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Abstract

After a disaster, often roads are damaged and blocked, hindering accessibility for relief efforts. It is

essential to dispatch work teams to restore the blocked roads by clearance or repair operations. With the goal

of enabling access between critical locations in the disaster area in shortest time, we propose algorithms that

determine the schedule and routes of multiple work teams. We minimize the total latency of reaching the

critical locations, where the latency of a location is defined as the time it takes from the start of the operation

until its first visit by one of the work teams. Coordination among the teams is needed since some blocked

edges might be opened by a certain team and utilized by other teams later on. First, we develop an exact

mathematical model that handles the coordination requirement. After observing the intractability of this

formulation, we introduce two heuristic methods and a lower bounding procedure. In the first method, we

develop a mathematical model based on a novel multi-level network representation that yields solutions with

disjoint paths. Given that it does not coordinate the teams, we present a matheuristic based on a cluster-first-

route-second approach embedded into a local search algorithm together with an additional coordination step

to obtain alternative solutions with higher quality and in a shorter time. We test our heuristics on data sets

coming from a real network from the literature (180 instances) and randomly generated ones (640 instances)

and observe the superiority of the solutions obtained by incorporation of coordination.

Keywords: Humanitarian logistics; disaster response; road clearance; network restoration; minimum

latency; matheuristic

1. Introduction

Natural disasters are known to damage infrastructure systems, which in turn obstructs the relief efforts.

Often, road and highway segments, bridges, and viaducts get damaged to the degree of rendering these

structures impassable by vehicles. In addition, debris of collapsed buildings, fallen trees, displaced cars and

flooding commonly cause disconnectedness in the road networks leading to the isolation of people in need

of immediate help or casualty locations. Moreover, this situation impedes accessibility to critical locations
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such as hospitals, relief supply facilities, local points of dispense and transportation hubs, that are strategic

for the success of the relief efforts. Therefore, one of the first immediate response actions taken to mitigate

the negative impacts of a disaster is to open the roads on the routes between these critical locations. While

many road segments may be blocked or damaged, restoring a group of them is crucial for the first-responders

to reach people in need. Therefore, which blocked roads to open in the immediate stage should be selected

carefully and the routes of the work teams must be determined to reach each critical location in the shortest

time. Prior to dispatching the work teams, information regarding the blocked roads should be obtained. This

can be done by means of drones, helicopters, satellite images or volunteers. With this information, clearance

or repair, that is, the total restoration time of a road segment or structure can be estimated, and as a result,

the routes of the work teams can be optimized.

We define the road restoration problem as follows. We represent the roadway by a network and the

so-called “critical locations” constitute a subset of nodes that should be reached by the work teams. An edge

represents a connection between two nodes via a path. Each edge has a traversal time. A subset of the edges

are “blocked” and an additional “restoration time” is required to complete the necessary tasks to make each

blocked edge operational. An edge that is restored can be traversed by the same or other teams afterwards.

Each work team is initially located at a depot node. The optimal routes should specify which roads should

be restored by which work team in what order, so that each critical node is accessed by a work team. Since

timely access is of utmost importance for the success of first response operations, we select the objective of

the optimization problem as minimizing the summation of the latency of all the critical nodes. The latency

of a critical node is defined as the time elapsed between the beginning of the operation and the time when

the corresponding critical node is reached for the first time. As such, the latency of a critical node is the

waiting time until that node is reached and our goal is to make the waiting times of the critical nodes as

small as possible, rather than just the total time of the operation. Ajam et al. (2019), Berktaş et al. (2016),

Sahin et al. (2016) studied the problem of minimizing total latency of the critical nodes with a single work

team under different problem names. Ajam et al. (2019) called this problem the Minimum Total Latency

in Road Clearance Problem (ML-RCP) and provided an example to clarify why minimizing total latency is

more preferable over alternative objectives such as minimizing the makespan.

We study a generalization of the ML-RCP with multiple work teams and call the addressed problem the

Multiple Team Minimum Latency in Road Clearance Problem (MML-RCP). An important distinction is that

in the case with a single work team, coordination concerns regarding traversal of blocked edges by different

teams is not an issue, whereas in our problem multiple teams navigate the same network. Coordination

among the teams is needed since some blocked edges might be restored by a certain team and utilized by

other teams later on without spending time to restore it. Clearly, having multiple work teams working in

parallel gives an opportunity to minimize the latency values further in comparison to the single work team

case, hence accelerating the response efforts. On the other hand, having multiple work teams in the same

network complicates the optimization problem significantly due to the coordination need. A few studies in

road restoration (Akbari and Salman 2017a,b, Akbari et al. 2021a) have already considered the coordination

requirement with multiple teams but under different objectives. To the best of our knowledge, this is the
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first study to address the road restoration problem with minimum latency objective and multiple teams. We

address this problem both when all the work teams are pre-positioned in the same depot and in the more

general case where multiple depots exist so that each team can initiate its route from a different node.

In the routing literature, it has been observed that the latency objective makes the problem more chal-

lenging compared to the usual objective of minimizing the length of the routes. The problem of finding

a single tour visiting each node in the graph and minimizing the total latency of the nodes is called the

Minimum Latency Problem (MLP) (Sahni and Gonzalez 1976). Despite having similarities with the Trav-

eling Salesman Problem (TSP), the MLP is known to be more difficult to solve computationally compared

to the TSP (Goemans and Kleinberg 1998). The problem with multiple vehicles originating from the same

depot and total latency minimization objective has been tackled only under the requirement that all nodes

should be visited (Angel-Bello et al. 2017). Since their context is not post-disaster planning, Angel-Bello

et al. (2017) did not consider blocked roads and the decisions on which ones to unblock and in which order.

Hence, the inherent difficulty of our problem due to dynamically changing shortest path distances while the

roads are restored does not exist in their study. Furthermore, for our study, visiting all nodes is not practical,

especially in the aftermath of a disaster in which time plays an essential role in the rate of casualties. Thus,

it is necessary to visit a set of pre-identified nodes, referred to as critical nodes, while other nodes may also

be visited if this provides a better solution. This property also adds a different dimension to our problem

compared to the problem in Angel-Bello et al. (2017).

In this article, we first develop a mathematical model (denoted by M1) that solves the MML-RCP, where

the coordination requirement is satisfied. However, M1 is able to solve the MML-RCP for very small sized

instances (with our computational platform, instances having up to only 13 nodes, 4 critical nodes and 2

work teams could be solved optimally). Hence, due to the need to solve larger instances, we introduce

two heuristic procedures yielding solutions with different natures. The first one, called H1, is based on a

multi-level network model designed for a restricted variation of the MML-RCP, namely, the case in which

the routes of the work teams are generated to be disjoint from each other. In the solution of the H1, since

the routes of the teams are disjoint, there is no coordination between the teams. In our second heuristic,

called H2, we incorporate coordination among the teams. H2 is a matheuristic, that may find solutions

with overlapping routes. H2 is based on a cluster-first-route-next approach that is embedded into a local

search procedure augmented with iterative mathematical model solutions and a coordination sub-routine

that dynamically updates the road network when a blocked edge is recovered by one of the teams. In H2, a

mixed integer programming (MIP) model is solved for the single team routing subproblems after each inter-

route move. In order to investigate the efficacy of H1 and H2, and to show how coordination can enable us

to obtain better solutions, we test them with instances both from the literature based on a real city network

and those generated randomly, where the depot node(s), critical nodes, the number of blocked edges and

their locations differ instance by instance. Our main contribution is developing the two solution approaches

that are capable of solving instances of practical sizes due to their small run times. We also develop a lower

bounding procedure in order to measure how far the solutions output by the heuristics are from the optimal

values. The lower bounding procedure solves a series of MIP models.
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The paper is organized as follows. A review of the related literature is given in Section 2. Section 3

provides the problem description. The heuristic approaches and the lower bounding procedure are presented

in Section 4. Sections 5 and 6 describe the data sets and present the computational results, respectively.

Finally, conclusions are given in Section 7.

2. Literature review

First, we discuss studies associated with road clearance/restoration in disaster logistics having different

objectives. Second, we focus on the Minimum Latency Problem (MLP) in the routing literature.

2.1. Road clearance and network restoration

An important vein of studies in disaster logistics focuses on optimizing road clearance and restoration

operations. The early studies have generally focused on finding the route of a single work crew along

with determining which edges should be cleared after a disaster. As one of the first studies, Duque et al.

(2016) developed an exact Dynamic Programming (DP) algorithm, which is able to provide the schedule and

route of a repair crew for small scale instances. The authors also developed an iterated greedy-randomized

constructive procedure to solve large scale instances. Kim et al. (2018) built upon the problem studied by

Duque et al. (2016) and considered the case in which damage impact may vary over time after the initial

disaster has occurred. In addition, they developed an Ant Colony Optimization (ACO) algorithm to tackle

the problem with multiple repair crews.

The latency objective was undertaken in studies by Sahin et al. (2016), Berktaş et al. (2016) and Ajam

et al. (2019), where all focused on a single work crew that should visit a set of critical nodes. The problem

that we study in this article, MML-RCP, generalizes these studies by generating the routes of multiple teams

positioned at different depots. Sahin et al. (2016) proposed both a mathematical model and a heuristic

approach, minimizing total time until all critical locations are visited. Berktaş et al. (2016) formulated a

mathematical model and developed a heuristic approach, which are more efficient than the ones in Sahin

et al. (2016) in terms of computational time. However, the number of critical nodes in their test instances

were quite small (i.e., up to 7 critical nodes), which eludes justifying the applicability of their methods

for instances arising in larger networks found in practice. Ajam et al. (2019) proposed a matheuristic and a

metaheuristic that largely outperform the methods proposed for the latency minimization problem in Berktaş

et al. (2016). Furthermore, the authors verified the strength of their proposed algorithms on larger instances

derived from real networks by introducing a novel lower bounding approach, which is based on solving MIP

models iteratively. They solved instances with up to 30 critical nodes with their heuristic algorithm.

In another direction, several researchers focused on damaged networks decomposed to isolated com-

ponents, where the goal is to restore the connectivity of the network. Among those, Vodák et al. (2018)

developed a metaheuristic based on ACO that reconnects all isolated components by dispatching a single

work crew. The authors solve the problem by reducing the size of the networks, by only considering the

boundary nodes of each component. Kasaei and Salman (2016) defined two problems optimizing the route

of a single work team that renders the network re-connected. The first problem aims to minimize the total
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time elapsed until all disconnected components get connected. For the second problem, the objective is to

maximize the total prize collected from reconnecting the components within a specified time limit. The

authors developed two exact formulations along with metaheuristics. Different variations and generaliza-

tions of these problems were addressed in other studies. Akbari et al. (2021b) studied the online variation

of the first problem in which the unblocking time of the blocked edges is not known in advance and is only

revealed after close observation and estimation of the road restoration team. Akbari and Salman (2017b)

developed a mathematical model for the generalization of the first problem studied in Kasaei and Salman

(2016) and considered multiple work teams. The authors developed a matheuristic approach to solve larger

instances, which is based on the relaxation of their mathematical model, followed by a procedure to restore

feasibility along with local search as the final step. In another study, Akbari et al. (2021a) developed a

decomposition-based heuristic algorithm and successfully applied it to solve larger instances of this problem

with multiple work teams. For the generalization of the second problem with multiple work teams that was

defined in Kasaei and Salman (2016), Akbari and Salman (2017a) formulated a mathematical model and

derived an efficient heuristic based on Lagrangian relaxation. Note that when multiple work crews operate

in the same network, coordination becomes the most challenging aspect of these problems. That is, when a

blocked edge is on the route of multiple work crews, the crew that arrives first to the edge should unblock

the edge while other crews may need to wait to pass along that edge. Both Akbari and Salman (2017b)

and Akbari and Salman (2017a) resolved this issue in their algorithms. In another study, Morshedlou et al.

(2018) proposed two mathematical models associated with the coordinated routing problem such that the

number of crews designated for each disrupted component has been considered as a decision variable. In a

recent study, Moreno et al. (2020) addressed a heterogeneous multi-crew scheduling and routing problem,

where the goal is to restore the damaged nodes used in the paths connecting a source node to demand nodes

in a network. The objective is to minimize the time that the demand nodes remain disconnected from the

source node. The authors developed three mathematical models together with some valid inequalities.

Some variations of the debris clearance/road restoration problem were also studied recently. Li et al.

(2020), integrated logistic support scheduling with a repair crew scheduling and routing problem with two

stages. The authors proposed a novel non–linear programming model for the two stages. In addition, by

means of a case study, the authors showed how the repair delays can reduce when the two stages get in-

tegrated. Lorca et al. (2017) developed a mathematical model for managing debris collection, disposal

operations and transportation, where the goal is to reduce the conflict between objectives such as cost and

duration. In addition, the authors provided a user-friendly decision support tool.

In several recent studies, road clearance and relief distribution operations are envisioned to be conducted

by the same team. Shin et al. (2019) developed an MIP and an ACO algorithm to restore the network after a

disaster. In addition to scheduling and routing of the repair crew, the authors incorporated the transportation

of relief goods in their algorithms. Moreno et al. (2019) proposed a branch-and-Benders-cut (BBC) algo-

rithm such that the scheduling decisions are obtained from a master problem and the subproblems optimize

the routes. To improve the performance of their BBC algorithm, the authors used various feasibility cuts and

valid inequalities. Li and Teo (2019) developed a multi-period bi-level programming model for the post-
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disaster road network repair work scheduling and relief logistics problem. At the first level, the goal is to

improve the accessibility of the road network over the periods by optimizing the road restoration decisions,

while at the second level, the goal is to maximize the satisfaction of relief material demand in the given

network. The authors developed a genetic algorithm for this problem in order to obtain good solutions for

different instance sizes within a limited time.

After an investigation of the literature on road clearance/restoration, we see that the latency objective

has not been addressed under the existence of multiple work crews. To the best of our knowledge, our

study considers both multiple crews and the latency objective for the first time. We provide two alternative

heuristic algorithms for the solution of this challenging problem.

2.2. Minimum latency problem

The latency objective was first brought to attention in the routing literature. In the Minimum Latency

Problem (MLP), a vehicle is assigned to visit all nodes in a complete network, where all of the edges are

intact. The objective of the MLP is to minimize the total waiting time of all the nodes instead of the total

time of the vehicle’s route as in the classical Traveling Salesman Problem (TSP). Since some of the literature

on MLP pays particular attention to repair services at each node of the network, MLP is also referred to as

the Traveling Repairman Problem (TRP). Note that MLP is also known as the Delivery Man Problem (DMP)

and the Cumulative Vehicle Routing Problem (CVRP).

