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Abstract

A bike-sharing system is a shared mobility mechanism that provides an alternative transportation mode for short

trips with almost no added travel speed loss. However, this model’s low usage ratio and high depreciation rate

pose a risk to the sustainable development of the bike-sharing industry. Our study proposes a new integrated

station location and rebalancing vehicle service design model. This model aims to maximize daily revenue

under a given total investment for station locations and bike acquisition. To address demand ambiguity due to

possible bias and loss of data, we present a two-stage robust optimization model with a demand-related uncer-

tainty set. The first stage of our model determines the station locations, initial bike inventory, and service areas

of rebalancing vehicles. In contrast to the literature, which either simplifies the rebalancing process as an inven-

tory transshipment problem or formulates it as a complex dynamic bike rebalancing problem, we assign each

rebalancing vehicle to a service area composed of several specified stations. An approximate maximum travel

distance for each rebalancing vehicle is also designed and constrained to ensure that the rebalancing operation

can be performed within each period. In the second stage, our model optimizes the daily fleet operation and

maximizes the total revenue minus the rebalancing cost. To solve our model, we design a customized row gen-

eration approach. Our numerical studies demonstrate that our algorithm can efficiently obtain exact solutions

in small instances. For a real-size problem, the nearly optimal solutions of our model also reveal a high-quality

worst-case performance with a small loss in mean performance, particularly when the value of the budget ratio

(that is, the average number of bikes per station) is at a medium level. Moreover, the distribution of service

areas depends on the bike supply and demand level at each station. The optimal fleet rebalancing operation does

not have to be confined to one geographical area. Furthermore, our robust model can achieve larger mean and

worst-case revenues and a higher revenue stability than a stochastic model with a small data set.

Keywords: Transportation, Bike-sharing system, Station location problem, Robust optimization, Row

generation

1. Introduction

The urbanization process drives rapid economic development as well as serious traffic congestion, noise,

and air pollution (Dunlap and Jorgenson, 2012). To maintain the sustainable development of metropolises, the

emerging sharing economy promotes innovations in shared mobility systems, such as peer-to-peer sharing (e.g.,

Turo), ride-sharing (e.g., Uber and Didi) and bike/car sharing (e.g., Mobike and Car2go). Unlike other shared

mobility systems, bike-sharing systems have already undergone several generational transformations, including

free-bike, coin-deposit, and information-technology-based systems, over the past half century (Demaio, 2009).

Recently, station-based bike-sharing systems, which allow users to pick up and drop off bikes at stations, have

gradually been evolving. According to the Bike Sharing World Map (www.bikesharingworld.com), as of March

2019, there were approximately 1,950 operational bike-sharing programs and approximately 14,860,200 bikes

in service worldwide. For example, one of the most popular and large-scale public bike-sharing programs,
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namely, Velib in Paris, France, has approximately 14,500 bikes and 1,230 stations. Some studies note that bike-

sharing systems can serve a similar purpose as private cars for short trips, such as shopping and commuting,

without added travel speed loss in downtown settings (Jensen et al., 2010). On April 12, 2017, Mobike, one of

the largest bike-sharing firms in China, issued a white paper (www.sohu.com/a/133766880 585110) suggesting

that on 92.9 percent of days in Beijing, using public transportation and bikes is faster than using only private

cars, particularly when the travel distance is less than 5 km during peak hours. Similar results have been reported

for Shanghai. In addition, cycling is considered an environmentally friendly mode of transport. The white paper

indicated that use of the bike-riding mode has reduced carbon emissions by 540 thousand tons in addition to

reducing PM 2.5 by 4.5 billion microgrammes, which is equivalent to saving approximately 460 million litres

of gasoline, since Mobike began operations.

However, a low utilization rate and the substantial waste of public space caused by the inconvenience of

searching for available docks and additional walking time to destinations restrict the development of bike-

sharing systems. Shu et al. (2013) state that higher investment in station construction and lower bike usage

hinder the bike-sharing systems in various cities of China compared with systems in Europe and Canada. This

problem has severely affected bike-sharing systems in China because most bike-sharing firms in China are not

nonprofit organizations and are at risk of financial failure. For example, in 2018, the IPO documents of Meituan

revealed that Mobike posted a total loss of 407 million RMB from April 4 to April 30, 2019, which was mainly

composed of a total revenue of 107 million RMB, depreciation costs of 396 million RMB, and daily operation

costs of 158 million RMB. Ofo, one of the largest bike-sharing firms in China, filed for bankruptcy protection

in 2019. It is important for these firms to make reasonable strategic and operational decisions to maximize

their revenue. In addition, station locations play a critical role in the performance of bike-sharing systems.

Bike stations do not occupy a large space, and there are a fairly large number of candidate locations to choose

from. Hence, we can optimize bike station locations without restrictions due to land authorizations and other

policy-related factors.

Recent studies show that the choice of bike station locations plays a fundamental role in the performance of

bike-sharing systems (Wang and Lindsey, 2019; Kabra et al., 2019). Two of the most important factors that affect

system performance are accessibility and availability, in addition to exogenous factors such as temperature,

precipitation, and wind speed (Kabra et al., 2019). Accessibility is determined by how far a user must walk

to reach a station. Availability is defined as the likelihood of finding a bicycle at a station. The findings of

these authors show that almost 80% of bike usage comes from stations within 300 m from the origin (Kabra

et al., 2019). Therefore, station location is the primary critical factor when designing bike-sharing systems.

In addition, both accessibility and availability are closely related to two fundamental decisions, i.e., choosing

station locations and setting inventory. Compared with that of other public transportation systems, such as buses

and subways, the capacity of each station in a docking station system ranges from 10 to 50 docks, which does

not warrant strict administrative authorization requirements. Recently, with the help of GPS and Bluetooth

technologies, stations have become virtual areas without dock investment in free-float bike-sharing systems that

are not large on the ground and are not greatly restricted by land use.

There are several reasons why we should consider the bike station location decision and rebalancing vehicle

service design problems simultaneously. After the station location, designing a dynamic rebalancing service is

the most commonly used method to update the inventory level of each station during a period. Intuitively, op-

timizing the bike station location decision and the rebalancing vehicle service design problems simultaneously

could be better than considering them independently. The first reason is that the station location decision greatly

influences the efficiency of the vehicle rebalancing operation. If the station locations are chosen to be overly

dispersed and the demand distribution is overlooked, this may increase the rebalancing travel distance and cause

a high supply-demand imbalance in each station, significantly increasing the cost of the rebalancing operation.

In other words, more rebalancing vehicles may be needed. Second, the recent development of bike sharing tech-

nology has enabled mobile bike docks. This means that bike station docks are sometimes able to move from one

location to another. This new feature makes it possible to achieve a higher system performance. It also indicates

the importance of the station location problem. Third, in the context of free-floating bike-sharing systems, a

station location is a virtual area without real docks where the firm wants the user to return bikes. This makes it

easier for the firm to reselect bike station locations such that a better rebalancing cost and greater total system

revenue can be obtained. Fourth, in the era of big data, bike system usage data may be available, making it

possible to simultaneously consider station locations and the closely related vehicle rebalancing service design

problem.
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In our paper, we jointly consider strategic, tactical and operational decisions for bike-sharing systems. We

assume that there are several zones in a geographical area and that each zone has a candidate station (see

the upper-left figure in Fig. 1). At the strategic and tactical levels, our model determines the location of

bike stations (see the middle-left figure in Fig. 1) and the number of bikes allocated to each station under a

given initial investment. At the operational level, we aim to determine the covered demand and the number

of rebalanced bikes to maximize the daily operational net revenue. Studies in the literature either formulate

the rebalancing process as a vehicle routing problem with delivery and pick-up (VRPDP) or simplify it as a

transshipment problem. In the upper-right and middle-right figures in Fig. 1, we show instances of the VRPDP

and transshipment problem, respectively, where a positive (negative) scalar near the station implies that this

station is oversupplied (undersupplied). In this example, the VRPDP determines three routes to rebalance the

inventories (i.e., 7-4-2-5-7, 8-3-6-11-8 and 10-12-13-10). The scalars on the routes are the numbers of bikes in

each vehicle. For the transshipment problem, we only determine the number of bikes rebalanced between two

stations. Note that owing to the distribution of stations and the various bike inventory levels, zones in a service

area may not be adjacent (see the service area highlighted in orange).

Regarding the modelling of the rebalancing process, both the VRPDP and transshipment approaches have

their own advantages and disadvantages. The results of the VRP model provide an exact routing plan for each

rebalancing vehicle. However, if the resultant route is computed from a deterministic model, it lacks flexibility

to uncertainty in the potential model input. In addition, a recent study has shown that drivers have room to adjust

the given routes based on their own experience and traffic conditions (Liu et al., 2018). From a computational

perspective, it is also very challenging to generate routes. The transshipment problem modelling technique

oversimplifies the rebalancing process and can only obtain the results of the quantity of bikes moved between

each pair of stations. It does not consider the limited number of rebalancing vehicles or the limited travel time of

a vehicle in each period. We stand between these two popular methods and provide a computationally feasible

approach.

Our work presents a new model and assigns each rebalancing vehicle to a service area; this area contains

several stations (see the lower-right figure in Fig. 1). The travel cost for each service area is approximated

and is assumed to be less than or equal to a given threshold. Thus, a vehicle in each service area is able to

complete the rebalancing operation in each period. The system is modelled as a spatiotemporal network. This

problem is also a stochastic dynamic program considering demand uncertainty. To address the issues of limited

data and the computational intractability dilemma due to the curse of dimensionality, we employ a two-stage

robust optimization framework to obtain an approximation solution considering spatial demand correlations.

We use this framework to approximate the multistage dynamic optimization results (Weikl and Bogenberger,

2013; Lu et al., 2017). More details of our problem description and formulation are given in section 3. The

main contributions of our work are threefold.

First, the rebalancing process embedded in the station location problem can be considered a compromise

between two rebalancing formulations, that is, a routing-based and a transshipment-based program. Our model

assigns stations to service areas. Each service area is assigned to only one rebalancing vehicle. We impose a

restriction whereby bikes can only be rebalanced among stations in the same service area. To ensure that all

stations in each service area are served within a prespecified time period, we use a minimum spanning tree to

approximate the maximum travel distance, which is an upper bound of the routing distance. This maximum

travel distance should not exceed a given threshold, which ensures that all stations can be visited in each period.

Based on the above idea, we propose two models: a deterministic model and its robust counterpart.

Second, due to the inaccuracy of demand and the computational intractability of a stochastic dynamic model,

we employ a two-stage robust optimization (max-min-max) framework that considers the spatial correlations

among demands to approximate the multistage dynamic solutions. The robust approach is capable of modelling

in the absence of exact demand information (e.g., the exact probability density function of demand). The

approach also provides a solution with high mean and worst-case revenue compared to that of the stochastic

programming approach. The first stage determines the positions of stations and service areas, while the second

stage ensures the flow conservation of the served demand and rebalanced bikes. The inner program of our

model is transformed into a minimum disjoint bilinear program. To solve this model, we design a customized

row generation approach. We use duality theory and the Kuhn-Tucker condition so that the inner program can

be reformulated as a linear min-max program and further as a mixed-integer linear model. Similar to Benders

decomposition, this mixed-integer linear program (MILP) of the inner problem is treated as a subproblem, while

the rest of the objective functions and constraints in the primal model form the master problem. Then, we solve
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Figure 1: Station locations and three planning aspects of the rebalancing operation

the master problem and subproblem iteratively, and at each iteration, a valid cut is generated and added to the
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master problem based on the solution of the subproblem. The finite convergence of this approach is guaranteed.

Third, we use open data and design a series of experiments to analyse the performance of our model and

approach. Some instances based on a small-scale network are used to verify the efficiency of the approach.

Compared with a scenario-based model, in which efficiency is highly dependent on scenario combinations and

which cannot guarantee that we will obtain the optimal solution, our approach can reach the global optimum

within a short computational time. In addition, experiments based on a real-size network demonstrate that the

robust solutions can improve the worst-case performance by approximately 10% with a small price of mean

performance loss at a mid-level budget ratio (the average number of bikes at each station). The solutions of the

robust and deterministic models offer different bike station distributions. More zones have stations in the robust

model than in the deterministic model over all instances to ensure greater demand coverage.

