored project cost from the factored WP costs. Given a complete correlation matrix, the mean 

and variance of the base project cost are computed as: 
4

1
[ ]ii

E b
 = 18.68 (the sum of Cells “F7:F10”) 

and 
4 2

1
[ ]ii
b

 = 4.13 (the sum of the squares of Cells “G7:G10”). In contrast, the mean and variance 

of the factored project cost are computed by Eq. (25) 
4

1
[ ]ii

E X
 = 22.64 (the sum of Cells “L7:L10”) 

and T
X r Xσ Σ σ = 26.08, respectively, where σX is a vector of the standard deviations of the factored WP 

costs in Cells “M7:M10”. The difference between the two project costs shows the effects of the AFs on 

the whole project cost risk. Specifically, the results indicate that the MFA[4,3] model effectively 

captures uneven impacts of the individual AFs on the expected project cost and the associated 
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uncertainty. That is, the expected project cost and the corresponding standard deviation increase by 21% 

(from 18.67 to 22.64) and 151% (from 2.031 to 5.107), respectively.  

 

Fig. 6 MFA[4,3] model for Case 1 and Case 2. 

4.3 Simulation validation 

Monte Carlo simulation provides a robust solution while fully replicating the asymmetric properties 

imposed on the base estimates and the lognormal AFs. The MFA[4,3] analysis results were compared 

against simulation results by a dedicated simulation suite: @Risk from Palisade (www.palisade.com). 

First released in 1984, @Risk has been widely used in various business sectors and provides robust 

options and a generic user-interface for general-purpose simulation modelling.  

4.4 Performance evaluation 

The results of the four cases from the MFA and the simulation are summarized in Table 2. Note that all 

simulation results in the table are based on 100,000 iterations. The comparison is made in three 

categories: factored WP costs (X1 through X4), correlation coefficients (ρ12, ρ13, ρ14, ρ23, ρ24, ρ34), and the 

factored project cost. Moreover, the deviations are measured by the absolute percentage deviation of 

the simulation from the MFA. That is,  

 | % | 100( )Sim MFA MFA     (28) 

The results in Table 2 strongly indicate that the MFA risk assessments are substantially consistent 

with those from the simulation. The maximum |%Δ| of the expected value and the standard deviation of 

the project cost from the four cases are practically zero with 0.044% and 0.568% (Case 2), respectively. 

The high precision of the MFA estimates is attributed to the precision observed in the factored WP costs 

and the associated correlations. The maximum |%Δ| of the expected value and the standard deviation of 
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the factored WP costs across the four cases are 0.000% (all cases) and 0.531% (Case 2 X2), respectively. 

This result indicates that the MFA[4,3] model presented credible solutions to the factor-induced 

dependence with asymmetric, non-Gaussian variables. At the same time, the correlation coefficients 

show a higher order of deviations with the maximum %Δ of 7.143% (Case 1 ρ34) among the 24 

correlation coefficients from the four cases. Note that the corresponding absolute deviation is yet merely 

0.0060 (7.143% of ρ34 = 0.084), which shall be considered immaterial. Nevertheless, greater than 1% 

deviations are observed in all correlation coefficients except ρ23. In order to further examine the 

accuracy of the MFA correlation, we set up a supplementary experiment on the correlation coefficient 

distributions from the simulation and the effects of sample size on the simulation correlation assessment, 

of which details are presented below. 

Table 2. Project cost risks. (|%Δ| in bold font is the maximum value of the four cases.) 

Cases Methods 
Factored WP costs 

E[Xi]/σ[Xi]
Correlation coefficients Factored 

Project Cost
E[C]/σ[C] X1 X2 X3 X4 ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 

