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Abstract

Conditional value at risk (CVaR) is a popular measure for quantifying portfolio
risk. Sensitivity analysis of CVaR is very useful in risk management and gradient-
based optimization algorithms. In this paper, we study the infinitesimal perturbation
analysis estimator for CVaR sensitivity using randomized quasi-Monte Carlo (RQMC)
simulation. We first prove that the RQMC-based estimator is strongly consistent under
very mild conditions. Under some technical conditions, RQMC that uses d-dimensional
points in CVaR sensitivity estimation yields a mean error rate of O(n−1/2−1/(4d−2)+ε)
for arbitrarily small ε > 0. The numerical results show that the RQMC method
performs better than the Monte Carlo method for all cases. The gain of plain RQMC
deteriorates as the dimension d increases, as predicted by the established theoretical
error rate.

Keywords: Value at risk; Conditional value at risk; Sensitivity; Quasi-Monte Carlo

1 Introduction

In the financial industry, value at risk (VaR) and conditional VaR (CVaR) are two important
tools for quantifying and managing portfolio risk. From the view of statistics, VaR is a
quantile of a portfolio’s loss (or profit) over a holding period. On the other hand, CVaR
is the average of tail losses while VaR only serves as a threshold of large loss. Therefore,
CVaR may provide incentives for risk managers to take into account tail risks beyond VaR.
Suppose that the loss is a random function of some parameters. The VaR and CVaR of the
loss are therefore functions of the parameters. The partial derivatives of these function are
called the sensitivities of VaR and CVaR (Hong, 2009; Hong and Liu, 2009; Fu et al., 2009;
Jiang and Fu, 2015). These sensitivities are useful in risk management and gradient-based
optimization algorithms. Moreover, Asimit et al. (2019) pointed out that sensitivity analysis
and capital allocation problems both boil down to similar mathematical formulations. The
Euler allocation rule of the total regulatory capital set via CVaR is a special case of CVaR
sensitivities. In this paper, we focus on sensitivity analysis of CVaR using simulation.

Sensitivity estimation has been studied extensively in financial engineering. It includes
the sensitivities of option prices, which are known as Greeks (see Broadie and Glasserman,
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1996). Additionally, Hong et al. (2014) considered the problem of estimating the sensitivities
of portfolio credit risk. There are several widely used approaches in the simulation literature.
The finite difference (FD) method is the simplest one, but it suffers from the trade-off
between the bias and variance of the estimator (see Fox and Glynn, 1989). The infinitesimal
perturbation analysis (IPA) takes the pathwise derivatives of the performance function in
the estimation, which is also known as the pathwise method (see Glasserman, 2004). From
another perspective, the performance function is viewed as a parameter-free function of some
random variables whose joint distribution depends on the parameter. The likelihood ratio
(LR) method takes the derivatives of the joint density in the estimation. Both IPA and LR
methods enjoy the usual Monte Carlo variance rate O(1/n), which is faster than the FD
method. Unlike LR, IPA needs stronger conditions that rule out discontinuous functions.
However, the IPA estimator usually has a smaller variance than the LR estimator when they
are both applicable (Cui et al., 2019). Recently, Peng et al. (2018) proposed a generalized
LR method that extends IPA and LR to handle discontinuous functions.

Related work on sensitivity analysis of CVaR includes Scaillet (2004) and Hong and Liu
(2009). Particularly, Hong and Liu (2009) proposed an IPA type CVaR sensitivity estimator.
Under certain conditions, the IPA method is applicable because the performance function of
CVaR is a hockey stick function. In addition, Hong and Liu (2009) established a central limit
theorem for the proposed estimator. It should be noted that the IPA estimator of CVaR
sensitivity is biased since it is a sample average of dependent observations that includes the
VaR estimator, differently from the IPA estimators developed in Greeks estimation. In this
paper, we analyze the IPA estimator proposed by Hong and Liu (2009) in the framework
of randomized quasi-Monte Carlo (RQMC). RQMC is a randomized version of quasi-Monte
Carlo (QMC). The (R)QMC method which has the potential to accelerate the convergence
becomes an alternative method in simulation. It is widely used in financial engineering, such
as option pricing and Greeks estimation (see, e.g., Joy et al., 1996; Wang and Tan, 2013;
Xie et al., 2019). Recently, He and Wang (2020) established a deterministic error bound
for the QMC-based quantile estimator. They also showed that under certain conditions the
RQMC-based CVaR estimator has a root mean squared error (RMSE) of O(n−1/2−1/(4d−2)+ε)
for arbitrarily small ε > 0, where d is the dimension of RQMC points used in the simulation.
To the best of our knowledge, very few works are concerned with sensitivity estimation of
CVaR in (R)QMC. The results in He and Wang (2020) cannot be extended to sensitivity
estimation. Particularly, the strong consistency for the VaR and CVaR estimators is remain
unclear when using RQMC.

There are two major difficulties in analyzing the RQMC-based CVaR sensitivity esti-
mator. The first difficulty is that the estimator is an estimated function at an estimated
VaR rather than the usual sample average. As a result, the numerical analysis in (R)QMC
quadrature cannot be applied directly. The second difficulty is due to the discontinuity and
singularity of the performance function of CVaR sensitivity. For this case, the well-known
Koksma-Hlawka inequality for assessing QMC error is useless (Niederreiter, 1992). In this
paper, we first establish the strong consistency for the RQMC-based estimator by making
use of the recent work of Owen and Rudolf (2020). As a by-product, the strong consistency
for the VaR and CVaR estimators is also proved under very mild conditions. We then study
the convergence rates of the estimator. Under some technical conditions, we find that the
RQMC-based estimator yields a mean error rate of O(n−1/2−1/(4d−2)+ε) for arbitrarily small
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ε > 0. The technical conditions are verified for portfolio loss of geometric Brownian motions
driven models or when the loss is a quadratic form of normally distributed variables. Our
contribution is two-fold.