The remainder of this paper is organized as follows: Section 2 reviews relevant studies, including problems

in bike-sharing systems and optimization approaches for uncertainty. All details of our formulation and the

associated algorithm are described in sections 3 and 4, respectively. In section 5, we employ open real data to

test our model and algorithm. Finally, we conclude our work in section 6.

2. Literature review

There is a rapidly growing body of literature on bike and car-sharing systems. We mainly focus on studies

of bike-sharing systems at the strategic and operational levels as well as studies of car-sharing systems. For

details on the history of bike-sharing industries, we refer the reader to Demaio (2009) and Shaheen et al. (2010).

Laporte et al. (2015) recently summarized bike-sharing problems at the strategic, tactical, and operational levels.

2.1. Station location problem

One major stream of literature focuses on strategic bike station location design. The decision variables

in these problems are concerned with locations and station capacity. Lin and Yang (2011) study strategic

planning for bike-sharing systems and jointly determine the optimal stations, bike lane locations, and bike

stocks. Garcı̀a-Palomares et al. (2012) and Park and Sohn (2017) both employ the p-median and maximum

coverage model to determine the bike stations. To investigate the potential trip demand, these two papers use

GIS-based methodology and real taxi trajectory data. Çelebi et al. (2018) use a queueing model to measure the

service levels and then employ a set-covering model to locate stations.

Some studies further integrate the tactical and operational decisions (i.e., the inventory problem and the

fleet rebalancing operation) into the bike station location problem. Lin et al. (2013) investigate a station loca-

tion model with bike inventory costs and design a greedy heuristic method to obtain a near-optimal solution.

Frade and Ribeiro (2015) formulate a MILP to maximize the covered demand considering the balance con-

straint of annual costs and revenue. This model determines station locations, initial station inventories, and bike

rebalancing. In contrast to the maximum system utility and minimum total budget used in the above model-

s, Nair and Miller-Hooks (2014) demonstrate that users will not follow the system-optimal assignment policy

since users are likely to access systems only if their travel utilities can be improved. The authors present an

equilibrium station location model formulated as a bi-level program. The objective function of the upper-level

decision is to maximize the revenue of demand trips, while in the lower-level problem, users react to a system

configuration by minimizing the sum of their travel time and waiting time. Maggioni et al. (2019) adopt two-

stage and multi-stage stochastic programming approach to determine station location and rebalancing decisions.

They also consider that users may return bikes to other stations since there may be no available spaces at the

destination station.

Similar to bike-sharing systems, the literature also investigates station locations and the service region design

of car-sharing systems integrated with tactical and operational decisions. Boyacıet al. (2015) present a MILP

model incorporating a one-way car-sharing station location model considering capacity and fleet size subject

to rebalancing and recharging requirements. The authors apply the branch-and-bound algorithm to obtain the

optimal solution. Kaspi et al. (2014) use a MILP model to design parking reservation policies in one-way car-

sharing systems with the associated user behaviour responses. Brandstätter et al. (2017) optimize the station

locations of car-sharing systems using a time-dependent two-stage stochastic optimization approach. He et al.

(2017) maximize the profit and optimize the service regions of free-float electric car-sharing systems with

uncertain customer adoption behaviour in response to the service coverage. The queueing network method is

used to describe the rebalancing and recharging operations. Lu et al. (2017) consider both station-based and
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free-float systems and present a two-stage stochastic integer program to model uncertain demand. In the first

stage of the model, the fleet and parking lots are investment decisions, while fleet operations are modelled

to maximize revenue based on the network flow technique in the second stage. Chang et al. (2017) design

an integer linear program for one-way and round-trip car-sharing station locations that maximizes the total

profit and minimizes the cost of rebalancing and maintenance under a limited investment cost and a given CO2

emission limit.

2.2. Bike rebalancing problem

In addition to the bike station location problem, another major concern for bike-sharing systems is bike

rebalancing to effectively meet demand. A common modelling method is to simplify the rebalancing problem

as an inventory transshipment problem, which ignores the detailed rebalancing process in the optimization

model. Nair and Miller-Hooks (2011) develop a joint-chance-constraint-based stochastic MILP to optimize

vehicle rebalancing schemes to ensure a high satisfaction rate of random demand. Shu et al. (2013) analyse

the demand distributions of short subway trips in Singapore and apply a stochastic network flow model to

study the bike rebalancing problem. He et al. (2020) construct a multistage distributionally robust program for

vehicle rebalancing to approximate the solution to avoid loss of information and the curse of dimensionality

of traditional stochastic dynamic models. A similar idea is adopted in strategic station location problems so

that the rebalancing process is usually formulated in terms of flow conservation constraints. However, this

simplified formulation is unrealistic and does not consider the capacity restrictions of rebalancing vehicles or

the accessibility requirements between two stations within a unit period.

Other notable studies view the bike rebalancing process as a VRPDP that can be further categorized into

static and dynamic rebalancing problems. The former type of problem assumes that repositioning is carried out

only at night (see Tal and Ofer, 2013; Forma et al., 2015; Li et al., 2016; Szeto et al., 2016; Ho and Szeto, 2017;

Bulhões et al., 2018). Erdoğan et al. (2014) relax the assumption that optimal inventory levels are located in

intervals rather than being single values and use Benders decomposition to solve small-scale instances. Li et al.

(2016) investigate the static rebalancing problem with heterogeneous docks and bikes in a single system and

use a genetic algorithm to obtain solutions. Bulhões et al. (2018) consider the restriction capacities and service

times of the rebalancing process without limiting the visit times for each station. Pal and Zhang (2017) first

minimize the total rebalancing cost for free-floating systems to ensure that all dispersed bikes are collected at

specified stations. Lei and Ouyang (2018) use the continuous approximation approach for demand rebalancing

to solve large-scale problems.

In addition to the static rebalancing strategy, the dynamic rebalancing problem allows bikes to be redistribut-

ed in the daytime to satisfy real-time demand (see Contardo et al., 2012; Kloimüllner et al., 2014; Pfrommer

et al., 2014; Schuijbroek et al., 2017; Shui and Szeto, 2017; Zhang et al., 2017; Legros, 2019). Contardo et al.

(2012) incorporate column generation and Benders decomposition into a new approach to solve mid-size prob-

lems. Pfrommer et al. (2014) and Haider et al. (2018) suggest real-time price incentives to induce demand and

reduce the need for rebalancing. Shui and Szeto (2017) optimize unserved demand and carbon emissions from

rebalancing vehicles.

2.3. Uncertainty and robust optimization

Since firms cannot obtain trip information before demand is covered, demand uncertainty caused by change-

able weather, accidents, geographical information, and travel preferences is a major concern for strategic station

location decisions. The current literature on the station location problem for bike-sharing systems has paid less

attention to potential uncertainty in demand than to other sources of uncertainty. To address demand uncertainty,

Maggioni et al. (2019) use two-stage and multistage stochastic programming to design the station locations and

allocate the spillover of demand at a station to nearby stations. Similarly, Dell’Amico et al. (2018) and War-

rington and Ruchti (2019) employ stochastic programming approaches in dynamic bike rebalancing problems.

When the probability distribution of uncertainty is unknown and ambiguous, a robust optimization technique

is more suitable than stochastic programming. We refer readers to Ben-Tal et al. (2009) and Bertsimas et al.

(2011) for a review of various robust optimization approaches. Several novel approaches considering only

partial distribution information, namely, distributionally robust optimizations, are further studied (Delage and

Ye, 2010; Goh and Sim, 2010; Wiesemann et al., 2014; Bertsimas et al., 2018). Our formulation follows a robust

optimization framework where the demand falls within a given polyhedron. Substantial numbers of papers

based on polyhedral uncertainty sets are discussed both in terms of methodology (Ben-Tal and Nemirovski,
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1997; Ben-Tal and Nemirovski, 1998; Bertsimas and Sim, 2004) and applications (Liu and Song, 2017; Chan

et al., 2018).

Methodologically, our work is similar to that of Chan et al. (2018); both consider a two-stage robust opti-

mization model. To solve the program, both studies design customized row generation algorithms. The moti-

vation in designing the algorithm in their work is to address the large-scale problem efficiently. However, in

our study, complex constraints make our model challenging, and it cannot be reformulated into a deterministic

equivalent MILP. Thus, we present a row generation approach to solve the primal problem. Further discussion

of row and column generation for robust optimization can be found in Zeng and Zhao (2013).

2.4. Location routing problem

Since our model jointly considers the station locations and the rebalancing operation, it is closest to a variant

of the location-routing problem (LRP), the capacitated LRP. There are many variants of the standard LRP, such

as the dynamic LRP with multiple planning periods, where information becomes available over time (Albareda-

Sambola et al., 2012); the periodic LRP, which determines the periods of visiting the customers (Francis et al.,

2008); the stochastic LRP, which considers uncertain travel time and demand (Albareda-Sambola et al., 2007);

and the LRP with pickup and delivery (Karaoglan et al., 2012). Similar to most vehicle routing problems, large-

scale instances of the LRP cannot be solved by state-of-the-art commercial solvers. We refer the reader to Drexl

and Schneider (2015) for more on the variants and extensions of the location-routing problem.

2.5. Comparative analysis

In the context of bike-sharing systems, most of the current studies consider either the station locations or

the rebalancing process planning. Regarding the station location literature, the most considered factors are the

covered demand, station capacity, bike inventory, and total budget of the system. These factors appear in either

the objective functions or constraints. In detail, most of the extant studies formulate the station location problem

as a classic facility location model. On the other hand, daily operational decisions are usually considered to be

based on a flow conservation framework. We differ from the literature in that we simultaneously optimize bike

station locations and the distribution of the service areas of the rebalancing vehicles. In our study, a service area

with limited range is used to ensure that the daily dynamic rebalancing operation of each vehicle can be finished

in a single period. When the range of the service area is assumed to be large enough, rebalancing operations

can be performed between any two stations; this turns out to be a common assumption in the existing literature.

Hence, our model is a more generalized bike station location model than previous models in the literature.

Two modelling techniques are often employed to model the rebalancing process: vehicle routing problems

with pickup and delivery and transshipment problems. These two methods usually consider the capacity, the

number of depots, multiple periods, and so on. Our study focuses on strategic-level decisions, so a detailed

routing plan cannot satisfy dynamic and uncertain demand. Hence, we use the service areas of rebalancing

vehicles to ensure that all possible routes in each service area can be served in one period. In addition, demand

uncertainty is considered, and a two-stage robust optimization framework is employed. We also design an

efficient algorithm to solve a problem of practical size using realistic data.

3. Mathematical formulation

In this section, we first describe our problem and define related notations in section 3.1; then, we present

our two-stage robust model in section 3.2 and design the demand uncertainty set in section 3.3.

3.1. Problem description

We consider a station location and initial inventory allocation problem for station-based bike-sharing sys-

tems under a given total investment. Suppose that the set of demand zones is known based on historic data and is

denoted by N . Each zone is assumed to have a candidate station location to cover the demand in that zone. We

use the binary variable xi to represent whether there is a station in zone i; xi = 1 implies that there is a station

in zone i, and xi = 0 otherwise. In our model, we assume there is only one candidate station in each zone.

For the case with multiple candidate stations, we can further partition this zone into smaller ones so that each

new smaller zone has one candidate station. Hence, our assumption can still be applied. We assume that each

station has the same maximum capacity C. This assumption is practical and reasonable because bike-sharing
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firms employ a GPS-based technique and locate bikes without locks. Hence, the setup costs of the station areas

are low, and in this case, the capacity is not a significant decision variable. This assumption can be relaxed by

determining the capacity of each station in our model and does not change the form of the model. In practice,

a firm conducts fleet operations over a set of periods T . The fleet of vehicles is used to rebalance the bikes

between stations.

As mentioned above, the previous literature on the bike station location problem considers only the number

of bikes rebalanced between stations, which is embedded into the flow conservation constraints for easy formu-

lation. This modelling approach, namely, the inventory transshipment model, is simple and does not consider a

limited number of vehicles or the maximal travel distance per period. In our study, we design a static vehicle as-

signment problem to ensure that all possible routes for the dynamic rebalancing operation can be served in each

period. That is, we assign each vehicle to a service area composed of several stations. The figure in the lower

right of Fig. 1 provides an example assigning eleven stations to three service areas. Based on this assumption,

we provide flexibility for drivers in adjusting their rebalancing routes.

To make the above assumption mathematically implementable, we need to formally define the relationship

between the stations and service areas. In addition, the maximum travel distance within a service area should

also be restricted. A notational system and constraints should be designed to reflect these logical requirements.

