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We study the maximum capture problem in facility location under random utility models, i.e., the problem

of seeking to locate new facilities in a competitive market such that the captured user demand is maximized,

assuming that each customer chooses among all available facilities according to a random utility maximization

model. We employ the generalized extreme value (GEV) family of discrete choice models and show that the

objective function in this context is monotonic and submodular. This finding implies that a simple greed

heuristic can always guarantee an (1− 1/e) approximation solution. We further develop a new algorithm

combining a greedy heuristic, a gradient-based local search and an exchanging procedure to efficiently solve

the problem. We conduct experiments using instances of difference sizes and under different discrete choice

models, and we show that our approach significantly outperforms prior approaches in terms of both returned

objective value and CPU time. Our algorithm and theoretical findings can be applied to the maximum

capture problems under various random utility models in the literature, including the popular multinomial

logit, nested logit, cross nested logit, and the mixed logit models.

Key words : Maximum capture, random utility, generalized extreme value, greedy heuristic, gradient-based

local search

1. Introduction

In the last decade, the facility location problem in a competitive market has received a growing

attention. In practice, modelling critical managerial decisions related to infrastructure planning,

such as finding locations to locate new retail, service or product facilities in a market, often lead

to facility location problems. The competitive facility location problem deals with a decision of

selecting locations to open new facilities in a market to maximize the captured demand of users,

where a set of incumbent competitors are already operating in order. There are two aspects that
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need to be considered in this problem, namely, the demand of customers and the competitors in

the market. Customers are independent decision makers and their choices among different facilities

might be based on a given utility that they assign to each location. Such utilities might be a

function of facility attributes/features, e.g., distances, prices and transportation costs.

There are several ways to define and estimate customer demand (Berman et al. 2009). In this

work, we focus on a probabilistic approach, i.e., customer demand is captured by a probability

model that assigns choice probabilities to the facilities. The random utility maximization (RUM)

framework (McFadden 1973, Horowitz 1986) is convenient and popular in the context. This frame-

work is based on the assumption that each facility is associated with a random utility, which can

be determined by the features/attributes of the facility. The RUM principle assumes that each

customer selects a facility by maximizing his/her utilities. This way of modeling allows for predict-

ing the probability that a customer selects a facility. The facility location problem then becomes

the problem of locating new facilities in a competitive market to maximize an expected captured

demand function, where customers selects a facility (a new facility or one from the competitors)

according to a RUM model. Thus, the problem is also called as the maximum capture problem

(MCP).

To the best of our knowledge, existing related studies in the literature only employ the multi-

nomial logit (MNL) or its mixed version (mixed logit model - MMNL) (Benati and Hansen 2002,

Haase 2020, Haase and Müller 2013). However, it is well-known that the MNL retains the indepen-

dence from irrelevant alternatives (IIA) property, which does not hold in many contexts (McFadden

1981, McFadden and Train 2000). On the other hand, the generalized extreme value (GEV) family

provides flexible ways to relax the IIA property and capture the correlation between alternative

utilities (McFadden 1981). However, under the GEV family, most of the important properties that

have been used to develop solution methods for the MCP under the MNL and MMNL models do

not hold, or have not been proved to be true. More precisely, the objective function under the GEV

family does not have a linear fractional structure, thus it is difficult to formulate the MCP into

a mixed-integer linear program (MILP) as in prior work (Benati and Hansen 2002, Zhang et al.

2012). Moreover, under the GEV family, the objective function of the continuous relaxation is not

either concave or convex, making the outer-approximation methods (Ljubić and Moreno 2018, Mai

and Lodi 2019) not applicable. Furthermore, since the structure of the objective function is driven

by a GEV choice probability generating function, which may not have a closed form and could

be complicated, it is not clear whether the objective function is submodular or not. All the above

remarks make the MCP under the GEV family challenging. We tackle this challenge this in paper.

Before presenting our contributions in detail, we note that, from now on, when saying a “GEV

model”, we refer to any choice model in the GEV family. Each GEV model can be determined
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by a choice probability generating function (CPGF) G(·) (Fosgerau et al. 2013) (see our detailed

definition in the next section).

Our contributions: In this paper, we formulate and solve the MCP under any GEV models. We

leverage the properties of the CPGFs of GEV models (McFadden 1981, Daly and Bierlaire 2006)

and show that the objective function in the context is monotonic increasing and submodular. These

properties are already known for the MCP under MNL (Benati and Hansen 2002) and now we

show that they also hold for any GEV models. The monotonicity and submodularity also imply

that the MCP subjecting to a cardinality constraint, even though being NP-hard, always admits

an (1− 1/e) approximation algorithm. In other words, a simple greedy heuristic always returns

a solution whose value is at least (1− 1/e) (≈ 0.632) times the optimal values (Nemhauser et al.

1978).

To further enhance the greedy heuristic (GH), we develop a new algorithm that adds a gradient-

based local search and exchanging procedures to the GH. While the latter is simply based on steps

of exchanging a location in a set of chosen locations with one outside of the set to get a better

objective value, the former is motivated by the fact that if we formulate the MCP as a binary

program, then the objective function is differentiable and we can make use of gradient information

to direct the search. The gradient-base location search is an iterative procedure in which at each

iteration we solve a subproblem to (hopefully) find a better candidate solution, and we show that

such subproblems are solvable in polynomial-time. Our algorithm can be used to solve problems

under any GEV models and under the MMNL model.

We conduct experiments using some datasets from the recent literature, including real-life large-

scale instances from a park-and-ride location problem in New York City (Holguin-Veras et al. 2012).

We compare our algorithm, named as GGX (stands for Greedy Heuristic, Gradient-based Local

Search, and Exchanging) with some state-of-the art approaches from recent literature, i.e., the

Branch & Cut method proposed by Ljubić and Moreno (2018) and outer-approximation algorithms

(Bonami et al. 2011, Mai and Lodi 2019). Experiments based on MNL, MMNL and nested logit

instances show that our algorithm remarkably outperforms the other approaches, in terms of both

returned objective value and CPU time.

Literature review: The GEV family (McFadden 1981) covers most of the discrete choice models

in the demand modeling and operations research literature. Among existing GEV models, the

MNL is the simplest and most popular one. It is also well-known that the MNL retains the IIA

property, which implies that the ratio between the choice probabilities of two facilities will not

change no matter what other facilities are available or what attributes that other facilities have.

This property has been considered as a limitation of the MNL model and should be relaxed in

many applications (McFadden and Train 2000). There are several GEV models that relax this
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property and provide flexible ways to model the correlation between alternatives. For example, the

nested logit (Ben-Akiva 1973), the cross-nested logit Vovsha and Bekhor (1998), the generalized

nested logit (Wen and Koppelman 2001), the paired combinatorial logit (Koppelman and Wen

2000), the ordered generalized extreme value Small (1987), the specialized compound generalized

extreme value models (Whelan et al. 2002) and network-based GEV (Daly and Bierlaire 2006, Mai

et al. 2017) models. GEV models, in particular the cross-nested and network GEV models, are

fully flexible, in the sense that these models can approximate any random utility maximization

models (Fosgerau et al. 2013). Beside the GEV family,the MMNL is also an alternative to relax

the IIA property. This model extends the MNL by assuming that choice parameters are random.