• We give a rigorous error analysis of CVaR sensitivity estimation when using RQMC. It
is sometimes straightforward to replace Monte Carlo with RQMC for practical problems
in finance. Such a simple replacement often leads to an improvement as frequently
observed in the numerical results. Theoretical analysis is expected to better understand
the performance of RQMC.

• As a by-product of the error analysis, we find that the efficiency of CVaR sensitivity
estimation depends on the RQMC integration of two specific discontinuous integrands.
This paves the way to improve the RQMC accuracy in CVaR sensitivity estimation. If
some strategies are applied to improve the RQMC integration of the two integrands,
one would expect a better performance of CVaR sensitivity estimation. In the (R)QMC
literature, there are some promising strategies to handle discontinuities in numerical
integration, such as dimension reduction techniques and smoothing methods (Wang
and Tan, 2013; Zhang and Wang, 2019).

The remainder of this paper is organized as follows. In Section 2, we present some
background on VaR, CVaR and its sensitivity estimation. In Section 3, we focus on analyzing
the RQMC-based CVaR sensitivity estimator. Some important (R)QMC preliminaries are
first reviewed. Strong consistency and some stochastic bounds are then established. Section 4
gives some numerical examples, including portfolios of European options modeled to be
driven by a geometric Brownian motion and a quadratic loss model arising from the delta-
gamma approximation of portfolio value change. Section 5 concludes this paper. A technical
lemma and its proof are deferred to the Appendix.

2 Background and Simulation-based Estimation

Let L be the random loss and FL(y) = P(L ≤ y) be the cumulative distribution function
(CDF) of L. For any α ∈ (0, 1), we define, respectively, the α-VaR and the α-CVaR of L as

vα = F−1L (α) = inf{y ∈ R : FL(y) ≥ α},

cα =
1

1− α

∫ 1

α

vβdβ = vα +
1

1− α
E[(L− vα)+],

where (a)+ = max(a, 0). The α-VaR is the lower α-quantile of the distribution of L. If L has
a density in a neighborhood of vα, then cα = E[L|L ≥ vα]. From this point of view, CVaR
is the expected shortfall or the tail conditional expectation.

Suppose that L1, . . . , Ln are n observations of L. Monte Carlo sampling renders indepen-
dent and identically distributed (iid) observations. In the QMC sampling, the observations
are deterministic, but with better uniformness. In the RQMC framework, the observations
are dependent random variables retaining the better uniformness (see Section 3.1 for the
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details). In either case, based on the n observations, one can estimate the CDF FL(y) by
the so-called empirical CDF

F̂n(y) =
1

n

n∑
i=1

1{Li ≤ y}. (2.1)

It is natural to estimate the α-VaR and the α-CVaR by

v̂α,n = F̂−1n (α) = inf{y ∈ R : F̂n(y) ≥ α}, (2.2)

ĉα,n = v̂α,n +
1

n(1− α)

n∑
i=1

(Li − v̂α,n)+, (2.3)

respectively. The crucial step is to estimate the CDF FL(y) via (2.1). We expect that a
better estimate of the CDF leads to an improved estimate of the quantile. Recently, Kaplan
et al. (2019) compared two approaches for quantile estimation via RQMC.

Suppose that the random loss can be modeled as a function L(θ), where θ is the parameter
of interest with range Θ ⊂ R. To emphasize the dependence on the parameter θ, the α-VaR
and the α-CVaR of L(θ) are rewritten as vα(θ) and cα(θ), respectively. In this paper, we are
interested in the sensitivity estimation of CVaR with respect to θ, i.e., c′α(θ) = dcα(θ)/dθ.
Let L′(θ) = dL(θ)/dθ. To obtain an IPA estimator of the CVaR sensitivity, we need the
following technical assumptions.

Assumption 2.1. There exists a random variable K with E[K] <∞ such that

|L(θ2)− L(θ1)| ≤ K |θ2 − θ1|

for all θ1, θ2 ∈ Θ, and L′(θ) exists with probability 1 (w.p.1) for all θ ∈ Θ.

Assumption 2.2. The VaR function vα(θ) is differentiable for any θ ∈ Θ.

Assumption 2.3. For any θ ∈ Θ, P[L(θ) = vα(θ)] = 0.

Under Assumptions 2.1–2.3, Hong and Liu (2009) showed that by interchanging the
expectation and differentiation,

c′α(θ) = v′α(θ) +
1

1− α
E
[
∂(L(θ)− vα(θ))+

∂θ

]
= v′α(θ) +

1

1− α
E [L′(θ)1{L(θ) > vα(θ)} − v′α(θ)1{L(θ) > vα(θ)}]

=
1

1− α
E[L′(θ)1{L(θ) > vα(θ)}].

To simplify the notation, we let L and L′ denote L(θ) and L′(θ), respectively. Suppose that
we are able to obtain n observations of (L,L′), denoted by (L1, L

′
1), . . . , (Ln, L

′
n). Hong and

Liu (2009) proposed an IPA estimate of c′α(θ) given by

µ̂n =
1

n(1− α)

n∑
i=1

L′i1{Li > v̂α,n}, (2.4)
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where v̂α,n is obtained by (2.2). The IPA estimator is a sample average of dependent variables
that involve the VaR estimator v̂α,n. As a result, the CVaR sensitivity estimator (2.4) is
biased. Hong and Liu (2009) proved an asymptotic bias of o(n−1/2) in the Monte Carlo
setting.