We denote the set of rebalancing vehicles as K, indexed by k. Since each service area is covered by one

vehicle, we also use k to label the service area, and we define the binary decision variable uk, which is 1 if

vehicle k is assigned to the kth service area and 0 otherwise. For service area k, the binary variable zik is 1 if

station i is in service area k and 0 otherwise. The binary variable λi jk is 1 if stations i and j are both in service

area k and 0 otherwise. Thus, some constraints should be established to connect these decision variables (e.g.,

uk, zik and λi jk), which are shown in the next section.

Let li j be the travel distance between candidate stations i and j. To ensure that the maximum travel distance

in service area k is not larger than a given threshold lk, we assume that each service area has exactly one centre

and let the binary variable yik equal 1 if station i is the centre of service area k. For each service area, there is

only one centre, which is a special station. Furthermore, the variable li jk is equal to li j if stations i and j are both

in service area k and station i is its centre, and it is 0 otherwise. The sum of the distance between the centre and

each station j in service area k can be easily calculated to approximate the travel distance of each vehicle. This

method essentially calculates the distance of a minimum spanning tree constructed by the stations in a service

area, which is a 2-approximation of the vehicle routing problem and can be seen as an upper-bound distance of

all possible routes. As an example, the red spots in Fig. 2 represent the centres, and the red lines construct three

minimum spanning trees and are used to calculate the total distances between the centres and stations.

Zone

Center of vehicle service area

Candidate station

Station

Vehicle service areas

Edge of minimum spanning tree

Figure 2: A vehicle assignment scheme (vehicle service area design) for the dynamic rebalancing operation

Considering demand uncertainty, our integrated station location and rebalancing vehicle assignment prob-

lem is modelled using a two-stage robust optimization framework. In the first stage, the station locations and

initial bike allocation are determined under a given number of station locations B1 and a bike allocation B2, as

well as the service area design. The fixed operation cost per vehicle is c2. In the second stage, the objective

function is to maximize the revenue minus the rebalancing cost. The second-stage decision variables are mainly

concerned with the dynamic inventory levels, satisfied demand decision and fleet rebalancing decision in each

period.
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We assume that users in zone i can access the bike-sharing system if there is a station with available bikes.

Similarly, users ride bikes and return them at destinations that have enough available spaces. For each period t,

the total random demand from zones i to j is denoted as d̃i jt. At the beginning of period t, firms are assumed to

have information on the current inventory vit at each bike station i and the historical demand. We assume that

the rebalancing operations will be finished before determining customer demand. Regarding the rebalancing

operations, the number of bikes from station i to j, denoted as the decision variable ri jt, should be determined.

The rebalancing cost per bike is c1i j, the value of which depends on the travel distance between stations i and

j. The maximum capacity for each rebalancing operation does not exceed Q. The variable wi jt describes the

covered demand from zones i to j in period t, which should be no greater than the total demand d̃i jt and the

current bike inventory vit at station i. To simplify our model, if there is no station in zone i, the local demand

will be unmet and cannot be covered by bikes in other zones. The reason is that since the service range of each

station is usually small (Li et al., 2015; Park and Sohn, 2017; Kabra et al., 2019) and the bike travel distance

is generally short, customers may not walk too far from the origin to rent a bike at the second nearest station.

The revenue for each trip is f . The objective function of a private bike-sharing firm aims to maximize revenue

during the daytime. The notation used in our paper is listed in table 1. Other notation concerning the uncertainty

set and solution algorithm will be defined in the following sections. We refer to bold-faced characters, such as

x ∈ RN , as N-dimensional vectors, and xi is the ith component of vector x.

Table 1: Notation

Parameters of the robust optimization model
T set of periods, indexed by t

N set of candidate stations, indexed by i, j

K set of vehicles (and service areas), indexed by k

c1i j rebalancing cost per bike from station i to j

c2 fixed operation cost of a vehicle

f revenue per demand trip

B1 total number of candidate stations

B2 total number of bike allocations

C capacity of stations

Q capacity of rebalancing vehicles

li j distance between stations i and j

lk maximal travel distance of vehicle k

Parameters of the uncertainty set and approaches
U uncertainty set of demand

Ω,Ω′ set of demand samples, indexed by ω

S set consisting of all subsets of OD pairs, indexed by s

ODst sth subset of OD pairs at period t

P joint probability distribution of all demand

d̃i jt uncertain demand from zones i to j at period t

di jt upper bound of demand from zones i to j at period t

d
i jt

lower bound of demand from zones i to j at period t

∆di jt interval length of d̃i jt; that is, di jt − d
i jt

Γst minimal demand threshold of all OD pairs in ODs at period t

κt equals 1 if t < |T | and 0 otherwise

M big number

q random weight vector

α parameter to define the degree of uncertainty

First-stage decision variables of the robust optimization model
xi equals 1 if bike station is set at zone i and 0 otherwise

uk equals 1 if vehicle k is used and 0 otherwise

zik equals 1 if station i is in service area k and 0 otherwise

yik equals 1 if station i is the centre of service area k and 0 otherwise

9



li jk
equals the distance between a centre i and station j if they are in service area k

and 0 otherwise

λi jk equals 1 if stations i and j are both in service area k and 0 otherwise

Y variable in the MP of the row generation approach

Second-stage decision variables of the robust optimization model
vit number of bikes at bike station i in period t

wi jt covered demand from stations i to j in period t

ri jt number of bikes rebalanced from station i to station j in period t

Decision variables for row generation approach
d,π,µ,µ,

µ,u,u,u
variables in the subproblem of the row generation approach

3.2. Two-stage robust optimization model

In this section, we propose a two-stage robust model under demand uncertainty. Based on the problem

description above, four sets of constraints are defined, namely, investment constraints, station assignment con-

straints, service area generation constraints, and fleet operation constraints.

The first set of constraints enforces the basic relationship between the station locations and the number of

bikes allocated to each station, which is presented below:

∑

i∈N

xi = B1, (1)

∑

i∈N

vi0 = B2, (2)

vit ≤ Cxi, ∀i ∈ N , t ∈ T . (3)

Constraints (1) and (2) restrict the total number of station locations and the bike allocation, respectively.

Constraint (3) restricts the number of bikes in each period, which is no greater than the station capacity.

The second set of constraints enforces the relationships among the number of rebalancing vehicles, the

service areas and the station locations.

∑

k∈K

zik ≤ xi, ∀i ∈ N , (4)

zik ≤ uk, ∀i ∈ N , k ∈ K , (5)

uk ≥ uk+1, ∀k ∈ K , (6)

λi jk ≤ zik, ∀i, j ∈ N , k ∈ K , (7)

λi jk ≤ z jk, ∀i, j ∈ N , k ∈ K , (8)

λi jk ≥ zik + z jk − 1, ∀i, j ∈ N , k ∈ K . (9)

Constraint (4) ensures that each station is assigned to at most one rebalancing vehicle. Since our model

maximizes the revenue of bike-sharing systems and the number of rebalancing vehicles may be limited, we

do not require all stations to be assigned to service areas. In practice, we can rebalance the bikes in these

stations at night because there is sufficient rebalancing time. Constraint (5) states that station i can be assigned

to vehicle k only if vehicle k is used. We do not require that all vehicles be used because of budget limits. As an

example, if there are a total of five homogeneous vehicles and only three of them are used, the optimal solutions

u = (1, 1, 1, 0, 0) and u = (1, 1, 0, 1, 0) are equivalent. To eliminate a large number of equivalent solutions,

constraint (6) ensures that only the first several vehicles will be used. However, when the rebalancing vehicles

are heterogeneous, this constraint should be removed. Constraints (7) – (9) are used to show whether stations i

and j are both in service area k. That is, only when zik and z jk are both equal to 1 is λi jk equal to 1.

The third set of constraints defines the centre of each service area and determines the associated maximum

travel distance.

yik ≤ zik, ∀i ∈ N , k ∈ K , (10)
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∑

i∈N

yik = uk, ∀k ∈ K , (11)

li jk ≥ li j − M(2 − yik − z jk), ∀i, j ∈ N , k ∈ K , (12)
∑

i∈N

∑

j∈N

li jk ≤ lk, ∀k ∈ K . (13)

Constraints (10) and (11) ensure that each service area contains exactly one centre. Constraint (12) defines

the travel distance between centre i and station j. In detail, li jk equals li j if both stations i and j are in service

area k and station i is a centre; it is 0 otherwise. Constraint (13) restricts the total travel distance of vehicle k,

which cannot exceed a given threshold. This threshold can be estimated by the average speed of vehicles, the

service time at each station, and the period length. Note that the total distance on the left-hand side of constraint

(13) can be considered an upper bound of the travel distance of the vehicles because (i) it may not be necessary

to visit all the stations to satisfy the real demand, and (ii) the vehicle can rebalance bikes between two stations

directly rather than visit the centre midway.

The fourth group of constraints concerns the relationships among the number of bikes at each station during

period t, the total demand, the covered demand and the rebalancing operations.

ri jt ≤ Q
∑

k∈K

λi jk, ∀i, j ∈ N , t ∈ T . (14)

vit = vit−1 +
∑

j∈N

(r ji,t−1 − ri j,t−1 + w ji,t−1 − wi j,t−1), ∀i ∈ N , t ∈ T /{0}, (15)

wi jt ≤ d̃i jt, ∀i, j ∈ N , t ∈ T , (16)
∑

j∈N

wi jt ≤ vit +
∑

j∈N

r jit −
∑

j∈N

ri jt, ∀i ∈ N , t ∈ T . (17)

Constraint (14) restricts the number of bikes rebalanced from station i to j only if these two stations are

in the same service area; the number of rebalanced bikes cannot exceed the vehicle’s capacity. Constraint

(15) defines the flow conservation of each station. That is, the number of available bikes in period t equals

the sum of the number of bikes rebalanced and the net inflow of bikes from the fulfilled demand. For each

origin-destination (OD) pair from zone i to j, constraint (16) means the covered demand cannot exceed the total

demand, while constraint (17) means that the covered demand is no larger than the number of available bikes

after the rebalancing operation.

The objective function of our model (18) aims to maximize the bike system’s revenue minus the total cost

of bike rebalancing and the fixed operation cost of rebalancing the vehicles.

max f
∑

i∈N

∑

j∈N

∑

t∈T

wi jt −
∑

i∈N

∑

j∈N

∑

t∈T

c1i jri jt − c2

∑

k∈K

uk (18)

s.t. (1) − (17)

x,y, z,u,λ ∈ {0, 1}, (19)

v0, l ≥ 0, (20)

v−0, r,w ≥ 0. (21)

Constraints (19)–(21) are the variable definition constraints, where v0 = (vi0)i∈N and v−0 = (vi,t,0)i∈N are

the initial inventory and state inventory variables during the decision periods, respectively.

The constraints are divided into two constraint sets corresponding to the two stages of our model. The setX1

contains constraints (1)–(2), (3) for t = 0, (4)–(13), and (19)–(20), which correspond to the strategic decision

process and determine the station positions, initial bike inventories, and service areas. We denote the set X1 as

the first-stage constraint set. Constraints (3) for t > 0, (14)–(17), and (21) compose the second-stage constraint

set X2(x,λ, v0, d̃), which defines the fleet operation over the decision periods, including the fleet rebalancing

operation, covered demand, and inventory flow conservation. Note that although our model involves a large

number of parameters and variables, it is easy to replicate and use in practice. The potential demand can be

estimated by GIS-based methodology (Garcı̀a-Palomares et al., 2012) and real taxi trajectory data (Park and
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Sohn, 2017). In our study, we use open-access bike-sharing data to test our model. Other parameter values can

be obtained in practice, such as the distance between two stations and the capacity and speed of each vehicle.

In section 5, we describe the procedure that generates the inputs of our model.

3.3. Uncertainty set

To address the demand uncertainty, robust optimization and stochastic programming are two common ap-

proaches used in strategic and operational decisions. Stochastic programming assumes that the exact distribution

of random parameters (demand in this study) is known, which can be estimated based on a large amount of reli-

able data. In practice, the distribution of the true demand is ambiguous for bike-sharing firms. For example, for

a given station, since users cannot access the system if there are no available bikes, the bike-sharing firm can

only observe the covered flows rather than the real demand. Moreover, any demand estimation based on histor-

ical data is also subject to uncertainty, particularly when the size of the available data set is limited. Due to the

limited data, we adopt the robust optimization approach, which describes random demand via the uncertainty

set.