Case 1 

MFA[4,3] 
5.647 
1.703 

5.647 
2.072 

6.211 
2.577

5.133 
1.215

0.075 0.332 0.116 0.547 0.095 0.084 
22.64 
5.107

@Risk 
5.647 
1.704 

5.647 
2.072 

6.211 
2.570

5.133 
1.214

0.074 0.330 0.116 0.546 0.091 0.078 
22.64 
5.092

|%Δ| 
0.000 
0.059 

0.000 
0.000 

0.000 
0.272

0.000 
0.082

1.333 0.602 0.000 0.183 4.211 7.143 
0.000 
0.294

Case 2 

MFA[4,3] Identical to Case 1

@Risk 
5.647 
1.706 

5.647 
2.083 

6.211
2.588

5.133 
1.217

0.078 0.337 0.123 0.547 0.094 0.085 
22.65 
5.136

|%Δ| 
0.000 
0.176 

0.000 
0.531 

0.000 
0.427 

0.000 
0.165 

4.000 1.506 6.034 0.000 1.053 1.190 
0.044 
0.568 

Case 3 

MFA[4,3] 
6.453 
2.088 

6.453 
2.490 

7.099 
3.068

5.867 
1.545

0.066 0.298 0.097 0.499 0.081 0.073 
25.87 
6.035

@Risk 
6.453 
2.092 

6.453 
2.481 

7.099 
3.066

5.867 
1.543

0.063 0.297 0.093 0.499 0.080 0.072 
25.87 
6.021

|%Δ| 
0.000 
0.192 

0.000 
0.361 

0.000 
0.065

0.000 
0.129

4.545 0.336 4.124 0.000 1.235 1.370 
0.000 
0.232

Case 4 

MFA[4,3] Identical to Case 3

@Risk 
6.453 
2.087 

6.453 
2.490 

7.099 
3.070

5.867 
1.544

0.065 0.299 0.097 0.502 0.078 0.069 
25.87 
6.034

|%Δ| 
0.000 
0.048 

0.000 
0.000 

0.000 
0.065

0.000 
0.065

1.515 0.336 0.000 0.601 3.704 5.479 
0.000 
0.017

 

4.5 Robustness assessment 

Simulation results fluctuate over random sampling and the degree of fluctuation depends, mostly, on 

the size of the random samples. An extended simulation experiment was conducted to further evaluate 

the accuracy of MFA correlation assessment against Monte Carlo analysis. Specifically, we investigate 

two robustness issues: (i) How accurate is the MFA[4,3] correlation assessment as compared against 

simulation solutions?, and (ii) How is the MFA[4,3] correlation estimate accuracy influenced by the 

number of iterations in a simulation? 

The factor-driven project cost simulation is programmed in the Visual Basic for Application (VBA) 

in Excel, which replaces @Risk. Using the VBA simulation, we carry out nχ = 1,000 simulations of the 
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Case 2 experiment using two sets of iterations: χ = 1,000 and χ = 10,000, where χ is the number of 

iterations in a simulation. We introduce the outperformance indicator (ω) in order to quantify the 

credibility of the MFA correlation estimates as an unbiased estimate of the true means. Let ω(i,j|nχ,χ) 

denote the probability that a simulation with χ iterations generates a correlation coefficient estimate 

with an error (from the aggregate mean of nχ simulations) greater than the corresponding MFA 

correlation estimate error.  

  
1

1
( , | , ) Pr

n

n MFA s n MFA n
s

i j n
n



  


     


              I  (29) 

where ρs is the correlation coefficient from the s-th simulation of a total nχ simulations; n
  is the 

mean of correlation coefficients from nχ simulations; ρMFA is the correlation coefficient from the MFA 

model; n
  is the deviation of  the s-th simulated correlation coefficient from n

 ; ΔMFA  is the 

deviation of the MFA correlation coefficient from n
 ; and I is the indicator function that returns 1 if 

its argument is true, and 0 otherwise. Note that for clarity, correlation indices (i, j) are dropped in Eq. 

(29). Simply, ω(i,j|nχ,χ) measures the probability that the MFA provides a correlation coefficient 

estimate with a less deviation from the mean estimate of nχ simulations with a chosen number of χ.  

From the extended simulations, distributions of the six correlation coefficients were constructed as 

presented in Fig. 7. The results reveal two advantages that the MFA model may offer in practice. First, 

the precision of the factor-driven correlations obtained using simulation depends heavily on the sample 

size in each simulation. The correlation coefficient distributions in Fig. 7 show that the range of possible 

correlation coefficients can be significantly larger with χ = 1,000 compared against with χ = 10,000. 

For instance, the 90% confidence interval of ρ23 is reduced by nearly 66% to [0.53, 0.56] with χ = 10,000 

from [0.50, 0.59] with χ = 1,000. Note that even with the increasing computational power available in 

practice, the sample size still can be a decisive factor for efficient random sampling as the number of 

random variables increases. Second, the MFA correlation estimates provide practically unbiased (with 

respect to repeated simulations) estimates of the aggregate means of the correlation coefficients.  