The random loss is often expressed as a function of random variables, say, L(θ) = gθ(ω)
for ω = (ω1, . . . , ωs)

>. The random variables ωi are called the risk factors or scenarios. In
this paper, we assume that the closed forms of gθ and ∂gθ/∂θ are available so that one can
generate the sample (Li, L

′
i). If the random loss is modeled as a conditional expectation

L(θ) = E[Z|ω] which is not given analytically, one may resort to nested simulation. This is
beyond the scope of this paper. Interested readers are referred to Gordy and Juneja (2010);
Broadie et al. (2011).

3 RQMC-based Estimation of CVaR Sensitivity

The incorporation of QMC or RQMC in estimating the CVaR sensitivity c′α(θ) is straight-
forward provided that the mechanism of sampling the random loss L via standard uniform
distributed variables is specified. In what follows, we suppose that L can be expressed as

L = gθ(u) = gθ(u1, . . . , ud), (3.1)

where gθ : (0, 1)d → R is a given measurable function, and u = (u1, . . . , ud)
> ∼ U(0, 1)d. The

model (3.1) was also studied in VaR estimation with Latin hypercube sampling (Avramidis
and Wilson, 1998; Dong and Nakayama, 2017). It is allowed that gθ(u) has singularities
along the boundary of the unit cube. That is why we do not consider the closed set [0, 1]d

or the half closed set [0, 1)d. As we can see from the numerical examples in Section 4,
the random loss is unbounded with singularities along the boundary of the unit cube. Let
g′θ(u) = ∂gθ(u)/∂θ. Instead of generating an iid sample in the Monte Carlo framework, we
now generate the sample

Li = gθ(ui), L
′
i = g′θ(ui), i = 1, . . . , n,

via RQMC points ui in (0, 1)d. It then follows by substituting the sample in (2.1) and (2.4)
to obtain the associated CVaR sensitivity estimator. There are various QMC points designed
with high uniformness in the literature, which are known as low discrepancy points. A better
performance of RQMC can be therefore expected. The price for switching from Monte Carlo
to (R)QMC is to specify the model as the form (3.1).

3.1 QMC and RQMC theory

In this subsection, we review the philosophy of the QMC world and some important QMC
integration error analysis in the literature. Let’s start by estimating an integral over the unit
cube

I(f) = E[f(u)] =

∫
(0,1)d

f(x)dx.
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The QMC quadrature rule takes the average

În(f) =
1

n

n∑
i=1

f(ui), (3.2)

where u1, . . . ,un are carefully chosen points in (0, 1)d. The well-known Koksma-Hlawka
inequality gives a deterministic error bound for the quadrature rule (3.2),∣∣∣În(f)− I(f)

∣∣∣ ≤ VHK(f)D∗n(P), (3.3)

where P := {u1, . . . ,un}, VHK(f) is the variation of f(u) in the sense of Hardy and Krause,
and D∗n(P) is the star-discrepancy of points in P ; see Niederreiter (1992) for details. There
are many ways to construct low discrepancy point sets such that D∗n(P) = O(n−1(log n)d).
By (3.3), the QMC error is of O(n−1(log n)d) for integrands with bounded variation in
the sense of Hardy and Krause (BVHK). However, if the integrand f is discontinuous or
unbounded, the variation is usually unbounded (Owen, 2005). For this case, the Koksma-
Hlawka inequality is useless. In this paper, we restrict our attention to (t,m, d)-nets in base
b ≥ 2 for which the sample size has the form n = bm. Our results also work for (t, d)-
sequences without that restriction on n. For p ≥ 1, the space Lp((0, 1)d) consists of all
measurable function f on (0, 1)d for which

∫
(0,1)d

f(u)pdu <∞.

Definition 3.1. An elementary interval in base b is a subset of [0, 1)d of the form

E =
d∏
j=1

[
tj
bkj
,
tj + 1

bkj

)
,

where kj ∈ N, tj ∈ N with tj < bkj for j = 1, . . . , d.

Definition 3.2. Let t and m be nonnegative integers with t ≤ m. A finite sequence
u1, ...,ubm ∈ [0, 1)d is a (t,m, d)-net in base b if every elementary interval in base b of
volume bt−m contains exactly bt points of the sequence.

Definition 3.3. Let t be a nonnegative integer. An infinite sequence ui ∈ [0, 1)d is a (t, d)-
sequence in base b if for all k ≥ 0 and m ≥ t the finite sequence ukbm+1, ...,u(k+1)bm is a
(t,m, d)-net in base b.

For deterministic QMC, it is important to obtain an estimate of the quadrature error
|În(f)− I(f)|. But the upper bound in (3.3) is very hard to compute, and it is restricted to
functions of finite variation. Instead, one can randomize the points u1, . . . ,un and treat the
random version of the quadrature În(f) in (3.2) as an RQMC quadrature rule. That is why we
focus on using RQMC. Usually, the randomized points are uniformly distributed over (0, 1)d,
and the low discrepancy property of the points is preserved under the randomization (see
L’Ecuyer and Lemieux (2005) and Chapter 13 of the monograph Dick and Pillichshammer
(2010) for a survey of various RQMC methods). In this paper, we focus on the use of
scrambling technique proposed by Owen (1995) to randomize (t,m, d)-nets.
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Owen (1995) applied a scrambling scheme on the nets that retains the net property. Let
ui = (u1i , . . . , u

d
i ). We may write the components of ui in their base b expansion uji =∑∞

k=1 aijkb
−k, where aijk ∈ {0, . . . , b− 1} for all i, j, k. The scrambled version of u1, . . . ,un

is a sequence ũ1, . . . , ũn with ũi = (ũ1i , . . . , ũ
d
i ) written as ũji =

∑∞
k=1 ãijkb

−k, where ãijk
are defined in terms of random permutations of the aijk. The permutation applied to aijk
depends on the values of aijh for h = 1, . . . , k − 1. Specifically, ãij1 = πj(aij1), ãij2 =
πjaij1(aij2), ãij3 = πjaij1aij2(aij3), and in general

ãijk = πjaij1aij2...aijk−1
(aijk). (3.4)

Each permutation π• is uniformly distributed over the b! permutations of {0, . . . , b− 1}, and
the permutations are mutually independent. There are some good properties of scrambled
digital nets or sequences, which can be found in Owen (1995, 1997a).