Similar to GEV models, the MMNL is also able to approximate any random utilities choice model

(McFadden and Train 2000). However, the choice probabilities given by the MMNL model have no

closed form and often require simulation to approximate. Thus, the estimation and the application

of this model is expensive in many contexts.

In the context of the MCP, most existing studies focus on the MNL model due to its simplicity.

Benati and Hansen (2002) seem the first to introduce the MCP under the MNL model. They propose

three methods to compute upper bounds along with a branch-and-bound method to solve small

instances. The first method is based on the concavity of the continuous relaxation of the objective

function. They show the submodularity of the objective function and use this property to develop

the second method. The third method is an equivalent mixed-integer linear program (MILP), which

is based on the fact that the objective function has a linear fractional structure and can be linearized

using additional additional variables. Benati and Hansen (2002) also introduced a simple variable

neighborhood search (VNS) method to solve instances with more than 50 potential locations. Some

alternative MILP models, afterwards, have been proposed by Haase (2020) and Zhang et al. (2012).

Haase and Müller (2013) give an evaluation and comparison between the proposed MILP models

and conclude that the MILP model from Haase (2020) is the most efficient one. Freire et al. (2015)

strengthen the MILP reformulation of Haase (2020) by using some tighter coefficients in some

inequalities and also propose a new branch-and-bound algorithm to deal with the problem. More

recently, Ljubic and Moreno (2017) propose a branch-and-cut method that combines two types

of cutting planes, namely, outer-approximation (OA) cuts and submodular cuts. The first type of

cuts is relied on the fact that the objective function of the continuous relaxation of the problem

is concave and differentiable and the second type is based on the submodularity and separability

properties of objective function. Their branch-and-cut method is an iterative procedure where cuts

are generated for every demand points and a linear programming (LP) relaxation is solved at

each iteration. Mai and Lodi (2019) propose a multicut outer-approximation algorithm that works

in a cutting plane fashion by solving an MILP at every iteration. This algorithm generates cuts
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for groups of demand points instead of one cut of every demand point as in Ljubic and Moreno

(2017) or one cut for all demand points as in the classical outer-approximation scheme (Duran and

Grossmann 1986, Bonami et al. 2008). The branch-and-cut proposed by (Ljubić and Moreno 2018)

and multicut outer approximation are considered as state-of-the art approaches for the MCP under

the MNL model. Note that in the context of the MCP, MNL and MMNL instances have similar

structures. Thus, all the methods developed for the MNL model can be generally applied to MMNL

problem instances. There are also a couple of studies investigating the MCP under the MMNL

model (Haase 2020, Haase and Müller 2013). These studies make use of MILP formulations, which

is generally outperformed by the branch-and-cut approached (Ljubić and Moreno 2018).

Paper outline: The rest of paper is structured as follow. Section 2 briefly presents the GEV family

focusing on the some essential properties of the CPGF, and the MCP under the GEV family. In

Section 3, we investigate the monotonicity and submodularity of the MCP under the GEV family,

and present our local search algorithm. Section 4 reports computational results. Finally, Section 5

concludes.

Notation: Boldface characters represent matrices (or vectors), and ai denotes the i-th element of

vector a. We use [m], for any m∈N, to denote the set {1, . . . ,m}.

2. Generalized Extreme Value Models and the Maximum Capture Problem

In this section we introduce some basic concepts and properties of the GEV family and formulate

the MCP under GEV models.

2.1. Generalized Extreme Value Models

The Random Utility Maximization (RUM) framework (McFadden 1978a) is the most popular

approach to model discrete choice behavior. Under the RUM principle, the decision maker is

assumed to associate an utility uj with each alternative/option j in a given choice set S that

contains all possible alternatives. The additive RUM (McFadden 1978a, Fosgerau and Bierlaire

2009) assumes that each random utility is a sum of two parts uj = vj + ǫj, where the term vj

is deterministic and can include values representing characteristics of the alternative and/or the

decision maker, and the random term ǫj is unknown to the analyst. There are several assumptions

that have been made on the randoms terms, which leads to different types of discrete choice

models in the literature, e.g., the MNL or nested logit models (McFadden 1978a, Train 2003).

The deterministic terms vj often have a linear structure, i.e., vj = βTαj , where
T is the transpose

operator and β is a vector of parameters to be estimated from historical data of how people make

decisions, and αj is a vector of attributes of alternative j. The RUM principle then assumes that
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a decision is made by maximizing the random utilities, and the probability that an alternative j is

selected can be computed as P (uj ≥ uk, ∀k ∈ S).

The GEV family covers most of the existing discrete choice models in the literature. This family

of model is fully flexible, in the sense that it allows to construct various discrete choice models that

are consistent with the RUM principle (McFadden 1981). Assume that the choice set contains m

alternative indexed as {1, . . . ,m} and let U= {v1, . . . , vm} be the vector of utilities . A GEV model

can be determined by a choice probability generating function (CPGF) G(Y) (McFadden 1981,

Fosgerau et al. 2013), where Y is a vector of size m with entries Yj = evj . Given j1, . . . , jk ∈ [m], let

∂Gj1...jk , be the mixed partial derivatives of G with respect to Yj1 , . . . , Yjk . It is well-known that

the CPGF G(·) and the mixed partial derivatives have the the following properties (McFadden

1978b).

Remark 1. A CPGF G(Y) of a GEV model, has the following properties.

(i) G(Y)≥ 0, ∀Y∈Rm
+ ,

(ii) G(Y) is homogeneous of degree one, i.e., G(λY) = λG(Y)

(iii) G(Y)→∞ if Yj→∞

(iv) Given j1, . . . , jk ∈ [m] distinct from each other, ∂Gj1,...,jk(Y)> 0 if k is odd, and ≤ if k is

even

(v) G(Y) =
∑

j∈[m] Yj∂Gj(Y)

(vi)
∑

k∈[m] Yk∂Gjk(Y) = 0, ∀j ∈ [m].

Here we note that (i)− (iv) are basic properties of a GEV generating function (McFadden 1981),

and Properties (v) and (vi) are direct results from the homogeneity property. We will make use of

these properties throughout the rest of the paper to explore the properties of the objective function

of the MCP, and derive solution algorithms for the MCP. Under a GEV model specified by a CPGF

G(Y), the choice probability of an alternative j ∈ [m], conditional on Y and G, is given by

P (j|Y,G) =
Yi∂Gi(Y)

G(Y)
.

The GEV framework allows for correlated utilities and one can build different CPGF to model

different correlation patterns among random utilities. One can build a GEV model from a network

of correlation structure, which provides a very flexible way to construct choice models that are able

to capture complex relationships between alternatives (Mai et al. 2017, Daly and Bierlaire 2006).

In the following, we show some specific instances of the GEV family that are already popular in

the demand modeling and operations research literature.
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The MNL model. The MNL is one of the most widely-used models in the literature. This

model results from the assumption that the random terms ǫj, j ∈ [m], are independent and iden-

tically distributed (i.i.d.) and follow the standard Gumbel distribution. The CPGF function has a

simple form as G(Y) =
∑

j∈[m] Yj and the choice probabilities have the fractional form below

P (j|Y,G) =
Yj∑

j∈[m] Yj

=
evj∑

j∈[m] e
vj
. (1)

It is well-known that the MNL model exhibits from the IIA property, which means that the

choice probability of an alternative will not be affected by the attributes or the state of the other

alternatives. However, in some situations, alternatives share unobserved attributes (i.e, random

terms are correlated) and the IIA property does not hold.