Exact methods for the MLP (with a single vehicle) have managed to solve larger instances over time.

Sarubbi et al. (2008) suggested an exact formulation based on the model that had been developed for the

TSP by Picard and Queyranne (1978). The authors used Newton’s Barrier Method to derive lower bounds

for the problem. Méndez-Dı́az et al. (2008) formulated a three-index mathematical model that can solve

instances having up to 40 nodes. They took advantage of effective valid inequalities. Angel-Bello et al.

(2013) developed two different mathematical models for the MLP that are based on a multi-level network

structure. The small elapsed time when solving these models shows the strength of their formulations.

Bulhões et al. (2018) proposed a branch-and-price (BP) algorithm for the MLP, which is able to solve the

unsolved instances introduced in Roberti and Mingozzi (2014).

Many researchers have attempted to solve the MLP/DMP (with a single vehicle) by developing heuris-

tics and metaheuristics. Salehipour et al. (2011) proposed a metaheuristic based on the Greedy Randomized

Adaptive Search Procedure (GRASP) to generate initial solutions, followed by Variable Neighborhood De-

scent (VND) and Variable Neighborhood Search (VNS) for the improvement phase. The authors provided

lower bounds based on the minimum spanning tree and upper bounds by means of the nearest neighbor

heuristic to test the effectiveness of their algorithm. Silva et al. (2012) also proposed a metaheuristic based

on GRASP followed by VND with a different shaking mechanism for the initial solution, which is called

double-bridge perturbation. Mladenović et al. (2013) developed a General VNS based on the classical neigh-

borhood structures for the MLP that outperforms the algorithms proposed by Salehipour et al. (2011). Some

researchers addressed DMP with profit, whose aim is to find a path maximizing the total revenue within

a given time limit. Dewilde et al. (2013) employed VNS and Tabu search to solve the variation of the
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MLP with time dependent profit based objective. Avci and Avci (2017) suggested a metaheuristic based on

GRASP and ILS for the initial and improvement of solutions, respectively.

Some researchers investigated the capacitated variation of this problems referred to as Capacitated CVRP

(CCVRP). This variation has been addressed first by Ngueveu et al. (2010) where the authors proposed a

Memetic algorithm to tackle this problem with instances having up to 199 nodes. Ribeiro and Laporte (2012)

suggested an Adaptive Large Neighborhood Search (ALNS) heuristic that outperforms the computational

results provided by Ngueveu et al. (2010). Lysgaard and Wøhlk (2014) developed a Branch-and-cut-and-

price redalgorithm which is capable of solving CCVRP instances with up to 70 nodes within reasonable

computational times. Rivera et al. (2016) developed two MIP models (able to solve instances up to 40

nodes) to solve multi-trip CCVRP in a disaster context where a single vehicle performs multiple trips to serve

a set of affected sites. Sze et al. (2017) developed a min-max CCVRP where the objective is to minimize

the maximum arrival time, solved by a two-stage adaptive VNS (AVNS) algorithm that incorporates Large

Neighbourhood Search (LNS). More recently, Lalla-Ruiz and Voß (2020) extended CCVRP where multiple

depots exist as starting points of routes, solved by an MIP and a matheuristic approach for larger instances.

Several studies have been devoted to the multi-vehicle MLP as well. Luo et al. (2014) introduced a new

branch-and-price-and-cut algorithm for the multi-vehicle MLP under a distance constraint for each vehicle.

The authors tested the algorithm with instances having up to 50 nodes, where the algorithm could obtain

optimal solutions for all the instances except one of them within a 3-hour time limit. Nucamendi et al.

(2015) developed a mathematical model based on a single-commodity flow formulation to find m disjoint

routes to visit all the nodes collectively, where m is the number of vehicles originating from a depot. With

this formulation, they were able to solve instances with up to 40 nodes. They also developed a metaheuristic

algorithm composed of two stages. For the initial solution, they used clustering strategies which are based

on the distance of the nodes to the depot node and incorporated randomness in the construction of the initial

solutions. For the improvement phase, they implemented local search in which both intra-route and inter-

route composite moves have been utilized. They compared their metaheuristic algorithm solutions with

those found by the mathematical model on instances having up to 50 nodes. However, for larger instances

they only compared their metaheuristic with their initial solutions. In another study, Nucamendi-Guillén

et al. (2016) presented a new mathematical model which is based on a multi-level network, which finds the

optimal solution quite faster than the previous mathematical model given in Nucamendi et al. (2015). To

solve larger instances, they developed a metaheuristic based on an iterated greedy algorithm for constructing

an initial solution. For the improvement phase, they employed five local search strategies which are arranged

in two intra- and inter-route composite moves. In order to understand the performance of their metaheuristic

for larger instances, they derived strong lower bounds from the CCVRP in the literature, where they relaxed

the constraints associated with demand and supply nodes’ capacities. Bang (2018) developed a metaheuristic

algorithm which is based on GRASP for initial solution construction. Furthermore, the author implemented

a VND algorithm for improvement by considering a distance constraint for each vehicle. Angel-Bello et al.

(2017) proposed five mathematical models for the multi-vehicle minimum latency problem. The first three

formulations were derived from classical models and from a flow-based formulation to the multiple TSP. The
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last two ones are obtained from time-dependent formulations based on a multi-level network, which have

a much better performance compared to the first three ones in terms of computational time. They solved

instances up to 80 nodes and 16 vehicles with an average computational time of 80 seconds. Note that in all

of the mentioned studies, the authors developed their models based on the assumption that a disjoint path is

assigned to each vehicle. However, in our problem we relax this assumption. Very recently, Muritiba et al.

(2021) proposed a tailored Branch-and-cut and ILS for the weighted k-TRP, which is able to solve instances

having up to 50 nodes for the case of maintenance of speed cameras.

Thus far, none of the studies associated with the multi-vehicle MLP incorporated restoration of a dam-

aged network. In addition, in the multi-vehicle MLP, all nodes must be visited. However, in the MML-RCP,

only the critical nodes should be visited while it is optional to visit the other nodes. Moreover, we incorporate

multiple depots in our model to reduce the latency of reaching the critical locations.

3. Problem definition

We represent the road network in the disaster area by an undirected graph G = (V, E), where V and E

denote the set of nodes and the set of edges, respectively. A traversal time ti j associated with edge (i, j) ∈ E

is given for each edge. Blocked edges are known and represented by the set B ⊆ E. In addition, an extra time

for clearing/unblocking a blocked edge (i, j) is given as ui j. We define a set VC ⊆ V consisting of all critical

nodes and the depot node(s). The remaining network elements are the intact edges and the non-critical nodes

that act as intermediate edges and nodes in between visiting the critical nodes. The work teams (crews) are

positioned in the depot node(s) at the beginning of the operations. Each work team departs from a specific

depot node to visit a subset of the critical nodes and finishes its route at one of the critical nodes while it

may open a number of blocked edges to facilitate access to the critical nodes. Each work team must visit at

least one critical node through its route and each critical node must be visited by at least one work team at

the end of the operations. Non-critical nodes may be visited by the work teams through their routes. These

are called “intermediate” nodes. It is possible that one or more work teams visit a critical node more than

once. However, the first visit time of each critical node is taken into account as the latency of that node.

In addition, during the operation, due to the clearance of some blocked edges, the shortest path lengths

between the nodes may change, indicating that in the MML-RCP, we cannot pre-process the problem and

only consider the critical nodes. The MML-RCP aims to find a route for each work team such that the total

latency of all critical nodes is minimized. In addition, the solution specifies which blocked edges should be

opened in which order by each work team.

In MML-RCP, we make the assumption that only the first team that arrives to a blocked edge opens it

because we assume that each team is equipped with all the necessary machinery to open a blocked edge and

a cooperation in this sense cannot improve the unblocking time. Even if a second team at the scene would

work and speed up the process, it is very difficult to assess realistically how the speed up can be measured.

Figure 1(a) shows an example of the MML-RCP with two work teams positioned in the depot node

indexed by 0. In this example, both of the work teams are positioned in the same node, while it does not

have to be so in general. Nodes 0, 1, 5 and 6 are critical and the other nodes (2, 3 and 4) are non-critical. The
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blocked edges are represented by dashed lines. The traversal and clearing times (for the blocked edges) are

shown on top of each edge. Here we describe a feasible solution. The route of the first work team (shown

in Figure 1(b) with blue arrows) includes nodes 0-2-3-4-5, where the latency of critical node 5 is 11 and the

intermediate nodes 2, 3 and 4 have been visited in the route. Moreover, this work team cleared blocked edges

(2,3) and (3,4) within its route, making these edges available for next traversals. The route of the second

work team (shown in Figure 1(b) with red arrows) includes nodes 0-1-3-4-6, where the latency of critical

nodes 1 and 6 are 3 and 14, respectively. In this route, nodes 3 and 4 are intermediate nodes. Note that

since the first work team arrives to node 3 earlier than the second work team, blocked edge (3,4) would be

already cleared by the first work team. Therefore, when the second work team arrives to node 3, it traverses

the opened edge (3,4) in 1 unit of time. At the end, the work teams have visited all critical nodes with a

total latency of 28 (11+3+14), which includes both traversal and clearing times in the objective value. This

example shows our understanding of coordination between the work teams in the sense that edge (3,4) was

opened by one team and used by another.

Figure 1: Example of MML-RCP

4. Solution methods

The MML-RCP is NP-hard since it generalizes the multi-vehicle MLP in two aspects. When there are

no blocked edges and all nodes are critical, we obtain the multi-vehicle MLP and since Sahni and Gonzalez

(1976) proved that MLP is NP-hard, so is the multi-vehicle MLP and hence the MML-RCP is also NP-hard.

In order to tackle the MML-RCP, we first developed a mathematical model (M1) in the presence of

coordination/synchronization such that when a work team is cleaning a blocked edge, the other work teams

are not allowed to traverse that edge until it is unblocked completely. In later traversals, only the traversal

time of that edge should be taken into account (i.e., the clearing time of a blocked edge incurs only once). M1

is adapted from the mathematical model suggested in Akbari and Salman (2017b) for a different objective.

Incorporation of the latency objective in that formulation required us to further modify it by adding a number

of constraints. In particular, M1 must calculate the first visiting time of a critical node as its latency. To do

so, we had to add multiple constraints. We present M1 in the Appendix. As expected, M1 is only capable

of solving small instances. We have also tried to relax the most time-consuming constraints to get some

meaningful solutions (similar to what Akbari and Salman (2017b) did). However, the constraints associated

with visiting time of each critical node have huge obstacles, preventing the model to get solutions for larger

instances. Moreover, since we use the visiting time of each critical node in the objective function, the
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objective value becomes zero if we remove the visiting time constraints. Thus, even modified methods

proposed in Akbari and Salman (2017b) are not applicable to this problem and we had to develop H1 and

H2 algorithms. We were able to solve instances with up to 13 nodes, 4 critical nodes and 2 work teams with

our computational platform. Once we add more nodes, the model could not be solved even within a 5-hour

time limit. In order to find feasible solutions to the problem, we first assume that the paths of the work teams

should be disjoint (similar to the studies related to the multi-vehicle MLP). We develop a model that can be

solved for larger instances by enforcing this assumption. In this way, we obtain the heuristic H1. Given that

this assumption prevents coordination among the work teams, we develop a matheuristic (H2) in Section 4.2

that relaxes this assumption and addresses the underlying synchronization issue as well.

4.1. Mathematical model based on a multi-level network (H1)

In order to find feasible solutions for the MML-RCP within a reasonable time limit, we first assume that

the paths of the work teams must be disjoint. We propose a mathematical model defined on a multi-level

network as in Angel-Bello et al. (2017), but the network structure is different from those given in Angel-

Bello et al. (2017). First, we briefly explain the multi-level network proposed by Angel-Bello et al. (2017)

and then describe our problem with an example and highlight the differences.

Figure 2 shows the multi-level network provided by Angel-Bello et al. (2017), in which the number of

levels is equal to N = |V |−m, where V and m are the set of nodes and the number of work teams, respectively.

Level 1 consists of a copy of the set V except the depot node. Levels 2, 3, . . . , N consist of nodes that are

copies of those in V . Finally, level N+1 consists of a copy of only the depot node. In any feasible solution,

each path starts from a copy of the depot node (located in one of the levels 2, 3, . . . , N+1) and visits the

lower levels and reaches level 1 for the final node. Each work team must visit a single node in each level

indexed lower than the starting node. For instance, if a work team starts its path from the depot node in level

4, a single node in each level 3, 2 and 1 must be visited. Note that all work teams depart from the depot

node, which is positioned in levels 2, 3, . . . and N + 1.

2

Level
 N + 1

Level
 N

Level
 3

Level
 2

Level
 1

0

1

2

n

1

2

n

0

1

2

n n

0 0

1

Figure 2: Graphical representation of the multi-level network in Angel-Bello et al. (2017)

Figure 3 demonstrates a feasible solution for the multi-level network problem described in Figure 2.

There are 8 nodes (including the depot node 0) in this example, where all of them must be visited by two

10



work teams. Work team 1, whose route is shown by narrow lines, starts its route from the depot node in

level 5 and visits nodes 1, 4, 7 and 6. On the other hand, work team 2, whose route is shown by thick lines,

departs from the depot node in level 4 and visits nodes 3, 2 and 5. Thus, all of the nodes are visited by the

work teams.

Figure 3: A feasible solution to the multi-level network problem in Angel-Bello et al. (2017)

In the following, we describe the multi-level network associated with our problem by listing its differ-

ences from the network given in Figure 2:

1. Unlike Angel-Bello et al. (2017)’s network, we define levels only for the critical nodes and we refer

to them as critical levels. Such critical levels are indexed from 0 to N = |VC | − m, where VC is the set

of critical nodes including the depot node.

2. We allow visiting non-critical nodes between two levels, n and n + 1. In other words, we put a copy of

all non-critical nodes between every two levels.

3. Since a subset of nodes (including critical nodes and some non-critical nodes) is visited in the routes,

the definition of decision variables and constraints changes significantly.