We assume that the demand lies in an uncertainty setU, which includes two parts. First, the uncertain OD

demand d̃ is assumed to be located in an interval; that is, d̃ ∈ [d,d]. The lower and upper bounds of this interval

can be estimated by the minimum and maximum values of historical data. Second, considering that there are

potential correlations between partial OD pairs, i.e., not all OD pairs can reach the lowest level simultaneously,

we take the spatial correlations of OD pairs into account to avoid over conservation. Hence, U is defined as

follows:

U = {d ∈ [d,d],
∑

(i, j)∈ODst

di jt ≥ Γst,∀s ∈ S, t ∈ T }, (22)

The second constraint in set (22) implies that the OD demands in a subset of OD pairs ODst in each period

have strong correlations and will not be less than a given threshold Γst. Such constraint is realistic; for example,

the stations close by will be more correlated with demand. We can construct these subsets based on the demand

covariance based on limited data. Γst can be set by decision makers based on their conservation levels. Note

that this polyhedral form of uncertainty set (22) is similar to the budget uncertainty set presented by Bertsimas

and Sim (2004), and it can be degraded into the box set when Γst =
∑

(i, j)∈ODst
d

i jt
.

Our objective function can now be minimized by solving the following problem, where the variable Y is the

revenue of the second-stage decision.

max
x,y,z,u,λ,v0,l∈X1

Y − c2

∑

k∈K

uk (23)

s.t. Y ≤ min
d∈U

max
v−0 ,r,w∈X2(x,λ,v0,d̃)

f
∑

i∈N

∑

j∈N

∑

t∈T

wi jt −
∑

i∈N

∑

j∈N

∑

t∈T

c1i jri jt (24)

The robust model maximizes the worst-case revenue under low demand level. The worst-case revenue

may not make sense to the planning makers who are more concerned about expected revenue over all possible

demand realizations. However, the robust approach is already used to optimize many shared mobility systems

when making strategic and operational decisions, such as ride-sharing (Hao et al., 2020), bike-sharing (He

et al., 2017) and car-sharing systems (He et al., 2020). Furthermore, the station location problem in our study

is a facility location problem. Some relevant studies also adopt robust and distributionally robust approaches to

minimize the worst-case expected transshipment cost with satisfied model performance (Gülpınar et al., 2013;

Basciftci et al., 2019; Saif and Delage, 2020). In section 5, the results show that the out-of-sample performance

(i.e., mean revenue, worst-case revenue and standard deviation of revenue) of our robust model is much better

than that of the stochastic model. Furthermore, since we also present a deterministic model above, the decision

makers can choose one of these two models according to the actual situation.
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4. Solution approach

Since constraint (24) is non-convex, it cannot be solved by state-of-the-art commercial solvers. To solve

a program with a non-convex min-max form, duality theory is widely applied to reformulate the innermost

maximum problem. By strong duality, the reformulation of the right-hand side of (24) is as follows:

min
d∈U

min
π1,π2,π3,π4,π5≥0

∑

i∈N

∑

j∈N

∑

t∈T

d̃i jtπ
4
i jt +
∑

i∈N

∑

t∈T /{0}

Cxiπ
1
it +
∑

i∈N

∑

j∈N

∑

t∈T

∑

k∈K

Qλi jkπ
2
i jt +
∑

i∈N

vi0(π3
i0 + π

5
i0) (25)

s.t. π1
it + π

3
it−1 − κtπ

3
it − π

5
it ≥ 0, ∀i ∈ N , t ∈ T , (26)

κt(π
3
it − π

3
jt) + π

4
i jt + π

5
it ≥ f , ∀i, j ∈ N , t ∈ T , (27)

π2
i jt + κtπ

3
it − κtπ

3
jt + π

5
it − π

5
jt ≥ −c1i j, ∀i, j ∈ N , t ∈ T , (28)

where κt = 1 if t < |T | and is 0 otherwise. π1,π2,π3,π4 and π5 are the dual variables corresponding to

constraints (3) and (14)–(17). We denote the vector of all dual variables as π = (π1,π2,π3,π4, π5), and the

dual polyhedronΠ is defined as below:

Π = {π | π ≥ 0 satisfying constraints (26)-(28)}, (29)

Based on the reformulation above, constraint (24) is now equivalent to

Y ≤
∑

i∈N

(

∑

j∈N

∑

t∈T

d̃i jtπ
4
i jt +

∑

t∈T /{0}

Cxiπ
1
it +
∑

j∈N

∑

t∈T

∑

k∈K

Qλi jkπ
2
i jt + vi0(π3

i0 + π
5
i0)

)

, ∀π ∈ Π, d̃ ∈ U. (30)

Since constraint (30) is enforced over all representations of d̃, the primal program contains an infinite num-

ber of constraints. This program (25)–(28) is a disjoint bilinear program because of the term
∑

i∈N

∑

t∈T ditπ
4
it
.

Hence, we cannot obtain a deterministic equivalent model, and we present the following two approaches.

4.1. Scenario-based model

A stochastic program is a common method to solve optimization problems under uncertainty. The basic idea

of a two-stage stochastic program is to generate a set of scenarios to represent the possible outcome in advance.

In our study, these are the various demand outcomes (Birge and Louveaux (2011)). In detail, we relax constraint

(30) by sampling a set of scenariosΩ so that a near-optimal solution of program (23)-(24) can be obtained. That

is, the primal model contains only a finite number of constraints; we call it a scenario-based model (SBM), and

it is formulated as follows:

[SBM] max
x,y,z,u,λ,v0,l∈X1

Y − c2

∑

k∈K

uk (31)

s.t. vωi0 = vi0, ∀i ∈ N , ω ∈ Ω, (32)

v−0ω, rω,wω ∈ X2(x,λ, v0ω,dω), ∀ω ∈ Ω, (33)

Y ≤ f
∑

i∈N

∑

j∈N

∑

t∈T

wωi jt −
∑

i∈N

∑

j∈N

∑

t∈T

c1i jr
ω
i jt, ∀ω ∈ Ω. (34)

When Y is no large than the expected revenues over all scenarios in constraint (34), the SBM is a two-stage

stochastic model. For a stochastic program, as the number of scenarios increases, the expected objective value

may converge to the global optimal value. However, the worst-case objective function value is not theoretically

able to converge, and this is our case. Therefore, the SBM will be contrasted with the row generation approach

below. In addition, solving a stochastic program becomes more time-consuming as the number of scenarios

increases. Hence, in the next section, we use a row generation approach to solve our model to optimality.

4.2. Row generation approach

Unlike the SBM, which uses a set of scenarios generated in advance, we generate each scenario and its

associated constraint iteratively in the row generation approach. This idea is similar to Benders decomposition,
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which divides the original model into a master problem (MP) and a subproblem (SP). We first present the

formulation of the MP and SP and then design the row generation approach to solve our original robust model.

The formulation of the MP is shown below.

[MP] max
x,y,z,u,λ,v0,l∈X1

Y − c2

∑

k∈K

uk (35)

s.t. Y ≤
∑

i∈N

(

∑

j∈N

∑

t∈T

d̂ωi jtπ̂
4ω
i jt +

∑

t∈T /{0}

Cxiπ̂
1ω
it +
∑

j∈N

∑

t∈T

∑

k∈K

Qλi jkπ̂
2ω
i jt + vi0(π̂3ω

i0 + π̂
5ω
i0 )

)

,∀ω ∈ Ω.

(36)

Initially, we solve model (35) without the constraint set (36). Consequently, we obtain the optimal solutions

x̂, λ̂, and v̂0 for the MP. Based on the obtained solution, we generate one or several constraints in set (30)

corresponding to various values of d and π and add them to the MP. We repeat the above processes until no

valid constraints can be generated.

To identify a new constraint, similar to Benders decomposition, a subproblem should be created and used to

generate valid cuts for the master problem. We employ program (25)–(28) with the incumbent solutions x̂, λ̂

and v̂0 as the SP.

As mentioned above, the inner program of (25) is a disjoint bilinear program. Proposition 1 transforms this

program and obtains an equivalent MILP model, shown below.

Proposition 1. The SP can be reformulated as follows:

min
∑

i∈N

(

∑

t∈T /{0}

Cx̂iπ
1
it +
∑

j∈N

∑

t∈T

∑

k∈K

Qλ̂i jkπ
2
i jt + v̂i0(π3

i0 + π
5
i0) +
∑

j∈N

∑

t∈T

(d
i jt

u
i jt
− di jtui jt)

)

+
∑

s∈S

∑

t∈T

Γstust

s.t. π ∈ Π,

π4
i jt −

∑

s:(i, j)∈ODst

ust + ui jt − u
i jt
= 0, ∀i, j ∈ N , t ∈ T , (37)

∑

(i, j)∈ODst

di jt ≥ Γst, ∀s ∈ S, t ∈ T , (38)

− di jt ≥ −di jt, ∀i, j ∈ N , t ∈ T , (39)

di jt ≥ d
i jt
, ∀i, j ∈ N , t ∈ T , (40)

ust(
∑

(i, j)∈ODst

di jt − Γst) = 0, ∀s ∈ S, t ∈ T , (41)

ui jt(−di jt + di jt) = 0, ∀i, j ∈ N , t ∈ T , (42)

u
i jt

(di jt − d
i jt

) = 0, ∀i, j ∈ N , t ∈ T , (43)

π1,π2,π3,π4,π5,d,u, u, u ≥ 0. (44)

Proof. By strong duality theory, we reformulate the subproblem (25)–(28) as follows:

min

{

∑

i∈N

(

∑

t∈T /{0}

Cx̂iπ
1
it +
∑

j∈N

∑

t∈T

∑

k∈K

Qλ̂i jkπ
2
i jt + v̂i0(π3

i0 + π
5
i0)

)

+max{
∑

s∈S

∑

t∈T

Γstust +
∑

i∈N

∑

j∈N

∑

t∈T

(d
i jt

u
i jt
− di jtui jt)}

}

s.t. π ∈ Π, (37),

u, u, u ≥ 0.

This formulation is a linear min-max model and can be further regarded as a bilevel problem:

min
π≥0

∑

i∈N

(

∑

t∈T /{0}

Cx̂iπ
1
it +
∑

j∈N

∑

t∈T

∑

k∈K

Qλ̂i jkπ
2
i jt + v̂i0(π3

i0 + π
5
i0) +
∑

j∈N

∑

t∈T

(d
i jt

u
i jt
− di jtui jt)

)

+
∑

s∈S

∑

t∈T

Γstust (45)

s.t. u, u, u ∈ arg max

{

∑

s∈S

∑

t∈T

Γstust +
∑

i∈N

∑

j∈N

∑

t∈T

(d
i jt

u
i jt
− di jtui jt)

∣

∣

∣

∣

∣
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π,u, u, u ≥ 0 and satisfy the constraints Π, (37)

}

.

Then, adopting the Karush-Kuhn-Tucker (KKT) condition in the lower-level problem, we can obtain the

formulation shown in Proposition 1. �

Equations (26)–(28) are the constraints corresponding to the variables of the outer problem. Constraints (37)

and (38)–(40) guarantee primal and dual feasibility, and constraints (41)–(43) guarantee the KKT conditions,

which can also be represented as linear constraints using binary variables and the big-M method. Constraints

(41)–(43) can be rewritten as follows:

∑

(i, j)∈ODst

di jt − Γst ≤ Mµst, ∀s ∈ S, t ∈ T , (46)

ust ≤ M(1 − µst), ∀s ∈ S, t ∈ T , (47)

− di jt + di jt ≤ Mµi jt, ∀i, j ∈ N , t ∈ T , (48)

ui jt ≤ M(1 − µi jt), ∀i, j ∈ N , t ∈ T , (49)

di jt − d
i jt
≤ Mµ

i jt
, ∀i, j ∈ N , t ∈ T , (50)

u
i jt
≤ M(1 − µ

i jt
), ∀i, j ∈ N , t ∈ T , (51)

µ, µ, µ ∈ {0, 1}. (52)

After constructing the MILP form of the subproblem, constraint (36) can be generated easily. Let ZS P be

the optimal value of the subproblem, and let π̂ and d̂ be the corresponding optimal solutions. If Y ≤ ZS P,

then constraint (36) is satisfied for all d ∈ U, so the incumbent solution is also the optimal solution of primal

program (23). Otherwise, a new constraint (36) is added to the master problem. The master problem is solved

again to obtain a new optimal solution. The framework of the row generation approach is shown in Algorithm

1.

