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Abstract

We consider optimal intervention in the Elliott-Golub-Jackson network model [17] and
we show that it can be transformed into an influence maximization-like form, interpreted as
the reverse of a default cascade. Our analysis of the optimal intervention problem extends
well-established targeting results to the economic network setting, which requires additional
theoretical steps. We prove several results about optimal intervention: it is NP-hard and
cannot be approximated to a constant factor in polynomial time. In turn, we show that ran-
domizing failure thresholds leads to a version of the problem which is monotone submodular,
for which existing powerful approximations in polynomial time can be applied. In addition to
optimal intervention, we also show practical consequences of our analysis to other economic
network problems: (1) it is computationally hard to calculate expected values in the economic
network, and (2) influence maximization algorithms can enable efficient importance sampling
and stress testing of large failure scenarios. We illustrate our results on a network of firms
connected through input-output linkages inferred from the World Input Output Database.

Keywords: Risk analysis; economic networks; NP hardness; approximation algorithms;
influence maximization.

1 Introduction

Following the global crisis due to the COVID-19 medical and economic contagion, governments
have unleashed unprecedented macroeconomic stimulus. The variety of proposed stimulus, both
in government financing and in monetary policy form, aims to support value in a shocked global
economy. The tools to support value following a systemic shock are there since the financial
crisis, and new ones are being proposed. One difference to the financial crisis is that the shock
originated then from within the financial system and the main intervention target were systemically
important institutions, i.e., those whose failure would lead to a large impact on the economy. In
this crisis the shock was external and created disruptions to many economic sectors worldwide.
Consequently, intervention is much more widespread.

As learned from the financial crisis, network effects underpin systemic importance, which can
be measured based on the size of loss cascades, see e.g, [2, 14] or centrality measures, see [7]
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and the references therein. Work on systemic risk measures, e.g.,[11, 9, 18, 5], led to different
axiomatic frameworks for capital requirements such that aggregate risk is acceptable. Notably,
aggregation functions underlying these systemic risk measures can account for interconnections.
In [3, 4, 10], authors explore optimal capital and liquidity intervention, and derive insights into the
intervention target in stylized core-periphery banking networks subject to the risk of bank runs.
Their methods are applied for small banking systems. In [1], authors cast the intervention problem
in the context of the Eisenberg-Noe model [16] as a mixed integer-programming problem, and
propose a notion of of ε-optimality to solve it approximately. They apply their methods to the
Korean banking system. In contrast to these past works, our paper focuses on the computational
aspect of optimal intervention problems, which becomes critical when the number of eligible firms
is large. When entire sectors, rather than a few large institutions, are hit by shocks, one needs to
understand the systemic impact of groups of firms and optimally decide on where to intervene.
Such problem quickly becomes computationally hard. The government’s criterion is to maximize
the overall value in the system under a budget constraint.

Our model relies on the notion of value of an organization –firm, sector, country– introduced
in [17] in the context of cross-holdings. Without intervention, if the value of the organization
drops below a failure threshold, then there are failure losses and the values of the connected
organizations drop as well and so on. This is also in the spirit of the distress notion in [27], which
allows for contagion before the point of default. The failure threshold is interpreted as the value
below which the organization ceases operations. Intervention can be seen as a way to increase an
organization’s value or alternatively lower its failure threshold. Several types of interventions can
be modeled by a decrease of the failure threshold of an organization. Government bailouts could
take the form of equity infusions, as they did in the financial crisis. Central banks are injecting
liquidity in the economy via various asset purchase programs, including corporate debt purchases.

It is clear that direct government financing allows firms to survive by directly lowering the
failure threshold. The effect of asset purchase programs (APP) is more subtle. A point of
contention is whether asset purchase programs involve liquidity injection, or whether they involve
value injection. When central banks can purchase corporate debt they change the outcome in
debt markets.1 An unavoidable fact of APP is that, whenever the central bank purchases illiquid
assets to intervene in liquidity, it must price those assets in some way. Models are usually used
to calculate a ‘fundamental value’. When acting as a lender of last resort, central banks may
essentially accomplish bailout functions. Our model captures both direct and indirect ways of
lowering the failure thresholds, as the value of the organization increases by the intervention
amount.

Interventions may be accompanied by long-term moral hazard effects. Firm default is an
important long-term filter that incentivizes strong and competent management. The prospect of
intervention can disincentivize proper risk management, enabling additional short-term profits to
management and equity holders while transferring tail risks to government. Note, however, that
interventions can be shaped to reduce moral hazard (e.g. by organizing bail-ins by the creditors
and thereby diluting equity holders). In [8], authors endogenize intervention for a network of
banks. In their paper, a bail-in can be organized in equilibrium if and only if the regulator’s no-

1Arguably, central banks can lower the failure thresholds even without actual liquidity injection: for
example Boeing raised debt in capital markets following the FED’s announcement that they would
support corporate debt markets, see e.g. thttps://www.bloomberg.com/news/articles/2020-05-02/

the-non-bailout-how-the-fed-saved-boeing-without-paying-a-dime.
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intervention threat is credible, namely in the last stage of the game she could optimally abandon
intervention. Our work is complementary and could be used for the last stage of such a game, as
we find the organizations that need intervention. We leave moral hazard considerations for future
work, given that the widespread consensus of decision makers was to first preserve value following
the COVID-19 crisis. We focus on the specific question of how to design targeted interventions
that exploit network effects while leaving the precise micro structure of those interventions as a
separate problem.

Our work is also part of the broader literature on targeting in networks, see e.g., [6, 19], and in
particular the literature on optimal diffusions of products or innovations or influence maximization,
[15, 21, 22]. Our contributions are summarized below.

This paper. We construct an economic network intervention model and show how it can be
solved by adapting influence maximization methods (Section 2). Our analysis extends well-
established targeting results to the economic network setting, requiring additional theoretical steps
over the classical setting. For instance, the dependency matrix (“influence matrix”) is more com-
plex (∼ the Neumann series of the matrix in a linear influence setting that is column-substochastic
with zero diagonals) taking into account the effect of a firm on itself and the structure of default
reversals (“activations”) is more nuanced. We contribute the following results, which provide
the groundwork for adapting powerful targeting algorithms to solve several economic network
problems:

1. We define an optimal economic network intervention problem and show how it can be
expressed in an influence maximization-like form (Section 2.2).

2. We prove that it is NP-hard to optimize the economic network intervention and cannot be
approximated to a constant factor in polynomial time (Theorem 1 and Corollary 1).

3. We prove that, when modified to consider expected values under random thresholds, the
intervention problem is monotone submodular (Theorem 2) and thus admits a greedy poly-
nomial time (1− 1/e− ε)-approximation (Corollary 2).

4. We show that similar results extend to a related problem: identifying large failure cascade
scenarios. We prove that it is NP-hard to find the worst case failure scenarios given a
maximum sized aggregate shock to asset values (Theorem 3). Under randomized thresholds,
a similar greedy approximation is applicable.

5. We show two practical consequences of Theorem 3 in Section 3.3. (1) It is computationally
hard to calculate expected values in the economic network. (2) Intervention approximation
algorithms can be applied for importance sampling to identify instances that lead to tail
events, which can be very valuable applied to stress testing. The depth of sampling in the
tail can be tailored by choosing a parameter.