4. Our multi-level network can model instances of the MML-RCP with multiple depots (see Section

4.1.1).

Figure 4 (a) gives a small instance of the described network. It demonstrates our multi-level network

constructed from a complete network with nodes 0, 1, 2, . . . and 7, where node 0 is the depot node and nodes

2, 4, 5 and 7 are critical nodes. In addition, nodes 1, 3 and 6 are non-critical and hence, may or may not

be visited through the routes. Two work teams are assigned to visit all the critical nodes collectively, whose

routes are depicted with narrow and thick black lines. The number of critical levels is N = 5 − 2 = 3. Note

that we do not consider any levels for the non-critical nodes and instead we put a copy of all non-critical

nodes between levels n and n + 1.

Parts (b) and (c) of Figure 4 illustrate some of the feasible routes provided by the MML-RCP. As we

observe, each work team visits at least one critical node. A work team may or may not visit the non-critical

nodes throughout its route. For instance, in Figure 4 (b), the work team whose route is shown by the narrow

arrows starts its route from level 3+1, visits node 6 and then the critical node 7. This work team then directly

11



Figure 4: An example of the multi-level network structure

continues to critical node 5 without visiting any non-critical nodes. In another example depicted in Figure 4

part (c), the work team whose route is given by the thick arrows, leaves the depot in level 3 because in the

solution, it needs to visit 2 critical nodes. Then, it visits non-critical nodes 3 and 6 in its route. Afterwards,

the work team continues on the path to reach a critical node. We have developed this model to address the

difficulties brought by the latency objective. We note that models that are typically used to solve general

node routing problems, such as the VRP, do not perform well when used on latency objectives (Goemans

and Kleinberg 1998).

We next introduce our mathematical model for the restricted version of the MML-RCP. We refer to this

model as H1-MIP. In this model, we assume that only a single depot exists. We then explain in Section 4.1.1

how to generalize this model for the case with multiple depots.

In addition to the notation given in the problem definition, we define s as a dummy sink node. Recall

that we added a restriction to the MML-RCP by assuming that all paths must be disjoint and the non-critical

nodes can be visited at most once. With this in mind, we define travel time ci j of edge (i, j) ∈ E as ti j +ui jBi j,

where ti j and ui j are the traversal and clearing times of edge (i, j) ∈ E, respectively. The parameter Bi j is

equal to one, if (i, j) ∈ E is blocked; and zero, otherwise.

Decision variables:

yr
i jkl = 1, if the edge (i, j) ∈ E is used while going from critical node k ∈ VC in level r + 1 to critical node

l ∈ VC in level r; 0, otherwise (note that we relax the integrality of this variable in the model)

xr
ikl = 1, if node i ∈ V is visited while going from critical node k ∈ VC in level r + 1 to critical node l ∈ VC in

level r ; 0, otherwise
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min
∑

(i, j)∈E,i, j

∑
l∈VC\{0}

N∑
r=1

ci jryr
i j0l +

∑
(i, j)∈E,i, j

∑
k∈VC\{0},k,l

∑
l∈VC\{0}

N−1∑
r=1

ci jryr
i jkl (1)

s.t.∑
l∈VC\{0,k}

N−1∑
r=1

xr
kkl + x0

kks = 1 ∀k ∈ VC \ {0} (2)

∑
k∈VC\{0}

x0
kks = m (3)

∑
l∈VC\{0}

∑
k∈VC ,k,l

N∑
r=1

xr
ikl ≤ 1 i ∈ V \ VC , i , s (4)

∑
l∈vC

∑
k∈VC\{0},k,l

∑
i∈(V\VC)∪{l},i,s

y1
iklk = m (5)

N∑
r=1

∑
j∈(V\VC)∪{l}, j,s

∑
l∈VC\{0}

yr
0 j0l = m (6)

∑
j∈(V\VC)∪{l}, j,i,s

yr
i jkl = xr

ikl r = 1, 2, . . . ,N − 1, k ∈ VC , l ∈ VC \ {0}, k , l,

i ∈ (V \ VC) ∪ {k}, i , s (7)

yr
0 j0l +

∑
i∈(V\VC)∪{k},i, j,s

yr
i jkl = xr

jkl r = 1, 2, . . . ,N − 1, k ∈ VC , l ∈ VC \ {0}, k , l,

j ∈ (V \ VC) ∪ {l}, j , s (8)∑
i∈(V\VC)∪{l}

∑
l∈VC ,l,k

yr
iklk =

∑
w∈VC\{0},w,k

xr−1
kkw k ∈ VC \ {0}, r = 2, 3, . . . ,N − 1 (9)

∑
i∈(V\VC)∪{l},i,s

y1
iklk = x0

kks k ∈ VC \ {0}, l ∈ VC , k , l (10)

∑
l∈VC ,l,k

x1
klk = x0

kks k ∈ VC \ {0} (11)

xr
kkl = xr

lkl r = 1, 2, . . . ,N − 1, k ∈ VC , l ∈ VC \ {0}, k , l (12)

xN
00l = xN

l0l l ∈ VC \ {0} (13)∑
i∈(V\VC)∪{0}

yN
i j0l = xN

j0l l ∈ VC \ {0}, j ∈ (V \ VC) ∪ {l}, j , s (14)

∑
j∈(V\VC)∪{l}

yN
i j0l = xN

i0l l ∈ VC \ {0}, i ∈ (V \ VC) ∪ {0}, i , s (15)

∑
k∈VC\{0,l}

xN−1
llk = xN

l0l l ∈ VC \ {0} (16)

∑
i∈(V\VC)∪{0}

yN
ik0k =

∑
w∈VC\{0},w,k

xN−1
kkw k ∈ VC \ {0} (17)

yr
i jkl ≥ 0 i, j ∈ V, k, l ∈ VC , k , l, r = 1, 2, . . . ,N (18)

xr
ikl ∈ {0, 1} i ∈ V, k, l ∈ VC , k , l, r = 0, 1, . . . ,N (19)
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The objective function (1) minimizes the total latency of all critical nodes. Constraints (2) ensure that

each critical node is visited exactly once. Constraint (3) guarantees that all work teams must go to the

dummy sink node at the end of their routes. The non-critical nodes may be visited at most once due to

Constraints (4). Constraint (5) forces all work teams to visit level 1 at one of the critical nodes as a destination

node. Constraint (6) ensures that exactly m disjoint paths are assigned to the work teams. Constraints (7)-

(17) are the connectivity constraints that guarantee the continuity of the paths between each consecutive

critical level. We divide the connectivity constraints into two groups. The first group (7)-(12) consists of

the connectivity constraints belonging to levels 0, 1, 2, . . . and N. Constraints (7)-(12) are the outgoing

and incoming flow balance equations. Since in level N+1 only the depot node exists, we have to consider

separate constraints for this level (Constraints (13)-(17)) to ensure the connectivity of each path. Moreover,

these constraints guarantee the continuity of the paths in case any non-critical nodes are visited between

critical levels. Constraints (18) and (19) define the domains of the variables.

In our computational tests we observed H1-MIP to be quite efficient as it satisfies a number of features:

1) There is no index defined associated with work teams, 2) Level numbers have been used in calculating

total latency directly in the objective function. Thus, we do not need constraints associated with calculating

the visiting times of each critical node, 3) Variable y can be relaxed to reduce the computational time.

Proposition 1. Decision Variable y can be relaxed in H1-MIP.

Proof. For any feasible solution, xr
ikl must be binary because of the decision variable definition associated

with H1-MIP. Now, if we replace the xr
ikls with their values (0 or 1), H1-MIP becomes an LP problem,

which can be solved by the Simplex method. The right hand side of each constraint for this LP problem

can be zero, one or m (number of vehicles). Moreover, all coefficients associated with y variables (inside

the simplex table) are zero or one. Thus, for the first iteration, the minimum ratio is min{0, 1,U} = 0 such

that U is an integer number. Note that for the next iterations, we need to avoid degeneracy. In this case, the

minimum ratio will be min{1,U′} = 1 such that U′ is an integer number. Therefore, for each iteration the

basic feasible solutions are 0 or 1, indicating that y variables can be relaxed in model H1.

We note that the solutions provided by H1-MIP are feasible to M1, and thus our problem. In fact,

by assuming disjoint paths, synchronization between work teams is not required anymore. However, this

assumption may affect the quality of the solutions obtained by solving H1-MIP.

4.1.1. H1-MIP with multiple depots

In this section, we adapt H1 to address the generalization with multiple depots. That is, each of the

work teams may start its route from a different depot. We also note that multiple work teams might be

pre-positioned in the same depot. In order to handle this generalization, some properties associated with

H1-MIP presented in Section 4.1 should be modified. Before giving the modified mathematical model, we

should modify our multi-level network first. We define a depot node set, namely D, including all depots

in the network. Moreover, the number of work teams pre-positioned in each depot should be given as a

parameter. Since there are multiple depots, a copy of all depots should be put in each level except level 1.
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Similar to the multi-level network in Figure 2, a copy of only the depot nodes exists in level N + 1. Figure 5

depicts two feasible solutions, where the depot set is D = {α, β, γ}. Nodes 2, 4, 5 and 7 are critical, and nodes

1, 3 and 6 are non-critical nodes. Two work teams exist in this example, where the routes of the work teams

are represented by narrow and thick black lines. In the upper graph, the work teams are pre-positioned in

different depots (α and β), whereas in the lower graph, all work teams are pre-positioned in the same depot

(α).

Figure 5: An example of the multi-level network structure with multiple depots

In the following, we present the necessary modifications to H1-MIP given in Section 4.1. First, we need

to update the critical node set. That is, all of the depots should be added to the set VC . Second, we replace

index 0 with index d ∈ D in all constraints given in Section 4.1. We define a parameter Nd, d ∈ D, which

denotes the number of work teams pre-positioned in the depot node d ∈ D, where
∑

d∈D Nd = m (m is the

total number of work teams). Then, we eliminate Constraint (6) and instead add the following constraints to

the mathematical model:

N∑
r=1

∑
j∈(V\VC)∪{l}, j,s

∑
l∈VC\D

yr
d jdl = Nd, d ∈ D (20)

Constraints (20) set the number of work teams designated to each depot. By means of this new modified

model, we can obtain feasible solutions to the MML-RCP instances having multiple depots.

4.2. A matheuristic for the MML-RCP (H2)

Given that in H1 the coordination of the work teams is prevented by assuming disjoint paths for the

teams, in this section, we develop a matheuristic algorithm (H2) that allows the paths of the teams to have
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common nodes and edges. In H2, we ensure that a blocked edge is opened only once and the teams can

traverse an opened blocked edge without the need to recover it again. The H2 heuristic starts with a K-

means clustering step for the assignment of critical nodes to work teams, followed by the resolutions of a

mathematical model to determine the route of each work team separately. An improvement phase is also

implemented. In order to obtain the corresponding objective function of the coordinated routes, we use the

subroutine algorithm presented in section 4.2.2. The advantages of this heuristic are twofold; firstly, it gen-

erates coordinated routes that allows the teams to travel blocked edges without unblocking them once they

are opened and its second advantage is its high speed in finding high quality solutions (within a 30-second

time limit). The main reason for its high speed is that this heuristic approach is applied on a transformed

graph of smaller size. We have conducted a number of computational experiments presented in Appendix B

and observed that 30 seconds is in fact more than enough for H2 to find its best solutions. Since we solve a

mathematical sub-problem for each work team, we refer to this algorithm as a matheuristic and denote it by

H2.

We first form a complete graph, namely GC = (VC , EC), in which the node set consists of all critical

nodes and the depot(s). We find the distance of the shortest path between each pair of critical nodes i, j ∈ VC ,

namely S Pi j, in the original graph G = (V, E) and set this value as the travel time of the edge (i, j) in the

transformed graph. For calculation of this shortest paths, we set the traversal time of the intact edges (E \ B)

equal to ti j and the traversal time of the blocked edges equal to ti j+ui j, which corresponds to the required time

to traverse and unblock a blocked edge, (i, j) ∈ B. By doing so, the size of the network reduces considerably.

Also, there is a possibility that some edges in the original graph exist in different shortest paths between

critical nodes. As a result, H2 captures solutions that H1 may not. In this section, our default graph is set as

the transformed graph.

4.2.1. Clustering: Assignment of critical nodes to work teams

We assign the critical nodes to work teams using the K-means clustering algorithm. K-means clustering

algorithm, first introduced by Macqueen (1967), is a simple and popular method which is commonly used

to partition a data set into m groups. It starts by choosing m initial cluster centers (centroids). Each node

is assigned to its nearest centroid. Then, each centroid is updated to the mean of all nodes belonging to the

same cluster. These steps are repeated until there is no further change in the cluster assignments, indicating

the convergence of the algorithm. We use the the travel times in the reduced graph as distances in the

algorithm. In addition, the initial centroids are selected randomly among the critical nodes. The number of

clusters is set equal to the number of work teams. In our implementation, we used the K-means clustering

module embedded in Scikit learn using Python.

4.2.2. The coordination subroutine

Once the assignment of nodes and the order in which they should be visited is known to the work teams,

their routes should be coordinated to avoid over-estimating the objective function by reopening blocked

edges that have been opened by other work teams. This is also important because the shortest path distances

between critical nodes changes dynamically when blocked edges are opened. The steps of this coordination

16



subroutine are given in Algorithm 1.

The most important input of the coordination subroutine is the order of visiting critical nodes for each of

the work teams. In this procedure, the first work team that arrives to a blocked edge unblocks it. If multiple

work teams arrive to the same blocked edge simultaneously, without loss of generality, we assume that the

team with the lower index unblocks it. The algorithm works based on identifying the next event for each of

the work teams. These events are the arrival of the work teams to the end node of their last traversed edge. It

could be either traversing intact edges, traversing a blocked edge that has been already opened or traversing

and unblocking a blocked edge. In the initiation step of the algorithm, the first node on the path to the first

critical node for each team is extracted. Then, in each step of the algorithm, the work team with the closest

event is identified and the network is updated accordingly. The output of this subroutine is the coordinated

latency of input order in which the order of visiting the critical nodes for each of the work teams is given.