Table 3 outlines the summary statistics of three performance measures: the maximum simulation 

deviation ( Max | |n
 ), the MFA deviation (|ΔMFA|), and the outperformance indicator (ω(i,j|nχ,χ)). The 

results on the six correlation coefficients consistently suggest that the MFA correlations are practically 

unbiased estimates of the aggregate means from the 1,000 simulations regardless of the sample sizes. 

With χ = 10,000, the maximum value of |ΔMFA| is 0.0009 in ρ13. In contrast, the Max | |n
  values 

indicate that the simulation fluctuation heavily depends on the sample size. The ω(i,j|nχ,χ) results show 

that the MFA correlation estimates outperform, with the minimum chance of 92.6% (ρ34), individual 

simulation estimates regardless of the sample sizes. 
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 (a) χ = 1,000  

(b) χ = 10,000  

Fig. 7 Effects of the sample size (χ) on simulated correlation.  
(nχ = 1,000 ; ρ* values are from the MFA[4,3].) 

Table 3. Credibility of MFA correlation assessment with respect to 1,000 simulations. 

Sample size (χ) Measures ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 

χ = 1,000 

n
   0.0745 0.3324 0.1170 0.5467 0.0960 0.0864 

Max | |n
  0.1020 0.1139 0.1135 0.0938 0.1205 0.1240 

|ΔMFA| 0.0005 0.0004 0.0010 0.0003 0.0010 0.0024 

ω(i,j|nχ,χ) 0.9880 0.9920 0.9670 0.9890 0.9760 0.9260 

χ = 10,000 

n
   0.0750 0.3329 0.1155 0.5467 0.0953 0.0841 

Max | |n
  0.0348 0.0298 0.0379 0.0260 0.0325 0.0302 

|ΔMFA| 0.0000 0.0009 0.0005 0.0003 0.0003 0.0001 

ω(i,j|nχ,χ) 0.9990 0.9290 0.9550 0.9790 0.9870 0.9820 

5 Applications 

Empirical data from previous projects or general experiences provide valuable, although often 

incomplete, dependence information relevant to a new project (Ranasinghe 2000; Touran and Wiser 

1992; Wang and Huang 2000). It would be sensible then to make full use of all relevant information 

whenever possible. The MFA model’s closed-form correlation matrix provides a robust solution to the 

problem of utilizing incomplete dependence information for coherent risk analysis. This section 

presents three illustrative examples of minimum information dependence modelling in typical project 

settings. First, a WBS-driven dependence model for project cost risk is presented for more general 

project settings. Then, effects of large-scale dependence on the amount of contingency funds are 

examined. Lastly, the closed-form MFA correlation is parameterized and calibrated using an 

optimization technique for a partially specified correlation matrix.  

5.1 WBS-SA project cost analysis 

Consider a WBS of a generic building project, as in Fig. 8. The project consists of twelve work packages 

(wp1 through wp12) on four levels, starting with the project (r1) on Level-1. Level-2 includes three work 
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items: Site Works & Foundation (r2), Structures (r3), and Interior & Finishing (r4). The WP costs are 

estimated in terms of the three-point estimate, (oi,mi,pi) = (3, 4.5, 9), which are considered ‘base 

estimates’, (b1,… b12). The triangular distribution is used for the WP costs and their means and variances 

are computed as [ ] ( ) 3i i i iE b o m p   = 5.5 and 2 2 2[ ] ( ) 18i i i i i i i i i iV b o m p o m m p p o     

=1.625.  

 
Fig. 8 A WBS of a building project with hierarchical AFs. d1 = Site-works; and d2 = Foundation. Note that 

d1 and d2 are dummy factors that exist in the WBS but are not used as an AF.  
 