The nested logit model. The nested logit model (Ben-Akiva 1973) is one of the first attempts

to relax the IIA property from the MNL model. In this GEV model, the choice set is partitioned

into L nests, which are disjoint subsets of alternatives. Let denote by n1, . . . , nL the L nests. The

corresponding CPGF can be written as

G(Y) =
∑

l∈L

(
∑

j∈nl

Y
µl
j

)1/µl

where µl ≥ 1, l ∈ [L], are the parameters of the nested model. This model is based on the observation

that, in many situations, some similar or closely related alternatives can be grouped into smaller

subsets. It is easy to see that the function G above satisfies the six properties above and the choice

probabilities can be computed as

P (j|Y,G) =

(∑
j′∈nl

Y
µl
j′

)1/µl

∑
l∈[L]

(∑
j′∈nl

Y
µl
j′

)1/µl

Y
µl
j∑

j′∈nl
Y

µl
j′

, ∀l ∈ [L], j ∈ nl.

The cross-nested logit model (Ben-Akiva and Bierlaire 1999) is an extension of the nested logit

that allows the nests to share common alternatives. This model is known to be fully flexible, as

it can approximate arbitrarily close any RUM models (Fosgerau et al. 2013). The network GEV

model proposed in Daly and Bierlaire (2006) further generalizes the cross-nested model by proving

a way to construct a GEV CPGF based on any rooted network of correlation structure.

Beside the GEV family, the MMNL model (McFadden and Train 2000) is also popular due

to its flexibility in capturing utility correlation. In the MMNL model, the model parameters (and

the utilities vj) are assumed to be random, and the choice probabilities can be obtained by taking

the expectations over random coefficients. Let Y1, . . . ,YK be K realizations sampled from the

distribution of the random parameters, the choice probabilities can be approximated as

P (j|Y1, . . . , Y K ,G) =
1

K

K∑

k=1

Y k
j∑

t∈[m] Y
k
t

.
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The MMNL model is highly preferred in practice due to its flexibility in modeling people demand.

However, the estimation and application of this model in decision-making are well-known to be

expensive and complicated, due to the fact that it requires simulation to approximate the choice

probabilities.

2.2. The Maximum Capture Problem

We are interested in the situation that a “newcomer” firm wants to locate new facilities in a com-

petitive market, i.e., there are already existing facilities from competitors that can serve customers.

The firm may want to maximize the expected market share achieved by attracting the customers

to new facilities. To capture the customers’ demand, we suppose that a customer selects a facility

according to a RUM model. In this context, each customer associate each facility with a random

utility and we assume that the customer will choose a facility by maximizing his/her utilities.

Accordingly, the firm aims at selecting a set of locations to locate new facilities to maximize the

expected number of customers. In the following, we describe in detail the MCP under GEV models.

We denote by V = [m] the set of possible locations. Let I be the set of geographical zones where

customers are located and qi is the number of customers in zone i ∈ I and for customers at zone

i, let vij be the corresponding deterministic utility of location j ∈ [m]. These utility values can be

inferred by estimating the RUM model using historical data. The set I can be viewed as a set of

customer types, e.g., customers that belong to different categories specified by, for instance, age or

income. A GEV model for customers located at zone i∈ I can be represented by a choice probability

generating function (CPGF) Gi(Yi), where Yi is a vector of size m with entries Y i
j = evij .

Under a GEV model specified by a set of CPGF Gi(Yi), i ∈ I, taking into consideration the

competitors, the choice probability of a location j ∈ [m] is given as

P (j|Yi,Gi) =
Yj∂G

i
j(Y

i)

1+Gi(Yi)
.

Here, without loss of generality, we assume that the total utility of the competitor is 1 for the sake

of simplicity. As if it is not the case, then we can always scale the utilities Yi to get utilities of 1

for the competitors. More specifically, it is possible due to fact that, for any α> 0,

Yj∂G
i
j(Y

i)

α+Gi(Yi)

(a)
=

Yj

α
∂Gi

j(Y
i)

1+Gi(Yi/α)

(b)
=

Yj

α
∂Gi

j(Y
i/α)

1+Gi(Yi/α)

where (a) is due the homogeneity ofGi(·) ((ii) of Remark 1) and (b) is obtained by taking derivatives

of the both sides of the equation Gi(αYi) = αGi(Yi) w.r.t. Y i
j

α∂Gi
j(αy

i) = α∂Gi
j(Y

i), or ∂Gi
j(αy

i) = ∂Gi
j(Y

i), for any α> 0.
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We are interested in the fact that the facilitates are located at a subset of locations S ⊂ [m]. Hence,

the conditional choice probability can be written as

P (j|Yi,Gi, S) =
Y i
j ∂G

i
j(Y

i|S)

1+Gi(Yi|S)
, ∀j ∈ S,

where the conditional CPGF Gi(Yi|S) can be computed as Gi(Yi|S) = Gi(Ỹ
i
), where Ỹ

i
is a

vector of size m with entries Ỹ i
j = Y i

j if j ∈ S and Ỹ i
j = 0 otherwise. This can be interpreted as

if a location j is not in S, then its corresponding utility becomes very small, i.e., vij =−∞, then

Y i
j = evij = 0. The maximum capture problem under a GEV model specified by CPGFs Gi(Yi),

i∈ I, can be stated as

max
S∈S

{
fGEV(S) =

∑

i∈I

qi
∑

j∈S

P (j|Yi,Gi, S)

}
, (2)

where S is the set of feasible solutions. Under a cardinality constraint |S| ≤ C, S can be defined

as S = {S ⊂ [m]| |S| ≤ C}, for a given constant C such that 1 ≤ C ≤m. Note that the objective

function can be further simplified as

fGEV(S) =
∑

i∈I

qi

∑
j∈S Y

i
j ∂G

i
j(Y

i|S)

1+Gi(Yi|S)

(a)
=
∑

i∈I

qi−
∑

i∈I

qi

1+Gi(Yi|S)
,

where (a) is due to Property (v) in Remark 1.

If the choice model is MNL, the objective function becomes

fGEV(S) =
∑

i∈I

qi−
∑

i∈I

qi
1+

∑
j∈m Y i

j

,

and from previous studies, we know that fGEV(S) is submodular and it binary representation is

concave (Benati and Hansen 2002). Thus, an approach based on sub-gradient and submodular cuts

can be used (Mai and Lodi 2019, Ljubić and Moreno 2018) to efficiently solve the problem. On the

other hand, formulations based on GEV models would be much more complicated. For example,

under the nested logit model, we can write the objective function as

fGEV(S) =
∑

i∈I

qi−
∑

i∈I

qi

1+
∑

l∈[L]

(∑
j∈nl∩S(Y

i
j )

µl

)1/µl
.

Under a general case, e.g., the network GEV model Daly and Bierlaire (2006), Mai et al. (2017),

it is even not possible to write the objective function in a closed form.

It is important to note that, if we look at the objective function under a MMNL model

fMMNL(S) =
1

K

∑

k∈[K]

(
∑

i∈I

qi−
∑

i∈I

qi

1+
∑

j∈m Y i,k
j

)

=
∑

k∈[K],i∈I

qi
K
−

∑

i∈I,k∈[K]

qi/K

1+
∑

j∈m Y i,k
j

,
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where Yi,k, k = 1, ...,K, are K realization of the random utility vector Yi. So, this objective

function can be viewed as one from the MNL-based MCP problem with K×|I| customer zones, in

which there are qi/K customers in zone (i, k)-th. So, all the results established for the MNL (and

GEV in general) problem can also be used to solve the MMNL problem.