4.2.3. Routing and improvement steps

After identifying which critical nodes will be visited by which teams, a second step is needed to find

the order of visiting the critical nodes by each work team. Also, it is important to change the assignments

designated to each work team to capture more diverse and better solutions. This can be done by a local search

procedure consisting of inter-route moves. We use a mathematical model derived from Ajam et al. (2019),

which has been designed to solve the single team problem, for each cluster. The model yields the optimal

order of critical nodes to be visited by each work team. By doing so, we do not need to have intra-route

moves for each work team. Furthermore, we keep a pool of currently investigated assignments so that we

avoid recalculation of the total latency value for the same assignment. In other words, before applying the

mathematical model to find the optimal orderings for these new assignments we check in the pool of already

investigated assignments if they were generated before. As a result, we only need the inter-route moves

between the work teams. The inter-route moves implemented in our algorithm are described below. Note

that for each solution (that gives the order in which critical nodes should be visited for each work team),

the coordination subroutine will be applied to coordinate the routes of the work teams such that additional

unblocking times are removed if a blocked edge is traversed more than once.

1. Swap (N1): A critical node is selected randomly. Then, one of the critical nodes assigned to another

team is randomly chosen. The assignments of these nodes are swapped between the two work teams.

First, the mathematical model is solved to find the best order whenever the assignments changes, then

the coordination subroutine is applied to evaluate the corresponding latency of the new solution (the

same procedure holds for the next moves as well). For instance, suppose critical nodes, given with

their optimal orderings, {5, 4, 6} and {9, 7, 8} are assigned to work teams 1 and 2, respectively. We

randomly pick node 5 from work team 1 and node 7 from work team 2 and exchange them. We check

this new assignment in the pool of already investigated assignments if they were generated before.

Then, we implement the mathematical model to find the optimal visiting order of the critical nodes

with respect to the new assignments and finally once the optimal order of visiting the critical nodes

is obtained, we implement the coordination subroutine to find the corresponding latency of the new
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Algorithm 1 The coordination subroutine
Input: G = (V, E), B, ti j, ui j,VC ,Om, Pd

. Om : the order of visiting critical nodes for work team m ∈ M.
. Pd : the set of work teams initially positioned in the depot d ∈ D

1: OFV = 0 . OFV : the objective function value of the coordinated routes.
2: G′ = (V, E \ B) . G′ : the post-disaster graph that will get updated with opening blocked edges.
3: N = ∅ . N : set of visited critical nodes.
4: Lm = d,m ∈ M . Lm : position of work team m ∈ M.
5: UTi j = ∞, (i, j) ∈ B . UTi j : unblocking time of blocked edge (i, j).
6: Tm = 0,m ∈ M . Tm : time of the last event for work team m.
7: for m = 1 to |M| do
8: am : first node in Om < N . am : first critical node in Om that has not been visited.
9: bm = S P(Lm, am,G′)

. bm : first node on the shortest path from current position of work team m to am on G′.
10: if (Lm, bm) ∈ B & UTLm,bm = ∞ then
11: Tm = tLm,bm + uLm,bm

12: UTLm,bm = Tm

13: else if (Lm, bm) ∈ B & UTLm,bm < ∞ then
14: Tm = UTLm,bm + tLm,bm

15: else
16: Tm = tLm,bm

17: end if
18: end for
19: while N , VC do
20: ` = arg min︸  ︷︷  ︸

m

{Tm, m ∈ M} . ` : the work team that has the closest next event.

21: if (L`, b`) ∈ B then
22: B = B \ (L`, b`), G′ = (V, E \ B)
23: end if
24: if b` = a` then
25: N = N ∪ a`, OFV = OFV + T`
26: a` : first node in O` < N,
27: if a` does not exist then
28: T` = ∞

29: else
30: L` = b`, b` = S P(L`, a`,G′)
31: if (L`, b`) ∈ B & UTL`,b` = ∞ then
32: T` = T` + tL`,b` + uL`,b`
33: UTL`,b` = T`
34: else if (L`, b`) ∈ B & UTL`,b` < ∞ then
35: T` = max(T`,UTL`,b`) + tL`,b`
36: else
37: T` = T` + tL`,b`
38: end if
39: end if
40: end if
41: end while
42: return OFV
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assignments and visiting orders. Thus, the new optimal orders for work teams 1 and 2 are {4, 7, 6} and

{8, 9, 5}, respectively.

2. Random remove-insert (N2): We randomly select and remove a node from its path associated with a

work team and add it randomly to a position in the path of another work team that is chosen randomly.

3. Remove-insert from max to min latency (N3): We randomly select and remove one node from the

path having maximum total latency value. Then, we add that node to the path of the work team that

has the minimum total latency value.

4. Double swap (N4): We randomly select 3 nodes from the paths of 3 work teams (we do not select

more than one node from the same path). Then, they are removed from their paths and inserted back,

again randomly with equal probabilities (the current positions are not possible for the removed nodes),

in the empty positions. For instance, we select and remove nodes 5, 8 and 3 from the paths of {5, 4, 6},

{9, 7, 8} and {1, 3, 2} belonging to work teams 1, 2 and 3, respectively. Node 5 is moved to the path of

work team 3. Then, node 8 is moved to the path of work team 1. Finally, node 3 is moved to the path

of work team 2. The new optimal orders are found as {4, 8, 6}, {9, 3, 7} and {1, 2, 5}.

Within a given time limit, these moves are repeated to find a better solution. We keep the order of the

moves the same as presented. In Appendix B we provide computational experiments to show that this iden-

tified order is the most efficient order and all the identified and utilized neighborhood moves are effectively

improving the solutions. Similar to the Variable Neighbourhood Structure (VNS) algorithm (Mladenović

et al. 2013), if a move gives a better solution than the previous one, the new solution is replaced as the new

best one and the algorithm starts from the first move (N1). In order to avoid a local optimum, we also add

a perturbation procedure such that if there is no improvement in imax consecutive iterations, we implement

the double swap move NDS consecutive times to avoid being trapped in a local optimal solution. In order to

identify the efficient imax and NDS values we have conducted a number of computational experiments that are

presented in Appendix B. Our results showed that setting the imax = 200 and NDS = 5 would yield the best

solutions. Every time the perturbation step is implemented, we consider the incumbent solution obtained

from the perturbation for the rest of the local search procedure. The outline of H2 is given in Algorithm 2,

where i and k are the indices associated with the number of iterations and moves, respectively.

Note that H2 provides coordinated routes to MML-RCP as it extracts the solutions from the coordination

subroutine in which blocked edges are only opened once and work teams can traverse blocked edges after

they are recovered by only spending ti j unit of time on them. We also note that the solution obtained from

a road restoration model with a different objective, such as in Moreno et al. (2020), may be utilized as an

initial solution, and then an improvement algorithm may be implemented starting with this solution.

4.3. A lower bound for MML-RCP

In this section, in order to evaluate the quality of the solutions provided with H1 and H2, we suggest a

lower bounding approach which is based on makespan minimization. Recall that due to the intractability
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Algorithm 2 The matheuristic (H2) associated with MML-RCP implemented on the transformed network
(GC)

Let Coord(x) be the the latency of a solution x extracted from Algorithm 1.
1: Obtain xG . xG : the initial solution obtained from the the K-means clustering algorithm and the

mathematical model mentioned in this section.
2: xI = xG . xI : the incumbent solution.
3: xB = xG . xB : the best found solution.
4: while time limit is not over do
5: k ← 1
6: i← 1
7: while i ≤ imax do
8: local search: x′ ← Nk(xI)
9: if Coord(x′) < Coord(xI) then

10: xI ← x′

11: xB ← x′

12: i← 1
13: k ← 1
14: else
15: i← i + 1
16: k ← k + 1 (if k = kmax then, k ← 1)
17: end if
18: end while
19: Perturb: xI ← xI

20: end while
21: return Coord(xB)

of M1, we obtain very weak lower bounds from M1. In the proposed lower bounding approach we solve

an optimization model that finds the minimum time required to visit a certain number of critical nodes with

the given work teams. In other words, the objective of this MIP model is to minimize the total time until a

given number of critical nodes is visited by m work teams. We call this MIP, which is solved consecutively

with different input parameters, the Multiple Makespan Minimization MIP (3M-MIP). Note that contrary

to the MML-RCP, 3M-MIP minimizes the latency of the last visited critical node. We give the 3M-MIP

model in section C of the Appendix. In Algorithm 3, we present the outline of our lower bounding approach,

where 3M-MIP(n,m) returns the objective function of the makespan minimization problem of visiting n

critical nodes with m work teams. Let us call this lower bound obtained by this approach as the Consecutive

Makespan Lower Bound (CMLB).

Algorithm 3 The lower bounding approach
1: Set LBm = 0
2: for n = 1, 2, . . . , |VC | do
3: LBm = LBm + 3M-MIP(n,m)
4: end for
5: return LBm

Proposition 2. CMLB is a lower bound for the total latency of the MML-RCP.

Proof. Let L[i]
m be the latency of the critical node in position i (where m work teams exist). Recall that
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in the proposed lower bound, we aim to bound the latency value of each position i separately (instead of

minimizing total latency in MML-RCP) such that LB[i]
m ≤ L[i]

m ∀i = 1, 2, . . . , |VC |. Thus, we can conclude

that
∑i=|VC |

i=1 LB[i]
m ≤

∑i=|VC |

i=1 L[i]
m , indicating that CMLB is a lower bound to the objective function of MML-

RCP.

5. Data sets

In order to evaluate the performance of the proposed heuristic approaches, namely, the mathematical

model based on the multi-layer network representation (H1-MIP) and the matheuristic (H2), that yield solu-

tions with different characteristics, we used two different data sets. The first one is based on the Kartal region

of Istanbul, Turkey, which is subject to major earthquake risk. This data set has been used previously in sev-

eral related articles. In addition, we use random networks generated according to different characteristics to

test different topologies.

5.1. Kartal data

The Kartal road network was first generated by Kilci et al. (2015) as a complete network with 45 nodes,

together with real road distances, for a shelter location problem. A data set was derived from it by Sahin

et al. (2016) for the road clearance problem, where the number of critical nodes was limited to seven. Later,

Ajam et al. (2019) generated further instances with eleven and fifteen critical nodes. In this article, we use

the Kartal network with 7, 11 and 15 critical nodes listed in Table 1. Additionally, for each instance, we

run our algorithms with 2, 3, 4 and 5 work teams pre-positioned in the depot(s). Apart from the critical

nodes, the data set consists of 20 instances (k1, k2,...,k20) in which the clearing times and the set of blocked

edges differ. Given the severity of the earthquake (SOE), these 20 instances are categorized into 4 groups.

For instance, SOE=1 refers to the least severe earthquake while SOE=4 is associated with the severest

earthquake, causing more blocked edges with higher clearing times. Instances in each SOE group (e.g., k1,

k2,...,k5) have the same number of blocked edges but their locations and the clearing times differ instance by

instance. Table 2 describes the Kartal instances, stating the corresponding SOE and the number of blocked

edges.

The traversal times are calculated based on the shortest path distances between the nodes over the road

network. The clearing times are determined according to ukl = S OE ∗ tkl + U[0,max ti j ∀(i, j) ∈ E], where

a random number based on a uniform distribution is added.

Table 1: Selected critical nodes in the Kartal network
The 7 critical nodes selected 14, 21, 22, 26, 33, 41, 43
The 11 critical nodes selected 5, 14, 16, 21, 22, 26, 30, 33, 36, 41, 43
The 15 critical nodes selected 4, 5, 10, 14, 16, 21, 22, 26, 30, 33, 36, 38, 41, 43, 44

5.2. Random networks

We generate Euclidean networks with 20, 30, 40 and 50 nodes (640 instances in total, having up to 5

work teams), where in each instance the set of critical nodes, the traversal and the clearing times, and the
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Table 2: Kartal instance names, the corresponding SOE and the number of blocked edges

Kartal instances SOE No. of blocked edges
k1,...,k5 1 124

k6,...,k10 2 441
k11,...,k15 3 574
k16,...,k20 4 806

number and location of blocked edges differ. The location of each node is defined by selecting coordinates

randomly with equal probability in a plane. Then, the traversal time between each pair of nodes is calculated

by the Euclidean distance. The clearing times are calculated according to: ui j = ti j.U, ∀(i, j) ∈ B, where

U has a uniform distribution between 1 and 20. Moreover, the percentage of the blocked edges vary from 5

to 60. Similar to the Kartal data sets, we test the model with 7, 11 and 15 critical nodes. These random data

sets can be found in the website https://figshare.com/s/19531120f12b5a0f835f. Data consists of the set of

nodes and critical nodes, the set of blocked edges with their clearing times, and the edge traversal times for

each instance.

6. Computational results

This section examines the performance of H1 and H2 presented in Sections 4.1 and 4.2, respectively. We

report the objective function values of the solutions, the gap of the solutions with respect to the lower bounds

(CMLB) obtained by the procedure described in Section 4.3, and the run times associated with the Kartal

data and the random network instances. We run H2 ten times over each of the instances to take advantage

of its randomness. In both data sets, we test each instance with up to 5 work teams. We also examine cases

having multiple depots.

We coded our algorithms with Python 2.7.12, solved the models using Gurobi 8.0, and ran them on

a computer with 32 GB RAM and two Intel Xeon E5-2643 CPU @ 3.30 gigahertz processors, under the

Windows 7 operating system.

6.1. Kartal data results

In this section, we report the results of the tests with Kartal data in Tables 3 for 7 critical nodes, 4 and 5

for the cases with 11 and 15 critical nodes, respectively, where we run H1 and H2 with 7, 11 and 15 critical

nodes, for each of the 20 instances. Moreover, we conduct experiments by varying the number of work

teams. For 7, 11 and 15 critical nodes, we employ up to 5 work teams. In our tables, in the columns denoted

by H2, we give the average objective function value from the ten repetitions of the algorithm and denote it by

“Avg”, and also show the best solution among the ten repetitions by “Best”. In the columns denoted by H1

we give the objective function value obtained from this algorithm by “H1” and the CPU run time in second

by “CRT”. In the column denoted by “LB”, we report the lower bound obtained from our lower bounding

algorithm given in section 4.3. We also report the optimality gaps using the best solution between H1 and

H2. Denoting the best solution by OFV, we then calculate the gaps using Gap = OFV−LB
OFV × 100 formula.
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Tables 3, 4 and 5 represent the results of testing H1 and H2 algorithms on the Kartal instances with 7, 11

and 15 critical nodes, respectively. Recall that in H1-MIP, we have not defined an index associated with the

work teams. Moreover, increasing the number of work teams decreases the total number of critical nodes

designated to each work team. As a result, as the number of work teams increases, the average computational

time of H1-MIP decreases in most of the instances (i.e., Average CRT decreases from 491.1 to 142 seconds

when the number of work teams changes from 2 to 4 in Table 5). We can take advantage of this property if

a high number of work teams are available. In other words, having more work teams not only decreases the

total latency, but also decreases the computational times in most of the instances.