• A scrambeled (t,m, d)-net and scrambled (t, d)-sequence are (t,m, d)-net and (t, d)-
sequence w.p.1, respectively.

• For any point in (0, 1)d, the scrambling version of the point is uniformly distributed
over (0, 1)d. This implies that the estimate (3.2) is unbiased if using the scrambling
method to randomize the QMC points.

• If ui in (3.2) are points of a scrambled (t,m, d)-net, then for any squared integrable
integrand f , Var(În(f)) = o(1/n). This suggests that the RQMC-based estimate is
asymptotically faster than Monte Carlo estimates for a large class of integrands.

The results on scrambled nets are highly dependent on the smoothness properties of the
integrand. If the integrand is sufficiently smooth, the scrambled net variance is improved to
O(n−3(log n)d−1); see Owen (1997b, 2008) for details. On the other hand, if the integrand
is discontinuous, the scrambled net variance turns out to be O(n−1−1/(2d−1)+ε) for arbitrar-
ily small ε > 0 (He and Wang, 2015; He, 2018). We next encapsulate their results as a
proposition that will be used in the following error analysis.

Proposition 3.4. Let f(u) = g(u)1{u ∈ Ω}, where Ω ⊂ (0, 1)d and g ∈ L2((0, 1)d).
Suppose that În(f) given by (3.2) is an RQMC quadrature rule using a scrambled (t,m, d)-
net in base b ≥ 2 with n = bm. Assume that the boundary of the set Ω admits a (d − 1)-
dimensional Minkowski content M(∂Ω), defined by

M(∂Ω) := lim
ε→0

λd((∂Ω)ε)

2ε
<∞, (3.5)

where λd(·) is the d-dimensional Lebesgue measure, and (A)ε denotes the outer parallel body
of A at distance ε.

• If g is constant, then Var(În(f)) = O(n−1−1/d).

• If g is of BVHK, then Var(În(f)) = O(n−1−1/(2d−1)+ε) for arbitrarily small ε > 0.

• If g satisfies the boundary growth condition with arbitrarily small rates (see Defini-
tion 3.12), then E[|În(f)− I(f)|] = O(n−1/2−1/(4d−2)+ε) for arbitrarily small ε > 0.
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Proof. The first and second parts can be found in Theorem 4.4 and Theorem 3.5 of He and
Wang (2015), respectively. The last part is given in Corollary 3.5 of He (2018).

The use of ε in the convergence orders is to hide the logarithmic factor. As commented in
He and Wang (2015),M(∂Ω) is the surface area of the set Ω in the terminology of geometry.
If Ω is a convex set in (0, 1)d, then its boundary has a (d−1)-dimensional Minkowski content.
In this case,M(∂Ω) ≤ 2d since the surface area of a convex set in (0, 1)d is bounded by that
of the unit cube, which is 2d. More generally, Ambrosio et al. (2008) found that if Ω has a
Lipschitz boundary, then ∂Ω admits a (d− 1)-dimensional Minkowski content.

It should be noted that the true value vα is usually unknown. The CVaR sensitivity
estimate (2.4) is not the usual quadrature rule of the form (3.2). But if we replace the VaR
estimate v̂α,n with the true value vα in (2.4), it turns out to be a quadrature rule for the
discontinuous function g′θ(u)1{gθ(u) > vα}/(1− α). From this point of view, the results in
Proposition 3.4 can be used to study the error rate of the CVaR sensitivity estimate. The
challenge is how to bound the gap due to the replacement. This is the topic of Section 3.3.

3.2 Strong Consistency

Hong and Liu (2009) established the strong consistency for the Monte Carlo sensitivity
estimator. Their proof relies heavily on the strong law of large numbers (SLLN) for an
iid sample. Recently, Owen and Rudolf (2020) proved the SLLN for scrambled digital net
integration for integrands in Lp+1((0, 1)d) for any p > 1. Together with this fundamental
result, the strong consistency of an RQMC-based CVaR sensitivity estimate can be easily
proved following the steps in the proof of (Hong and Liu, 2009, Theorem 4.1). Define

µ̃n(y) :=
1

n(1− α)

n∑
i=1

L′i1{Li > y}, (3.6)

where L′i = g′θ(ui) and Li = gθ(ui).
In He and Wang (2020), the consistency was proved for the VaR estimator based on

deterministic QMC, but not for its randomized counterpart. We are ready to show the strong
consistency of the RQMC-based estimators. We need the following assumption, which is the
minimal requirement for establishing the strong consistency of the Monte Carlo quantile
estimator (Serfling, 1980, p. 75).

Assumption 3.5. For any θ ∈ Θ, vα(θ) is the unique solution x of F (x−) ≤ p ≤ F (x).

Theorem 3.6. If Assumption 3.5 holds and the VaR estimator v̂α,n is based on a scrambled
(t,m, d)-net in base b ≥ 2 with n = bm, then

P
(

lim
n→∞

v̂α,n = vα

)
= 1.

Proof. By the SLLN established in (Owen and Rudolf, 2020, Theorem 5), for all x ∈ R,

P
(

lim
n→∞

F̂n(x) = F (x)
)

= 1.
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The following steps are in lines with the proof of the strong consistency of the Monte Carlo
estimate (Serfling, 1980, p. 75). By Assumption 3.5, we have F (vα− ε) < α < F (vα + ε) for
any ε > 0. Since F̂n(vα + ε)→ F (vα + ε) and F̂n(vα − ε)→ F (vα − ε) w.p.1. We thus have

lim
n→∞

P
(
∩∞m=n{F̂n(vα − ε) < α < F̂n(vα + ε)}

)
= 1.