Dependence elicitation: 

For illustrative purposes, we consider a situation where the relative degree of association between the 

WPs are represented with four AFs: One global association (GA) factor at the project level (GA1 for 

r1) and three local association (LA) factors at the intermediate levels (LA1, LA2, and LA3 for r2, r3, 

and r4, respectively). The local factors represent potentially different degrees of association due to 

distinct properties of intermediate work items. For instance, WPs under Site Works & Foundation in a 

construction project are commonly influenced by weather and site conditions, whereas actual costs of 

the Structures WPs tend to be influenced by material types (e.g., concrete or steel) and their market 

rates. In addition, the GA1 at the project level accounts for the effect of soft factors of the overall project 

performance (van Dorp 2020; Williams 2003). Then the allocation matrix is constructed as: 

  

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

TT
ik

d K




 
 
  
 
 
 

Ψ   (30) 

AF parameter estimates: 

Given the AFs and the corresponding allocation matrix, the dependence modelling problem becomes a 

task of estimating the AF parameters. Let {rk} (k =1,…,4) denote the four AFs. First, likely impacts of 

the AFs on WP costs are assessed. A company with accumulated historical data in house may use such 

data to extract the means and variances of individual AFs (Trietsch et al. 2012). In more general cases, 

the AF can be estimated by expert judgment. In this example, we consider a combination of high, 

medium, and low impacts in terms of the relative coefficients of variation (COVs) of the AFs compared 

to the COV of the base estimates, 0.23. 

 r1 ~ E[r1]= 1.0 and σ[r1] = 0.1 for GA1 (low association) 

 r2 ~ E[r2]= 1.0 and σ[r2] = 0.3 for LA1 (high association) 
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 r3 ~ E[r3]= 1.0 and σ[r3] = 0.2 for LA2 (medium association) 

 r4 ~ E[r4]= 1.0 and σ[r4] = 0.1 for LA3 (low association) 

Here E[rk]= 1.0 (k = 1,…,4) represents a situation where there is no systematic cost growth. 

Correlation matrix: 

Given the three input elements ; ,b r Ψ  of the MFA[12,4], a complete correlation coefficient matrix 

between the WP costs is computed using the MFA Algorithm (Section 3.3). The resulting correlation 

matrix is presented in Fig. 9.  

 
Fig. 9 MFA-induced correlation matrix. 

Results: 

Now the independence assumption can be dropped and a more realistic cost risk assessment becomes 

attainable. Specifically, we compare three scenarios of project cost risks. 

 Independence (IND) Scenario. The project cost (CInd) of independent WP costs is generated using 

the base costs (b). That is, 
12

1
[ ] [ ]Ind ii

E C E b


 = 66.0 and 
12

1
[ ] [ ]Ind ii

V C V b


 = 19.5. 

 Base-MFA (B-MFA). The base project cost (Cb) is computed using the base costs (b), and the MFA 

correlation (Σr) in Fig. 9. From Eq. (24), [ ]E C b

12

1
[ ]ii

E b
 = 66.0 and [ ] TV C b b r bσ Σ σ = 63.7. 

 Full-MFA (F-MFA). The factored project cost (CX) is computed using the factored costs (X) and 

the Σr. From Eq. (25), 
12

1
[ ] [ ]ii

E C E X


X = 66.0 and [ ] TV C X X r Xσ Σ σ = 141.5. 

The resulting project cost risk profiles are shown in Fig. 10, which illustrate the effects of the MFA-

induced dependence on the project cost risk. Note that the three analytic risk profiles (IND, Base-MFA, 

and Full-MFA) are fitted using the lognormal distribution. Fig. 10 also includes the cost risk profile 

obtained using a @Risk simulation model (with 50,000 iterations) for the Full-MFA. The graphs 

indicate overall a good match between the MFA and the simulation. The results demonstrate that the 

MFA approach provides flexibility in dealing with the potential effects of different dependence 

scenarios in project risk assessment. Specifically, the standard deviation of the project cost increases by 

80% in Base-MFA (σ[Cb] = 7.98) from IND (σ[CInd] = 4.42), and by 169% in Full-MFA (σ[CX] = 11.90).  