As we see in Tables 3, 4 and 5, H1 and H2 results are close to each other when 2 work teams are

employed. However, when the number of work teams increases, H2 provides better solutions than those in

H1. Due to an increase in the number of work teams, the chance of traversing an edge by different work

teams increases. Therefore, H1 misses better solutions because of the disjoint-path assumption.

Recall that the SOE value increases for every 5 instance in Kartal data from 1 to 4; thus, increasing the

number of blocked edges. Correspondingly, we observe that an increase in SOE value in Kartal data with

15 critical nodes and 2 work teams increases computational times of some instances (as instance numbers

increase) associated with H1 model. In addition, the locations of the blocked edges can change the compu-

tational times. For instance, in Table 2, although the instances from 16 to 20 have 806 blocked edges, their

computational times are different for any number of critical nodes that we have tested for the Kartal data.

Table 3: Results of Kartal data sets for 7 critical nodes
m = 2 m = 3

H2 H1
LB Gap

H2 H1
LB Gap

Instance Avg Best H1 CRT Avg Best H1 CRT
1 100 100 100 12.7 84 16% 85 85 85 5.6 78 8%
2 98 98 98 11.2 81 17% 82 82 82 5.6 78 5%
3 99 99 99 10.3 83 16% 84 84 84 5.9 79 6%
4 98 98 98 12.5 81 17% 82 82 82 5.5 77 6%
5 98 98 98 12 81 17% 82 82 82 5.4 77 6%
6 104 104 104 11.2 89 14% 87 87 87 5.7 77 11%
7 105 105 107 6.7 90 14% 87 87 87 5 79 9%
8 113 113 113 5.9 102 10% 103 103 103 5.2 93 10%
9 108 108 108 6.4 99 8% 94 94 94 5.5 86 9%

10 104 104 116 19.3 93 11% 91 91 95 5.5 82 10%
11 130 130 134 10.8 115 12% 110 110 110 5.1 100 9%
12 134 134 134 6.7 127 5% 115 115 115 5.5 103 10%
13 121.6 121 121 8.4 114 6% 103 103 103 8.7 92 11%
14 117 117 117 8.8 103 12% 103 103 103 5.2 95 8%
15 105 105 105 6.4 90 14% 91 91 91 5.4 82 10%
16 281 281 292 18.5 272 3% 240 240 250 8.7 234 3%
17 198 198 208 10.8 197 1% 173.1 173 186 11.1 166 4%
18 243 243 243 6.2 236 3% 205.4 205 207 5.8 193 6%
19 238 238 228 16.3 214 6% 188 188 190 11.4 179 5%
20 196 196 186 6.2 171 8% 150 149 149 5 141 5%

Average 139.5 139.5 140.5 10.4 126.1 11% 117.8 117.7 119.3 6.3 109.6 8%
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Table 4: Results of Kartal data sets for 11 critical nodes
m = 2 m = 3 m = 4

H2 H1
LB Gap

H2 H1
LB Gap

H2 H1
LB Gap

Instance Avg Best H1 CRT Avg Best H1 CRT Avg Best H1 CRT
1 178 178 178 24.5 166 7% 150 150 150 20.7 135 10% 138 138 138 15.9 122 12%
2 174 174 174 24.7 163 6% 140 140 140 19.7 132 6% 133.4 132 132 21.8 122 8%
3 172 172 172 26.3 163 5% 146 146 146 20.9 135 8% 136 136 136 15.9 123 10%
4 173 173 173 32.7 161 7% 139 139 139 19.5 131 6% 131.5 131 131 26.8 121 8%
5 173 173 173 34.8 161 7% 139 139 139 19.5 131 6% 131.6 131 131 26.4 121 8%
6 181 181 181 21.9 174 4% 148 148 148 18.7 136 8% 135 135 135 16.8 123 9%
7 211.8 211 211 23.8 194 8% 171.6 171 171 18.7 152 11% 151 151 151 16.3 137 9%
8 201 201 209 44.2 192 4% 168.4 168 171 32.9 155 8% 153.4 153 153 16.4 140 8%
9 205.4 205 205 78.9 193 6% 166.1 164 164 21.1 154 6% 147 147 163 16 136 7%

10 194 194 204 23.9 182 6% 155 155 161 18.7 148 5% 141 141 147 17.2 132 6%
11 245 245 240 60.5 223 7% 192.3 192 192 19.7 174 9% 170 170 170 16.5 153 10%
12 249 249 249 23.9 239 4% 193.2 192 192 19.5 180 6% 165 165 165 16.6 159 4%
13 242.2 238 240 63.3 223 6% 183 183 183 31.3 172 6% 158.4 158 160 26.8 146 8%
14 214 214 212 68.9 199 6% 181.9 180 180 29.1 162 10% 164 164 164 17.1 151 8%
15 200 195 197 33.1 181 7% 159.8 159 159 19.8 146 8% 145.3 145 145 17 131 10%
16 464.8 456 469 56.3 439 4% 390.4 386 409 69.3 370 4% 351.8 350 375 44.3 337 4%
17 322 322 322 31.9 311 3% 270.4 267 274 71.5 251 6% 238.8 237 250 23.8 224 5%
18 417 417 441 69.1 398 5% 328 328 353 53.9 311 5% 289.4 287 309 16.7 273 5%
19 321 318 337 74.7 304 4% 254.7 254 257 62.6 233 8% 223 222 222 17.1 208 6%
20 334 334 334 32.9 311 7% 257.5 257 257 18.5 240 7% 222.2 222 222 15.6 206 7%

Average 243.6 242.5 246.1 42.5 228.9 6% 196.7 195.9 199.3 30.3 182.4 7% 176.3 175.8 180.0 20.1 163.3 8%

Table 5: Results of Kartal data sets for 15 critical nodes
m = 2 m = 3 m = 4 m = 5

H2 H1
LB Gap

H2 H1
LB Gap

H2 H1
LB Gap

H2 H1
LB Gap

Instance Avg Best H1 CRT Avg Best H1 CRT Avg Best H1 CRT Avg Best H1 CRT
1 332 332 327 616.9 293 10% 253.8 253 253 193.8 229 9% 224.4 223 223 149.8 199 11% 208 204 204 95.7 187 8%
2 342 333 332 633.9 297 11% 257.3 251 251 167.6 232 8% 225 225 222 249.4 202 9% 206.2 206 206 85.9 188 9%
3 332.9 323 323 513.4 294 9% 255.6 252 252 204.8 234 7% 229.1 229 227 105.6 203 11% 210 210 210 127.5 190 10%
4 351 337 337 464 307 9% 262.8 256 256 137.9 236 8% 225.2 220 220 76.2 204 7% 204 204 204 59.8 191 6%
5 353.2 344 337 465.2 307 9% 262.8 256 256 141.8 236 8% 228 220 220 76.2 204 7% 204.8 204 204 60.3 191 6%
6 386 386 366 222.9 343 6% 278.4 278 278 112.1 257 8% 239.2 237 237 56.8 220 7% 219.2 218 218 49.9 199 9%
7 366 366 366 311.2 339 7% 289 289 289 305.4 254 12% 250.9 250 250 116.2 224 10% 233.9 232 232 164 206 11%
8 364 364 370 481.8 338 7% 292 291 284 342.8 261 8% 243 243 243 111.2 229 6% 226.6 225 225 77.8 212 6%
9 385 385 385 638.8 353 8% 284 284 284 156 269 5% 248.7 248 249 176.1 233 6% 233 233 224 82.4 211 6%
10 363 363 377 745 335 8% 280.3 280 286 283.8 252 10% 241.5 237 244 191.4 219 8% 218 218 224 72.5 202 7%
11 412 412 412 512 386 6% 329.8 309 309 199.6 289 6% 272.2 271 269 133.3 246 9% 246.6 246 246 83.7 224 9%
12 454.2 452 452 236.9 433 4% 332 332 332 176.9 319 4% 291.8 291 285 219.2 267 6% 249 249 249 49.3 239 4%
13 418 418 419 671.4 385 8% 316.7 308 308 270.8 286 7% 265.5 265 265 138.6 246 7% 239.5 237 239 94.8 221 7%
14 364 364 364 456.3 347 5% 301.9 297 287 115.4 269 6% 266.7 261 261 75.2 244 7% 250.2 249 248 169.9 229 8%
15 380 380 358 443.4 326 9% 279.2 276 276 192 254 8% 244.8 244 244 207.5 219 10% 224.9 224 224 92.5 204 9%
16 708.7 707 691 402 669 3% 575.4 565 577 348.9 541 4% 515.5 510 516 175.3 488 4% 485.8 483 494 67.7 457 5%
17 637 637 637 207.7 597 6% 508.3 498 502 326.7 464 7% 429.8 420 443 222.5 397 5% 390.7 390 413 152.3 365 6%
18 693 693 716 791.2 638 8% 521.8 517 547 176.2 481 7% 447.8 447 478 144 416 7% 407.5 406 438 182.8 381 6%
19 599.2 591 621 593.4 561 5% 430.1 428 444 202.6 407 5% 365.4 365 371 130.3 347 5% 329.8 329 331 49.5 314 5%
20 735 735 684 414.9 626 8% 485.8 482 493 111.7 455 6% 403.8 400 407 84.5 379 5% 345.8 342 349 46.5 327 4%

Average 448.8 446.1 443.7 491.1 408.7 7% 339.9 335.1 338.2 208.3 311.3 7% 292.9 290.3 293.7 142.0 269.3 7% 266.7 265.5 269.1 93.2 246.9 7%

6.2. Kartal data results with multiple depots

We have already described in Section 4.1.1 how to handle the problem when the work teams are pre-

positioned in more than one depot node. In this section, we report results of the experiments with multiple

depots, implemented by modified H1. Figure 6 presents the results of Kartal data with 15 critical nodes,

where other than depot node 16, nodes 45 and 20 are added to the depot set (D). We assume that 2, 1 and 1

work teams are pre-positioned in depot nodes 16, 45 and 20, respectively, where 4 work teams are available

in total. In addition, when 5 work teams are available, we assign 2, 2 and 1 work teams to depot nodes 16, 45

and 20, respectively. In each part of Figure 6, two data sets for the single depot versus multiple depot cases

are given. The total latency and computational times with 4 and 5 work teams is given in these figures. The

computational times in the multi-depot instances are slightly higher than those in the single-depot instances.
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When the number of depot nodes increases, the number of critical nodes increases as well (since we add

all the depot nodes to the set VC .), which increases the computational times. Note that also the locations

of the depot nodes may affect the objective value and the computational times. For instance, the vicinity of

the depot nodes to critical nodes may decrease the total latency value and its computational time. However,

when the depot nodes are far from the critical nodes, the solution may be obtained in higher time. As we

see in Figure 6, although the average computational times of instances with multiple depots are higher than

the computational times of instances with a single depot, we notice a decrease in the objective value over all

instances, indicating that using multiple depots besides multiple work teams may yield better solutions.
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Figure 6: Comparison of multiple and single depot cases

6.3. Random data results

To investigate the performance of H1 and H2 further on other networks, we carry out experiments with

random data sets (640 instances in total) where the locations and number of the depot(s), critical nodes,

blocked edges, and traversal and clearing times differ in each instance. For all the instances, H2 was tested

for ten repetitions and the reported results are the average of those ten repetitions. In our computational

experiments, we set the number of critical nodes similar to the Kartal data. Nevertheless, we vary the

number of total nodes as 20, 30, 40 and 50. In Tables 6, we give the results of testing both H1 on H2 on

instances with 7 critical nodes. In Tables 7 and 8, we give the optimality gaps obtained for the instances

with 11 and 15 critical nodes, respectively and in Figures 7 and 8, we compare the performance of the H1

and H2 on the instances with 11 and 15 critical nodes, respectively. Using this comparison, we highlight the

importance of incorporating coordination operations. In these data sets, although we use various values for
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the parameters (number of blocked edges and clearing times), the average computational time of H1 remains

under 1 hour. For example, in the largest instances having 15 critical nodes and 50 nodes in the graph, the

average computational time (with 2 work teams) is around 1000 seconds, showing the capability of H1 on

the data sets generated randomly. We note that once the number of teams increases, or the number of critical

nodes decreases, the CPU run time of H1 also decreases. Given this observation, we have not reported the

CPU run time of the algorithms and instead, our main consideration is towards comparison of the results

achieved from the H1 and H2 algorithms and presenting the quality of the obtained solutions through the

optimality gaps.

The result of the random data sets with 7 critical nodes is given in Table 6. In this table, the columns

denoted by D, give the percentage difference between obtained solutions using H1 and H2 for each scenario

with certain number of teams (m) and nodes (n). If we denote the solution obtained from H1 by ZH1 and the

solution obtained from H2 by ZH2, then column D is calculated as D =
ZH1 − ZH2

ZH1
. The Gap columns are

calculated using the same method as explained for Table 3. The average row at the bottom of the table, gives

the average of the D and Gap values over the 20 tested instances.

As seen in Table 6, the average results of the H1 and H2 algorithms are close to each other in most of

the instances in the presence of 7 critical nodes with 2 and 3 work teams. Here, we point out that if D is

positive over an instance, then H2 was able to find a better solution compared to H1 and if this value is

negative, then H1 was able to find a better solution. As it can be observed, in most of the instances H1 was

not able to find a better solution and by considering coordination in the operations, we were able to find

much better solutions in some of the instances like instance 8 with 3 teams and 30 nodes were consideration

of coordination enabled us to improve the solutions by more than 37%.