3. Maximum Capture Problem under GEV Models

In this section we explore the MCP under GEV models. In particular, by leveraging the properties

of the GEV CPGFs shown above, we show that the objective function in the context is monotonic

and submodular. This generalizes some well-known results established for MNL-based problems in

previous studies (Benati and Hansen 2002). We also design a location search procedure to efficiently

solve the problem.

3.1. Monotonicity and Submodularity

We show two key results of the paper, which demonstrates that the objective function under any

GEV model is monotonic and submodular, thus providing a performance guarantee for a greedy

heuristic procedure.

To prove the results, we first formulate the MCP as a binary program. That is, given a subset

S ⊂ [m], let xS be a binary vector of size m with entries xS
j = 1 if j ∈ S and xS

j = 0 otherwise. We

see that the conditional CPGF can be written as

Gi(Yi|S) =Gi(xS ◦Yi),

where ◦ is the element-by-element operator and x ◦Yi is vector of size m with entries xS
j Y

i
j ,

j =1, . . . ,m. We now can formulate (2) as

max
x∈X

{
fGEV(x) =

∑

i∈I

qi−
∑

i∈I

qi

1+Gi(x ◦Yi)

}
, (3)

where X = {xS ∈ {0,1}m| ∀S ∈ S}, i.e., the feasible set of binary solutions that corresponds to all

the subsets in S. It is worth noting that if the choice model is MNL (or MMNL), then the objective

fGEV(x) is concave in x and the problem can be handled efficiently by an outer-approximation

method (Bonami et al. 2011, Mai and Lodi 2019, Ljubić and Moreno 2018). It is however not the

case under an arbitrary GEV model.

The following proposition tells us that the objective function is monotonic, which implies that

adding more facilities always yields better objective values.

Proposition 1 (Monotonicity). Adding more facilities always yields better objective values, i.e.,

fGEV(S ∪{i})> fGEV(S) for any i /∈ S.
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Proof: To prove the claim, let x∈ {0,1}m be the binary vector representing set S. For any j ∈ [m]

such that xj = 0, we need to prove fGEV(x+ej)>fGEV(x), where ej is a vector of size m with zero

entries except the j-th element that is equal to 1. To prove this, let us consider Gi(x◦Yi). Taking

the derivative of Gi(x ◦Yi) w.r.t. an xj, j ∈ [m], we have

∂Gi(x ◦Yi)

∂xj

= Y i
j ∂G

i
j(x ◦Y

i)
(b)

> 0, (4)

where (b) is due to Property (iv) of Remark 1. This implies that Gi(x◦Yi) is (strictly) monotonic

increasing in any xj, j ∈ [m]. Thus

Gi((x+ ej) ◦Yi)>Gi(x ◦Yi). (5)

Together with the definition of fGEV(x) in (3), we have fGEV(x+ ej)> fGEV(x) as desired. �

Since fGEV(S) is monotonic, if we consider a cardinality constraint |S| ≤ C for a scalar C ∈

{1, . . . ,m}, then an optimal solution S∗ always achieves the maximum cardinality, i.e., |S∗|= C.

Thus, we can replace the cardinality constraint by an equality one, i.e., |S|=C. Note that a similar

claim has been validated for the MNL-based problems in prior work (Mai and Lodi 2019).

The submodularity is well-known for the objective function under the MNL model (Benati and

Hansen 2002). The theorem below shows that it is also the case under any models in the GEV

family.

Theorem 1 (Submodularity). fGEV(S) is submodular.

Proof: To prove the submodularity, we will show that for any set A ⊂ B ⊂ [m] and for any

j ∈ [m]\B we have

fGEV(A∪{j})− fGEV(A)≥ fGEV(B ∪{j})− fGEV(B) (6)

Let use denote each component of fGEV(S) as

gi(S) =
qi

1+Gi(Yi|S)
,∀i∈ I

then (6) can be validated if we can prove

gi(A∪{j})− gi(A)≤ gi(B ∪{j})− gi(B),

or equivalently,

1

1+Gi((xA + ej) ◦Yi)
−

1

1+Gi(xA ◦Yi)
≤

1

1+Gi((xA + ej) ◦Yi)
−

1

1+Gi(xA ◦Yi)

⇔
Gi((xA + ej) ◦Yi)−Gi((xA) ◦Yi)

[1+Gi((xA + ej) ◦Yi)][1+Gi(xA ◦Yi)]
≥

Gi((xB + ej) ◦Yi)−Gi(xB ◦Yi)

[1+Gi((xB + ej) ◦Yi)][1+Gi(xB ◦Yi)]
(7)
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Now, for ease of notation, for any x ∈ {0,1}m and j ∈ [m] such that xj = 0, let

φ(x) =Gi((x+ ej) ◦Yi)−Gi(x ◦Yi)

For any k ∈ [m] such that xk = 0 and k 6= j we take the partial derivative of φ(x) w.r.t. xk and get

∂φ(x)

∂xk

= Y i
k

(
∂Gi

k((x+ ej) ◦Yi)− ∂Gi
k(x ◦Y

i)
)

(8)

Now, let define another function ρ(x) = ∂Gi
k(x◦Y

i). Taking the partial derivative of ρ(x) w.r.t. xj

we get
∂ρ(x)

∂xj

= Y i
j ∂G

i
kj(x ◦Y

i),

and since ∂Gi
kj(x ◦Y

i) ≤ 0 (Property (iv) of Remark 1), we have ∂ρ(x)/∂xj ≤ 0. Thus, ρ(x) is

monotonic decreasing in xj, which implies

∂Gi
k((x+ ej) ◦Yi)− ∂Gi

k(x ◦Y
i)≤ 0. (9)

Combine (8) and (9) we have ∂φ(x)/∂xk ≤ 0. Thus, φ(x) is monotonic decreasing in xk, leading to

the inequality

Gi((x+ ej) ◦Yi)−Gi(x ◦Yi)≥Gi((x+ ej + ek) ◦Yi)−Gi((x+ ek) ◦Yi).

Consequently, we have

Gi((xA + ej) ◦Yi)−Gi((xA) ◦Yi)≥Gi((xB + ej) ◦Yi)−Gi((xB) ◦Yi), (10)

for any A⊂B ⊂ [m] and j /∈B. Moreover, using (5) from the proof of Proposition 1, since A⊂B,

we have

Gi(xA ◦Yi)≤Gi(xB ◦Yi)

Gi((xA + ej) ◦Yi)≤Gi((xB + ej) ◦Yi).

Thus,

[1+Gi((xA + ej) ◦Yi)][1+Gi(xA ◦Yi)]≤ [1+Gi((xB + ej) ◦Yi)][1+Gi(xB ◦Yi)] (11)

Combine (10) and (11) we obtain (7) and then (6) as desired. �

Theorem 1 generalizes the submodularity of the MNL-based MCP problem shown in previous

studies (Benati and Hansen 2002). Together with the fact that fGEV(S) is monotonic (Proposition

1), we know that a simple greedy local search algorithm will guarantee an (1−1/e) approximation

solution, i.e., a greedy will return a solution S such that fGEV(S) ≥ (1 − 1/e)maxS∈S f
GEV(S)

(Nemhauser et al. 1978).