Algorithm 1: Row generation approach

1: Initialize ω = 0.

2: Solve the MP, and obtain the optimal value ZMP with solutions x̂, λ̂, v̂0 and Ŷ.

3: Solve the SP with fixed x̂, λ̂, v̂0 to obtain the optimal value ZS P and corresponding solutions π̂ω, d̂ω.

4: If Ŷ ≤ ZS P, stop the algorithm; ZMP is the optimal value of the original program. Otherwise, add constraint

(36) to the MP, set ω = ω + 1, and return to step 2.

Note that althoughω in a SBM is the index of the scenarios, it is also used as the iteration index in algorithm

1. These two uses are consistent because in each iteration of algorithm 1, only one valid cut is added to the MP,

which uniquely corresponds to a scenario. As mentioned above, constraint (30) is enforced over all possible

values of d ∈ U. Thus, the question of whether the row generation algorithm can converge within finite steps

can be answered. Theorem 2 ensures convergence and is proven below.

Proposition 2. The row generation approach can converge within finite steps under the uncertainty setU.

Proof. Finite convergence can be guaranteed if each constraint (36) is associated with a vertex of the polyhedron

defined by U. Consider the minimization problem (25)–(28), which is the prototype of the SP. Assume that d

and π are the optimal solution with the optimal objective value Y(d,π) and that d is not associated with a

vertex. Hence, we have Y(d,π) ≥ Y(d′,π),∀d′ ∈ U. Then, fix π, and the problem is now a linear program,

which can be solved by a simplex algorithm. Hence, the associated solution d′ must correspond to a vertex.

The optimal objective value is denoted as Y(d′,π) and is no larger than Y(d,π). Hence, Y(d,π) = Y(d′,π),

so each objective value corresponds to a vertex of the polyhedron. Clearly, the number of vertices is finite, so

constraint (36) is enumerable and the algorithm can converge finitely. �

4.3. Row generation enhancement

To handle the large-scale problem, some remarks on implementing algorithm 1 are provided. First, we can

further tighten our model by rewriting, adding, and deleting some constraints. Observe that the value of di jt
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cannot reach its lower and upper bounds simultaneously. Thus, at least one of µi jt and µ
i jt

is larger than one.

We can tighten the above model by adding the following constraint:

µi jt + µi jt
≥ 1, ∀i, j ∈ N , t ∈ T . (53)

Furthermore, the big-M in some constraints can be replaced by an explicit value. For example, M in con-

straints (48) and (50) can be set to ∆dit based on the box region of di jt, where ∆di jt = di jt − d
i jt

. Theorem 2

shows that the optimal value of d can only correspond to one vertex of the polyhedron defined by U. Thus,

inequality (38) can become an equation, and constraint (41), or constraints (46) and (47), can be removed.

Second, to generate a constraint in step (4) of algorithm 1, it is not necessary to solve the optimization

problem optimally. Instead, the algorithm can add a cut whenever the MILP solver finds a feasible solution for

the SP such that the objective function is strictly less than Ŷ . Based on the associated solution, we can generate

a valid constraint in each iteration and save computational time. Furthermore, once a feasible solution is found,

we can use it as an initial point to solve the bilinear program (45) to a local optimum by a greedy heuristic

method. That is, we fix either d or π and optimize over the other iteratively. Since this method involves only

linear optimization, it can be solved quickly. In our implementation of this method, the last iteration is always

an optimization over d with fixed π. Hence, this ensures that algorithm 1 can always generate constraint (36)

at each iteration if the termination condition is unmet.

Third, similar to other row-generation-based approaches, algorithm 1 also faces the common problem that

the lower bound converges slowly. To address this problem, we employ the idea of partial Benders decomposi-

tion (Crainic et al., 2016). In detail, we generate a sample of d̃ and add the relevant constraints (32)-(34) into

the master problem. We define this problem as a partial master problem (PMP), which is now rewritten as:

[PMP] max
x,y,z,u,λ,v0,l∈X1

Y − c2

∑

k∈K

uk (54)

s.t. Constraints (32) − (34), (36)

A PMP can be considered as a SBM with constraint (36). A large number of samples added to the PMP

model cannot guarantee a great lower bound but may result in additional computational time for the PMP model.

We suggest adding a few samples corresponding to the vertexes of U; that is, the samples can be the solutions

of the following model:

di jt ∈ arg min

{

∑

i∈N

∑

j∈N

∑

t∈T

qi jtdi jt| d ∈ U

}

, (55)

where q is a random weight vector.

5. Numerical examples

In this section, we test our robust model and algorithm using an open data set. The data and parameter setting

descriptions are shown in section 5.1. To demonstrate the efficiency of our algorithm, section 5.2 compares the

algorithm with the SBM based on a small network, different parameter settings, and scenarios associated with

random demand. For a real-size network, section 5.3 investigates the performance of our robust model from

the perspective of the mean and worst-case performance with several parameter settings. All the numerical

experiments are implemented in Python 2.7 and CPLEX 12.7.1 on a machine with a 64-bit Windows 7 operating

system, eight Intel Core i7 CPUs at 3.6 GHz, and 16 GB RAM.

5.1. Description of the open data and parameter settings

This section presents the parameter settings for both a small network and a large real-size network. Since

the small network is generated based on the large network, we first describe the latter and then the former in

sections 5.1.1 and 5.1.2, respectively. Finally, section 5.1.3 gives the computational parameters of these two

networks.
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5.1.1. Input settings for the real-size network

The data in our case study are from Mobike in Dongcheng District, Beijing, China (https://biendata.com/

competition/mobike/). Dongcheng District is one of the central districts between east longitudes 116◦22′17′′

and 116◦26′46′′ and north latitudes 39◦51′26′′ and 39◦58′22′′ and has an area of 41.84 km2. In detail, these data

include actual trip information with seven fields (i.e., (1) order number, (2) user ID, (3) bike ID, (4) bike type,

(5) start time of the trip, (6) longitude and latitude of the trip origin, and (7) longitude and latitude of the trip

destination) from May 10 to May 24, 2017, except for May 14 and 17. In our study, only the last three fields are

useful in constructing the OD distribution. We further removed the weekend data (May 13, 20, and 21), rainy

day data (May 22) and days with too much data loss (May 23 and 24) to reduce data bias. Hence, there are only

seven days of data, with 103,730 records. Fig. 3(a) shows the demand per hour for the seven days. A large

proportion of the demand is from 7 am to 11 pm; thus, we omit other time periods. Since the size of the data set

is too small to precisely estimate the probability distribution of the demand, a robust model is appropriate. To

handle the problem, we show the parameter settings based on historical data below.
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Figure 3: Demand distribution for each period and the trip distance distribution for all OD pairs

• Setting the period

Since the records do not contain trip end time information, the travel time is estimated based on the average

bike-riding speed and the Euclidean distance between the origin and destination. Jensen et al. (2010) suggests

that the average speed of bike-riding is 13.5 to 15 km/h, and Mobike states that the average speed in each city is

different, ranging between 6.5km/h and 10km/h. Fig. 3(b) shows the Euclidean distance between the origin and

destination of all trips, most of which are in the range of 0.2km to 1.5km. The travel time for most trips is no

more than one hour. Note that both in this work and a large number of existing studies (Nair and Miller-Hooks,

2014; Frade and Ribeiro, 2015; Lu et al., 2017), an implicit assumption is that each bike can only be used one

time in a period. Hence, short period length can estimate the revenue more exactly.

However, it does not imply that the period length should be as short as possible. A short period length

results in a large number of decision periods and increases the computational time of our model. Based our

interview with the staff of a bike-sharing firm, many factors influence the period length, such as the operation

speed of bike loading/unloading, time spent on broken bike collection, and bike cleaning. Therefore, one period

of a rebalancing operation cannot be completed very fast, for example, one hour. Another interview shows

that each station should be visited by rebalancing vehicles at least three times per workday. Thus, we suggest

that the period length should vary from four to six hours. From a practical perspective, we recommend that

the period length and the related number of periods be determined based on realistic considerations, as well as

computational requirements.

Table 2 shows the computational time (seconds) and gaps (in brackets, %) of the deterministic model under

different numbers of periods. The maximum travel distance of rebalancing vehicles is dependent on the period

length, which is essentially the same as the number of periods; that is, lk = 10, 20 and 40, if |T | = 16, 8 and 4,

respectively. The other parameter settings are discussed in the following section. The model with 16 periods

results in suboptimal solutions with large gaps. Since the number of periods does not impact the procedure of

the algorithm, the period length in our study is set to two hours, and the total number of periods is |T | = 8.
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Table 2: Computational time and gaps (%) for the deterministic model with different numbers of periods

|T |
B1 = 20 B1 = 40

B2 = 250 B2 = 500 B2 = 750 B2 = 1000 B2 = 250 B2 = 500 B2 = 750 B2 = 1000

4 2.78 2.67 2.67 2.86 2.66 2.64 2.8 2.7

8 5.02 4.58 7200 (3.29) 7200 (2.79) 10.53 9.36 8.81 9.56

16 7200 (1.30) 7200 (22.94) 7200 (34.90) 7200 (33.77) 28.41 7200 (1.00) 7200 (4.38) 7200 (9.02)

• Setting the zone generation, OD pairs, and trip distance

Recall that each zone is actually a candidate station location. We generate a set of zonesN (see the circles in

Fig. 2) to capture potential bike locations. A mixed integer program model is designed to generate all candidate

bike locations. The detailed model is shown in appendix A. For the real-size network, we set |N| = 55, with a

total of 992 OD pairs in this region. The associated demand of OD pair (i, j) in period t and day h is denoted as

di jth. The service area is composed of several zones. Each service area contains a centre station. We employ the

Euclidean distance between the centres of service areas i and j to describe the corresponding distance li j (km). A

large number of OD pairs leads to a computational challenge. Observe that a small number of OD pairs occupy

a large proportion of the flows. We aim to use an auxiliary model under different numbers of OD pairs. Thus, we

can determine a proper size for the OD pair set based on the trade-off between the computational efficiency and

objective value. Specifically, we call this auxiliary model the deterministic model. The deterministic model has

the same model structure as our two-stage robust model in section 3.2, but d̃i jt, the right-hand side of constraint

(16), is replaced by the mean of d
i jt

and di jt, which is defined as follows:

di jt = max
h
{di jth}, ∀i, j ∈ N , t ∈ T , (56)

d
i jt
= min

h
{di jth}, ∀i, j ∈ N , t ∈ T . (57)

Various sizes of OD pair sets with the largest flows are another input. Table 3 and Fig. 4 show the compu-

tational time and optimal objective value of each instance associated with the deterministic model.

Table 3: Computational time for the deterministic model with various parameters

OD
B1 = 20 B1 = 40

B2 = 250 B2 = 500 B2 = 750 B2 = 1000 B2 = 250 B2 = 500 B2 = 750 B2 = 1000

100 4.23 2157.35 7200 7200 2.98 58.59 188.56 7200

150 3.32 32.78 7200 7200 3.32 137.73 2088.18 7200

200 3.2 14.68 7200 7200 3.4 1238.54 147.23 14.32

250 3.14 27.67 7200 7200 3.37 5.51 8.38 7.63

300 3.6 8.19 7200 7200 3.45 3.43 8.13 13.12

350 3.56 8.02 1652.47 7200 3.59 3.48 7.55 11.14

400 3.54 8.49 3489.21 7200 3.37 3.42 8.07 10.42

450 3.79 8.05 3359.22 7200 3.45 3.48 10.34 8.28

500 3.32 11.48 1743.72 7200 3.48 3.46 7.18 7.46

Although several instances do not converge within two hours, the maximum gap is 1.64%, and the solutions

are still acceptable. From the perspective of computational time, the interesting result is that a smaller number

of OD pairs does not always mean less computational time. A possible reason is that the demand in different

zones is dispersed so that the model has difficulty deciding which zones should be placed at a station. As the

size of the OD set increases, some zones may have greater demand than others. Zones with greater demand may

have a higher likelihood of becoming locations. Further increasing the number of OD pairs does not reduce

the computational time because of the existence of a substantial number of binary variables. Thus, a setting of

slightly more than 300 OD pairs is appropriate. The objective value increases in the number of OD pairs with

diminishing marginal returns. Comparing the objective values of 350 to 500 OD pairs, the maximal revenue

increment over these instances is only 5.16%. Hence, by jointly taking the computational effectiveness and

accuracy into account, we choose 350 OD pairs with the largest OD flows in our numerical experiments.