Table 6: Results of random data sets with 7 critical nodes
m=2 m=3

Instance
n=20 n=30 n=40 n=50 n=20 n=30 n=40 n=50

D Gap D Gap D Gap D Gap D Gap D Gap D Gap D Gap
1 0.00 0.46 0.00 2.59 0.00 3.49 0.00 0.00 0.00 0.49 0.00 0.63 0.00 0.01 0.00 4.73
2 0.00 0.00 0.00 0.28 0.00 1.38 0.00 2.52 0.00 2.88 0.00 0.35 0.00 0.11 0.00 0.41
3 0.00 2.22 0.00 1.62 0.76 11.82 -1.70 0.72 0.86 2.30 0.00 8.25 0.00 12.07 -2.02 5.04
4 0.00 5.82 0.00 0.01 0.00 9.28 0.00 4.49 0.00 8.02 0.40 2.01 0.00 0.26 0.00 1.32
5 0.00 7.00 0.00 0.99 0.00 4.46 0.00 6.83 0.00 6.35 0.00 1.47 0.00 4.89 4.07 8.54
6 0.00 2.26 0.00 3.65 0.00 8.37 5.25 5.48 0.00 0.00 0.00 4.81 0.00 2.94 5.70 0.64
7 0.00 15.83 0.00 10.79 0.00 0.87 0.00 12.25 0.00 0.00 5.17 3.07 0.00 3.55 0.00 10.25
8 0.00 0.83 0.00 0.00 0.00 5.84 0.03 3.33 0.00 8.63 37.96 0.01 0.00 8.08 0.00 2.84
9 0.00 0.00 0.00 3.65 0.21 1.06 3.41 4.05 0.00 0.00 16.23 2.54 0.00 0.45 0.94 0.00
10 0.00 12.89 0.00 8.57 0.00 8.97 0.00 2.23 0.00 13.58 0.00 0.00 0.00 9.90 0.00 6.77
11 0.00 3.10 0.00 2.59 0.00 2.36 0.00 4.46 0.00 3.52 0.00 4.92 0.00 8.38 0.00 3.21
12 0.00 4.28 0.00 2.66 0.20 1.94 0.00 0.50 0.00 3.86 0.00 10.22 0.23 1.42 0.00 2.39
13 0.00 4.09 0.00 2.27 0.00 3.30 0.00 2.05 0.00 2.59 0.00 0.00 0.00 2.53 0.00 6.11
14 0.00 0.00 1.30 12.93 0.00 0.54 0.00 0.98 0.00 6.17 0.00 0.03 0.00 0.36 0.00 3.22
15 0.00 0.01 0.00 0.42 0.00 8.28 0.00 0.00 2.85 0.00 0.00 5.70 0.00 0.00 0.00 1.32
16 0.00 0.00 0.00 4.24 0.00 3.48 0.00 1.17 0.00 0.00 0.00 0.88 0.00 3.07 0.00 1.31
17 0.00 0.00 0.00 3.82 0.00 0.00 0.00 5.76 0.08 0.00 0.00 6.67 0.00 0.00 0.00 3.02
18 0.00 2.71 0.00 5.92 0.00 1.14 0.00 2.21 0.00 0.50 0.00 1.44 0.00 0.75 0.00 7.10
19 0.00 2.70 3.81 3.63 0.00 4.03 0.00 2.67 0.00 2.85 0.00 1.97 0.00 4.51 0.00 2.54
20 2.98 0.00 0.00 0.00 0.00 4.52 0.00 0.22 0.00 1.90 2.13 0.00 0.00 5.65 0.00 2.54

Average 0.15% 3.21% 0.26% 3.53% 0.06% 4.26% 0.35% 3.10% 0.19% 3.18% 3.09% 2.75% 0.01% 3.45% 0.43% 3.66%

The results of the random data sets with 11 critical nodes are presented in Table 7 and Figure 7, where the

obtained optimality gaps and a comparison between the H1 and H2 algorithms are presented, respectively.

As it can be observed in Table 7, the average gap remained under 6.75% and this gap decreases once the
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number of work teams increases from 2 to 4. For example the average gap over all the instances with 2 teams

is 6.05% and it decreases to 4.06% and 3.92% for the instances with 3 and 4 work teams, respectively.

Table 7: Obtained gaps for the random data sets with 11 critical nodes

m=2 m=3 m=4
Instance n=20 n=30 n=40 n=50 n=20 n=30 n=40 n=50 n=20 n=30 n=40 n=50

1 0.08 0.10 0.05 0.10 0.00 0.07 0.03 0.09 0.03 0.02 0.05 0.11
2 0.03 0.01 0.03 0.04 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01
3 0.02 0.05 0.07 0.07 0.01 0.06 0.02 0.03 0.00 0.02 0.03 0.07
4 0.08 0.12 0.02 0.04 0.01 0.03 0.03 0.01 0.02 0.02 0.04 0.04
5 0.04 0.01 0.06 0.04 0.02 0.00 0.04 0.01 0.05 0.01 0.06 0.07
6 0.01 0.05 0.01 0.07 0.07 0.03 0.00 0.08 0.06 0.05 0.01 0.08
7 0.09 0.07 0.01 0.05 0.09 0.01 0.00 0.07 0.01 0.07 0.04 0.03
8 0.12 0.03 0.02 0.09 0.01 0.03 0.06 0.10 0.12 0.04 0.02 0.07
9 0.06 0.05 0.05 0.07 0.05 0.00 0.06 0.07 0.05 0.01 0.01 0.04
10 0.05 0.14 0.04 0.06 0.05 0.07 0.08 0.02 0.03 0.07 0.03 0.02
11 0.10 0.06 0.07 0.00 0.07 0.10 0.06 0.00 0.06 0.01 0.06 0.05
12 0.07 0.00 0.08 0.08 0.11 0.05 0.10 0.03 0.06 0.02 0.10 0.02
13 0.09 0.04 0.05 0.01 0.02 0.06 0.02 0.02 0.01 0.02 0.01 0.02
14 0.07 0.05 0.12 0.04 0.13 0.04 0.01 0.05 0.03 0.02 0.08 0.02
15 0.05 0.07 0.05 0.06 0.00 0.01 0.06 0.01 0.01 0.04 0.03 0.04
16 0.08 0.08 0.07 0.02 0.01 0.06 0.05 0.02 0.15 0.04 0.05 0.04
17 0.12 0.03 0.04 0.06 0.06 0.01 0.01 0.02 0.01 0.02 0.07 0.03
18 0.03 0.13 0.11 0.06 0.02 0.09 0.06 0.03 0.01 0.02 0.11 0.03
19 0.02 0.07 0.02 0.05 0.01 0.01 0.00 0.01 0.01 0.07 0.04 0.01
20 0.03 0.19 0.19 0.08 0.04 0.10 0.23 0.01 0.03 0.09 0.08 0.05

Average 6.13% 6.75% 5.83% 5.50% 3.94% 4.28% 4.66% 3.37% 3.74% 3.30% 4.53% 4.13%

Figure 7 gives the results of the comparisons between H1 and H2 based on the number of nodes and the

number of work teams. Overall, we can observe that incorporating coordination can improve the solutions

significantly. This observation is more significant when the number of work teams increases. For example,

for the case with two work teams, over all the different values of n, the average coordination improvement is

0.81% but this values increases to 6.17% for the case with three work teams and 8.37% for the case with 4

work crews respectively. This could be expected since using more work teams provides more opportunities

for coordination among them. Moreover, H1 was only able to find a better solution compared to H2 in one

of the instances with four teams and 50 nodes and this improvement was only for 0.6%. For instances with

three teams however, H1 was not able to find a better solution compared to H2 in none of the tested instances.

In the case with two teams, H1 found a better solution compared to H2 for only one instance with 20 nodes

and 2 instances with 50 nodes.

The results of the random data sets with 15 critical nodes are presented in Table 8 and Figure 8. Table

8 gives the obtained optimality gaps over different instances with different number of work teams (m =

2, 3, 4, 5) and number of nodes (n = 30, 40, 50). As it can be observed over these instances, the average gap

decreases when the number of work teams increases. For the case with two work teams, the average gap is

6.74, for the case with three teams the average gap is 6.50% and this gap decreases to 3.95% and 3.41% for

the cases with four and five work teams respectively. This is a similar trend as to what we have observed for

the random instances with 11 critical nodes.

Figure 8 provides the comparison between H1 and H2 algorithms for the random instances with 15
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Figure 7: Comparison of H1 and H2 for random instances with 11 critical nodes

Table 8: Obtained gaps for the random data sets with 15 critical nodes

m=2 m=3 m=4 m=5
Instance n=30 n=40 n=50 n=30 n=40 n=50 n=30 n=40 n=50 n=30 n=40 n=50

1 0.07 0.03 0.04 0.08 0.03 0.04 0.04 0.14 0.02 0.02 0.03 0.02
2 0.12 0.04 0.14 0.09 0.03 0.07 0.03 0.08 0.02 0.03 0.05 0.07
3 0.06 0.04 0.08 0.05 0.06 0.08 0.01 0.04 0.03 0.02 0.04 0.07
4 0.11 0.05 0.03 0.12 0.05 0.04 0.01 0.01 0.06 0.03 0.03 0.01
5 0.04 0.09 0.07 0.06 0.08 0.07 0.03 0.07 0.04 0.06 0.02 0.07
6 0.09 0.09 0.04 0.06 0.09 0.04 0.08 0.04 0.01 0.01 0.03 0.01
7 0.06 0.05 0.04 0.01 0.05 0.07 0.02 0.04 0.05 0.02 0.06 0.03
8 0.06 0.08 0.10 0.08 0.09 0.10 0.07 0.01 0.02 0.00 0.02 0.05
9 0.09 0.09 0.00 0.06 0.06 0.01 0.03 0.04 0.04 0.02 0.03 0.02
10 0.10 0.10 0.07 0.06 0.08 0.06 0.05 0.08 0.09 0.03 0.06 0.04
11 0.04 0.07 0.03 0.06 0.05 0.05 0.01 0.03 0.03 0.03 0.06 0.01
12 0.09 0.07 0.09 0.14 0.07 0.11 0.01 0.03 0.03 0.08 0.02 0.02
13 0.08 0.02 0.09 0.07 0.04 0.12 0.02 0.02 0.06 0.02 0.04 0.01
14 0.07 0.08 0.10 0.07 0.11 0.09 0.06 0.09 0.08 0.03 0.04 0.04
15 0.07 0.05 0.12 0.06 0.07 0.09 0.01 0.01 0.03 0.02 0.03 0.02
16 0.09 0.01 0.02 0.08 0.04 0.01 0.03 0.03 0.01 0.03 0.02 0.03
17 0.04 0.11 0.06 0.07 0.07 0.05 0.05 0.04 0.03 0.03 0.03 0.08
18 0.13 0.07 0.03 0.09 0.08 0.03 0.04 0.03 0.06 0.06 0.03 0.02
19 0.06 0.05 0.03 0.04 0.08 0.02 0.03 0.00 0.03 0.06 0.03 0.05
20 0.10 0.05 0.03 0.06 0.06 0.06 0.02 0.09 0.06 0.02 0.05 0.03

Average 7.95% 6.20% 6.08% 6.99% 6.44% 6.07% 3.18% 4.66% 4.00% 3.10% 3.57% 3.58%

critical nodes. This figure is divided to four parts based on the number of work teams. As it can be observed

when the number of work teams increases the impact of the coordination considerations becomes more

significant. In the instances with two work teams the coordination makes an improvement of 0.54% but this
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value increased to 1.05%, 13.54% and 14.50% for the instances with three, four and five teams, respectively.

The coordination consideration was able to improve the solutions by up to 30% for instance 3 with four

teams and 40 nodes. H1 was only able to provide better solutions in a number of instances with two work

teams and only one instance with three teams. However, in all the instances with four and five teams, H2

found a better solution compared to H1 in all the tested instances.

Given the observations associated with the random network data, number of work teams, number of

critical nodes, number of total nodes can affect the solutions provided by H1 and H2. For small networks

with up to 3 work teams and a few critical nodes (up to 7 critical nodes), both H1 and H2 yield close solutions.

However, when the number of work teams increases, the possibility of traversing an edge with different work

teams increases as well. Thus, H1 cannot provide high-quality solutions (given its disjoint-path assumption)

compared to those in H2.
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Figure 8: Comparison of H1 and H2 for random instances with 15 critical nodes

7. Conclusions

In this article, we studied the road clearance/restoration problem in disaster management with multiple

work teams, with the objective of minimizing total latency of reaching a given set of critical nodes for the first

time. We developed a mathematical model (M1) that handles the complicating synchronization requirement

among the work teams. However, this model is able to solve instances with a limited size (having up to 12

nodes). Thus, we proposed two alternative heuristic approaches. We introduced a novel multi-level network

structure to solve which problem as a heuristic approach through which multiple work teams positioned at
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multiple depots can be handled as well as visiting a subset of nodes. Based on the novel multi-level network,

we proposed a mathematical model (H1-MIP) that is able to solve instances up to 45 nodes and 15 critical

nodes in short computational times. In addition, we introduced a matheurisitc (H2) which has different

properties from the ones in H1, namely the disjoint paths requirement has been relaxed in H2. H2 works

on a transformed network having the set of critical nodes as the set of nodes. H2 is designed based on a

coordinated subroutine in which if a blocked edge is unblocked by a work team, it will be available for the

next traverses by the same or the other work teams. In small networks with limited number of critical nodes

and work teams both H1 and H2 find solutions close to each other. However, we recommend to use H2 when

the number of work teams and critical nodes are large.

We conducted experiments with two types of data sets to compare the two heuristics and observe opti-

mality gaps with respect to the lower bounds obtained by the proposed procedure. The first one is based on

a real data of a district in Istanbul that is prone to earthquake risk and the second one is generated randomly

with different problem sizes. We observed reasonable computational times with H1. The advantage of this

model is that since we have intentionally not defined an index associated with work teams, computational

times decrease when the number of work teams increases, since the number of critical nodes designated

to each work team decreases. On the other hand, H2 is faster since it is implemented on a reduced graph.

Also, the paths it generates are not necessarily disjoint, which may enable obtaining smaller objective val-

ues. We note that having small computational time is extremely important for implementing solutions in the

aftermath of a disaster in the immediate response phase.

We believe that due to the tractability of both H1 and H2, organizations in charge of disaster response

can utilize these methodologies for a more effective response operation. Analyses with what-if questions

to guide the decision makers would also be possible due to short computational times of the developed

methodologies. As a future work, heterogeneous work teams with different speeds for clearing blocked

edges can be considered. Incorporating the uncertainty in road clearing/restoration times is another direction

for future work.
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Online Supplements

Appendices
A. Mathematical model associated with synchronized MML-RCP (M1)

The decision variables are presented in Table 9. In addition, there are extra sets and parameters used in

the following formulation as defined below.