6. We demonstrate a proof-of-concept of optimal intervention approximation applied to eco-
nomic networks constructed from the World Input-Output Database (Section 4).
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2 Model

In this section, we supplement the Elliot-Golub-Jackson network contagion model [17] to incor-
porate targeted interventions. We then formulate an optimal intervention problem that relates
the economic intervention problem to influence maximization problems.

2.1 Financial network contagion model

We define an economic network (C,D, β,θ,p) based on the Elliot-Golub-Jackson network con-
tagion model as follows:

• U = {1, 2, . . . , n} the set of firms/nodes in the network

• m assets owned by firms

• p = m× 1 vector of asset prices

• D = n×m matrix with Dik ≥ 0 the share of asset k held by firm i (adding to 1)

• C = n × n matrix with Cij ≥ 0 the fraction of firm j owned by firm i and 0 along the
diagonals

• Ĉ = n × n diagonal matrix with Ĉii = 1 −
∑

j Cji the share of organization i not owned
by another firm in the system

• θ = n× 1 vector of failure thresholds for each firm

• β = n× n diagonal matrix of extra failure costs for each firm.

The matrix C describes the linear cross-holding relationships between firms. If a firm i’s market
value (defined next) falls below its threshold θi, it incurs an extra failure cost βii. We assume C
is column sub-stochastic as otherwise Ĉ−1 is not well-defined. Notice that this also means that
I − C is invertible because the spectral radius ρ(C) < 1.

The network propagates asset values and defaults across firms in the network. We illustrate
this conceptually in Figure 1. D describes the mapping of underlying assets (blue nodes) to firms
(orange nodes). C describes cross-holdings between firms. The breach of a threshold triggers
failure costs, which propagate to other firms through C.

Firm book values are given by

V = CV +Dp− β 1{v<θ},

where 1S is the 1-0 valued vector indicating the entries of set S. V represents the vector of all
book values across the network. The first term CV gives the firm cross holdings, i.e., the book
value of each firm contains a fraction of the values of all other book values. The second term Dp
represents the value of the external asset holdings, in vector form. Finally, the last term represents
bankruptcy costs, which occur in the case that the market value of the firm drops below a failure
threshold.

Notice that book values inflate the value of underlying assets because asset values are counted
multiple times across firms (consequently, ‖V‖1 ≥ ‖p‖1 and can be arbitrarily large). A more

4



Contract/relationship

Assets

Firm 1

Assets

Firm 2

[Rest of the network]

Nodes own assets, 
parts of other nodes

If node value < threshold,
nonlinear default cost incurred

Default costs propagate 
through holdings

Figure 1: Financial network propagation mechanism.

useful measure of value is a scaling of book values by Ĉ, accounting for the ownership share that
each firm retains in itself. These are market values, which are given by

v = ĈV = Ĉ(I − C)−1(Dp− β 1{v<θ}).

In [17], authors show that the matrix Ĉ(I − C)−1 is column-stochastic.

Lattice of solutions. As defined, there is always a solution for v. The set of solutions forms
a complete lattice via Tarski’s fixed point theorem. Further, supremum and infimum exist (best
and worst cases). The analysis in [17] focuses on the best case solution as other solutions in the
lattice are due to self-fulfilling failures.

Intervention lowers thresholds. Beyond the core model from [17], we add a vector of inter-
vention payments γ ≥ 0, which affect the default status of firms. Given an intervention profile
γ, firm i now defaults if

Vi + γi < [Ĉ−1θ]i.

This leads to post-intervention market values

ṽ = Ĉ(I − C)−1(Dp− β 1V+γ<Ĉ−1θ).

An intervention via this mechanism effectively lowers the failure threshold of firms. This is
consistent with real-world intervention mechanisms as discussed in the introduction.

2.2 Optimal intervention

Defining an optimal intervention requires a performance measure for the severity of a cascade.
In economic networks, nodes can vary vastly in size with larger and more connected institutions
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being more systemically important than smaller less connected institutions. A good performance
measure for economic networks will be akin to total value of surviving nodes in the network. In
an optimal intervention, we should seek to maximize this or, equivalently, minimize the value
destroyed in a default cascade. We require an appropriate weight function w(S) that outputs the
importance measure of node set S ⊆ U . A few obvious and simple choices for w are consistent
with maximizing value or minimizing value destroyed. For example: fixed node weightings of
current market values of nodes, e.g.,

w(S) =
∑
i∈S

vi

or, relatedly, the level of failure costs β associated with each node. In particular, these choices al-
low us to capture the size importance of nodes., e.g. w(S) =

∑
i∈S βi. A well-defined intervention

objective is then to maximize w(S) where S is the set of non-defaulting nodes.

A well-defined optimal intervention also requires a resource constraint. We define b to be
the intervention budget. Then a well-defined optimal intervention is the solution to the following
optimization problem.

max
γ≥0

w(S)

s.t. 1Tγ ≤ b
(1)

where 1 is the all-ones vector.

Toward solving this, it will be convenient to transform the problem and introduce some
additional notation. We can reinterpret the intervention problem in the economic network model
as the following: given an impending default cascade, how do we find an optimal intervention to
optimally reduce defaults?

Suppose that the set of nodes that would default without intervention is T . Now reduce the
system to only look at effects on the nodes in T , while preserving the entire network structure. To
do this, suppose that the set of nodes that would default without intervention is T . In particular,
define the following

• IT = diagonal matrix with Iuu = 1 for u ∈ T and 0 otherwise.

• Ψ(T ) maps to a system on the non-zero diagonal coordinates of IT . Essentially, Ψ(T ) is
the |T | × |U | matrix obtained by dropping zero rows of IT .

We can apply the above map to transform the system to look at

v̄ := Ψ(T )Ĉ(I − C)−1(Dp− β 1v<θ).

This transformation removes firms that don’t fail without intervention, while preserving the net-
worked connections through such nodes. The idea is that among the firms who would fail without
intervention, some of them will be saved by direct intervention. Their value would then go above
the failure threshold and in particular the failure costs are reversed. In a reverse causal relation of
failure, other firms would be indirectly saved because their value would also increase. To simplify
notation, we will proceed where applicable without the bar and Ψ notation, but assuming we
are working in the transformed problem that only directly considers nodes T on which we may
intervene. In the sequel, it is understood that the set T is fixed.
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Intervention impact function. We next let the set function f define the intervention impact
vector on the nodes in T from an intervention that reverses the failures of nodes in the set S ⊆ T .
In particular, fu(S) is the impact on node u from the intervention on nodes in S. As we will
explain, this is given by

f(S) = (I − C)−1β 1S −
∑
u∈S

Iu(I − C)−1β 1u . (2)

This accounts for the effect on book values across the network of reversing faliure costs in the S
nodes (the first term), which pushes other nodes closer to their failure reversal thresholds. Note
that the reversal of a node’s default has an effect on itself through cross-holdings. Further, notice
that the intervention γ does not need to cover the cost of β as the intervention stops this cost
from being realized in market values. The second term in f(S) removes this self-influencing effect
from the impact function as it is instead represented in reduced intervention thresholds. Notice
that f(∅) = 0 so that the impact function is normalized.