WPs
WPs 1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 0.630 0.630 0.630 0.076 0.076 0.076 0.076 0.076 0.091 0.091 0.091
2 0.630 1.000 0.630 0.630 0.076 0.076 0.076 0.076 0.076 0.091 0.091 0.091
3 0.630 0.630 1.000 0.630 0.076 0.076 0.076 0.076 0.076 0.091 0.091 0.091
4 0.630 0.630 0.630 1.000 0.076 0.076 0.076 0.076 0.076 0.091 0.091 0.091
5 0.076 0.076 0.076 0.076 1.000 0.472 0.472 0.472 0.472 0.112 0.112 0.112
6 0.076 0.076 0.076 0.076 0.472 1.000 0.472 0.472 0.472 0.112 0.112 0.112
7 0.076 0.076 0.076 0.076 0.472 0.472 1.000 0.472 0.472 0.112 0.112 0.112
8 0.076 0.076 0.076 0.076 0.472 0.472 0.472 1.000 0.472 0.112 0.112 0.112
9 0.076 0.076 0.076 0.076 0.472 0.472 0.472 0.472 1.000 0.112 0.112 0.112
10 0.091 0.091 0.091 0.091 0.112 0.112 0.112 0.112 0.112 1.000 0.268 0.268
11 0.091 0.091 0.091 0.091 0.112 0.112 0.112 0.112 0.112 0.268 1.000 0.268
12 0.091 0.091 0.091 0.091 0.112 0.112 0.112 0.112 0.112 0.268 0.268 1.000
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Fig. 10 Project cost risk profiles. 

5.2 Impact of dependence and project size 

This section investigates the robustness of MFA in large-scale project settings. We examine the effects 

of dependence on the amount of contingency reserve, which is added to the expected project cost in 

order to establish a risk-adjusted budget at a chosen confidence level. We also evaluate possible effects 

of project size on the contingency underestimation due to the independence assumption using four 

benchmark projects with varying scales. The four projects are generated by incrementally duplicating 

the MFA[12,4] model in Fig.8 to larger projects with 24-WPs, 48-WPs, 120-WPs, and lastly 1,200-

WPs. Note that the four risk factors in the original MFA[12,4] are preserved in the scaled-up projects 

so that pairwise correlations between WPs remain the same. In each project, we estimate the 

contingency amounts under two conditions: the independence (IND) contingency and the full-MFA 

contingency. Note that adding contingency reserve to expected project cost or time is a widely endorsed 

practice for risk-driven project planning and control (GAO 2015, p.113; GAO 2020, p.158; PMI 2013).  

The results are summarized in Table 4. Given the mean and standard deviation of a project cost 

(either IND or F-MFA), the risk-adjusted budget at the 90 percent confidence level (P-90 budget) is 

estimated from a lognormal distribution. Then, the contingency reserve (CR) is determined as the gap 

between the P-90 value and the expected project cost (E[C]). Note also that we directly measure the 

effects of project size on the factor-induced CR in terms of the percent underestimation (%U) of the P-

90 contingency under the independent assumption (CR-90IND) with respect to the corresponding P-90 

contingency with risk factors (CR-90F-MFA). That is, %U = (CR-90F-MFA – CR-90IND)/CR-90F-MFA. 

Moreover, the accuracy of the MFAM for the 1,200-WPs project is compared against the simulation 

results by @Risk. From the results, two important observations can be made regarding the practical 

implications of the MFA approaches in large-scale contingency assessment. 
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Table 4. Effects of project size on the risk-adjusted contingency reserve. 

Cases 
Project Cost, C Contingency at P-90 (CR-90) 

E[C] [ ]V C  P-90 CR-90 %U 

12 WPs IND 66.0 4.42 71.7 5.74 63.4%
F-MFA[12,4] 66.0 11.90 81.7 15.68 - 

24 WPs IND 132.0 6.24 140.1 8.09 73.2%
F-MFA[24,4] 132.0 22.9 162.2 30.18 - 

48 WPs IND 264.0 8.83 275.4 11.41 80.7%
F-MFA[48,4] 264.0 44.9 323.2 59.15 - 

120 WPs IND 660.0 13.96 678.0 17.99 87.7%
F-MFA[120,4] 660.0 110.9 806.0 146.02 - 

1,200 WPs 
IND 6600.0 44.16 6656.7 56.69 96.1%

F-MFA[1200,4] 6600.0 1100.3 8049.0 1449.01 - 
Sim 6599.5 1094.7 8045.8 1446.33 - 

Note: CR is the contingency reserve added to the expected project cost; %U represent the percent underestimation 
of the IND CR from the F-MFA CR. The simulation results are from 50,000 iterations. 
 