The walks start from the depots and end in a dummy sink node, indexed as n + 1. D denotes the set of

depots and Pd is the set of work teams which are initially positioned at depot d ∈ D. In addition K is the set

of work teams.

Table 9: Decision variables used in the model associated with synchronization
Notation Type Definition
xk

i jl, ∀(i, j), ( j, l) ∈ E,∀k ∈ K binary If work team k crosses ( j, l) right after (i, j) in its walk
zk

i jl, ∀(i, j) ∈ B, ( j, l) ∈ E,∀k ∈ K binary If (i, j) is unblocked by work team k
yk

i jl, ∀ j ∈ VC,∀i : (i, j) ∈ E,∀l : ( j, l) ∈ E,∀k ∈ K binary If work team k reaches critical node j for the first time while crossing ( j, l) right after (i, j) in its walk
f k
i j, ∀(i, j) ∈ E,∀k ∈ K continuous The flow corresponding to work team k’s route on (i, j) from node i to j

vk
i , ∀i ∈ V ∪ {n + 1},∀k ∈ K continuous Number of times work team k visits node i

tk
i jl, ∀(i, j), ( j, l) ∈ E,∀k ∈ K continuous The time that work team k arrives to node j from i before going to l

sk
i jl, ∀(i, j), ( j, l) ∈ E continuous

If arc ( i , j ) is in the walk of work team k ;
it is the earliest time that work team k can enter { i , j }. Otherwise, it is 0

τk
i jl, ∀ j ∈ VC,∀i : (i, j) ∈ E,∀l : ( j, l) ∈ E,∀k ∈ K continuous The time that work team k arrives to node j from i before going to l. Otherwise becomes M
γk

i jl, ∀ j ∈ VC,∀i : (i, j) ∈ E,∀l : ( j, l) ∈ E,∀k ∈ K continuous The first time that work team k arrives to node j from i before going to l
T j, ∀ j ∈ VC continuous latency of node j

min
∑
j∈VC

T j (21)

T j ≤ τ
k
i jl ∀ j ∈ VC , i : (i, j) ∈ E, l : ( j, l) ∈ E,∀k ∈ K (22)∑

l:( j,l)∈E

∑
i:(i, j)∈E

∑
k∈K

yk
i jl = 1 ∀ j ∈ VC (23)

τk
i jl = M

(
1 − xk

i jl

)
+ tk

i jl ∀ j ∈ VC , i : (i, j) ∈ E, l : ( j, l) ∈ E,∀k ∈ K (24)

γk
i jl ≥ τ

k
i jl − M

(
1 − yk

i jl

)
∀ j ∈ VC , i : (i, j) ∈ E, l : ( j, l) ∈ E,∀k ∈ K (25)

γk
i jl ≤ τ

k
i jl, ∀ j ∈ VC , i : (i, j) ∈ E, l : ( j, l) ∈ E,∀k ∈ K (26)

T j =
∑

l:( j,l)∈E

∑
i:(i, j)∈E

∑
k∈K

γk
i jl ∀ j ∈ VC (27)

yk
i jl ≤ xk

i jl ∀ j ∈ VC , i : (i, j) ∈ E, l : ( j, l) ∈ E,∀k ∈ K (28)

xk
i jl ≤

∑
h:(l,h)∈E

xk
jlh ∀(i, j) ∈ E, k ∈ K, l : ( j, l) ∈ E,∀k < Pi (29)

xk
i jl ≤

∑
h:(h,i)∈E

xk
hi j ∀(i, j) ∈ E,∀k ∈ K, l : ( j, l) ∈ E,∀k < Pi (30)

∑
h:(h,i)∈E

xk
hi j ≤ 1 ∀(i, j) ∈ E,∀k ∈ K (31)
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∑
l:( j,l)∈E

xk
i jl ≤ 1 ∀(i, j) ∈ E,∀k ∈ K (32)

∑
j:(d, j)∈E

∑
l:( j,l)∈E

xk
d jl = 1 ∀d ∈ D,∀k ∈ Pd (33)

∑
(i, j)∈E

xk
i j(n+1) = 1 ∀k ∈ K (34)

∑
l:( j,l)∈E

xk
i jl ≥ zk

i j ∀(i, j) ∈ B, k ∈ K (35)

∑
l:( j,l)∈E

xk
i jl +

∑
h:(i,h)∈E

xk
jih ≤ 2

 K∑
κ=1

zκi j +

K∑
κ=1

zk
ji

 ∀(i, j) ∈ B,∀k ∈ K (36)

K∑
κ=1

(
zκi j + zκji

)
≤ 1 ∀(i, j) ∈ B (37)∑

j:∈V∪{(n+1)}:(i, j)∈E

(
f k
i j − f k

ji

)
= −vk

i ∀k ∈ K,∀i ∈ V ∪ {(n + 1)}\D (38)

∑
j∈V∪{(n+1)}

(
f k
d j − f k

jd

)
=

∑
i∈V∪{(n+1)}\{d}

vk
i ∀k ∈ Pd,∀d ∈ D (39)

∑
j∈V

f k
j(n+1) = 1 ∀k ∈ K (40)

f k
i j ≤ (n − 1)

∑
l:( j,l)∈E

xk
i jl ∀k ∈ K,∀(i, j) ∈ E, i, j ∈ V ∪ {(n + 1)} (41)

f k
i j ≥

∑
l:( j,l)∈E

xk
i jl ∀k ∈ K,∀(i, j) ∈ E, i, j ∈ V ∪ {(n + 1)} (42)

∑
j:( j,i)∈E

∑
l:(i,l)∈E

xk
jil = vk

i ∀k ∈ K,∀i ∈ V ∪ {(n + 1)} (43)

tk
i jl ≤ Mxk

i jl ∀k ∈ K, i : (i, j) ∈ E,∀l : ( j, l) ∈ E (44)

sk
i j ≤

∑
h:(h,i)∈E

tk
hi j + M

(
1 − zk

i j

)
∀k ∈ K,∀(i, j) ∈ B (45)

sk
i j ≥

∑
h:(h,i)∈E

tk
hi j ∀k ∈ K,∀(i, j) ∈ B (46)

sk
i j ≥

∑
l:( j,l)∈E

tκi jl − M
(
1 − zκi j

)
− 2M

1 − ∑
h:(h,i)∈E

xk
hi j

 ∀k, κ ∈ K,∀(i, j) ∈ B, κ , k (47)

∑
l:( j,l)∈E

tk
i jl ≥ sk

i j + ui jzk
i j +

∑
l:( j,l)∈E

xk
i jlti j,∀k ∈ K ∀(i, j) ∈ B (48)

∑
l:( j,l)∈A

tk
i jl ≥

∑
h:(h,i)∈E

tk
hi j +

∑
l:( j,l)∈A

xk
i jlti j ∀k ∈ K,∀(i, j) ∈ E\B (49)

xk
i jl ∈ {0, 1},∀k ∈ K, i : (i, j) ∈ E, ∀l : ( j, l) ∈ E (50)

zk
i j ∈ {0, 1}, ∀(i, j) ∈ B, ∀k ∈ K (51)

f k
i j ≥ 0, ∀(i, j) ∈ E, ∀k ∈ K (52)

vk
i ≥ 0, ∀i ∈ V, ∀k ∈ K (53)

tk
i jl ≥ 0,∀k ∈ K, i : (i, j) ∈ E, l : ( j, l) ∈ E (54)
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Figure 9: Demonstration of the flow formulation (Akbari and Salman 2017b)

sk
i j ≥ 0, ∀(i, j) ∈ B, ∀k ∈ K (55)

The objective function calculates the total latency of all critical nodes. Note that all walks end in the sink

node indexed as n + 1. Constraints (22)-(27) force the model to pick the minimum visiting time of critical

node j as the value of its latency. Constraints (22) guarantee that the latency of critical node j should be less

than or equal to all visiting times of node j by all work teams. Constraints (23) ensure that only one of the

visiting times of critical node j should be considered as its latency (given the other constraints, the model

picks the earliest time that critical node j is visited). In addition, it implies that all critical nodes must be

visited. Constraints (24) provide the visiting time of critical node j for each work team that visits this critical

node (on the other hand, if critical node j is not visited by a work team, its visiting time becomes equal to big

M.). By constraints (25) and (26), LLk
i jl finds the minimum time to reach critical node j over all work teams

and routes. As a result, Constraints (27) calculate the latency of critical node j. If no work team traverses

node j, then variable y should be zero as well, which is shown by Constraints (28). Constraints from (29) to

(32) represent the flow balance equations. First, when a work team enters an arc and it must leave it in the

next step of its walk. Moreover, the work team is allowed to leave the edge if it traverses that edge in the

previous step of the walk, which is stipulated by Constraints (29) and (30). Moreover, Constraints (31) and

(32) enforce that each arc is traversed at most once. Constraints (33) and (34) make each work team start its

walk in its corresponding depot and ends it in the sink node (n + 1). Constraints (35) force that a blocked

edge gets cleared only if a work team traverses it. Constraints (36) ensure that a work team cannot traverse

an edge unless it is cleared by a work team. By (37), at most one work team is allowed to clear a blocked

edge. We use flow variables f k
i j for every work team and for each arc (i, j) ∈ E, to guarantee the connectivity

of the walks. The net flow out of a depot node is the total number of visits to all nodes except the depot.

For other nodes, net flow equals to the number of visits to the corresponding node. Figure 9 (taken from

Akbari and Salman (2017b)) gives an example of the usage of the flow variables and how they enable the

route of a work team to be connected. In the given walk in Figure 9, total number of visits is 12. A flow

of 12 leaves the depot node and at each visit to any node, one unit of flow is consumed. Finally one unit

of flow enters the sink node. Constraints (38) and (39) make a work team leave one unit of flow whenever

it visits a node. Constraints (40) ensure that walks end in the sink node. Constraints (41) do not provide

flow on an edge if it is not traversed. Constraints (42) force a positive amount of flow which passes through
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an edge whenever that edge is traversed. Constraints (43) calculate the number of times work team k visits

node i ∈ V . Constraints sets (44) to (49) are for setting time limits. Constraints (44) ensure that, if xk
i jl = 0,

then tk
i jl = 0, indicating that edge ( j, l) is not visited right after (i, j), so that the corresponding time to reach

node j must be zero. Constraints (45), (46) and (47) calculate sk
i j values. Variable sk

i j shows the earliest

time that edge (i, j) ∈ B is traversable by work team k, if work team k is planned to cross it. On the other

hand, sk
i j should be forced to be zero, if work team k does not traverse (i, j) ∈ B. Traversing a blocked edge

can only start by a work team when either the particular work team is the opener of the edge, or the edge is

already unblocked by another work team. Due to constraints (45) and (46), if work team k is the opener of

edge (i, j) ∈ B, the earliest time that it is traversable by k is the time when it arrives to (i, j). On the other

hand, if zk
i j = 0 , then (45) is redundant, and by (46) work team k can start traversing (i, j) no sooner than its

arrival time to node i. If a work team traverses a blocked edge without opening it, it is only possible if the

edge is unblocked earlier by another work team. In addition, sk
i j = 0 should be satisfied, if work team k is

not planned to cross (i, j) ∈ B. Constraints sets (48) and (49) calculate the arrival times to an edge (i, j) for

(i, j) ∈ B and (i, j) ∈ E \ B, respectively. Constraints (50)-(55) define the domains of the decision variables.

B. Parameter tuning for H2

In the H2 algorithm given in section 4.2, a number of parameters and certain setting was utilized. In this

section, we conduct a number of computational experiments to justify our choices. For all the experiments in

this section, we have analyzed all the 20 instances from the Kartal data set with 15 critical nodes and 3 work

teams. For each instance, we run the H2 algorithm 10 times to address the randomness of our algorithm.

We have used four neighborhood search moves in H2 denoted by N1,N2,N3 and N4. We have used them

exactly in the same order in our algorithm. Table 10 gives the results of testing different orders including

N1-N2-N3-N4, N2-N3-N1-N4 and N1-N4-N2-N3. In this table, the Average OFV column gives the average

objective function value obtained from 10 repetitions of running H2 on that instance and Best OFV gives

the best objective function value found in those instances. The Average LIT column gives the time in

seconds in which the last improvement was achieved. As it can be observed in this table, the N1-N2-N3-N4

finds the best objective function values on average. Moreover, we observe that the time in which the last

improvement is made is always less than 10 seconds, hence we have set a time limit of 30 seconds for H2 in

our computational experiments.

We have also conducted a number of experiments to see whether all the moves are actively improving

the objective function or not. For the same three different orders, under the same scenarios as in Table 10,

we have also observed the total number of times a successful move from each of the neighborhood moves

was executed. These results are presented in Table 11. As it can be observed in this table, all the moves were

successful in finding better solutions. While N3 seems to have the most number of successful executions, N4

had the lowest successful utilization among the moves. Nevertheless, all the moves had numerous successful

executions.

In our local search, when an incumbent solution is not improved in imax iteration, a perturbation step is

implemented to avoid the local optima. In Table 12, we have investigated the impacts of changing the value
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Table 10: Impact of the neighborhood orders on the obtained solutions

Order N1-N2-N3-N4 N2-N3-N1-N4 N1-N4-N2-N3

Instance
Average Best Average Average Best Average Average Best Average

OFV OFV LIT OFV OFV LIT OFV OFV LIT
1 253.8 253 4.15 254.8 253 3.29 253.8 253 4.00
2 261.5 251 3.57 257.3 251 3.74 258.3 251 2.95
3 257.8 252 3.73 254.1 252 4.07 258.4 252 4.09
4 266.2 256 3.53 258.7 256 3.52 262.1 256 2.14
5 262.1 256 1.63 266.2 256 3.27 259.4 256 3.66
6 278.6 278 5.54 278.2 278 3.82 278.2 278 4.47
7 291.9 289 2.29 291.2 289 6.49 289.4 289 4.22
8 291.1 291 5.57 292.5 291 2.89 292 291 4.42
9 284 284 5.20 285.4 284 6.23 286.8 284 4.74

10 280.5 280 1.92 280.8 280 1.31 280.6 280 1.94
11 328 309 2.31 331.9 331 1.32 332.5 331 3.51
12 332 332 3.89 332 332 5.41 334 332 5.15
13 314.4 308 6.13 313.7 308 5.26 314.4 308 4.46
14 303.8 297 4.65 302.5 297 4.69 302 297 3.70
15 277.2 276 6.57 277.2 276 6.65 276 276 7.62
16 581.2 573 5.86 576.6 573 4.04 576.5 573 6.28
17 504.4 498 4.45 509 502 3.82 500.9 498 4.61
18 520.4 517 5.86 520.8 517 6.21 525.2 517 6.62
19 428 428 4.88 430.1 428 6.25 432.2 428 4.71
20 484.7 482 5.32 488.9 482 5.22 486.1 482 6.10

Average 340.08 335.5 4.35 340.10 336.8 4.38 339.94 336.6 4.47

of imax. We have tested different values in the range from 100 to 300. Based on our observations, while the

impacts of this parameter are not significant given the selected range, the average Best OFV and the Average

of the Avg OFV values are both in their minimum state when imax = 200. As a result, we have set imax = 200

in all our computational experiments.