Intervention thresholds. For the initial defaulting set T and a node u ∈ T , we define the
intervention threshold θ̃u to describe how much book values would need to change in order for
the failure of u to be reversed. With some simple algebra, this is given by

θ̃u =
[
Ĉ−1θ − (I − C)−1(Dp− β 1T\{u})

]
u

(3)

This can be interpreted as the slack below threshold in the economic network. We can obtain
this by taking [Ĉ−1θ − (I − C)−1(Dp− β 1T )]u, the divergence of book value from the failure
threshold (measured in book value), and subtracting the self-influencing effect described above.

Evaluating an intervention. The intervention γ reverses the defaults of a “seed” set of nodes
S0 ⊆ T . The set S0 is composed of nodes u for which γu ≥ θ̃u. We can iteratively construct
subsequent sets of nodes Si ⊆ T (for i ≥ 1) whose defaults are reversed by propagating the
effects of Si−1. This is done by adding to Si−1 the nodes u such that

fu(Si−1) + γu ≥ θ̃u.

Note that the amounts in γ can be a fraction of the thresholds of the nodes. This allows
more efficient use of the budget b. In particular, this takes advantage of the fact that we don’t
have to spend as much to impact a node that already has partial impact exerted from other
impacted nodes.

This leads to an optimization problem equivalent to (1). The only change is in the restriction
of S to the superset T , which leads to the change of a constant term in the objective involving
the weights of the nodes not in T .

Randomized thresholds. We will further consider a modified form of the problem with ran-
domized thresholds. For instance, this is the case if there is some inherent uncertainty about what
the thresholds are. In this case, a well-defined intervention problem is to optimize the expected
performance measure of the intervention:

σ(γ) := E[w(S)|γ], (4)
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where the expectation is taken over the random thresholds. This corresponds to the fractional
intervention problem, where we select arbitrary γ. In the proofs, it will be helpful to start with a
simplified integral intervention problem, where we select nodes to bail out in the initial seed set
S0, intervening with the full intervention threshold value. In this case, the appropriate expected
performance measure of the intervention is

σ(S0) := E[w(S)|S0]. (5)

These optimization problems bears striking similarity to influence maximization models in
social networks, like in [21, 13], with several key differences in the forms of f and θ̃, particularly
in accounting for the effects of a firm on itself, and appropriate weight functions w.

3 Analytical Results

In the previous section, we set up an economic network model and a well-defined optimal interven-
tion problem that relates to influence maximization problems. We discuss these influence models
in Appendix A. In the remainder of the paper, we will develop this connection, which allows us
to transfer powerful tools from the influence maximization literature to the world of economic
interventions.

Our proofs, given in Appendix B rely on strategies used in some simpler influence maximization-
like problems, such as the linear influence model. New challenges arise when reducing from the
independent set problem to the economic network intervention setting, which is a class of instances
of more general influence maximization-like problems.

We prove theoretical properties of the intervention model. We prove that it is NP-hard to
optimize the economic network intervention and cannot be approximated to a constant factor
in polynomial time. Additionally, we prove that randomizing thresholds under appropriate as-
sumptions yields objective functions that are monotone and sub-modular. Namely, we show that
the economic network intervention problem, when modified to consider expected values under
random thresholds, is monotone submodular. Consequently, one can use the results from [23, 13]
to provide an (1− 1/e− ε)-approximation in polynomial time.

3.1 Hardness of optimal intervention

In our first result, we show that the optimal economic network intervention problem is NP-hard.
Note that this result is not a consequence of influence maximization hardness results in, e.g.,
[21, 13, 20]. While we can transform the economic network intervention model into a form that
resembles influence maximization, that does not mean that the general hardness of influence
maximization extends to this case.

Theorem 1. Let (C,D, β,θ,p) be a financial system with n firms and deterministic thresholds
θ, and let 0 ≤ ` < α ≤ 1. Suppose αn firms fail in the financial system equilibrium. Then it is
NP-hard to determine whether there exists an intervention γi ≥ 0 with ‖γ‖1 ≤ b such that at
most `n nodes fail after the intervention.

[Link to Proof]
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Recall that the meaning of NP-hard is that a general instance of the problem is hard, while
naturally there may be parameter values (e.g., budget of zero) for which the problem may not
be hard. We prove this for w with equal weights, which means that the problem is NP-hard for
general weighting functions. The proof is a reduction from independent set.

A consequence of the theorem is the following corollary describing hardness of approximation.

Corollary 1. Optimal economic network intervention cannot be approximated to within a constant
factor in polynomial time.

Additionally, note that it may be much harder to approximate the optimal intervention
problem than proven in Corollary 1. For example, similar influence maximization problems have
approximation difficulties that scale in the dimensions of the system [13, 20].

Remark 1. (Default hierarchies) While we can identify the hierarchy of defaults in the initial
cascade, which the intervention aims to counteract, this does not make the optimal intervention
problem, in general, easier. Consistent with Corollary 1, simply intervening in a layer of this
hierarchy, which would prevent all defaults in subsequent layers, does not guarantee a good
approximation to optimal intervention. In particular, only intervening across an entire layer may
be far from optimal if all layers are very wide. This is the case in the 2008 financial crisis
but closer to the case in the 2020 Covid crisis, when much of the economy was shut down.
Intuitively, the initial default hierarchy doesn’t describe all possible sequences of default; making
some intervention payments in turn alters the effective hierarchy sequence. Similar “activation
hierarchies” are also present in the influence maximization literature and do not make those
problems easier either. The default hierarchy does not help us devise an approximation algorithm
in general, which remains true when using different objective weighting functions, including current
total market cap of solvent firms.

3.2 Approximation with randomized thresholds

We now establish that a modified form of the optimal intervention problem can be well-approximated
in polynomial time. The modification incorporates randomized thresholds and reframes the prob-
lem to optimize in expectation. For instance, this can be done by treating thresholds as random
variables uniformly distributed over any given uncertainty range. This can be done more generally
with different threshold distributions, as we will discuss. In essence, the combinatorial complexity
problems disappear in expectation.2

We first show that the intervention problem with random thresholds is monotone submodular,
connecting with results from [23] and [13]. As a result, a greedy hill-climbing algorithm provides
a (1− 1/e− ε)-approximation using results from [12, 24].

Our next result establishes that the intervention impact function in the intervention problem
is monotone submodular.

Prop. 1. The function f from Eq. 2 is monotone increasing and submodular.

[Link to Proof]

2Since the range of the random variables can be arbitrarily small, this is like saying that the approximation
problem is difficult only on measure 0 sets.

9



We need a few assumptions to prove that the objective σ for intervention problem under
random thresholds is monotone submodular. The first assumption describes the randomization
of thresholds and is necessary for the results of [23] to apply. It allows very general distributions
of thresholds, an example of which is uniform distributions.

Assumption 1. For u ∈ U , random thresholds θu are independent with distribution function Fu

such that Fu ◦ fu is monotone increasing submodular.