First, the contingency underestimation error due to the independence assumption increases as the 

project size increases. The %U values indicate that given the risk factors remain unchanged, the CR is 

underestimated and the degree of underestimation increases as the project size increases, up to the 

excessive level of the 96.1% in the 1,200-WPs project. In other words, the cost risk of the 1,200-WPs 

is dominated by the factor-induced dependence rather than the marginal variations. Second, the 

comparison of the MFA results and the simulation (the 1,200-WPs project) indicates that the accuracy 

of the MFAM is reasonably preserved regardless of the project sizes. It should also be noted that due to 

the analytical (i.e., non-simulation and algebraic) nature of the MFA analysis, additional computational 

or economical burdens for large-scale applications are practically negligible as compared against the 

full-scale simulation. 

5.3 Partially specified correlation calibration 

The burden of dependence elicitation and data collection increases as the number of uncertain variables 

increases. (For example, the 1,200-WPs project requires 719,400 pairwise correlation assessments.) A 

sensible approach to the large-scale dependence specification problem is to use all relevant information 

in various formats, rather than conveniently adopting the independence assumption or unrealistically 

restrictive assumptions (e.g., single factor approaches). In construction, for instance, some activities 

(e.g., earthworks and foundations) are more common in general projects and it would be easier to collect 

standardized performance data for statistical correlation assessment. The closed-form MFA correlation 

allows the decision maker to infer the entire correlation coefficients in accordance with a limited number 

of pairwise correlation coefficients known in a project. In this context, the partially specified correlation 

problem can be formulated as a two-step MFA calibration problem: (i) identify driving parameters in 

the MFA model, which can be used to fully calibrate the MFA inputs and (ii) determine the optimal 

values of the calibration parameters in a way that satisfies all relevant constraints and observed data.  

Step 1. Identify calibration parameters 
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Consider a situation where only four of the 12C2 correlation coefficients of the 12-WP project cost 

problem, for instance, #
, , ( , ) {(1,2),(2,4),(3,5),(4,7)}i j i j  , are elicited from relevant sources. Then a 

set of four calibration parameters can be identified as follows: 1 [ ]k ks E r   (k=1,2), 2 [ ]k ks E r 

(k=3,4), 3 [ ]k ks r   (k=1,2), and 4 [ ]k ks r  (k=3,4), where {1,1,1,1}k   and k 

{0.1,0.3,0.2,0.1}. The s1 (s2) represents a constant scale for the means of r1 and r2 (r3 and r4), whereas 

s3 (s4) represents a constant scale for the standard deviations of r1 and r2 (r3 and r4).  

Step 2. Determine the optimal values of the calibration parameters 

Then the optimization problem is set up as: 

 Minimize:  # # #
, 1 2 3 4( ) ( ; ( , , , ), )i j MFA s s s s   Σ Σ b r Ψ      (31) 

 Subject to: 1 2 3 40; 0; 0; 0s s s s     

where the objective function ϕ[•] measures the distance between the partially specified correlation 

matrix, #Σ , and the corresponding elements of the parameterized MFA[12,4] correlation matrix, 

#
MFAΣ . We adopt for the distance measure the sum of the squared distances of the specified correlation 

coefficients between two correlation matrices. Then, the objective function is established as 

    2#
1 2 3 4 , , 1 2 3 4{( , )}
, , , ( ; ( , , , ), )i j i ji j

s s s s s s s s    b r Ψ   (32) 

where ,i j  is a correlation coefficient from the parameterized MFA[12,4] and 

( , ) {(1,2),(2,4),(3,5),(4,7)}i j   as identified above. 

The calibration problem was solved for four cases: Case I for overall low correlations, Case II for 

moderate correlations, and Case III and IV for mixed correlations. The solutions from using the Solver 

in Microsoft Excel are summarized in Table 5. The results show that optimal parameters with a perfect 

match can be found in three cases: Case I, II, and IV. Obviously, a perfect calibration is not guaranteed, 

as in Case III. At the same time, the results demonstrate the use of the MFA model as a means of 

effective analytic inference for missing dependence information.  

Table 5. Dependence calibration for partially specified correlation matrix. 