Corollary 1 (Performance guarantee for a greedy heuristic). Under a cardinality con-

straint, a greedy heuristic algorithm can guarantee an (1− 1/e) approximation solution.
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3.2. Gradient-based Local Search

Due to the submodularity property, a greedy heuristic can guarantee an (1− 1/e) approximation

solution. In this section, we design a new local search procedure to further improve this greedy

solution. Our approach is motivated by the fact that the objective function fGEV(x) is differentiable,

suggesting that we could use gradient information to direct the search. The general idea to design

an iterative procedure, where at each step we build a model function (linear or quadratic) to

approximate the objective function using gradient and/or Hessian information. We then maximize

the model function to find a new iterate. A key component of our approach is that the model

function can be only an adequate representation of the objective function in a local neighbourhood

of the current solution. Thus, we only maximize the model function within a restricted region. This

approach is inspired by the trust-region method widely used in continuous optimization (Conn

et al. 2000).

To start our exposition, let us define a model function based on Taylor series built around a

solution candidate x

fGEV(x)≈ fGEV(x)+∇fGEV(x)T(x−x)+
1

2
(x−x)TB(x−x),

where B is the Hessian matrix or an approximation of it at x. In our context, the Hessian can

be computed easily, but maximizing the model function will involve solving a binary quadratic

maximization problem, which is expensive. Thus, we set Bk = 0. In other words, we use a linear

model function to approximate fGEV(x).

At each iteration, we need to solve the following sub-problem

max
x

∇fGEV(x)Tx (P1)

subject to
∑

j∈[m]

xj =C (12)

∑

j∈[m]

|xj −xj | ≤∆ (13)

x∈ {0,1}m

where (12) is the cardinality constraint, and (13) is to ensure that the new solution candidate is

within a region of size ∆ around x. Note that (13) can be linearized as

∑

j∈[m],xj=1

(1−xj)+
∑

j∈[m],xj=0

xj ≤∆,

so as (P1) becomes a integer linear program, which can be handled by an MILP solver. In the

following, we will look closely to (P1) and show that it can be solved to optimality in polynomial

time.
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Solving Subproblems: We further look into the subproblem of the gradient-based local search

(P1) to design an efficient algorithm to solve it. To facilitate our exposition, we first note that the

constraint
∑

j∈[m] |xj − xj | ≤∆ implies that there are at most ∆/2 locations that either appears

in S or in S, but not in both, where S,S are the subsets representing x and x, respectively. For

this reason, ∆ should be integer and even, and the constraint
∑

j∈[m] |xj − xj | ≤∆ is equivalent

to |S△ S| ≤∆, where △ is the symmetric difference operator, i.e., S△ S = (S\S) ∪ (S ∪ S). We

therefore can rewrite (P1) as

max
S⊂[m]

∑

j∈S

dj (P2)

subject to |S|=C (14)

|S△S| ≤∆, (15)

where S ⊂ [m] is the subset that corresponds to the binary vector x and dj =∇f
GEV(x)j, j ∈ [m].

Under the cardinality constraint |S| = C, we see that |S\S| = |S\S| = |S △ S|/2. The following

proposition shows that dj are non-negative, for all j ∈ [m].

Proposition 2. All the coefficients of the objective function of (P2) are non-negative.

Proof: We prove the claim by showing that, for any x ∈ [0,1]m, ∇xf
GEV(x) ≥ 0. Given j ∈ [m],

taking the derivative of fGEV(x) w.r.t. xj we have

∂fGEV(x)

∂xj

=
∑

i∈I

∂Gi(x ◦Yi)

∂xj

qi

(1+Gi(x ◦Yi))2

=
∑

i∈I

qiY
i
j ∂G

i
j(x ◦Y

i)

(1+Gi(x ◦Yi))2
≥ 0 (16)

where (16) is due to the fact that ∂Gi
j(x ◦Y

i) > 0 (Property (iv) of Remark 1). We obtain the

desired inequality. �

In Algorithm 1 we describe our main steps to solve (P2). In Step 1, we find ∆/2 smallest

coefficients dj in S and ∆/2 largest coefficients dj in [m]\S. This is motivated by the fact we only

seek subsets generated by exchanging at most ∆/2 elements in S with some outside S. Thus, to

achieve best objective values, we should exchange elements of lowest coefficients in S with those

of highest coefficients in [m]\S. In the second step, γ(t) represents the best gain obtained by

exchanging t elements, and in the third step we just select the best γ(t) to get the best solution.

Proposition 3 below shows that Algorithm 1 will efficiently return an optimal solution to (P2).

Proposition 3. Algorithm 1 returns an optimal solution to (P1) with complexity O(m∆/2).
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Algorithm 1: Solving sub-problems

# Step 1: Take smallest coefficients in S and largest coefficients in [m]\S

Choose σ1
1 , . . . , σ

1
∆/2 ∈ S and σ2

1 , . . . , σ
2
∆/2 ∈ [m]\S such that

dσ1
1
≤ dσ1

2
≤ . . .≤ dσ1

∆/2
≤ min

j∈S\{σ1
1
,...,σ1

∆/2
}
dj

dσ2
1
≥ dσ2

2
≥ . . .≥ dσ2

∆/2
≥ max

j∈[m]\S\{σ2
1
,...,σ2

∆/2
}
dj

# Step 2: Select the best set for each local region size |S△S|=2t, for t= 1, . . . ,∆/2

for t= 1, . . . ,∆/2 do

γ(t) =
t∑

h=1

(
dσ2

h
− dσ1

h

)

Select t∗ = argmaxt=1,...,∆/2γ(t)

# Step 3: Return the best solution within the local region |S△S| ≤∆

Return

S∗← S ∪{σ2
1 , . . . , σ

2
t∗}\{σ

1
1 , . . . , σ

1
t∗}

Proof: To prove the convergence, we let S be a feasible solution of (P2), i.e., |S|=C and |S△S| ≤

∆. We will prove that
∑

j∈S dj ≤
∑

j∈S∗ dj, where S∗ is the solution returned. from Algorithm 1.

Let t= |S△S|/2, then we know that S can be obtained by exchanging t elements between S and

S. Let π1
1, . . . , π

1
t be the indexes of t elements in S that are exchanged with t elements in t, indexed

as π2
1 , . . . , π

2
t . We have

∑

j∈S

dj =
∑

j∈S

dj −
t∑

h=1

dπ1

h
+

t∑

h=1

dπ2

h

(c)

≤
∑

j∈S

dj −
t∑

h=1

dσ1

h
+

t∑

h=1

dσ2

h

=
∑

j∈S

dj + γ(t)

(d)

≤
∑

j∈S

dj + γ(t∗) =
∑

j∈S∗

dj,

where (c) is due to the way we select σ1
h and σ2

h, h = 1, . . . ,∆/2, and (d) is due to the way t∗ is

selected. This implies that S∗ is an optimal solution to (P2) as desired.