In the perturbation step of the H2 algorithm, the double swap move is applied NDS times on the incum-

bent solution. We have also investigated the impacts of changing the value of NDS on the obtained solutions.

The results of these experiments are presented in Table 13. We have considered different values from 3 to

7 for our experiments. As it can be observed, when NDS = 5, both the average of the Best OFV and the

average of the average OFV is improved. As a result, for our computational experiments, we set NDS = 5.

C. Multiple Makespan Minimization MIP (3M-MIP)

The Multiple Makespan Minimization MIP (3M-MIP) finds the minimum time in which a certain number

of critical nodes can be visited by the available work teams. For instance 3M-MIP(n,M) is the makespan

minimization problem in which M work teams visit n critical nodes. Similar to MML-RCP, the route of a

work team starts in its depot and ends in a dummy sink node indexed by N+1. We also add a dummy edge

from each node in V to the dummy sink node and set its cost equal to 0. Similar to MML-RCP, Pd is the

set of work teams positioned in the depot d ∈ D. In the following, we first give the decision variables of the
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Table 11: Total number of successful neighborhood moves

Order N1-N2-N3-N4 N2-N3-N1-N4 N1-N4-N2-N3
Instance N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4

1 12 38 26 2 16 22 24 4 12 27 23 5
2 15 11 24 0 9 15 34 2 12 13 26 0
3 23 9 22 2 24 22 25 2 17 25 26 2
4 6 13 25 0 5 14 31 1 8 19 23 3
5 4 15 28 2 4 14 26 4 7 16 30 3
6 8 23 32 3 11 13 35 1 13 24 36 0
7 9 19 29 4 20 23 39 8 14 18 29 2
8 13 6 24 3 12 10 27 1 14 13 24 3
9 17 3 23 5 17 11 24 3 16 8 23 6
10 4 8 33 0 7 10 29 0 7 13 36 4
11 14 17 28 0 4 9 27 0 9 6 29 1
12 15 18 27 3 18 9 30 3 16 19 21 3
13 9 7 31 10 10 12 29 4 14 10 30 7
14 11 19 25 2 12 20 26 4 9 15 37 5
15 14 39 24 3 18 31 35 4 26 42 24 1
16 19 18 38 13 17 15 35 10 24 21 37 11
17 15 22 28 3 12 18 29 1 16 13 19 2
18 23 29 30 12 17 20 37 10 35 15 37 12
19 15 21 41 7 13 20 34 9 24 15 38 9
20 22 22 35 11 15 19 29 13 17 19 42 9

Table 12: Analysis of the impact of imax on the results

imax 100 150 200 250 300

Instance
Best Avg Best Avg Best Avg Best Avg Best Avg
OFV OFV OFV OFV OFV OFV OFV OFV OFV OFV

1 253 253.8 253 254.8 253 253.6 253 255 253 254.8
2 251 261.5 251 259.4 251 261.1 251 264.6 251 260.6
3 252 257.8 252 255.6 252 254.3 252 256.3 252 259.2
4 256 266.2 256 257.7 256 267.9 256 264.5 256 259.4
5 256 262.1 256 263.8 256 262.8 256 269.6 256 260.4
6 278 278.6 278 278 278 278 278 278.8 278 278
7 289 291.9 289 289.7 289 289.9 289 290 289 289.7
8 291 291.1 291 292.7 291 291.5 284 290.3 291 293
9 284 284 284 284 284 284 284 284 284 284
10 280 280.5 280 280.2 280 280.5 280 281 280 280.4
11 309 328 331 333.1 309 324.1 331 332.7 332 333.2
12 332 332 332 332 332 332 332 332 332 332
13 308 314.4 308 313.7 308 314.4 308 316.2 308 317.1
14 297 303.8 297 304.8 297 300.7 297 304.1 287 301.2
15 276 277.2 276 277.9 276 276.8 276 276.8 276 283.6
16 573 581.2 573 580.1 565 573.6 565 575.2 573 577.3
17 498 504.4 498 505.1 498 505.9 498 504.6 498 504
18 517 520.4 517 524 517 523.8 517 523.6 517 521.3
19 428 428 428 432.2 428 431.5 428 437.8 428 436.1
20 482 484.7 482 489.5 482 491.5 482 488.5 482 489.6

Average 335.5 340.08 336.6 340.415 335.1 339.895 335.85 341.28 336.15 340.745
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Table 13: Analysis of the impacts of NDS on the results

NDS 3 4 5 6 7

Instance
Best Avg Best Avg Best Avg Best Avg Best Avg
OFV OFV OFV OFV OFV OFV OFV OFV OFV OFV

1 253 254.4 253 254.6 253 253.6 253 253.4 253 254.2
2 251 255.2 251 255.2 251 261.1 251 262.5 251 267.8
3 252 259.9 252 257 252 254.3 252 261.4 252 257
4 256 260.2 256 266.2 256 267.9 256 259.4 256 263.8
5 256 264.5 256 263.9 256 262.8 256 262.8 256 265.5
6 278 278 278 278 278 278 278 278.6 278 279.4
7 289 290.3 289 290 289 289.9 289 292.3 289 290.9
8 291 292.5 291 291.8 291 291.5 291 292 291 294.3
9 284 285.4 284 284 284 284 284 285.8 284 285.4
10 280 280.2 280 280.6 280 280.5 280 280.2 280 280.3
11 309 328 309 326.3 309 324.1 332 332.3 309 328
12 332 332 332 332 332 332 332 332 332 332
13 308 315.2 308 313.6 308 314.4 308 317.3 308 314.8
14 297 307.3 297 304.3 297 300.7 297 303.1 297 302.5
15 276 278.4 276 276 276 276.8 276 276 276 276
16 570 574.1 565 574.2 565 573.6 565 572.8 565 572.7
17 498 507.3 504 509.4 498 505.9 498 507.5 502 505.9
18 517 522.6 517 525.1 517 523.8 517 522.6 517 523
19 428 434.3 428 432.2 428 431.5 428 429.4 428 438.3
20 482 482 482 487.4 482 491.5 482 485.2 482 487.4

Average 335.35 340.09 335.4 340.09 335.1 339.895 336.25 340.33 335.3 340.96

3M-MIP and then give the objective function and constraints associated with 3M-MIP with m work teams

and visiting n critical nodes.

Table 14: Decision variables of the 3M-MIP
Notation Type Definition
xm

i j,∀(i, j) ∈ E,∀m ∈ M binary If work team m goes from nodes i to j.
zm

i j,∀(i, j) ∈ B,∀m ∈ M binary If work team m unblocks blocked edge (i, j).
f m
i j , ∀(i, j) ∈ E,∀m ∈ M continuous The flow corresponding to work team m’s route on (i, j) from node i to j

vm
i , ∀i ∈ V ∪ {N + 1},∀m ∈ M continuous Number of times work team m visits node i

yc, c ∈ Vc binary If critical node c ∈ Vc is visited or not.
W continuous The value of the objective function

Min W (56)

W ≥
∑

(i, j)∈E

ti jxm
i j +

∑
(i, j)∈B

ui jzm
i j, m ∈ M (57)

∑
j∈V∪{(n+1)}:(d, j)∈E

(xm
d j − xm

jd) = 1, ∀d ∈ D, ∀m ∈ Pd (58)

∑
j∈V∪{(N+1)}:(i, j)∈E

(xm
i j − xm

ji) = 0, m ∈ M, ∀i ∈ V\D (59)

∑
j∈V

xm
j(N+1) = 1, m ∈ M (60)
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xm
i j + xm

ji ≥ zm
i j, m ∈ M, ∀(i, j) ∈ B (61)

xm
i j + xm

ji ≤ 2
∑
l∈M

zl
i j, m ∈ M, ∀(i, j) ∈ B (62)∑

m∈M

zm
i j ≤ 1, ∀(i, j) ∈ B (63)∑

j:( j,i)∈E

xm
ji = vm

i , m ∈ M, ∀i ∈ V ∪ {(N + 1)} (64)

f m
i j ≤ (|V | − 1)xm

i j, m ∈ M, ∀(i, j) ∈ E (65)

f m
i j ≥ xm

i j, m ∈ M, ∀(i, j) ∈ E (66)∑
j:∈V∪{(N+1)}:(i, j)∈E

( f m
i j − f m

ji ) = −vm
i , m ∈ M, ∀i ∈ V ∪ {(N + 1)} \ D (67)

∑
j∈V∪{(N+1)}

( f m
d j − f m

jd) =
∑

i∈V∪{(N+1)}\{d}

vm
i , ∀m ∈ Pd, ∀d ∈ D (68)

∑
j∈V

f m
j(N+1) = 1, m ∈ M (69)

yc ≤
∑
m∈M

vm
c , c ∈ Vc (70)∑

c∈Vc

yc = n (71)

xm
i j ∈ {0, 1}, (i, j) ∈ E, m ∈ M (72)

zm
i j ∈ {0, 1}, (i, j) ∈ B, m ∈ M (73)

f m
i j ≥ 0, (i, j) ∈ E, m ∈ M (74)

vm
i ≥ 0, i ∈ V, m ∈ M (75)

yc ∈ {0, 1}, c ∈ Vc (76)

Given constraints (56) together with (57) we set the makespan minimization objective function. By

constraints (58), (59) and (60) we ensure that work teams start their routes from the depot and end them in

the dummy sink node while considering the flow balance for them. Constraints (61), (62) and (63) are to

ensure that blocked edges are not traversed unless they are opened and they cannot be opened unless they

are traversed by one of the work teams. Moreover, only one work team can be assigned to opening a blocked

edge. Constraint (64) counts the number of times a node is visited by a work team. Constraints from (65)

to (69) are similar to flow constraints in the MML-RCP and ensure that the routes of the vehicles are not

disjoint (sub-tour elimination). Constraint (70) and (71) are to fix the number of critical nodes that are visited

by work teams to n. The remaining constraints are the variable restrictions.

D. Computational results associated with M1

In this Section, we provide the results associated with M1 with total numbers of nodes 8, 10 and 13,

where 2 work teams are employed. Moreover, we report the results of M1 for 3 and 4 critical nodes. Recall

that M1 is able to solve small instances having up to 13 nodes, 4 critical nodes and 2 work teams. We

8



also compare the M1 solutions with proposed algorithms associated with H1 and H2. In total, there are

60 instances such that all of their parameters have been randomly generated. Tables 15 and 16 present the

results associated with M1 and its comparison with the solution obtained by H1 and H2. Under column

M1, the optimal total latency corresponding to each instance is given. Columns DH1 and DH2 provide the

difference percentage with M1 results, such that DH1 =
DH1−M1

DH1
× 100 and DH2 =

DH2−M1
DH2

× 100. Recall

that in these instances the number of both total and critical nodes are small, meaning that the possibility of

finding optimal solutions with disjoint-path assumption are low. Thus, as we observe in these tables, H2 is

able to find better (or the same) solutions than ones in H1 in all instances.

Table 15: Computational results associated with M1 with 3 critical nodes

NO. Nodes 8 10 13
Instance M1 DH1 DH2 M1 DH1 DH2 M1 DH1 DH2

1 45 0 0 55 2.1 0 68 2.2 0
2 39 0 0 42 0 0 71 3.8 0
3 42 5.9 0 57 0.9 0 63 0 0
4 51 4.6 0 52 0 0 57 0 0
5 38 0 0 49 0 0 75 4.2 0
6 37 0 0 59 1.6 0 69 0 0
7 54 3.8 0 38 0 0 56 1.5 0
8 58 0 0 46 0 0 78 6.8 3.9
9 32 0 0 43 0.5 0 49 0 0

10 48 0 0 58 1.4 0 63 2.7 1.9
Average 1.4 0 0.7 0 2 0.6

Table 16: Computational results associated with M1 with 4 critical nodes

NO. Nodes 8 10 13
Instance M1 DH1 DH2 M1 DH1 DH2 M1 DH1 DH2

1 53 0 0 71 3.8 0 95 3.6 1.9
2 61 0 0 80 5.2 0.8 89 3.2 0
3 45 0 0 67 1.6 0 101 6.9 2
4 49 0 0 75 4.1 1.1 76 0.5 0
5 58 2.3 0 59 0 0 89 0 0
6 69 5.9 1.2 46 0.8 0 93 7.4 2.8
7 47 0 0 45 0 0 72 0 0
8 52 0 0 82 7.4 2.7 88 3.4 0.2
9 61 2.6 1.4 87 3.5 3.4 105 5.7 4.5
10 66 1.2 0 67 0 0 74 0.6 0

Average 1.2 0.3 2.7 0.8 3.2 1.1

9


	Introduction
	Literature review
	Road clearance and network restoration
	Minimum latency problem

	Problem definition
	Solution methods
	Mathematical model based on a multi-level network (H1)
	H1-MIP with multiple depots

	A matheuristic for the MML-RCP (H2)
	Clustering: Assignment of critical nodes to work teams
	The coordination subroutine
	Routing and improvement steps

	A lower bound for MML-RCP

	Data sets
	Kartal data
	Random networks

	Computational results
	Kartal data results
	Kartal data results with multiple depots
	Random data results

	Conclusions
	Appendices
	Mathematical model associated with synchronized MML-RCP (M1)
	Parameter tuning for H2
	Multiple Makespan Minimization MIP (3M-MIP)
	Computational results associated with M1