Cases 
Known correlations

12 24 35 47( , , , )     
Optimal parameters 

1 2 3 4( , , , )s s s s  
Calibrated correlations

12 24 35 47( , , , )        

Evaluation 

 1 2 3 4, , ,s s s s  

I (0.3, 0.3, 0.3, 0.3) (1.34, 1.28, 0.56, 0.80) (0.3, 0.3, 0.3, 0.3) 0.0 
II (0.6, 0.6, 0.6, 0.6) (1.10, 0.91, 0.88, 1.09) (0.6, 0.6, 0.6, 0.6) 0.0 
III (0.6, 0.3, 0.6, 0.6) (1.92, 1.24, 1.24, 1.51) (0.5, 0.5, 0.6, 0.5) 600.0 
IV (0.6, 0.6, 0.3, 0.6) (1.04, 1.53, 0.83, 0.80) (0.6, 0.6, 0.3, 0.6) 0.0 

6 Conclusions 

Proper dependence consideration is crucial for realistic project risk assessment and making informed 

decisions under uncertainty. We present an analytic framework that combines a systematic way of 

accounting for multiple risk factors (the SA) and a quantitative dependence model based on the second 

moment approach (the MFAM). The SA-MFAM offers an analytic, closed-form, and computationally 
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tractable alternative to the correlation-driven approaches for dependence modelling. Specifically, the 

SA-MFAM (i) adopts a multi-factor approach that enhances the realism of project risk modelling with 

the flexibility of accounting for various association factors observed in individual projects (Section 2 

and Section 4); (ii) provides an analytic, closed-form solution to the correlation matrix generation 

problem, which can be further parameterized and calibrated to comply with project-specific data 

availability (Section 3 and Section 5); and (iii) provides a computationally efficient and tractable 

algorithm that guarantees a mathematically consistent correlation matrix, while preserving its scalability 

to high-dimensional risk problems.  

Numerical applications demonstrate, in conjunction with more general analyses (e.g., optimization 

and calibration), the robustness of the SA-MFAM approaches in real project settings, emphasizing its 

scalability under limited data availability. Implementing the SA-MFAM in a project can be 

straightforward yet adaptive. The three input elements ; ,b r Ψ  can be readily obtained from standard 

practices and project documents (e.g., WBS, resource plans, or risk register). Once a complete and 

mathematically consistent correlation matrix is constructed, the MFAM offers extended flexibility of 

integrating the correlation with the base (factor-free) marginals or the factored marginals, which further 

enhances the realism of dealing with marginals decoupled from the risk factors. 

The SA-MFAM approach would offer several advantages in the practice and research of project 

risk assessment. The computational experiments and illustrative applications show that the SA-MFAM 

is fairly robust, under mild assumptions. It is reasonably unbiased (with respect to repeated simulations), 

tractable, and readily scalable to high-dimensional settings while leveraging limited information and 

preserving the accuracy comparable to full-scale simulation. In practice, large-scale projects with 

thousands of activities are becoming increasingly common. It would be worth noting that risk-driven 

project planning is a repetitive and computationally intensive process of identifying various sources of 

uncertainties and prioritizing their impacts on project outcomes under diverse scenarios. With the 

analytical robustness and an affordable computational burden, the SA-MFAM would be able to enhance 

the realism for risk-driven project planning and control under uncertainty. The SA-MFAM can also be 

an efficient tool for project risk studies, providing deeper insights into the nature and implications of 

factor-induced dependence. For instance, the large-scale experiments in Section 5.2 indicate that the 

degree of contingency underestimation due to the independence assumption depends not only on the 

risk factors but also on the project size, to the extent that can be grossly misleading (e.g., the contingency 

underestimation of 96.1% in the 1,200 WP project). 

Quantitative risk modelling has been attracting increasing attention in the project management 

literature. There are several research opportunities worthy of further investigation. First, our model 

assumes risk factors to be represented with their means and variances. This second-moment assumption 

can be extended to account for factors in more sophisticated formats, for example, risk events with a 

probability of occurring (Hulett 2011). Second, the nature and characteristics of the trade-offs between 
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the parameter reduction and the resulting loss of accuracy need to be further investigated. Another, 

possibly more urgent, research agenda is to study the implications of factor-driven dependence under 

various decision-making settings in project control. Extensive simulation experiments with controlled 

parameters would be a viable approach to pursue this line of research.  