• Setting the budget, revenue, cost, maximal travel distance, and vehicle capacity

We set the revenue per trip f = 1 following the actual price used by Mobike, and the rebalancing cost per
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Figure 4: Objective value associated with various OD pairs and B2 under (a) B1 = 20 and (b) B1 = 40

bike c1i j is proportional to the travel distance li j. We set c1i j = 0.01li j. A relatively small value for the fixed

cost of each rebalancing vehicle c2 is 5. The number of rebalancing vehicles K and their capacities Q are 5

and 20, respectively. The maximal travel distance of vehicle lk is set to 20 km. Since each arc between a centre

and a station should be visited twice to ensure the connection of each route, this implies that each rebalancing

vehicle can travel at most 40 km in two hours. This setting is realistic, and it makes the service time at stations

sufficient. In addition, the vehicle speed in Beijing is usually less than 40km/h.

To analyse the correlation between the budget and the model performance, we use various combinations of

B1, B2, and C. The capacity of stations C lies in [50, 100], while the number of station locations ranges from 10

to 40. For the different numerical experiments, the number of bikes allocated B2 belongs to various sets. The

default set is [250, 500, 750, 1000].

• Setting the uncertainty set

The constructed uncertainty set in this study includes three parameters, i.e., support set d, OD set S and

minimal demand threshold Γst (see Eqs. (22)). Here, we present a guideline to set these parameters including

the method used in this study as well as other alternative methods.

First, we use the maximum and minimum sample values defined in Eqs. (56) and (57) to set the value of

d and d. Note that other approaches can be used to define the support set. In statistics and machine learning,

bootstrap method is widely used to estimate the confidence interval of small dataset. This method does not

depend on probability distribution of prior data, which is quite popular in some robust optimization literature

(He et al., 2020).

Second, the demand OD pairs in a subset s ∈ S could be highly correlated. In practice, the demands of the

OD pairs with the same origin are highly correlated over all periods. Hence, in our numerical study, we simplify

the inequality in set (22) as
∑

j∈N di jt ≥ Γit,∀i ∈ N , t ∈ T , i.e., |S| = |N|. In addition, other cluster approaches

can also be used to classify OD pairs into |S| groups.

Third, because |S| = |N|, we let Γit = Γst = (1 − α)
∑

j∈N di jt + α
∑

j∈N d
i jt

. As mentioned above, the mean

of d
i jt

and di jt is employed as the input of the deterministic model. Hence, α should be larger than 0.5, and we

assume it belongs to [0.6, 0.7, 0.8, 0.9] to analyze the sensitivity of Γit.

In practice, decision maker can set different Γst to solve the model. Optimal value can be obtained based

on simulation performance of solutions. Bootstrap is still an alternative method to estimate Γst. That is, we

employ bootstrap method to generate several samples of the total demand in terms of the OD pairs belonging to

set ODst, and then use the lower bound of these samples as Γst. Note that Γst describes the conservative level of

decision. Decreasing the value of Γst can guarantee a higher probability that the worst-case scenario belonging

to the uncertainty set (Bertsimas and Sim, 2004). However, the decision may be overconservative if Γst is quite

small, since the worst-case scenario will not likely to be realized.

• Model performance

To examine the performance of the robust solution, we usually compare the robust model with the determin-

istic model (defined above) in robust optimization by a simulation-based method. This method consists of three
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parts, i.e., sample generation, revenue simulation and performance comparison.

Regarding sample generation, we assume that d̃i jt follows a two-point distribution. The sampled di jt is gen-

erated equal to either d
i jt

or di jt according to the probabilities β and (1 − β), where β ∈ [0.2, 0.4, 0.6, 0.8] is

applied to simulate different real situations. For example, β = 0.2 may represent low demand under extreme

weather conditions, while β = 0.8 is associated with high demand influenced by favourable weather, events,

and festivals. The two-point distribution is widely used to perform out-of-sample evaluation of robust models

(Bertsimas and Sim, 2004; Zhang et al., 2019), as well as other simple distributions, such as the normal dis-

tribution and uniform distribution (Ben-Tal et al., 2013; He et al., 2020; Hao et al., 2020). Note that since the

true distribution is unknown, the correlation of random parameters is not considered in our sample generation

process.

After generating samples, the first-stage solutions of the robust and deterministic models (see Table 1) are

put into the simulation system. In detail, the first-stage solution consists of the station location, initial bike

allocation, and service area design. Thereby, the total revenue corresponding to each scenario is obtained.

We run 2,500 simulations for each β, which means that there are a total of 10,000 samples. Accordingly, we

obtain 10,000 simulation solutions and associated revenues for our two-stage robust and deterministic models,

respectively.

To compare the model performance, two metrics, namely, the worst-case performance and mean perfor-

mance, are constructed based on the following equations (58) – (59).

Worst-case performance =
min obj. of robust solution - min obj. of deterministic solution

min obj. of deterministic solution
× 100%, (58)

Mean performance =
mean obj. of deterministic solution - mean obj. of robust solution

mean obj. of deterministic solution
× 100%, (59)

where min obj. of robust solution is the minimal revenue over all 10,000 simulations corresponding to the robust

solution, while mean obj. of robust solution is the expected value of all simulated revenues corresponding to

the robust solution. The meanings of min obj. of deterministic solution and mean obj. of deterministic solution

follow similar logic.

These two metrics compare the simulated revenues between the robust and deterministic models from dif-

ferent perspectives. Since the robust model aims to optimize the worst-case revenue associated with a given

uncertainty set, the high out-of-sample worst-case performance exhibits a high robustness and a satisfactory

improvement in the lower bound of revenue. Several studies also adopt the out-of-sample worst-case objective

value to describe the model performance (Ben-Tal et al., 2013) or use a similar metric such as the 95% (99%)

Value at Risk (VaR, Jaillet et al., 2016; Qi et al. (2016)). The mean performance compares the average rev-

enue between two models (Jaillet et al., 2016; Hao et al., 2020). The solution of the robust model with a low

mean performance reflects high operational capability of a bike-sharing system. Note that other metrics, such

as standard deviation (STD) of performance (Ben-Tal et al., 2004; Jaillet et al., 2016; Hao et al., 2020), price

of robustness (Ben-Tal et al., 2004) and probability violation (Bertsimas and Sim, 2004) can also be used to

evaluate model performance.

5.1.2. Input settings for the small network

Numerical experiments associated with a small network are constructed based on the real-size network

above. The topological structure of this network is composed of 10 zones associated with the 10 largest OD

pairs. The first two (or three or four) periods (i.e., T ∈ {2, 3, 4}) are considered. Thus, there are a total of 56 OD

pairs, and the part of this group with the largest flows is used to test the performance of our algorithm; that is,

the number of OD pairs is set to 20, 40, and 56. Additionally, the numbers of stations and initial bikes allocated

are 5 and 100, respectively. Regarding the parameters for rebalancing vehicles, we let K = 1 and Q = 20. The

maximal travel distance of vehicles lk is not restricted, which implies that constraints (5)–(9) are unnecessary.

For the inequality in the uncertainty set (22), we adopt a single inequality including all OD pairs; that is,
∑

(i, j)∈OD di jt ≥ Γt,∀t ∈ T . The value of α is 0.8. Other parameter settings are similar to the settings in section

5.1.1.

To verify the efficiency of the algorithm, we compare it to the SBM under a variety of scenarios. To

generate each scenario, the worst-case situations correspond to the vertexes of polyhedronU. The scenarios are

the solutions obtained by model (55) with different values for q.

20



In contrast to the two-stage stochastic program, which normally aims to optimize the expected objective

function, the optimal objective value of our model does not converge as the number of scenarios increases.

Hence, a large size of the scenario set Ω used in the scenario-based model is necessary. The size of this set

varies from 100 to 500. However, compared with the total number of scenarios, these generated scenarios are

still too small. Further increasing the number of scenarios will make the model computationally intractable.

Therefore, to avoid the bias incurred by the scenario generation process, each scenario-based instance will be

solved and repeatedly associated with five different sets of scenarios.

5.1.3. Computation-related parameters

For the small network, we do not limit the maximum computational time for scenario-based or robust mod-

els, whereas for the large real-size network, obtaining an optimal solution of the subproblem is time consuming.

Based on the algorithmic process, we employ a feasible solution satisfying Ŷ > ZS P to construct a valid cut

for the master problem. Thus, we set the maximum limited time for solving the subproblem to 100 seconds,

which is enough to find a near-optimal solution with a small gap. To further improve performance, the optimal

solution of the associated deterministic model is used as a warm start. Nevertheless, obtaining an optimal solu-

tion for such a large network is difficult. Instead, we aim to obtain the near-optimal solution that improves the

worst-case performance of the deterministic model solution as much as possible. Thus, the maximum number of

iterations is set to 100. The results demonstrate that the second-best approach can still obtain high-quality solu-

tions and a trend of the worst-case performance corresponding to different parameter settings. For convenience,

we summarize all the parameter settings in sections 5.1.1 to 5.1.3 in Table 4.

Table 4: Parameter settings for the robust model and the algorithm for two networks

Parameter Small instance Large instance

N 10 55

Number of OD pairs [20,40,56] 350

K 1 5

T [2,3,4] 8

Q 20 20

C 50 [50,100]

B1 5 [10,20,30,40]

B2 100 [250, 500, 750, 1000] in section 5.3.2

[0.25B1C, 0.5B1C, 0.75B1C] in section 5.3.2

[250, 500, 750, 1000, 1250, 1500] in section 5.3.3, 5.3.4

[750, 1000, 1250, 1500] in section 5.3.5, 5.3.6

c1i j 0.01li j 0.01li j

c2 5 5

f 1 1

lk No limit 20

|S| 1 |N|

α 0.8 [0.6, 0.7, 0.8, 0.9]

Maximum computational

time of subproblem

No limit 100 seconds

Maximum number

of iteration

No limit 100

5.2. Algorithm performance in a small network

In this section, we conduct numerical experiments for a small network. The results show the model perfor-

mance and the computational efficiency of our model compared with the SBM. The objective value and detailed

computational time information are shown in Tables 5–7.

For a stochastic program, it is sufficient to generate a large number of scenarios to determine an objective

value that is close to the optimum. Hence, we use different sizes of the scenario set to test the performance

of the SBM. However, our row generation approach does not need scenarios initially and generates valid cuts

(associated with scenarios) to obtain the optimal solutions during the solution procedure. To further improve

the computational efficiency of our approach, rather than adopting the primal MP, we use the PMP model (see

section 4.3) with one and five initial scenarios. Table 5 shows the average objective values, deviation between

the average and minimum objective values, and deviation between the average and maximum objective values

corresponding to the SBM over five different sets of scenarios. The repeated experiments show the influence of

the combination of scenarios on the objective value and the computational time. These three values are shown
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Table 5: The objective values in the scenario-based model and row generation algorithm

|OD| |T |

SBM

RG
Ω = 100 Ω = 200 Ω = 300 Ω = 400 Ω = 500

20 2 (195.0000, 0.0000, 0.0000) (195.0000, 0.0000, 0.0000) (195.0000, 0.0000, 0.0000) (195.0000, 0.0000, 0.0000) (195.0000, 0.0000, 0.0000) 195.0000

40 2 (200.0000, 0.0000, 0.0000) (200.0000, 0.0000, 0.0000) (200.0000, 0.0000, 0.0000) (200.0000, 0.0000, 0.0000) (200.0000, 0.0000, 0.0000) 200.0000

56 2 (200.0000, 0.0000, 0.0000) (200.0000, 0.0000, 0.0000) (200.0000, 0.0000, 0.0000) (200.0000, 0.0000, 0.0000) (200.0000, 0.0000, 0.0000) 200.0000

20 3 (292.9811, -0.1661, 0.2991) (292.7508, -0.0148, 0.0395) (292.7342, -0.0086, 0.0154) (292.6992, -0.0782, 0.1200) (292.6868, -0.0656, 0.1198) 292.2749

40 3 (293.1886, -0.1840, 0.4348) (292.9921, -0.0906, 0.2638) (292.7831, -0.1478, 0.2662) (292.7831, -0.1478, 0.2662) (292.7353, -0.1000, 0.2068) 292.5002

56 3 (293.1729, -0.0085, 0.0130) (293.0244, -0.0404, 0.0733) (292.9669, -0.0477, 0.1381) (292.9398, -0.0252, 0.0711) (292.9194, -0.0660, 0.1323) 292.5002

20 4 (368.4397, -2.5255, 7.4946) (365.6615, 0.0000, 0.0000) (365.6615, 0.0000, 0.0000) (365.6615, 0.0000, 0.0000) (365.6615, 0.0000, 0.0000) 365.6615

40 4 (371.2100, -2.0151, 4.8187) (367.4155, -0.1932, 0.4795) (367.4155, -0.1932, 0.4795) (367.3678, -0.1455, 0.3364) (367.3678, -0.1455, 0.3364) 367.2223

56 4 (369.3321, -1.0546, 3.0932) (368.3993, -0.1218, 0.2949) (367.8996, -0.2249, 0.6027) (367.7687, -0.1963, 0.4148) (367.7687, -0.1963, 0.4148) 367.2223

RG: Row generation approach

in brackets in Table 5. The optimal objective value of the robust model solved using a row generation algorithm

1 is shown in the last column (RG).