For the complexity, we see that Step 1 would take O(∆/2|S|+∆/2(m−|S|)) =O(m∆/2). Step

2 would require O(∆2/4), which would be much smaller than O(m∆/2). Adding all together, the

complexity of Algorithm 1 is O(m∆/2). �
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3.3. GGX Algorithm

Our main algorithm consists of three main phases. In the first phase (warm up), we perform a

greedy heuristic, which can be done by starting from the null set and adding locations one at a

time, taking at each step the location that increases fGEV(·) the most. This phase finishes when

we reach the the maximum capacity, i.e., |S|=C. After this phase, due to the submodularity, it is

guaranteed that the obtained solution yields at least a factor (1− 1/e) times the optimal value. In

the second phase, we iteratively solve the sub-problem (P1) to seek better solutions. This phase

ends when we cannot find any better solutions. In the last phase, we further enhance the solution

obtained by performing a simple greedy local search based on exchanging some locations in the

current set S with some others from [m]\S. We describe the three phases in detail in Algorithm 2.

Algorithm 2: GGX algorithm

# 1: Greedy heuristics (warm up step)

S = ∅

for j = 1, . . . ,C do
j∗ = argmaxj∈[m]\Sf

GEV(S ∪{j})

S← S ∪{j∗}

# 2: Gradient-based local search

k= 0;S0 = S

do

Solve (P1) based on a local region around xSk
to get a new solution candidate S

if fGEV(S)> fGEV(Sk) then
Sk+1← S

else
Sk+1 = Sk

k← k+1
until Sk = Sk−1;

# 3: Exchanging phase

do
(j∗, t∗) = argmax j∈S

t∈[m]\S

{
fGEV(Sk ∪{t}\{j})

}

S = Sk ∪{k∗}\{j∗}

if fGEV(S)> fGEV(Sk) then
Sk+1← S

else
Sk+1 = Sk

k← k+1
until Sk = Sk−1;

Return Sk.
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In the context of assortment optimization under GEV models, Mai and Lodi (2019) also propose

a gradient-based local search (named as Binary Trust Region - BiTR) procedure to solve the

binary nonlinear formulation of the assortment optimization problem. There are major differences

between Algorithm 2 and the one proposed in Mai and Lodi (2019). First, our algorithm starts

with a greedy heuristic that guarantees an (1 − 1/e) approximation solution, while there is no

performance guarantee for the BiTR. Second, we explore the the structure of the MCP under the

GEV family, e.g., the coefficients of the sub-problem’s objective function are non-negative and we

only care about fixed-size subsets, to build more efficient method to solve the sub-problems.

4. Numerical Experiments

In this section, we provide experimental results to compare our GGX algorithm with existing

approaches. We use three datasets from recent literature (Ljubić and Moreno 2018, Mai and Lodi

2019) and generate instances under three popular discrete choice models, i.e., the MNL, MMNL

and nested logit models.

4.1. Experimental Settings

We will compare our algorithm with the standard greedy heuristic (GH - Step 1 of our GGX

algorithm), the multicut and singlecut outer-approximation algorithms (MOA and OA) (Mai and

Lodi 2019) and the Branch-and-Cut (BC) (Ljubić and Moreno 2018). In particular, the for nested

logit instances, we only compare the GGX with GH, OA, MOA approaches, as BC is not designed

to handle such instances. Note that for the MNL and MMNL instances, it is possible to formulate

the MCP as an MILP and solve by an MILP solver (e.g. IBM’s CPLEX). However, as shown in

Ljubić and Moreno (2018) and Mai and Lodi (2019), this approach is outperformed by the MOA

and BC methods. Thus, we do not include the MILP solver in our experiments.

We use the following three datasets as benchmark instances and we refer the reader to Freire

et al. (2015) for more detailed descriptions. These datasets have been also used in some recent

MCP studies (Ljubić and Moreno 2018, Mai and Lodi 2019).

• HM14: The dataset includes 15 problems generated randomly in a plane, with |I| ∈

{50,100,200,400,800} and m∈ {25,50,100}.

• ORlib: The dataset includes 11 problems where there are four instances with (|I|,m) =

(50,25), four instances with (|I|,m) = (50,50) and three instances with (|I|,m) = (1000,100).

• PR-NYC (or NYC): the dataset comes from a large-scale park-and-ride location problem in

New York city with |I|= 82341 and m= 59. As reported in previous studies, these are the largest

and most challenging instances.
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We employ the same settings of parameters as in previous studies (Ljubic and Moreno 2017, Mai

and Lodi 2020). The number of facilities that need to be opened C is varied from 2 to 10. The

deterministic part of the utility is defined as vij =−βcij for a location j ∈M and vij′ =−βαcij′

for each competitor j
′

, where cij is the distance between zone/client i ∈ I and location j ∈ [m],

the parameter β is the sensitivity of customers about the perceived utilities and α represents the

competitiveness of the competitors. These parameters are chosen as α = {0.01,0.1,1} and β =

{1,5,10} for datasets HM14 and ORlib, and α= {0.5,1,2} and β = {0.5,1,2} for the NYC dataset.

Therefore, for each discrete choice model chosen, each problem above has 81 different instances

and the total numbers of instances for HM14, ORlib, NYC are 972, 891, 81, respectively.

The experiments are done on a PC with processor AMD Ryzen 7-3700X CPU @ 3.80 GHz and

16 gigabytes of RAM. We use MATLAB 2020 to implement and run the algorithms, and we link

to IBM ILOG-CPLEX 12.10 to solve MILPs under default settings. We also take the code used

in Ljubic and Moreno (2017) to generate results for the MNL and MMNL instances with the BC

approach.

4.2. Multinomial Logit - MNL

We take MNL instances from previous work (Ljubić and Moreno 2018, Mai and Lodi 2019) and

report numerical results in Table 4.2 below. Each row of the table corresponds to 81 instances and

we indicate the largest number of instances solved with the best objective values in bold. We use

the same settings as in Mai and Lodi (2020). We do not show the CPU times for GH as it runs very

fast. The GH finishes 26/27 problems in less than 0.01 seconds and it just needs around 0.5 seconds

to finish all the instances of the largest dataset (i.e. the NYC one). On the other hand, solutions

obtained by GH are relatively good, in the sense that the percentage gaps between the objective

values yielded by those solutions and the best objective values vary only from 0 to 2.94%. In terms

of number instances with the best objective values, GGX performs the best as it gives the largest

number instances with the best objective values in 26/27 problems. Moreover, GGX solves 81/81

instances with the best objective values in 25/27 problems. On the other hand, GGX only requires

short CPU times to finish (the average CPU times are always less than 1.5 seconds except for the

NYC instances). Furthermore, when comparing GGX with the OA, MOA, and BC approaches, the

average CPU times required by GGX are about 78 times lower than OA, 28 times lower than MOA,

and 12 times lower than BC. For small instances with |I| ≤ 100, BC achieves good performance. It

provides the best objective values for all 81 instances of each problem with the lowest CPU times.