Appendix A. The second moment of the product of random variables 

Consider a product of two (K = 2) independent random variables, R2 = r1r2. The mean and variance of 

the individual random variables are given as {E[rk]} and {V[rk]}, k = 1,2, respectively. Then the mean 

and variance of R2 are determined as  

 
1 2 1 2

2 1 2

2 1 2 1 2 1 2 1 1 1 2 2 2 1 2[ ] ( , ) ( ) ( ) [ ] [ ]r r r r

R r r

E R rr f r r dr dr r f r dr r f r dr E r E r       (A.1) 

 2 2 2 2 2 2
2 1 2 1 2 1 2 1 2[ ] [( ) ] [ ] [ ] [ ] [ ] [ ]V R E r r E r r E r E r E r E r      (A.2) 

where 
1 2 1 21 2 1 2( , ) ( ) ( )r r r rf r r f r f r  holds because r1 and r2 are independent and 2 2 2

1 2 1 1[( ) ] [ ] [ ]E r r E r E r  

holds because 2
1r  and 2

2r  are also independent.  

Consider a product of K (≥ 3) independent random variables, 1 1K K KR r r r  . From 1K K KR R r  

and Eqs. (A.1) and (A.2), the mean and variance of KR  are 

 1[ ] [ ] [ ]K K KE R E R E r   (A.4) 

 2 2 2 2
1 1[ ] [ ] [ ] [ ] [ ]K K K K KV R E R E r E R E r     (A.5) 

where 1KR   and Kr  are also independent. Since 1 1 1 1 1[ ] [ ] [ ] [ ]K K KE R E r r E r E r      and 

2
1[ ]KE R 

2 2 2 2
1 1 1 1[ ] [ ] [ ]K KE r r E r E r    , the mean and variance of a project of K (≥ 3) independent 

random variables are   

 
1

[ ] [ ]
K

K k
k

E R E r


   (A.6) 

  2 2 2 2

1 1 1 1

[ ] [ ] [ ] [ ] [ ] [ ]
K K K K

K k k k k k
k k k k

V R E r E r V r E r E r
   

          (A.7) 

End of the proof of Eqs. (8) and (9). █ 

Appendix B. Spreadsheet model of MFA[4,3] 

Once an analyst enters the three input elements of MFA ; ,b r Ψ , ({ } ~ ( , , ), 1,..., 4i i i ib PERT o m p i   

in Cells “C7:E10”, { } ~kr ( [ ], [ ])k kE r r  , k=1, 2, 3 in Cells “C14:E15”, and Ψ in Cells “I7:K10”, the 

resulting correlation matrix (Σr) in Cells “C21:F24” is computed by the MFA algorithm (Section 3.3). 

For instance, the correlation between wp2 and wp3 in Cell “E22” is: 

 2 3 2 3 3 2 2 3
0.5

2 3

( ) ( ) ( )( ) ( ) (0.1219)(1)(1.1)(4.667)(4.667)
(2,3) 0.547

[( ) ( ) ] (2.072)(2.577)
b b

X X

V R E R E R    
r

E E
Σ

V V
 

Each element of the covariance term is computed using the Hadamard computation as follows. 
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 2 3( ) : { RODUCT( ^(INDEX( ,2,0) * INDEX( ,3,0)))rsV R   E Ψ Ψ  

     PRODUCT( ^(INDEX( ,2,0) * INDEX( ,3,0))) ^ 2}rE Ψ Ψ    (MFAA §4.1) 

 2 3( ) : { PRODUCT( ^(INDEX( ,2,0) INDEX( ,2,0) * INDEX( ,3,0)))}rE R   E Ψ Ψ Ψ  (MFAA §4.2) 

 3 2( ) :{ PRODUCT( ^(INDEX( ,3,0) INDEX( ,2,0) * INDEX( ,3,0)))}rE R   E Ψ Ψ Ψ  (MFAA §4.3) 

 2( ) : INDEX( ,2,0)b bE E ; 3( ) : = INDEX( ,3,0)b bE E     (MFAA §1.1) 

 2
2 2 2( ) : { ( ) *PRODUCT( ^INDEX( ,2,0)) ( ) *PRODUCT( ^(2*INDEX( ,2,0)))}X bs rs b r V E E Ψ E E Ψ  

 2
3 3 3( ) : { ( ) *PRODUCT( ^INDEX( ,3,0)) ( ) *PRODUCT( ^(2*INDEX( ,3,0)))}X bs rs b r V E E Ψ E E Ψ  

         (MFAA §1.1) 

where rsE = Cells “C16:E16”, rE = Cells “C14:E14”, bE = Cells “F7:F10”, bsE = Cells “H7:H10”. █ 
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