Although four out of a total of nine instances reach the optimal objective values by increasing the number

of scenarios, the convergence of the scenario-based model cannot be ensured. When |T | = 2, the SBM is too

simple to solve. The optimal solutions are obtained even without a rebalancing operation, which is the case for

|OD| = 40 and 56. As |T | increases, both the number of OD demands and the dispersion degree of the bike

distribution become large. Thus, the rebalancing operation is necessary to improve revenue, which increases the

computational complexity of the SBM. Hence, the objective value cannot easily converge to the optimal value.

We also observe that the solutions for the instances of |OD| ∈ {40, 56} and T ∈ {3, 4} are the same because the

demand quantity is greater than the number of bikes allocated, and the redundant demand cannot be satisfied.

Regarding the computational time, Table 6 displays the average and the computational time interval for the

scenario-based model over five repeated experiments. For each instance with a given number of scenarios, the

gap between the minimum and maximum computational time is large in the five repeated experiments, which

implies that the computational efficiency of solving the SBM depends highly on the composition of the scenario

sets. Furthermore, the computational time increases in the number of scenarios and decision periods. Observe

that when |T | = 2, the computational time decreases as |OD| increases. The reason is that there is substantial

demand, so the bikes already have a full load without rebalancing. As stated above, the model can be solved

easily in this situation. However, when |T | > 2, increasing |OD|will inevitably increase the computational time.

Table 6 also lists the total computational time for the row generation algorithm. The efficiency of both of the

settings of our algorithm is better than that in the scenario-based model. In addition, increasing the number of

scenarios in the PMP model reduces the total computational time because increasing the number of scenarios

in the PMP model will bring a requirement for a small number of iterations and the total computational time

for solving the SP, which accelerates the computation (see, Table 7). This finding confirms that employing the

PMP model with a suitable number of scenarios can improve the computational efficiency.

Table 6: The computational time of the SBM and row generation algorithm

|OD| |T |

SBM RG

Ω = 100 Ω = 200 Ω = 300 Ω = 400 Ω = 500 Ω = 1 Ω = 5

20 2 (20.73, -3.23, 2.73) (73.15, -16.49, 13.45) (146.42, -20.67, 31.33) (300.57, -113.43, 104.50) (535.09, -62.24, 100.97) 70.08 17.84

40 2 (2.62, -0.23, 0.14) (9.59, -0.70, 0.49) (22.04, -1.06, 1.03) (38.64, -1.04, 1.65) (67.88, -4.79, 3.68) 30.23 5.06

56 2 (2.52, -0.15, 0.16) (9.26, -0.20, 0.33) (21.84, -0.84, 1.03) (41.65, -1.87, 1.75) (73.37, -7.33, 7.53) 5.07 5.09

20 3 (179.67, -23.12, 14.05) (678.43, -60.20, 56.57) (1540.18, -150.57, 284.53) (2925.80, -654.25, 766.17) (4517.19, -591.88, 1058.64) 613.74 212.53

40 3 (315.29, -37.11, 21.31) (1439.44, -41.70, 30.95) (3404.60, -200.51, 207.66) (6174.02, -422.61, 577.39) (9926.88, -583.96, 696.68) 1408.97 305.77

56 3 (353.98, -14.91, 23.28) (1287.59, -94.53, 147.65) (3045.51, -164.30, 110.62) (6199.13, -80.10, 66.63) (10462.38, -1268.24, 1066.48) 1026.25 914.99

20 4 (341.38, -35.29, 50.04) (1403.73, -350.01, 433.49) (3082.88, -379.30, 361.89) (5830.57, -903.89, 1091.21) (12232.29, -832.17, 916.44) 704.61 315.43

40 4 (720.61, -96.28, 167.50) (3590.96, -176.24, 92.15) (8362.28, -1122.18, 1824.01) (18145.36, -2192.18, 2656.14) (31700.03, -2209.04, 3571.92) 878.79 317.82

56 4 (865.56, -73.61, 57.23) (3440.20, -476.87, 480.12) (9014.52, -2074.50, 1242.36) (17916.89, -1504.85, 1735.73) (27714.07, -4063.05, 4191.60) 851.63 564.36

5.3. Model performance with a real-size network

In this section, we use a real-size network to show the distribution of the station locations and the service

areas. Then, we investigate the performance of a robust model associated with different parameter settings,

including the number of constructed stations (B1), the number of allocated bikes (B2), and the maximal capacity

of stations (C). The results are shown in sections 5.3.2 and 5.3.3. Furthermore, section 5.3.4 shows the per-

formance under various conservation levels Γ. Finally, we compare our deterministic and robust models with

some benchmark models in sections 5.3.5 and 5.3.6.
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Table 7: The number of iterations (Iter.) and the proportion of computational time for the SP (Time of SP) of the row generation algorithm

Path T
Iter. Time of SP (%)

Ω = 1 Ω = 5 Ω = 1 Ω = 5

20 2 17 4 97.87 89.35

40 2 6 1 99.57 98.81

56 2 1 1 99.01 98.23

20 3 116 36 94.66 84.82

40 3 262 48 92.50 78.64

56 3 191 127 93.28 69.54

20 4 132 50 93.82 79.39

40 4 164 44 93.29 69.41

56 4 160 74 94.19 65.76

5.3.1. The distribution of the station locations and the service areas

In this section, a realistic example is provided to show the results of the installed bike stations and the

associated service area design. In this specific computational experiment, the number of stations allowed is 30,

and the initial number of allocated bikes is 1000. There are some zones that are not covered by stations, and

the demand in these zones is lost. In addition, we see that not all stations are covered by a service area (see

the zones marked by shadow lines). This means that there is no need to perform the rebalancing operation at

these stations because the inventories in these stations are sufficient to serve daily demand, and the rebalancing

operation can be performed at night.

Furthermore, we observe that the stations in a service area may be dispersive (see the service areas high-

lighted by pink and orange). This indicates that zones with stations installed in the same service area may not

be adjacent. A possible reason for this is that adjacent zones may have similar bike supply levels; i.e., these sta-

tions may all be undersupplied or oversupplied. Hence, the rebalancing operation between these stations cannot

improve bike usage and satisfy a greater demand. On the other hand, if, for example, the rebalancing cost is

very high compared with that of other restrictions, the ranges of all service areas will decrease, and the zones

with stations installed in each service area will become closer. Hence, we recommend that when designing

vehicle service areas, decision makers should consider not only the geographical distribution of stations and the

values of parameters such as the rebalancing cost, maximum travel distance of vehicles and number of vehicles

but also the associated supply and demand levels of bikes at these stations.

Zone

Boundary

Zone with installed station that

is not covered by service area

Zone with installed station that

is covered by service area

Figure 5: The distributions of station locations and service areas
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5.3.2. The impact of B1 and B2

Let B1 ∈ {10, 20, 30, 40}, B2 ∈ {250, 500, 750, 1000}, and C = 100. The relationship between the numbers

of stations and bikes and the performance of the robust model is shown in Fig. 6. The mean performance of

the robust model solutions is relatively low. However, the worst-case performance is highly dependent on the

numbers of both the station locations and the initial bikes allocated. In addition, for a given number of stations

B1, the worst-case performance trends with regard to different numbers of bikes B2 are highly inconsistent.
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Figure 6: Performance of robust solutions with different values of B1 and B2 for (a) the mean performance and (b) the worst-case perfor-

mance

To investigate the relationship between the worst-case performance and the numbers of stations and bikes,

we define the budget ratio B2/B1, which represents the mean number of bikes at each station. We show the

relationship between the worst-case performance and the budget ratio in Fig. 7(a). A Gaussian fitting curve

is generated accordingly. The adjusted R-square is equal to 0.8891, which indicates that the curve reflects the

relationship well. A practical guide to this curve is that the worst-case performance is not significant when the

budget ratio is at a low or high level. When bikes are oversupplied, most of the demand can be satisfied even

in the worst-case situation. Following the same logic, when bikes are undersupplied, even given low demand,

corresponding to the worst-case situation, they cannot be serviced completely. Both cases show that there is

little benefit to considering the robustness of the system. By comparison, the worst-case performance becomes

significant when the budget ratio is at the mid-level. In this case, there are some bikes in the system but not

enough, and bike firms must make decisions to assign bikes to different stations to improve the bike use and

total revenue.
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Figure 7: Worst-case performance of the robust solutions with a budget ratio

It appears that the peak worst-case performance of these instances lies in the range of 20 to 30 for the budget

ratio. Further tests setting B2 = [0.25B1C, 0.5B1C, 0.75B1C] also show similar results (see Fig. 7(b)). However,

this peak may also depend on the detailed topological structure of the network and associated demands. We will

study this peak from the perspective of theoretical and numerical analyses in future research.
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Besides the model performance, we also focus on the distribution of stations in all 16 instances, both for the

deterministic and robust models, as shown in Fig. 8. For convenience, we display the mean and lower bounds

of the inflows and outflows when analysing the relationship between the demand and the station locations. The

deterministic model selects 42 zones, five of which are always located by station in all instances. The selected

zones are likely to have a substantial average demand, whereas the robust solutions locate stations in 45 zones,

and 10 of them are selected in all instances. The frequencies for the station locations in some zones are quite

different in the two models. For example, the stations are usually located in zones 6, 42, and 43 when employing

the deterministic model but less frequently in the robust model. The reason is that more of the demand in these

zones is intra-zonal. That is, the bikes in these zones can efficiently meet the local demand but reduce the

negotiability of bikes, which causes lower bike utilization and decreases revenue when demand is low. Hence,

we believe that the deterministic solutions focus on zones with greater demand, while the robust solution tends

to assign stations to the zones with greater inter-zonal demand.
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Figure 8: Distribution of station locations over all tests for (a) the deterministic model and (b) the robust model

5.3.3. The impact of the capacity parameters

The impact of the capacity on the worst-case performance is shown in Fig. 9. We conduct numerical

experiments on two different capacities (C = 50 and C = 100) and different total numbers of bikes. The number

of stations is 30. In general, the worst-case performance with regard to different total numbers of bikes shows a

similar trend to its mean performance counterpart. The two performance indicators both increase first and then

decrease except for the cases of C = 100 and B1 = 1500. The best worst-case performance corresponds to a

total number of bikes of approximately 750 or 1,000. This result indicates that different capacity levels have

similar impacts on the worst-case performance. In addition, these results show that the robust model works well

when the number of bikes is at a middle level.
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Figure 9: Performance associated with various station capacities for (a) the mean performance and (b) the worst-case performance

5.3.4. The impact of conservation levels

After analyzing the impact of some parameters (B1, B2 and C) on model performance, in this section, we

discuss the impact of conservation levels. The value of Γ represents the conservation level of the bike-sharing

firms under uncertainty. The larger the value of α is, the more conservative the decision makers are. The

relationship between α and Γ is referred to as the setting of the uncertainty set in section 5.1.1. We set the

parameters B1 = 30, B2 ∈ {250, 500, 750, 1000, 1250, 1500}, and C = 100, and the value of α ranges from 0.6

to 0.9 with an interval step of 0.1. Then, the associated mean and worst-case performance are shown in Fig. 10.