The next assumption is that the intervention impact function f is normalized–all nodes in T
start out in default. With fixed thresholds, this is a property of f , as noted in the previous section.
If we make thresholds θ random in the economic network setting, this is more complicated because
the corresponding intervention thresholds θ̃ in (3) could be zero or negative depending on the
realization of thresholds, and, if this occurs, the resulting θ̃ distributions are not independent.
This can be solved in two ways that keep the initially defaulting nodes technically fixed: (1) the
randomization in thresholds can be associated with θ̃ ≥ 0 instead of with θ, or (2) the problem
can be reformulated: θ̃ becomes the positive part in (3), initial defaults are fixed, f(∅) := 0, and
when θ̃u = 0, u can be added to the seed set with cost 0 (and so will be added first).

Assumption 2. The intervention impact function f is normalized, i.e., f(∅) = 0.

The final assumption concerns the function describing node weighting in the objective. The
weight function describes how valuable it is to reverse the defaults of a given set of nodes.

Assumption 3. The weight function w : 2U → R+ is normalized, monotone, and submodular.

A very flexible range of functions satisfies this assumption. For example, the cardinality
function, which weights each node equally would be interpreted as minimizing the number of
defaults. As discussed in the previous section, for economic networks, we generally want to
incorporate the size and importance of nodes into this function, as we want to maximize something
like the total welfare of surviving nodes in the network or minimize the value destroyed in a default
cascade. Any fixed weighting of nodes also obeys this assumption, including weighting by the
current market values of firms or, relatedly, the level of failure costs associated with each node.

Under these assumptions, the intervention objective function–e.g., the expected number
of defaults under a given intervention–is monotone submodular based on results from [23], as
formalized in the next result.

Theorem 2. Given assumptions 1-3 and an instance of the economic network intervention problem
with random thresholds, then σ(S0) and σ(γ) are normalized, monotone, and submodular.

[Link to Proof]

Then following the application of results in [21], there is a greedy (1 − 1/e − 1/poly(n))-
approximation algorithm for optimizing the expectation, as formalized in the next corollary. The
integral and fractional forms of this greedy algorithm are described in Appendix C (Algorithm 3
and Algorithm 6).

Corollary 2. Given assumptions 1-3, there exists a polynomial-time greedy (1−1/e−ε)-approximation
for maximizing σ(S0) and σ(γ) subject to budget b.

[Link to Proof]
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3.3 Identifying large failure cascade scenarios

We now show how these results translate into related economic network problems. We start by
showing that it is also NP-hard to identify the worst case failure scenarios given a maximum
sized aggregate shock to asset values p. Like the intervention problem, there is a (1− 1/e− ε)-
approximation under random thresholds. While we may not generally be interested in uncovering
the strictly worst failure scenarios, we will see that the results about this do lead to very useful
and interesting applications regarding sampling tail events in general.

Theorem 3. Suppose (C,D, β,θ,p0) is an instance of an economic network and asset prices
evolve to p1 such that ‖p0‖1 − ‖p1‖1 ≤ b for some maximum aggregate shock b > 0. Let
0 < ` < 1. Then it is NP-hard to determine if a failure cascade of size `|U | is possible in
(C,D, β,θ,p1).

[Link to Proof]

The reduction from independent set again implies a corollary result that the optimum is hard
to approximate up to a constant factor in polynomial time. As in the intervention case, when
reframed in terms of expectations under random thresholds, a greedy (1−1/e− ε)-approximation
again applies.

As alluded above, we now develop two useful and interesting consequences of these results:
(1) it is computationally hard to calculate expected values of nodes in the economic network, and
(2) approximation methods can be applied for importance sampling to identify instances that lead
to events in the tail. The depth of sampling in the tail can be tailored by choosing the parameter
b. This can be very valuable for the application of stress testing.

Hardness of calculating expected values. We next demonstrate a consequence of Theorem 3,
namely it can be computationally hard to calculate expected values of firms in an economic network
even if we have perfect information about the underlying setup. Consider a simple setting in
which the prices of underlying assets p are i.i.d. Bernoulli distributed 0-1 with probability q. The
probability that a specific set of b assets fail is (1 − q)b, which is non-vanishing in the scale of
the network and so non-negligible for the calculation of expected value of firms when the problem
is large (and potentially computationally complex). Since it is NP-hard to determine whether a
large failure cascade can occur with that probability, it is in turn NP-hard to determine if the
expected value is above some given level. Further, the ability to approximate will depend on the
failure costs β in the network, which could be arbitrarily large in the general case, suggesting that
approximation is also difficult in general under fixed thresholds.

This compares to what is typically done in financial models in practice. Firms are typically
treated in isolation, i.e., not part of a network model. In this case, firm defaults are treated as
independent or perhaps correlated through a simple copula. Such distributions of credit risk, such
as produced by a Gaussian copula, fail to capture clustering of defaults. The resulting probability
that a given fraction of firms default is exponentially unlikely as the number of firms grows, and
so this computational problem does not arise in those simple models. Naturally, the assumption
that firm defaults are independent is flawed, and so the complexity problems that we describe in
calculating expected values apply in realistic settings.
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Importance sampling of tail events. While it is NP-hard to identify the worst case failure
scenarios given a maximum sized aggregate shock b in an economic network, it is possible to
identify scenarios that approximate this up to a (1 − 1/e − ε) factor with random thresholds.
As a result, we can apply influence maximization approximation methods to identify instances
of shocks that lead to events in the tail of similar size to the parameter b that is chosen (or
indeed for a variety of b chosen). A common task in finance is to stress test a financial system
subject to aggregate shocks up to a particular size. Direct Monte Carlo approaches will tend to
underestimate risks because random samples are unlikely to contain many of the extreme default
scenarios, especially in a large multi-dimensional space. Importance sampling using this new suite
of approximation algorithms thus unlocks a valuable new way to sample tail events where it was
otherwise difficult.

4 Application to WIOD dataset

To demonstrate the use of our results, we consider an application of influence maximization
algorithms to an economic network. We construct instances of the economic network intervention
problem based on the World Input Output Database (WIOD). The data is openly available at
http://www.wiod.org/home. We simulate a number of possible shocks to the resulting network
and demonstrate that by adapting influence maximization algorithms, we can derive effective
interventions using relatively modest budgets. As we might expect, we see decreasing returns to
scale in the size of the budget.

The simulations we perform are intended as a proof of concept of a realistic-looking setup
based on real underlying data. We stress that many parts of the setup for which data is not avail-
able remain stylized: in particular underlying assets, thresholds, failure costs, and distribution of
shocks to underlying asset values. Additionally, there is naturally uncertainty about economic net-
work structure as described by the dataset and aggregation effects from grouping entire industries
of firms into single nodes.

Our code for intervention approximation algorithms and simulation implementation is openly
available at https://github.com/aklamun/optimal_intervention. The network visualiza-
tion of the data is provided in Figure 2.

4.1 Simulation setup

The WIOD dataset (see, e.g., [26]) describes the flow of resources in dollar value between different
economic sectors within different nations (intermediate demand) and national final demand (e.g.,
GDP components, such as consumption, investment, government expenditure). The dataset
includes this information for 2464 distinct economic sectors spread between 28 EU countries and
15 other major countries for the years 2000-2014.