However, for larger problem instances (|I|> 100), BC becomes more expensive, especially for the

three large problems in the ORlib dataset with (|I|, |M |) = (800,100) and for the NYC instances

(the average CPU times are always more than 90 seconds). The MOA has the best performance
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Instance |I | m
# instances with best objective Average CPU time (s)

GGX GH OA MOA BC GGX OA MOA BC

OUR 50 25 81 81 81 81 81 0.14 19.15 0.12 0.01

OUR 50 50 81 81 73 81 81 0,15 109.45 0.15 0.01

OUR 50 100 79 79 58 81 81 0.24 188.91 0.32 0.05

OUR 100 25 81 80 73 81 81 0.14 138.30 0.18 0.01

OUR 100 50 81 77 69 81 81 0.15 170.80 0.28 0.03

OUR 100 100 81 77 59 81 81 0.26 187.43 0.60 0.13

OUR 200 25 81 81 72 81 81 0.14 146.79 0.34 0.02

OUR 200 50 81 80 64 81 80 0.16 189.46 0.80 0.06

OUR 200 100 81 77 59 81 81 0.33 235.27 15.99 0.29

OUR 400 25 81 73 71 81 80 0.14 116.44 0,62 0.04

OUR 400 50 81 78 60 80 81 0.18 200.32 12.13 0.13

OUR 400 100 81 73 58 76 81 0.49 291.38 99.45 0.65

OUR 800 25 81 76 59 81 81 0.14 160.71 2.27 0.11

OUR 800 50 81 62 59 64 75 0.23 251.8 160.47 0.48

OUR 800 100 80 72 55 58 75 0.94 363.54 234.67 14.29

cap101 50 25 81 81 81 81 81 0.14 0.21 0.20 0.01

cap102 50 25 81 81 81 81 81 0.14 0.24 0.25 0.01

cap103 50 25 81 81 81 81 81 0.14 0.19 0.23 0.01

cap104 50 25 81 80 81 81 81 0.14 0.31 0.23 0.01

cap131 50 50 81 74 81 81 81 0.15 0.37 0.31 0.02

cap132 50 50 81 81 81 81 81 0.15 0.32 0.35 0.02

cap133 50 50 81 80 81 81 81 0.15 0.38 0.34 0.02

cap134 50 50 81 81 81 81 81 0.15 0.36 0.34 0.02

capa 1000 100 81 58 81 81 81 1.31 141.10 226.68 114.74

capb 1000 100 81 61 68 66 81 1.23 113.27 220.45 94.72

capc 1000 100 81 53 81 81 81 1.42 145.22 232.68 149.88

NYC 82341 59 81 72 77 81 80 33.87 164.01 2.32 161.71

Average 80.89 75.19 71.30 78.74 80.44

Table 1 Numerical results for MNL instances, grouped by the problem name (81 instances per row).

for the NYC dataset, as it only requires 2.32 seconds to give the best objective values for all the

81 instances. In general, GGX achieves the best performance for the MNL instances, as compared

to the other approaches.

4.3. Mixed Logit - MMNL

In this section, we report numerical results for MMNL instances. To generate such instances, we

assume that each utility vij , i ∈ I, j ∈ [m]}, contains a random error component that follows a

normal distribution of zero mean. We also assume that the variance of the random number is

proportional to the distance cij. More precisely, each vij associated with customer zone (or client)

i∈ I and location j ∈ [m] is defined as vij =−θcij+ cijτij/3, where τij is a standard normal random

number. We also keep the utilities associated with the competitors deterministic. For each problem,

we approximate the objective function by the Monte Carlo method. To do so, we choose a sample

size N = 100 for the HM14 and ORlib datasets and N = 10 for the NYC one. For the latter, we

only choose small N because the NYC problem is already large even under the MNL model. As

mentioned, we consider and solve these MMNL instances as extended MNL ones, in which the
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number of customer zones is 5000, 5000 and 823,410 for instances from the HM14, ORlib and NYC

datasets, respectively. We give a CPU time budget of 600 seconds for all instances.

In Table 2, for each problem we report the number of instances with the best objective values

and the average CPU times over 81 instances for five approaches, i.e., GGX, GH, OA, MOA, and

BC. We indicate in bold the largest numbers of instances solved with the best objective values.

The results clearly show that GGX generally outperforms other approaches. More precisely, GGX

manages to return best objective values for all instances considered (i.e. 2187/2187 instances).

Moreover, GH also performs very well, in the sense that the percentage gaps between the objective

values given by GH and the best objective values only vary from 0% to 2.92%. In terms of CPU

time, GH is still the fastest approach when it just requires less than 2 seconds to solve every instance

except the NYC ones, which take only about 6.5 seconds in average. The GGX approach, even

though being slower than the GH, but is still much faster than the others. We also observe that

the OA, MOA, and BC approaches need much more time to solve MMNL instances, as compared

to solving the MNL instances. The average CPU times required by these three approaches are

more than 250 seconds. In overall, GGX dominates GH in terms of returned objective value, and

outperforms OA, MOA and BC in terms of both returned objective value and CPU time.

4.4. Nested Logit Model

This section reports numerical results for nested logit instances. We perform a comparison between

4 approaches, namely, the GGX, GH, OA and MOA algorithms. We do not include the BC approach

in this experiment, as it is not designed to handle nested logit instances. For the OA and MOA

approaches, since it is quite straightforward to generate outer-approximation cuts using gradient

information, we apply these algorithms to solve the nested logit instances to see how they perform.

Note that, in the context, the objective function is no-longer concave, thus OA and MOA become

heuristic with no performance guarantee, to the best of our knowledge. To generate nested logit

instances, we build a customer nested logit model by partitioning the set of locations into L= 5

different and disjoint groups of equal size. In particular, the NYC dataset has 59 locations (m= 59),

so for this problem we partition the locations into four groups with 10 locations and one with 9

locations. We also choose the nested logit parameters as µ= (1.1,1.2,1.3,1.4,1.5), noting that more

nests and/or other nested logit parameters can be chosen. Our selections here are just to illustrate

the performance of different algorithms in handling GEV instances. We also give a time budget of

600 seconds for all the algorithms.

Table 3 reports comparison results of the four approaches. Each row of the table corresponds to

81 solved instances and we also indicate the largest numbers of instances solved with best objective

values in bold. The results clearly show that GGX outperforms the other approaches in terms of
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Problem |I | m
# instances with best objective Average CPU time (s)