By (2.2), we have {F̂n(vα − ε) < α < F̂n(vα + ε)} ⊂ {vα − ε ≤ v̂α,n ≤ vα + ε}. Therefore,

lim
n→∞

P (∩∞m=n{|v̂α,n − vα| ≤ ε}) = 1,

implying v̂α,n → vα w.p.1.

Theorem 3.7. Suppose that Assumptions 2.1–2.3 and 3.5 are satisfied. The CVaR sensi-
tivity estimator µ̂n given by (2.4) is based on a scrambled (t,m, d)-net in base b ≥ 2 with
n = bm.

• If the random loss L = gθ(u) ∈ L1+γ1((0, 1)d) for some γ1 > 0, then ĉα,n → cα(θ) w.p.1
as n→∞.

• If g′θ(u) ∈ L1+γ2((0, 1)d) for some γ2 > 0, then µ̂n → c′α(θ) w.p.1 as n→∞.

Proof. Since L = gθ(u) ∈ L1+γ1((0, 1)d), L − vα ∈ L1+γ1((0, 1)d). By the SLLN established
in Owen and Rudolf (2020),

νn :=
1

n

n∑
i=1

(Li − vα)+ → E[(L− vα)+] w.p.1.

By the triangle inequality and Theorem 3.6, we have∣∣∣∣∣ 1n
n∑
i=1

(Li − v̂α,n)+ − E[(L− vα)+]

∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣(Li − v̂α,n)+ − (Li − vα)+
∣∣

+
∣∣νn − E[(L− vα)+]

∣∣
≤ |v̂α,n − vα|+

∣∣νn − E[(L− vα)+]
∣∣→ 0

as n→∞ w.p.1. Together with (2.3), we find that ĉα,n → cα(θ) w.p.1 as n→∞.

Note that µ̃n(y) given by (3.6) is the quadrature rule În(f) with

f(u; y) =
1

1− α
g′θ(u)1{gθ(u) > y} ∈ L1+γ((0, 1)d),

and µ̂n = µ̃n(v̂α,n). Since f(u; y) ∈ L1+γ((0, 1)d) for some γ > 0, by the SLLN again,

µ̃n(vα)→ E[f(u; vα)] = c′α(θ)

as n→∞ w.p.1. It suffices to prove that µ̃n(v̂α,n)− µ̃n(vα)→ 0 w.p.1.
Let Dn = 1

n

∑n
i=1 |L′i|

1+γ, where 0 < γ < γ2. Since |g′θ(u)|1+γ ∈ L1+γ′((0, 1)d) for
γ′ = (γ2 − γ)/(1 + γ) > 0, using the SLLN again,

P( lim
n→∞

Dn = E[|g′θ(u)|1+γ]) = 1.
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By the Hölder inequality, we have

(1− α) |µ̃n(v̂α,n)− µ̃n(vα)| ≤ D
1

1+γ
n

[
1

n

n∑
i=1

|1{Li > v̂α,n} − 1{Li > vα}|1+
1
γ

] γ
1+γ

= D
1

1+γ
n

[
1

n

n∑
i=1

|1{Li > v̂α,n} − 1{Li > vα}|

] γ
1+γ

= D
1

1+γ
n

∣∣∣∣∣ 1n
n∑
i=1

(1{Li > v̂α,n} − 1{Li > vα})

∣∣∣∣∣
γ

1+γ

= D
1

1+γ
n

∣∣∣F̂n(v̂α,n)− F̂n(vα)
∣∣∣ γ
1+γ

, (3.7)

where we use the fact that the function 1{x > v̂α,n}−1{x > vα} never change the sign when
varying x.

By the definition of v̂α,n, we have F̂n(v̂α,n) ≥ α. Assumption 2.3 implies F (vα) = α.

Since 1{gθ(u) ≤ vα} ∈ L2((0, 1)d), by SLLN, F̂n(vα)→ F (vα) = α w.p.1. As a result,

lim inf
n→∞

F̂n(v̂α,n)− F̂n(vα) ≥ 0 w.p.1.

By Theorem 3.6, v̂α,n → vα w.p.1. For any ε > 0, there exists N ≥ 1 such that for any

n ≥ N , v̂α,n < vα + ε. So F̂n(v̂α,n)− F̂n(vα) ≤ F̂n(vα + ε)− F̂n(vα) → F (vα + ε)− F (vα) =
P[vα < L ≤ vα + ε] w.p.1. Letting ε→ 0, we have P[vα < L ≤ vα + ε]→ 0, giving

lim sup
n→∞

F̂n(v̂α,n)− F̂n(vα) ≤ 0 w.p.1.

This leads to limn→∞ F̂n(v̂α,n)− F̂n(vα) = 0 w.p.1, completing the proof.

3.3 Stochastic bounds

Assumption 3.8. For any θ ∈ Θ, gθ(u) defined over (0, 1)d is a continuous random variable
whenever d − 1 components of u are fixed and the remaining one is uniformly distributed
over an open interval in (0, 1).

Lemma 3.9. Assume that v̂α,n defined by (2.2) is based on a scrambled (t,m, d)-net in base
b ≥ 2 with n = bm. If Assumption 3.8 is satisfied, then for any n ≥ 1∣∣∣F̂n(v̂α,n)− F̂n(vα)

∣∣∣ ≤ bt

n
+
∣∣∣F̂n(vα)− α

∣∣∣ w.p.1. (3.8)

Proof. Let L(1), . . . , L(n) be the order statistics of L1, . . . , Ln in increasing order. By the
definition of v̂α,n, we have v̂α,n = L(dnαe), where dae denotes the smallest integer no less than
a. Notice that

F̂n(v̂α,n) =
1

n

n∑
i=1

1{L(i) ≤ L(dnαe)} =
dnαe − 1

n
+

1

n

n∑
i=dnαe

1{L(i) = L(dnαe)}.
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Therefore,

α ≤ dnαe
n
≤ F̂n(v̂α,n) ≤ α +

1

n

n∑
i=1

1{L(i) = L(dnαe)}.