We construct an economic network from the 2014 dataset in the following way:

1. We set the number of nodes to n, which represents the number of columns in the dataset
that refer to economic sectors or final demand components;

2. We set up an n × n array of flows between nodes from dataset, with zero rows for final
demand components;

12

http://www.wiod.org/home
https://github.com/aklamun/optimal_intervention


Figure 2: Economic network structure inferred from World Input Output Database (WIOD)
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3. We transpose components of any negative entries in the array;

4. We scale columns to sum to 1 (inclusive of value added, a row in the dataset that is not
included in the array) or 0 if a zero column; Value added is traced by all labor and capital
that is directly and indirectly needed for the production of final manufacturing goods, see
[26];

5. We set diagonals in the array to zero to obtain C;

6. We fix unnecessarily bad conditioning in C by removing nodes with near zero value added
(columns referring to households);

7. We set the vector Dp to equal the output of each node at basic prices (this is the TOT GO

row in the dataset);

8. We set the vector θ = Ĉ(I − C)−1Dp − value added, which gives the market value
assuming no defaults from which we subtract value added;

9. We let the diagonal matrix β with diagonal entries 0.1 · value added.

The vector Dp above represents initial asset values. We sample shocks to these asset values
by sampling a shock vector r such that the shocked asset prices are given by the component-
wise multiplication Dp · (1 + r). The shock vector r is sampled from a m-dimensional normal
distribution with the following specifications intended to sample a range of large deviations:

• Common correlation factor ρ = 0.6,

• Marginal distributions have σ = 0.15 and drift a = −0.3,

• Shocks bounded by 0 such that 1 + ri = max(1 + ri, 0).

Recall that Dp are underlying asset prices, and market values will have additional inter-relation
and correlation from the network process.

4.2 Intervention algorithms

Based on our main results in the previous section, under appropriate assumptions and random-
ization of thresholds, the network intervention problem is monotone submodular. In this case
there are known greedy algorithms that provide (1 − 1/e − ε)-approximations. For the reader’s
convenience, we provide these explicitly in Appendix C (Algorithm 3 and Algorithm 6). The gen-
eral structure of these greedy algorithms is to start with an empty seed set S0 and, iteratively,
add the node u to S0 that gives the maximum marginal gain. Since the thresholds are random,
determining the maximum marginal gain in each step involves estimating the expected size of
resulting cascades σ(S0 ∪ {u}) for a number of nodes u. This is typically done through Monte
Carlo estimation of the expectation integral. For large networks, for which these integrals are
very high-dimensional, the Monte Carlo approximations become prohibitively slow, although still
within polynomial time with the Monte Carlo capped at a constant factor.3 This is the case for
the size of networks in these simulations.

3As an area of future research, it would be interesting to examine whether asymptotic results on the size of the
cascade á la [2] could replace part of the Monte Carlo approximations.
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In practice, heuristic algorithms are used in influence maximization to try to estimate the
greedy algorithm in faster time with large success. For instance DiscountFrac used in [13] starts
with an empty seed set S0 and iteratively adds the node u to S0 that would exert the most total
impact on the remaining defaulting nodes. In particular, given the initial intervention seed set S
at the beginning of a step, DiscountFrac picks the node u that maximizes ‖f({u})1A\{u} ‖1 for
remaining uninfluenced set A. We provide an explicit description of DiscountFrac in Appendix C
(Algorithm 9).

In our simulations, we adapt DiscountFrac to choose the node u that maximizes

‖f({u})1A\{u} ‖1
θ̃u − fu(S)

,

where S is the currently influenced set. This accounts for the cost to influence node u in the
current step, given that economic network thresholds can vary significantly in size. For full
implementation details of this adaptation, we refer to our public code repository at https:

//github.com/aklamun/optimal_intervention. The heuristic algorithm is conceptually very
similar to the ideal fractional greedy algorithm. Although it does not come with the same theo-
retical approximation guarantees, it performs well in practice.

4.3 Simulated interventions

We simulate 5000 shocks and apply the adaptation of DiscountFrac to approximate the resulting
optimal intervention problems. In this setting, we explore the effectiveness of a range of targeted
intervention sizes.

Figure 3 depicts the percentage of firms defaulting under certain intervention scenarios. In
particular, we compare the effects of a 1% targeted intervention to no intervention. Figure 3a
shows histogram densities of firm defaults under the sampled shocks, illustrating that the 1%
intervention effectively reduces the tails of this distribution.

Figure 3b shows histogram densities of defaults averted under the 1% intervention relative
to no intervention, which also illustrates the effectiveness. An interesting feature is the bimodal
distribution of defaults averted from targeted intervention. One hypothesis to consider is that this
is a result of the network cluster structure itself: there are several clusters in the network, and firms
within the same cluster are more likely to default (or avert default from a nearby intervention)
together.

Figure 4 depicts the experimental Tail Value at Risk (TVaR) of default cascade size for
different quantiles 0 < q ≤ 1. TVaR(q) is a conditional expectation, conditioned on events falling
in the q-th quantile of outcomes:

TVaR(q; b) = E
[
|A|(b)
|U |

∣∣∣ |A|(0) ≥ VaR
(
|A|(0); q

)]
,

where |A|(b) outputs the number of defaulting firms given budget b, |U | is the number of total
firms, and VaR(X; q) is the q-quantile of random variable X. Note that in our case q is a quantile
of a distribution that is already modeling negative outcomes in these simulations. Also recall that
q = 1 gives the unconditional expectation.
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Figure 3: Histogram densities of defaults under 1% asset value intervention and no intervention.
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Figure 4: Simulation TVaRs with quantiles q for a range of intervention budgets.

Figure 4 demonstrates that relatively small budgets effectively reduce systemic risks as mea-
sured by TVaR. Experimental numbers for the percentage reduction in TVaR using an intervention
budget of 1% of initial assets is presented in Table 1.

4.4 Efficiency of intervention

We end this section by exploring the efficiency of intervention. The question of computational
efficiency is clear because the problem is in general NP hard: optimizing naively would be quite
daunting (and completely intractable given the even modest size of the network). A naive ap-
proach would be to to consider every subset of nodes on which to intervene. In absence of
influence maximization approximation methods, one would need to resort to heuristics such as
(1) intervening on “systemically important” firms first, and (2) intervening on the first layers of
the default hierarchy. Neither of those heuristics have good guarantees and the size of value alone
cannot be a measure of systemic importance, see e.g. [25] and the references therein.

Our influence maximization method can be applied for any weight function w(S) that satisfies
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q % Reduction in TVaR(q)

0.1 23%
0.2 29%
0.4 36%
0.6 40%
1.0 42%

Table 1: Percentage change in TVaR with quantile q of default cascade size resulting from targeted
intervention with budget 1% of total initial assets.

the Assumption 3. Our approach is computationally efficient and we have performance guarantees.
The fact that we can consider multiple weight functions for the same intervention algorithms allows
us to examine also a notion of economic efficiency. Using the cardinality weight function amounts
to minimizing the number of defaults subject to the given budget. We now consider the weight
function represented by the sum of the market value of the nodes

w(S) =
∑
i∈S

vi.