The influence of different conservation levels on the worst-case performance exhibits a similar trend to that

of the total number of bikes. In general, the value of α does not cause a significant difference in the curve

trend in Fig. 10(b). However, a large α worsens the mean performance when the total number of bikes is large.

The managerial insights supported by these results are that firms should not be too pessimistic about demand

uncertainty, which causes a low-yield strategic scheme without a significant improvement in robustness. Hence,

decision makers should not consider an overly conservative demand level to ensure a high average revenue.

Relative to the budget ratio (B2/B1), which has a considerable influence on the tendency of the worst-case

performance, the conservation level has a greater impact on the magnitude of the worst-case performance.
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Figure 10: Performance of robust solutions with different conservation levels for (a) the mean performance and (b) the worst-case perfor-

mance

5.3.5. Integration vs. separation

In this section, we analyze the necessity of jointly optimizing the station location and service area design.

Hence, we compare our integrated deterministic model with the benchmark model that determines the station

location and service area design separately.

In detail, we consider two benchmark models that are related to two sequential decision phases. In the first

phase, we optimize the station location without the relocation restriction by the service areas. This model is
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named M1. M1 is similar to our deterministic model without constraints (4)–(14) (see the following model). It

means that the rebalance operation can be conducted between any two stations.

max f
∑

i∈N

∑

j∈N

∑

t∈T

wi jt −
∑

i∈N

∑

j∈N

∑

t∈T

c1i jri jt

s.t. (1) − (3), (15) − (17)

ri jt ≤ Q,∀i, j ∈ N , t ∈ T ,

x ∈ {0, 1}, v, r,w ≥ 0.

Clearly, the objective value of the M1 is larger than that of our deterministic model because of the fewer

constraints imposed. Fig. 11 shows that M1 overestimates the true revenue of the system, especially when the

number of bikes is large (e.g., B2 = 1500).

In the second phase, we employ a maximal covering facility location model (namely, M2(K)) to determine K

service areas of the stations chosen by model M1. This model is reasonable since the stations with large demand

could have high priority to be covered by rebalancing vehicles. The maximal travel distance in a service area is

also restricted by a threshold lk. We re-estimate the revenue of the solutions solved by M1 with the distributions

of service areas obtained from M2 (see the dotted lines in Fig. 11). The results show that using the service areas

designed by M2 will restrict the fleet rebalancing operation and reduce the objective value of M1 to less than

that of our model when the number of bikes is large. Moreover, the results of M2 demonstrate that optimizing

the number and distribution of service areas can be more important than providing more bikes.
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Figure 11: Relative revenue between benchmark approach and our deterministic model under (a) C = 50 and (b) C = 100

5.3.6. Comparison between robust optimization and stochastic program

From the perspective of the methodology, the stochastic program and robust optimization approach are both

powerful modeling tools in the context of uncertainty. In this section, we compare the performance between our

robust model and its stochastic program counterpart. The two-stage stochastic program model aims to maximize

the expected revenue based on our seven-day demand data (i.e., we use seven scenarios in the stochastic model).

These real data are also used to construct the uncertainty set for robust optimization. The conservation level α

of our robust model is set to 0.7. The out-of-sample revenues of the robust and stochastic models are generated

by the simulation process in section 5.1.1. Fig. 12 exhibits the relative ratios of the mean, STD and worst-case

between the out-of-sample revenues of the robust model and the stochastic model. It implies that the robust

model can ensure higher mean and worst-case revenue than the stochastic model with greater revenue stability.

That is, compared with that of the stochastic model, the robust model can slightly increase the mean revenue by

0.14%-0.7%, improve the worst-case revenue by 0.1%-1.7%, and significantly decrease the STD by 4.6%-8.6%.

The reason is that the stochastic model constructed with a small number of scenarios will overfit the in-sample

revenue, and the solutions can have both low robustness and low out-of-sample revenue. Hence, the robust

optimization approach is reasonable to optimize the system effectiveness under the condition that sufficient

reliable data are not available.
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Figure 12: Relative ratios of the mean, STD and worst-case between the out-of-sample revenues of the robust model and the stochastic

model

6. Conclusion

In our study, we investigate a station location problem for bike-sharing systems integrated with rebalancing

vehicle scheduling. Our goal is to maximize the daily revenue minus the rebalancing cost under a given num-

ber of stations and bikes. Existing studies on station location problems typically consider the quantity of the

rebalancing operation with the flow conservation constraint or do not consider it at all. Our work determines the

positions of stations, their initial inventories, and the service areas corresponding to the rebalancing vehicles.

Each service area with a limited maximum radius is composed of several stations. We assume that adopting

service areas to depict the rebalancing operation satisfies the requirements of the firms’ management.

Because of the widespread phenomena of data loss, small data sizes, and data errors, the ambiguity of de-

mand impedes the optimal decision process. Hence, we define an uncertainty set to describe uncertain demand

and employ a two-stage robust framework to solve this problem. However, the associated deterministic equiv-

alent formulation is an intractable semi-infinite model. To solve this model efficiently, the primal model is first

separated into two parts: the master problem and the subproblem. Then, a customized row generation approach

is used to solve these two problems iteratively and obtain the optimal solutions to the original model.

We design extensive numerical experiments to verify the efficiency of our model and algorithm. We use

the instances in the small network to perform our row-generation algorithm. Compared with a scenario-based

model, our algorithm obtains better solutions in less computational time. In addition, we design several instances

based on a large real-size network to test the performance of the robust solutions. In contrast to the solutions

of the deterministic model, the associated results of the robust solutions reveal that there exists an approximate

10% worst-case performance improvement with a small cost in terms of the mean performance when the budget

ratio (i.e., the average number of bikes per station) is mid-level. However, if the systems have a much smaller

or larger budget ratio, the robustness of the strategic scheme using the robust model is no different than that

using the deterministic model. In addition, a dispersive distribution of stations in each service area implies that

the optimal fleet rebalancing operation does not have to be confined to one geographical area. Furthermore,

our robust model exhibits better performance (e.g., larger mean and worst-case revenues and a higher revenue

stability) than the stochastic model with a small data set.

There are several further studies that can be conducted in the future. (i) Although the solutions to the

large-scale problem are satisfactory, they are not optimal. A more effective algorithm to handle large-scale

network problems is needed. (ii) A more general description of the uncertainty set is required, such as the

mean-variance information. (iii) Concerning the methodology, two-stage robust optimization can be used in

other transportation problems. (iv) Problem-wise, a more general model that there are multiple stations in one

zone could be considered. Therefore, one more level of optimization should be added between stations and

zones for both flow assignment and rebalancing operations. Related computation problem should be solved as

well.
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Appendix A. Zone generation procedure

In appendix A, we show the zone generation procedure. The result of this procedure is the input OD pair

information for our model. Note that the notation systems in appendix A are independent of those in the main

body of our paper.

The actual bike-sharing system data reveal highly dispersive distributions of demand points and OD pairs.

Using many grids to cover all demand is a common practice to generate OD pairs. In our study, we rasterize

the enclosing rectangle of Dongcheng District, Beijing, China, into 40 × 20 rectangular grids, with 483 such

grids covering the entire region. Thus, there are over 10,000 OD pairs over seven days in the investigated

region. The maximum flow of all the OD pairs is less than 50. This feature is derived from the free-floating

mobility of Mobike. Using these data as the input for our model immediately results in consuming substantial

computational time. To overcome this difficulty, a mathematical programming model is proposed to merge the

grids into a larger zone so that fewer OD pairs are generated. In the meantime, this procedure aims to reduce the

loss of OD information. The merged grids are called a zone. Customers in each zone are assumed to access the

station in the zone. The size relationship among these concepts is “point < grid < zone < region”. The principles

of the zone generation procedure are discussed below before providing the mathematical programming model.

(i) Each zone has a size limit. To ensure that customers can only access systems in their own zone, the

maximum radius of each zone should be less than the threshold. Otherwise, the cost of searching for available

bikes in a zone could be high.

(ii) Each zone should ensure its connectivity. For a specific zone, all the grids in the zone should be con-

nected.

(iii) The OD information loss within all zones should be minimal. By merging the grids in the zone, it is

inevitable that some OD information will be lost within each zone. Therefore, a basic strategy is to restrict these

losses.

There are many approaches that can be used to conduct the merge operation. In our study, we propose

an optimization-based approach. The mathematical programming model is created in terms of the above-

mentioned principles.

(i) For each zone, we design a concept of the “centre”. The centre corresponds to a grid in the zone. The

distance between each grid in this zone and the centre should be less than or equal to the threshold. The distance

is defined as lik between grids i and k. In our study, the Manhattan distance is adopted. Note that other distance

measures can also be used.

(ii) Connectivity constraints should be mathematically guaranteed. A concept of “neighbour” is introduced.

The neighbour grid set of grid i is defined as the grids that have a common edge with grid i. Hence, a rectangular

grid has at most four neighbours. If grid k is the centre grid of a zone and grid i is also in this zone, there must

exist a neighbour of i, denoted as j, also in this zone. Otherwise, grid i is not connected to grid k, so the zone

itself is not connected. Hence, grid j is named the upstream grid of grid i if grid j satisfies the criteria that (a)

it is in the neighbour set of i, (b) l jk = lik − 1, and (c) grids i and j are in the same zone.

(iii) It is relatively easy to implement the third principle by limiting the total demand in the same origins

and destinations under a given threshold. The idea of the mathematical formulations is omitted here.

We can now formulate the mixed integer programming model. Let N ′ be a set of grids and Si be the

neighbour set of grid i. Di j is defined as the travel demand from grid i to j. We define the binary variable xik as

1 if grid i is in the same zone as grid k, where k is the centre of the zone, and 0 otherwise. Thus, xii = 1 if i is a

centre. There are two groups of additional decision variables, yi jk and zi jk. yi jk equals 1 if grid j is the upstream

grid of i in the same zone as centre k and 0 otherwise. The decision variable zi jk is used to state whether grids

i and j are in the same zone as the centre of grid k. Our objective is to minimize the number of zones (i.e., the

sum of xii) without losing too much trip information. The formulation is as follows:
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min
∑

i∈N ′

xii (60)

s.t.
∑

k∈N ′

xik = 1, ∀i ∈ N ′, (61)

xik ≤ xkk, ∀i, k ∈ N ′, (62)

zi jk ≤ xik, ∀i, j, k ∈ N ′, (63)

zi jk ≤ x jk, ∀i, j, k ∈ N ′, (64)

zi jk ≥ xik + x jk − 1, ∀i, j, k ∈ N ′, (65)
∑

k∈N ′

∑

i∈N ′

∑

j∈N ′

Di jci jk ≤ γ
′
∑

i∈N ′

∑

j∈N ′

Di j, (66)

M(1 − yi jk) ≥ l jk − lik + 1, ∀i, k ∈ N ′, i , k, j ∈ Si, (67)

yi jk ≤ x jk,∀i, k ∈ N ′, i , k, ∀ j ∈ Si, (68)
∑

j∈Si

yi jk = xik, ∀i, k ∈ N ′, i , k, (69)

li jzi jk ≤ lk, ∀i, j, k ∈ N ′, (70)

xik, yi jk, zi jk ∈ {0, 1}, ∀i, j, k ∈ N ′. (71)

Constraint (61) restricts each grid so that it can only belong to a single zone, and constraint (62) limits the

relationship between grid i and centre k. Constraints (63)–(65) define whether grids i and j are in the same zone

as centre k (zi jk = 1) or not (zi jk = 0). Constraint (66) ensures that the total OD flow loss does not exceed the

threshold. Constraints (67)–(69) ensure the connectivity of each zone.

For a given grid i in a zone with centre k, k , i, constraints (68) and (69) ensure that there exists a neighbour

grid j of i and that that grid is in the same zone as i. Constraint (67) states that when the value of the right-hand

side is 0, grid j is the upstream grid of grid i. Hence, all grids, except the centre k of the zone, must contain

an upstream grid so that the zone is connected. Constraint (70) restricts the size of the area of each zone. This

constraint accords with the fact that the service radii of bike-sharing stations cannot be large. Constraint (71) is

a binary constraint.

In practice, solving the large-scale problem using a solver is time-consuming. We first separate the region

into 10 small-scale subregions, each of which includes approximately 50 grids, and then solve them one by

one. The result is composed of 55 zones in the region based on the parameters γ′ = 0.15 and lk = 5. The zone

distribution is shown in Fig. 13.
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Figure 13: Zone distribution in Dongcheng District
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