Let Sn =
∑n

i=1 1{L(i) = L(dnαe)}. It then follows∣∣∣F̂n(v̂α,n)− F̂n(vα)
∣∣∣ ≤ Sn

n
+
∣∣∣F̂n(vα)− α

∣∣∣ .
If the loss L is a continuous random variable, Sn = 1 w.p.1 for iid observations Li. This is

because P(Li = Lj) = 0 for all i 6= j. Things become complicated for RQMC sampling since
the observations Li are dependent. Under Assumption 3.8, Lemma 6.1 shows that there are
at most bt of L1, . . . , Ln with equal value when using a scrambled (t,m, d)-net w.p.1. This
implies that Sn ≤ bt w.p.1, completing the proof.

Note that Sobol’ sequences are (t, d)-sequences in base b = 2 with t depending on d. For
this case, the constant bt in (3.8) can be reduced to 1 although the value of t may be much
larger than 0; see Remark 6.2 for a discussion.

Remark 3.10. Assumption 3.8 is stronger than Assumption 2.3. To verify Assumption 3.8,
it turns out to look at a function of one-dimensional variable v ∼ U(a, b) for any 0 ≤ a <
b ≤ 1, denoted by h(v). Good smoothness of h(·) does not necessarily render a continuous
random variable. For example, h(x) = e−1/(x−0.5)

2
for x > 0.5, and 0 otherwise. It is not

difficult to see that h ∈ C∞(R), but P[h(v) = 0] = P[0 < v ≤ 0.5] > 0 whenever a < 0.5.
For this case, h(v) is not a continuous random variable. This is due to the absence of strict
monotonicity. If the function h(x) is strictly monotonic over (0, 1) and h ∈ C1((0, 1)), then
Y = h(v) is a continuous random variable with density

fY (y) =
1

(b− a)|h′(h−1(y))|
(3.9)

for y in the support of Y . This result can be easily extended to the situation in which h(x)
is piecewise strictly monotonic. Suppose that h ∈ C1((0, 1)) and h′(x) = 0 has countable
solutions on (0, 1). It is clear that h(x) is strictly monotonic on an open interval determined
by any two successive solutions, in which h(v) has a density of the form (3.9). The overall
density is piecewise. As a result, Y = h(v) is a continuous random variable.

Theorem 3.11 (Bounded case). Suppose that Assumptions 2.1–2.2 and 3.8 are satisfied.
The estimator µ̂n given by (2.4) is based on a scrambled (t,m, d)-net in base b ≥ 2 with
n = bm. If g′θ(u) is bounded, then

E[(µ̂n − c′α(θ))2] = o(1/n).

Let Ω = {u ∈ (0, 1)d : gθ(u) > vα}. If g′θ(u) is of BVHK and ∂Ω admits a (d−1)-dimensional
Minkowski content defined by (3.5), then

E[(µ̂n − c′α(θ))2] = O(n−1−1/(2d−1)+ε) (3.10)

for arbitrarily small ε > 0.
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Proof. Suppose that g′θ(u) is bounded by M . Then by (3.8), similarly to (3.7), we have

|µ̃n(v̂α,n)− µ̃n(vα)| ≤ 1

n(1− α)

n∑
i=1

|g′θ(ui)| |1{Li > v̂α,n} − 1{Li > vα}|

≤ M

1− α

∣∣∣F̂n(v̂α,n)− F̂n(vα)
∣∣∣

≤ btM

(1− α)n
+

M

1− α

∣∣∣F̂n(vα)− α
∣∣∣ w.p.1. (3.11)

As a result,

E[(µ̂n − c′α(θ))2] = E[(µ̃n(v̂α,n)− c′α(θ))2]

≤ E[(µ̃n(v̂α,n)− µ̃n(vα))2] + E[(µ̃n(vα)− c′α(θ))2]

≤ 2b2tM2

n2(1− α)2
+

2M2

(1− α)2
Var(F̂n(vα)) + Var(µ̃n(vα)). (3.12)

Notice that Var(F̂n(vα)) = o(1/n) because 1{gθ(u) > vα} ∈ L2((0, 1)d). Similarly, thanks
to g′θ(u)1{gθ(u) > vα} ∈ L2((0, 1)d), Var(µ̃n(vα)) = o(1/n), giving E[(µ̂n−c′α(θ))2] = o(1/n).

If ∂Ω admits a (d−1)-dimensional Minkowski content, by the first part of Proposition 3.4,
Var(F̂n(vα)) = O(n−1−1/d). If g′θ is of BVHK, Var(µ̃n(vα)) = O(n−1−1/(2d−1)+ε) by using the
second part of Proposition 3.4. Using the inequality (3.12) completes the proof.

Theorem 3.11 requires the boundedness of g′θ(u), which may not hold in practice. If g′θ(u)
is unbounded, the inequality (3.11) does not hold. To get rid of this, we use a truncated
version of g′θ(u) so that the inequality (3.11) can be applied. We first introduce the so-called
boundary growth condition for controlling the function g′θ(u) around the boundaries of the
unit cube. Let 1:d = {1, . . . , d}. For a set v ⊆ 1:d, ∂vh denotes the mixed partial derivative
of h taken once with respect to components with indices in v.