In this case, the goal of intervention is to maximize value. In heterogeneous economic networks,
we can consider multiple objectives in order to assess the efficiency of intervention. Since firms
differ in terms of value, we expect that the additional value saved decreases with the number of
saved firms. The approximations we provide using influence maximization methods are closer to a
policy that intervenes on ”systemically important” nodes first. With this approach, the systemic
importance of a node is determined by the algorithm itself and combines the value of the firm
and their position in the network.

In Figure 5 we plot the percentage value and the percentage of firms saved by intervention
as a function of the intervention budget. These plots both demonstrate diminishing returns,
although less so when the criterion is the value saved. When the budget is sufficiently high, the
number of firms that are being saved stays relatively flat, whereas the value saved still exhibits
significant increases. This means that the intervention set changes, and the reason why additional
value is being saved is the network effects.

Next, in Figure 6 we plot the histogram of defaults averted vs. value saved across simulated
shocks for a fixed budget representing 1% of the total initial value. The histogram of the defaults
averted is rather flat, whereas we note a more u-shaped histogram for the histogram of the value
saved. This is consistent with well known phase transition phenomena in networks: shocks either
die out quickly or reach a large fraction of the network, but there are few intermediate situations.
In the cases where network contagion is high, intervention proves highly effective and saves a
large fraction of the network value.

5 Conclusion

We have shown that the optimal intervention problem is NP-hard under fixed failure thresholds.
Given a network, one essentially needs to choose a set of firms among those who would otherwise
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default and reverse their defaults. The choice of such firms saves the maximum value. Other
related problems are also shown to be computationally hard, even if we have perfect information
about the underlying setup. In particular, given a maximum aggregate shock, it is computationally
hard to determine if there is a distribution of this shock across firms leading to a given fraction
of the network to fail. In turn, when thresholds are random, these problems allow (1− 1/e− ε)-
approximations. Failure thresholds represent the points where shareholders of the firm decide
to cease the operations and liquidate the asset. In reality thresholds could be based on the
expectations of large cascades and large scale liquidations. Given the complexity issues in assessing
which shocks lead to such extreme scenarios, it would be interesting to explore further how
strategic shareholders would make their threshold choices.

Using the approximation algorithms, we evaluate the performance of intervention under a
large number of shocks. We remark a significant reduction of Tail Value at Risk of the default
cascade size, even under a small intervention budget relative to total assets. This can be explained
by the fact that the solution to the optimal intervention problem unveils a hierarchical or causal
structure of defaults, and in practice it selects a relatively small set to directly intervene on. Most
of the default cascade is then averted indirectly, by reversing failure costs and network effects.
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[20] Günneç, D., Raghavan, S., and Zhang, R. Least-cost influence maximization on
social networks. INFORMS Journal on Computing 32, 2 (2020), 289–302.

[21] Kempe, D., Kleinberg, J., and Tardos, E. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining (2003), pp. 137–146.

[22] Kempe, D., Kleinberg, J., and Tardos, É. Influential nodes in a diffusion model for
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A Overview of Influence Maximization

Our analysis builds on influence propagation research in social networks. We provide an overview
of this to aid the reader. This work has historically studied processes like diffusion of technological
innovation, beliefs, product adoption, and viral content. A natural question is how to engineer
such a viral cascade given information about the network.

A model for this problem is specified as follows:

• U is the set of nodes in the network.

• f(S) a set function that outputs the vector of influence exerted by the activation of node
set S ⊆ U on each node in U (i.e., fu(S) = influence exerted on node u). We assume
f(∅) = 0.

• w(S) outputs an importance weighting of node set S. In the simplest setting, each node is
weighted by 1.

• θ̃ is the vector of thresholds for each node. A node u becomes activated if the influence
exerted on it is ≥ θ̃u.

• b is the budget for influencing nodes.

Integral Influence Maximization, studied in [21], focuses on maximizing the weighted number
of activated nodes by finding an optimal seed set S0 to activate with payments of size θ̃u for each
u ∈ U subject to budget b. An influence cascade is calculated in stages. Given an initial set of
activated nodes S0, we construct the set of nodes Si (for i ≥ 1) activated by the set Si−1 by
adding the nodes u such that

fu(Si−1) ≥ θ̃u.
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The cascade process converges to a final set of activated nodes S. The optimization problem is

max
S0⊆U

w(S)

s.t.
∑
u∈S0

θ̃u ≤ b.

Fractional Influence Maximization, studied in [13], is a generalization of the integral case.
In this problem, we choose a payment vector x subject to budget b to exert influence on seed
nodes. An influence cascade is again calculated in stages. An initial set of activated nodes S0
is composed of nodes u for which xu ≥ θ̃u. We construct the subsequent sets of nodes Si (for
i ≥ 1) activated by the set Si−1 by adding the nodes u such that

fu(Si−1) + xu ≥ θ̃u.

Note that this assumes that direct influence is additive with influence from other vertices in the
network, in the sense that node activated in next stage if and only if this condition satisfied. The
cascade process converges to a final set of activated nodes S. The optimization problem is

max
x≥0

w(S)

s.t. 1Tx ≤ b

where 1 is the all-ones vector. The amounts can be a fraction of the thresholds of the nodes.
This allows more efficient use of budget b to influence an effective seed set S. In particular, this
takes advantage of the fact that we don’t have to spend as much to influence a node that already
has partial influence exerted from other influenced nodes.

For simple influence models, like the Linear Threshold Model and Triggering Set Model, these
problems are NP-hard, as shown in [21] and [13]. Further, they are also hard to approximate within
any general nontrivial factor.

However, when we consider a modified problem with randomized thresholds–e.g., if activa-
tion thresholds for influence are uniform random variables–then the problem changes enough in
expectation to lower complexity. In particular, the expected cascade size σ(S0) := E[w(S)|S0]
from a given seed set S0 (with similar definition for σ(x)) is monotone submodular and allows a
greedy approximation that is provably within (1− 1/e) ≈ 63% of optimal ([21],[13]). [23] proved
this for more general threshold models and distributions for θ̃. In particular, letting Fu be the
distribution function of θ̃u, σ(S0) is monotone submodular given that the following functions are
monotone submodular: f , w, and Fu ◦ fu for all u ∈ U . We define these greedy algorithms
explicitly in Appendix C.

In the typical influence maximization problem, a node in S does not exert influence on itself.
This is complicated in the economic network intervention problem because the reversal of a node’s
default has an effect on itself through cross-holdings. There are also differences in θ and w.

B Proofs
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Theorem 1

Proof. We will reduce from the independent set problem to an instance of the economic network
intervention problem. Our reduction strategy follows [20] (for the linear influence model), but we
note it requires additional steps to reduce independent set to the economic network intervention
setting, which is a class of instances of more general influence maximization-like problems.

In the independent set problem, we are given an undirected graph G = (U,E) with nodes U
and edges E. Given a number k, we ask if there is an independent set in G of size k.

Reduction gadget. For the reduction, construct a bipartite graph G′ = (U1∪U2, E
′) as follows:

• Add each node in G to U1. Attach thresholds 1
|U | to these nodes.

• For each edge {i, j} ∈ E, add a node u to U2 and add directed edges (i, u), (j, u) to E′.
Attach edge weights 1

|U | and thresholds 1
|U | .