GGX GH OA MOA BC GGX GH OA MOA BC

OUR 50 25 81 81 66 58 81 0.24 0.01 236.36 189.23 1.66

OUR 50 50 81 81 46 54 81 0.83 0.02 312.73 232.16 6.45

OUR 50 100 81 81 41 29 81 3.49 0.05 390.60 425.57 40.78

OUR 100 25 81 75 53 55 81 0.29 0.01 279.68 212.33 11.37

OUR 100 50 81 81 47 31 81 1.11 0.03 356.28 430.85 36.57

OUR 100 100 81 75 41 22 78 4.76 0.10 528.64 519.79 133.67

OUR 200 25 81 81 54 33 81 0.35 0.02 317.28 375.46 47.32

OUR 200 50 81 77 39 27 78 1.51 0.05 402.01 464.52 126.53

OUR 200 100 81 77 34 28 77 6.75 0.23 456.24 328.89 174.75

OUR 400 25 81 77 52 32 77 0.44 0.03 336.85 404.77 138.9

OUR 400 50 81 74 40 25 74 2.03 0.13 472.38 515.90 237.10

OUR 400 100 81 63 29 15 63 9.34 0.67 569.4 570.10 325.16

OUR 800 25 81 66 52 29 68 0.60 0.07 345.27 396.63 229.83

OUR 800 50 81 73 39 27 74 3.06 0.34 406.18 467.89 341.22

OUR 800 100 81 72 32 18 72 14.29 1.25 562.63 565.37 421.74

cap101 50 25 81 70 57 54 77 0.24 0.01 388.27 485.02 276.30

cap102 50 25 81 72 57 54 80 0.24 0.01 388.19 497.24 268.27

cap103 50 25 81 66 50 51 78 0.24 0.01 365.41 457.82 218.40

cap104 50 25 81 67 56 51 74 0.25 0.01 369.85 484.69 268.10

cap131 50 50 81 81 33 38 81 0.84 0.02 459.78 619.15 425.71

cap132 50 50 81 80 33 38 80 0.84 0.02 452.13 620.70 422.28

cap133 50 50 81 81 33 35 81 0.83 0.02 459.68 643.83 435.96

cap134 50 50 81 81 33 40 81 0.84 0.02 458.49 652.69 429.13

capa 1000 100 81 81 14 14 81 16.50 1.52 677.73 677.73 600.00

capb 1000 100 81 81 44 14 81 16.46 1.52 600.91 691.05 600.00

capc 1000 100 81 81 38 13 81 16.47 1.52 600.91 637.31 600.00

NYC 82341 59 81 72 75 68 72 114.42 6.50 178.18 135.24 381.48

Average 81 75.81 44.00 35.30 77.56

Table 2 Numerical results for MMNL instances, grouped by the problem name (81 instances per row).

the number of instances solved with the best objective values. More precisely, GGX gives the best

objective values for all problem instances while GH only performs the best for 9/27 problems. In

terms of CPU time, GGX is not very fast. In particular, for the NYC instances, the average CPU

time is about 355.36 seconds and is much larger than the average CPU times required by GH, OA

and MOA. The reason is that the objective function in this context is quite expensive to evaluate, as

compared to the cases of the MMNL and MNL models, and the exchanging procedure of the GGX

(Phase 3) requires calculating the objective function several times to find a pair of locations to

swap. The GH is still very fast and the returned objective values are pretty close to the best values

given by GGX. The percentage gaps between the objective values obtained from GH and the best

objective values only vary from 0 to 3.32%. The OA and MOA approaches, even though run very

fast, but give bad solutions. This can be explained by the fact that the objective function under a

nested logit model is highly non-concave, thus a subgradient cut (or an outer-approximation cut)

could potentially remove good solutions during the cutting-plane procedure.

We look more closely to the NYC problem (the largest problem) to see how the algorithm works.

In table 4, we report comparison results for the NYC instances in detail. Each row of the table
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Problem |I | m
# instances with best objective Average CPU time (s)
GGX GH OA MOA GGX GH OA MOA

OUR 50 25 81 81 24 20 0.35 0.01 0.15 0.09

OUR 50 50 81 81 2 0 1.94 0.03 2.83 0.12

OUR 50 100 81 81 27 27 13.08 0.10 104.39 0.19

OUR 100 25 81 80 18 15 0.43 0.01 0.66 0.16

OUR 100 50 81 75 3 0 2.44 0.04 0.39 0.16

OUR 100 100 81 76 0 1 16.04 0.11 83.31 0.27

OUR 200 25 81 81 2 0 0.57 0.02 0.80 0.18

OUR 200 50 81 80 1 0 3.41 0.19 1.85 0.23

OUR 200 100 81 81 0 0 20.76 0.15 111.70 0.46

OUR 400 25 81 72 24 20 0.85 0.16 0.75 0.18

OUR 400 50 81 77 5 0 5.37 0.21 1.83 0.35

OUR 400 100 81 72 0 0 32.02 0.08 167.55 1.15

OUR 800 25 81 77 0 0 0.93 0.04 0.89 0.31

OUR 800 50 81 66 0 0 6.38 0.10 2.14 0.61

OUR 800 100 81 69 22 18 41.99 0.30 299.35 5.64

cap101 50 25 81 81 1 0 0.35 0.01 0.09 0.10

cap102 50 25 81 81 1 0 0.35 0.01 0.10 0.10

cap103 50 25 81 81 0 0 0.35 0.01 0.09 0.10

cap104 50 25 81 78 0 0 0.35 0.01 0.09 0.09

cap131 50 50 81 74 0 0 1.96 0.03 0.10 0.11

cap132 50 50 81 81 0 0 1.96 0.03 0.11 0.11

cap133 50 50 81 78 0 0 1.97 0.03 0.11 0.11

cap134 50 50 81 80 0 0 1.96 0.03 0.10 0.11

capa 1000 100 81 60 0 0 46.17 0.37 1.02 66.50

capb 1000 100 81 54 0 0 46.23 0.37 10.91 66.24

capc 1000 100 81 50 0 0 46.18 0.37 8.38 56.44

NYC 82341 59 81 72 5 4 355.36 6.89 0.85 0.65

Average 81 74.78 5.00 3.89

Table 3 Numerical results for nested-logit instances, grouped by the problem name (81 instances per row).

corresponds to 9 instances with a value of C, varying from 2 to 10. GGX performs the best in terms

of objective value, as it gives best objective values for all the instances while GH only gives 6/9

best objective values for C ∈ {2,3,4}. The numbers of instances with best objective values given

by OA and MOA are very low. They both have 4 instances with the best objective values when

C = 2 and the OA has one more instance with the best objective value when C = 5. This clearly

shows that OA and MOA are outperformed by GGX and GH. On the other hand, in terms of CPU

time, GGX is much more expensive than the other approaches. The average CPU times required

by GGX is about 52 times, 418 times, and 547 times higher than those required by GH, OA, and

MOA approaches, respectively. In summary, for these large instances, GH performs much better

as compared to OA and MOA, and GGX manages to significantly improve the objective values

returned by GH.

5. Conclusion

In this paper we have studied the maximum capture problem in facility location where customer

behavior is captured by any GEV model. By leveraging the properties of the GEV generating
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C
# instances

with best objective values
Average

CPU time (s)
GGX GH OA MOA GGX GH OA MOA

2 9 6 4 4 81.90 2.28 1.03 0.74
3 9 6 0 0 234.77 3.53 1.24 0.83
4 9 6 0 0 454.85 4.75 1.26 0.94
5 9 9 1 0 551.34 5.74 1.13 0.67
6 9 9 0 0 556.38 6.94 1.14 0.60
7 9 9 0 0 541.49 8.04 0.52 0.54
8 9 9 0 0 538.21 9.19 0.49 0.52
9 9 9 0 0 537.17 10.27 0.48 0.51
10 9 9 0 0 541.68 11.25 0.41 0.52

Average 9 8 0.56 0.44
Table 4 Comparison results for NYC instances, grouped by C, 9 instances per row.

function, we have showed that the objective function is monotonic and submodular, implying that a

simple greedy heuristic can always give a solution whose value is at least (1−1/e) times the optimal

values. We have further developed an algorithm based on a greedy heuristic, a gradient-based local

search and an exchanging procedure to solve the problem under any GEV model and the MMNL

model. We have tested and compared our algorithm with some state-of-the-art algorithms using

MNL, MMNL and nested logit instances and our numerical experiments clearly demonstrate the

advantages of our approach, in terms of both returned objective value and CPU time.

Our theoretical findings and algorithm can be applied to the maximum capture problem under

any GEV model, including the popular MNL model and other complex GEV models in the lit-

erature. Future directions would be to formulate and solve a maximum capture problem in the

situation that the choice parameters are not known with certainty, or to consider a combination of

facility location and security planning under the MNL/MMNL or any GEV models.
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