Definition 3.12. A function h defined on (0, 1)d is said to satisfy the boundary growth
condition if

|∂vh(u)| ≤ B
∏
i∈v

min(ui, 1− ui)−Ai−1
∏
i/∈v

min(ui, 1− ui)−Ai (3.13)

holds for all u ∈ (0, 1)d, some rates Ai > 0, some B <∞ and all v ⊆ 1:d.

The boundary growth condition is the second growth condition described in Owen (2006).
We use a region

K(ε) = {u ∈ [0, 1]d|
∏

1≤i≤d

min(ui, 1− ui) ≥ ε}

to avoid the singularities for small ε > 0. We now define an extension hε of h from K(ε) to
[0, 1]d such that hε(u) = h(u) for u ∈ K(ε). One can extend the function hε to the whole
unit cube [0, 1]d with some good properties as in Owen (2006). That is,

hε(u) = h(c) +
∑
v 6=∅

∫
[cv ,uv ]

∂vh(zv:c−v)1{zv:c−v ∈ K(ε)}dzv, (3.14)
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where c = (1/2, . . . , 1/2)>, zv:c−v denotes the point y ∈ [0, 1]d with yj = zj for j ∈ v and
yj = cj for j /∈ v. Taking h(u) = g′θ(u), hε(u) serves as an approximation of g′θ(u), which is
of BVHK (Owen, 2006) and therefore bounded.

Theorem 3.13 (Unbounded case). Suppose that Assumptions 2.1–2.2 and 3.8 are satisfied.
The estimator µ̂n given by (2.4) is based on a scrambled (t,m, d)-net in base b ≥ 2 with
n = bm. Let Ω = {u ∈ (0, 1)d : gθ(u) > vα}. If g′θ(u) satisfies the boundary growth condition
(3.13) with arbitrarily small rates Ai > 0 and ∂Ω admits (d − 1)-dimensional Minkowski
content defined by (3.5), then

E[|µ̂n − c′α(θ)|] = O(n−1/2−1/(4d−2)+ε)

for arbitrarily small ε > 0.

Proof. We let h(u) = g′θ(u) from now on and work on the extension hε(u) defined by (3.14),
where ε > 0 is to be determined. Let Mε = supu∈[0,1]d |hε(u)|. By the triangle inequality and
using (3.11) by replacing g′θ(u) with hε(u), with probability one,

|µ̃n(v̂α,n)− µ̃n(vα)| =

∣∣∣∣∣ 1

n(1− α)

n∑
i=1

h(ui)(1{Li > v̂α,n} − 1{Li > vα})

∣∣∣∣∣
≤

∣∣∣∣∣ 1

n(1− α)

n∑
i=1

hε(ui)(1{Li > v̂α,n} − 1{Li > vα})

∣∣∣∣∣
+

∣∣∣∣∣ 1

n(1− α)

n∑
i=1

[h(ui)− hε(ui)](1{Li > v̂α,n} − 1{Li > vα})

∣∣∣∣∣
≤ btMε

(1− α)n
+

Mε

1− α

∣∣∣F̂n(vα)− α
∣∣∣+

1

n(1− α)

n∑
i=1

|h(ui)− hε(ui)| .

Taking the expectation, we have

E[|µ̃n(v̂α,n)− µ̃n(vα)|] ≤ btMε

(1− α)n
+

Mε

1− α
Var(F̂n(vα))1/2 +

1

1− α
E[|h(u)− hε(u)|], (3.15)

where we use the fact that each ui ∼ U(0, 1)d due to scrambling.
If h(u) satisfies the boundary growth condition with rates Ai, Propositions 3.2 and 3.3

in He (2018) show that for any η ∈ (0, 1−maxiAi), there exists C <∞ such that

E[|h(u)− hε(u)|] ≤ Cε1−maxi Ai−η,

Mε ≤ Cε−maxi Ai−η.

Note that Var(F̂n(vα)) = O(n−1−1/d) by the first part of Proposition 3.4. Taking ε ∝
n−1/2−1/(2d), it then follows from (3.15) that

E[|µ̃n(v̂α,n)− µ̃n(vα)|] = O(n(1−maxi Ai−η)[−1/2−1/(2d)]).
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Since Ai and η are arbitrarily small positive numbers, we conclude E[|µ̃n(v̂α,n)− µ̃n(vα)|] =
O(n−1/2−1/(2d)+ε

′
) for arbitrarily small ε′ > 0. By the last part of Proposition 3.4, we have

E[|µ̃n(vα)− c′α(θ)|] = O(n−1/2−1/(4d−2)+ε
′
). As a result,

E[|µ̂n − c′α(θ)|] ≤ E[|µ̃n(v̂α,n)− µ̃n(vα)|] + E[|µ̃n(vα)− c′α(θ)|] = O(n−1/2−1/(4d−2)+ε
′
).

Remark 3.14. From the proofs of Theorems 3.11 and 3.13, the error of the CVaR sen-
sitivity estimator is bounded by the numerical integration errors of the two discontinuous
functions: g′θ(u)1{gθ(u) > vα} and 1{gθ(u) ≤ vα}. We therefore cannot expect a better
RQMC error rate than those for RQMC integration with discontinuous integrands. From
this point of view, sensitivity estimation of CVaR is rather challenging for RQMC due to
the discontinuities and singularities involved in the two functions. To improve the RQMC
efficiency, one should pay more attention to handle the two discontinuous functions.

4 Numerical study

In this section, we examine three cases of CVaR sensitivity estimation. In our numerical ex-
periments on RQMC, we use randomized Sobol’ points by the linear scrambling of Matoušek
(1998), which has been carried out in the generator scramble in MATLAB.

4.1 Single Asset

Consider a portfolio of a single European put option that was studied in Broadie et al.
(2011) for testing their adaptive nested simulation. The underlying asset follows a geometric
Brownian motion with an initial price of S0 = 100. The drift of this process under the
real-world distribution is µ = 8%. The annualized volatility is σ = 20%. The risk-free rate
is r = 3%. The strike of the put option is K = 95, and the maturity is T = 0.25 years (i.e.,
three months). The risk horizon is τ = 1/52 years (i.e., one week).