• For each possible pair {i, j} /∈ E, add two nodes u,w to U2 and add directed edges
(i, u), (j, w) to E′. Attach intervention weights 1

|U | and thresholds 1
|U | .

Notice the number of vertices and edges in G′:

|U1 ∪ U2| = |U |+ |E|+ 2

(
|U |2 − |U |

2
− |E|

)
= |U |2 − |E|,

|E′| = |U |2 − |U |.

Set the desired penetration rate in G′ to ζ = k|U |
|U |2−|E| (this is the fraction of nodes we want

to reverse the defaults of in the economic network). Notice that

ζ|U1 ∪ U2| =
k|U |

|U |2 − |E|
|U |2 − |E| = k|U |,

which will be the desired penetration in the reduction graph to correspond to the independent set
(which we prove below).

Gadget is instance of economic network intervention. We now show that the independent
set problem on G′ translates to an instance (C, β,θ, D,p) of the economic network intervention
problem. Let A be the adjacency matrix of G′. Since G′ is a 2-layer DAG, we have At = 0 for
integers t > 1. Then the Neumann series is

(I −A)−1 = I +A.

Notice that A is non-negative column-substochastic with zero diagonal. Thus we take C = A,
and Ĉ is well-defined.

Claim: (β,θ, D,p) can be chosen such that, before intervention, all nodes fail with end values
v = 0, θ̃u = 1

|U | for all u, and β ≥ 1.
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Proof of claim: To find such a (β,θ, D,p), we can setup the following system

V = (I + C)(Dp− β 1U1∪U2) = 0

θu >
[
Ĉ(I + C)Dp

]
u

for u ∈ U1

θu >
[
Ĉ(I + C)(Dp− β 1U1)

]
u

for u ∈ U2

θ̃u =
[
Ĉ−1θ − (I + C)Dp− Cβ 1U1∪U2\{u}

]
u

=
1

|U |
for all u

β ≥ 1.

The system has the same number of variables as dimensions. Because of the 2-layer DAG structure,
it is simple to see that the system is solvable.

Notice that in the equation for θ̃ is valid. Taking failure set T , we have

θ̃u =
[
Ĉ−1θ − (I + C)(Dp− β 1T\{u})

]
u

=
[
Ĉ−1θ − (I + C)Dp− Cβ 1T\{u}

]
u

because [Iβ 1T\{u}]u = 0.

Claim: The effect of reversing defaults S propagates to other nodes through f(S) = Cβ 1S .

Proof of claim: First notice that for all nodes u,[
(I + C)β 1u

]
u

= βu.

This is a simple result because C has zero diagonal and the only nonzero entry of 1u is the uth
entry; thus there is 0 contribution from Cβ 1u for the uth entry.

Then we have
f(S) = (I + C)β 1S −

∑
u∈S

Iu(I + C)β 1u

= (I + C)β 1S −
∑
u∈S

Iuβ 1u

= (I + C)β 1S −β 1S
= Cβ 1S .

Claim: If we reverse the default of a node in U1, then its neighbors in U2 are also saved from
default.

Proof of claim: Suppose we reverse the default of u ∈ U1. Suppose w ∈ U2 is a neighbor of u.
Then w’s value is affected by

[f(u)]w = [Cβ 1u]w =
β

|U |
>

1

|U |
= θ̃w

since β ≥ 1. Thus w’s default is also reversed.
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To complete the translation into the economic network intervention problem, define the
following:

b =
k

|U |
α = 1

` = 1− ζ.

In intuitive terms, the corresponding economic network is a 2-layer DAG, in which the only
cross-holdings are the shares in the first layer held by the second layer. In this case, the interactions
are quite simple, described solely by C. In this network, every node starts in default. We can
pay θ̃ = 1

|U | to reverse a node’s default. Our budget is b and we can choose at most k nodes to
intervene on.

Reduction to integral case. We first consider the integral case and then extend to the fractional
case. We want to select a subset S of k nodes from G′ such that, if we provide payments equal
to their θ̃, a cascade of reverse-defaults occurs of size at least ζ|U1 ∪U2| (i.e., at most `|U1 ∪U2|
nodes fail after intervention). This occurs if and only if G has an independent set of size k, as
we prove next.

First, note that sets S ⊆ U1 always dominate sets S ⊆ U1 ∪ U2 with S ( U1. This is
because, by construction, reversing the default of any node in U1 in turn impacts its neighbors
in U2, reversing their defaults, whereas reversing the default of a node in U2 does not impact its
neighbors in U1. Since each node in U2 has a neighbor in U1, it always makes sense to impact such
a neighbor instead of the considered node in U2. Thus it is sufficient to consider only solutions in
U1. Notice that this extends to the fractional case since threshold-crossing payments are of the
same size for nodes in U1 and U2.

Each node in U1 has |U | − 1 neighbors, and two nodes in V1 share a neighbor if and only if
they are neighbors in G. So if we pick the subset S ⊆ U1, the size of the default reverse cascade
is

#default reverses = |U ||S| − |{{i, j} ∈ E|i, j ∈ S}|.

E.g., if no nodes in S are connected in G, then the second term is 0 and each default reverting
node impacts itself and |U | − 1 unique nodes in U2 for a total of |S| + (|U | − 1)|S| = |U ||S|
nodes.

The number of default reversals is ≥ `|U1 ∪U2| = k|U | if and only if ∀u, v ∈ S, {u, v} /∈ E,
which is that case if and only if there is an independent set of size k in G.

Reduction to fractional case. Notice that this easily extends to the fractional case. In this
case, we want to find payments such that

∑
i γi ≤ b = k

|U | and we save ζ|U1 ∪ U2| nodes from

failure (i.e., at most `|U1 ∪ U2| nodes fail after intervention). In G′, all edges and thresholds
have value 1

|U | . Given the structure of G′, optimal node payments will obey γi ∈ {0, 1
|U |}. This

is because a payment to a node in U1 is again always better than a payment to a node in U2

(same argument as before), and any payment smaller than 1
|U | will result in no default reversals

in U1, and hence no subsequent effect on U2. Thus there is one-to-one correspondence between
optimal integral solutions and optimal fractional solutions. Thus the fractional case is NP-hard
in general.

25



Proposition 1

Proof. To simplify notation, define A := (I − C)−1β.

(Monotonicity) Let T ⊂ U and u ∈ U \ T . Then we have

f(T ∪ {u}) = A1T∪{u}−
∑

j∈T∪{u}

IjA1j

= A1T −
∑
j∈T

IjA1j +A1u−IuA1u

= f(T ) +A1u−IuA1u .

Since A is non-negative, the second term is ≥ 0. The third term only affects the uth component,
and then only cancels the contribution of the second term. Thus we have f(T ∪ {u}) ≥ f(T ).

(Submodularity) Let S ⊆ T ⊆ U and u ∈ U \ T . From the above equations, we have
f(T ∪ {u}) − f(T ) = A1u−IuA1u. and similarly with S. Thus the submodularity condition
f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T ) holds with equivalence.

Theorem 2

Proof. Recall that the intervention problem can be expressed in an influence maximization-like
form. By assumption, w is normalized, monotone, and submodular, and f is normalized. And by
Prop. 1, f is monotone and submodular. Notice that the intervention problem is easily normalized
(in a different sense) so as to restrict each fi and θ̃i to the range [0, 1]. Then by Theorem 1 in
[23], the integral intervention problem has σ(S0) normalized, monotone, and submodular. And
by Theorems 2-3 in [13], the fractional intervention problem has σ(γ) normalized, monotone,
and submodular (note that these definitions are modified to describe non-set functions in the
fractional case).

Corollary 2

Proof. This follows using the same application of results as in [21]. In particular, the results
of [12],[24] show that a greedy hill-climbing algorithm approximates the optimum of monotone
submodular problems to within a factor of (1− 1/e). Given that σ has to be approximated, the
result can be extended to show that for any ε > 0, there is δ > 0 such that by using (1 + δ)-
approximate values for the σ function, we obtain a (1−1/e−ε)-approximation. For the fractional
case, this uses Theorem 4 in [13].
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Theorem 3

Proof. First consider a specific subclass of economic network instances. We will reduce indepen-
dent set to an instance of this subclass. The subclass has the following properties:

• Asset prices p take values in {0, 1}.

• D is row-sub-stochastic, such that a firm’s underlying assets can be valued at most 1.

• C = 0, in which case Ĉ = I and (I − C)−1 = I.

• β = 0, in which case a firm’s value is in [0, 1].

• b is an integer.

As a result, the shock to be chosen in our problem, if applied to asset i, can change it’s price
from 1 to 0. The problem at hand is now to find a set of b assets that, if set to 0, cause `|U |
firms to default.

Next consider a reformulation of the network process into a bipartite graph G′ as follows:

• Add nodes for each underlying asset. Denote these nodes U1.

• Add nodes for each firm. Denote these nodes U2.

• For each u ∈ U1, add a weighted directed edge from u to nodes in U2 according to the
matrix D. The weights here represent the effect of the asset on the book values of firms
that own those assets in the simple setting with C = 0.

Assume the assets in U1 are initially set to 1. If an asset is changed to 0, (negative) impact is
exerted on its connections in U2 via D, lowering those firms’ values. If enough (negative) impact
is exerted on a firm in U2, its value decreases below threshold, triggering default. The equivalent
problem is to find a set of b nodes in U1 such that, if set to 0, cause `|U | firms to default.

To reduce from independent set, we can follow essentially the same reduction as in Theorem 1
to a process on a bipartite graph like above. With appropriate definition of parameters, this is
an instance of the subclass of economic networks above. And thus independent set reduces to
economic network maximum shock problem.

C Algorithms

We provide explicit descriptions of the optimal intervention approximation algorithms to aid the
reader, as their adaptations in the influence maximization literature are usually not made explicit.
The algorithms below use the following problem setting consistent with the intervention problem
developed in the paper:

• f(S) outputs the intervention impact vector exerted by set S on each node.

• w(S) outputs a weight of node set S.

• Θ is node threshold distribution, uniformly distributed between θ̃min and θ̃max. The thresh-
olds θ̃ are sampled from this distribution.
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• b = budget.

There are three primary intervention algorithms. The remaining algorithms serve as helper
functions used in these primary algorithms.

• Algorithm 3 is the greedy algorithm for approximating optimal integral interventions with
63% guarantees.

• Algorithm 6 is the greedy algorithm for approximating optimal fractional interventions with
63% guarantees.

Notice that these algorithms need to re-estimate a σ̂ high-dimensional integral at each step
through Monte Carlo, which is often too computationally intense to run in high-dimensional
systems, even though it is technically polynomial time with the Monte Carlo capped at a constant
factor.

• Algorithm 9 is a fast heuristic greedy algorithm that is very close to the ideal fractional
greedy algorithm. It does not come with provable guarantees, but is used similarly in
influence maximization with large success.

Full and optimized Python implementation is available at https://github.com/aklamun/optimal_
intervention.

Algorithm 1 CalcIntCascade(S; f, θ̃)

Require: set S, set function f , thresholds θ̃

Initialize S0 ← ∅, S1 ← S, i← 1
while Si 6= Si−1 do

Si+1 = {node v|f(Si)[v] ≥ θ̃[v]} ∪ Si
i← i+ 1

end while
return Si

Algorithm 2 σ̂(S) estimate of σ(S) for integral intervention

Require: set S, set function f , weight function w, thresholds distr. Θ, sample size k = 1e4

Initialize σ ← 0
for i ≤ k do

Sample θ̃ ∼ Θ

T,= CalcIntCascade
(
S; f, θ̃

)
σ ← σ + w(T )

end for
return σ/k
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Algorithm 3 GreedyInt = Greedy algorithm for optimal integral intervention

Require: set function f , weight function w, thresholds distr. Θ, budget b

Initialize S0 ← ∅, i← 0
while |Si| < b do

for node v /∈ Si do

q[v] = σ̂
(
Si ∪ {v}; f,Θ, w

)
end for
Si+1 ← Si ∪ {arg max q}, i← i+ 1

end while
if |Si| ≤ b then

return Si
else

return Si−1
end if

Algorithm 4 CalcFracCascade(γ; f, θ̃)

Require: vector γ, set function f , thresholds θ̃

Initialize S0 ← ∅, i← 1
S1 ← {node v|γv ≥ θ̃v}
while Si 6= Si−1 do

Si+1 = {node v|f(Si)[v] + γv ≥ θ̃v}
i← i+ 1

end while
return Si

Algorithm 5 σ̂(γ) estimate of σ(γ) for fractional intervention

Require: vector γ, set function f , weight function w, thresholds distr. Θ, sample size k = 1e4

Initialize σ ← 0
for i ≤ k do

Sample θ̃ ∼ Θ

T = CalcFracCascade
(
γ; f, θ̃

)
σ ← σ + w(T )

end for
return σ/k
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Algorithm 6 GreedyFrac = Greedy algorithm for optimal fractional intervention

Require: set function f , weight function w, thresholds distr. Θ, budget b

Initialize γ0 ← 0, i← 0
while 1Tγi < b do

Si = {node v|γi[v] > 0}
for node v /∈ Si do

γv = γi +
(
θmax[v]− Γ+(v, Si)

)
1v

q[v] = σ̂
(
γv; f,Θ, w

)
end for
u = arg max q

γi+1 ← γi +
(
θ̃max[u]− Γ+(u, Si)

)
1u, i← i+ 1

end while
if 1Tγi ≤ b then

return γi

else
return γi−1

end if

Algorithm 7 Γ+(v,A) = total sum of weight of edges from set A to node v

Require: set A, set function f , node v

return f(A)[v]

Algorithm 8 Γ−(v,A) = total sum of weight of edges from node v to set A

Require: set A, set function f , node v

return 1T
Af({v})
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Algorithm 9 DiscountFrac heuristic intervention algorithm

Require: set function f , weight function w, thresholds distr. Θ, budget b

Initialize x0 ← 0, i← 0
while 1Tγi < b do

Si = {node v|γi[v] > 0}
for node v /∈ Si do

q[v] = Γ−(v, V \Si)
end for
u = arg max q

γi+1 ← γi +
(
θ̃max[u]− Γ+(u, Si)

)
1u, i← i+ 1

end while
if 1Tγi ≤ b then

return γi

else
return γi−1

end if
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