Denote by Sτ the underlying asset price at the risk horizon τ . This price in the real-world
is generated according to

Sτ = S0 exp{(µ− σ2/2)τ + σ
√
τZ}, Z = Φ−1(u), (4.1)

where Φ is the CDF of the standard normal distribution, u ∼ U(0, 1), and hence Z ∼ N(0, 1).
Using the Black–Scholes formula (Hull, 2015), the value of the put option at time τ is

vτ = E[e−r(T−τ)(K − ST )+|Sτ ] = Ke−r(T−τ)Φ(−d2)− SτΦ(−d1), (4.2)

where d2 = d1 − σ
√
T − τ , and

d1 =
ln(Sτ/K) + (r + σ2/2)(T − τ)

σ
√
T − τ

.

The portfolio value loss L(θ) = v0 − vτ can be expressed explicitly as a function of u,
say, gθ(u). Here θ is the parameter of interest, such as S0, µ, r, σ etc. For this example,
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the nested simulation is unnecessary. We now write the initial value v0 as a function of θ,
denoted by v0(θ). The derivative of v0(θ) with respect to θ (denoted by v′0(θ)) is known as
Greeks (see Hull, 2015, Chapter 15). From (4.2), the portfolio value at time τ can be viewed
as a function of the random factor Sτ and possibly the parameter θ, denoted by vτ (Sτ , θ).
By the chain rule, we have

L′(θ) = g′θ(u) = v′0(θ)−
∂vτ (Sτ , θ)

∂Sτ

∂Sτ
∂θ
− ∂vτ (Sτ , θ)

∂θ

= v′0(θ)− [Φ(d1)− 1]
∂Sτ
∂θ
− ∂vτ (Sτ , θ)

∂θ
, (4.3)

where we use the fact that the delta of the option at time τ is ∂vτ (Sτ , θ)/∂Sτ = Φ(d1)− 1.
Assumption 2.1 can be easily verified by taking Θ as a small neighborhood of the parameter
θ being estimated.

Case 1. Consider θ = S0. It is easy to see that ∂Sτ/∂θ = Sτ/S0 and ∂vτ (Sτ , θ)/∂θ = 0,
and hence g′θ(u) = v′0(θ)− [Φ(d1)−1]Sτ/S0, which is unbounded. As we will see later, all the
assumptions in Theorem 3.13 are satisfied. The CVaR sensitivity estimate based on RQMC
can therefore enjoy a mean error of O(n−1+ε) for arbitrarily small ε > 0.

Case 2. Consider θ = r. It is easy to see that ∂Sτ/∂θ = 0 and ∂vτ (Sτ , θ)/∂θ =
−K(T − τ)e−r(T−τ)Φ(−d2). The later is known as the rho of the option at time τ . So
g′θ(u) = v′0(θ) +K(T − τ)e−r(T−τ)Φ(−d2), which is bounded. Notice that

∂g′θ(u)

∂u
= −K(T − τ)e−r(T−τ)

√
τ

T − τ
Φ′(−d2)

Φ′(Φ−1(u))

= −Ke−r(T−τ)
√
τ(T − τ) exp{[(Φ−1(u))2 − d22]/2},

where Φ′(u) is the density of the standard normal distribution. Since d2 =
√
τ/(T − τ)Φ−1(u)+

C for some constant C, |∂g′θ(u)/∂u| goes to infinity as u → 0 or 1 when τ < T − τ . It is
common that the risk horizon τ is very small relative to the maturity T . So for this case,
∂g′θ(u)/∂u is unbounded, leading to unbounded variation of g′θ(u) in the sense of Hardy and
Krause. Therefore, the faster rate (3.10) in Theorem 3.11 cannot be applied. Recall that the
mean error can be bounded by the root mean squared error. Theorem 3.11 directly yields
that the mean error is o(n−1/2). This is rather conservative because the problem is only
one-dimensional. On the other hand, by applying Theorem 3.13 which allows unbounded
∂g′θ(u)/∂u, a mean error of O(n−1+ε) can be achieved.

We now verify the assumptions in Theorem 3.13 for various cases of θ including the
two cases above. It is not difficult to see that ∂gθ(u)/∂u > 0, implying the loss gθ(u)
is strictly increasing in u. So α = P(gθ(u) ≤ vα(θ)) = P(u ≤ u∗) = u∗, where u∗ is
the unique solution to gθ(u) = vα(θ). The closed-form for α-VaR is thus available, i.e.,
vα(θ) = gθ(α). It is obvious that Assumptions 2.2 and 2.3 and 3.8 are satisfied. Note that
Ω = {u ∈ (0, 1) : gθ(u) > vα} = (α, 1), whose boundary admits Minkowski content Ambrosio
et al. (2008). It remains to show that g′θ(u) satisfies the boundary growth condition (3.13)
with an arbitrarily small growth rate. That is, for arbitrarily small A > 0,

|g′θ(u)| = O(min(u, 1− u)−A),

∣∣∣∣∂g′θ(u)

∂u

∣∣∣∣ = O(min(u, 1− u)−A−1).
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To this end, we first introduce some useful upper bounds that were also used in He (2018,
2019). Note that

Φ−1(ε) = −
√
−2 ln(ε) + o(1), Φ−1(1− ε) =

√
−2 ln(ε) + o(1) (4.4)

as ε ↓ 0 (see Patel and Read, 1996, Chapter 3.9). For any fixed γ ∈ R and arbitrarily small
A > 0,

exp{γΦ−1(u)} = O(min(u, 1− u)−A). (4.5)

Since |lnSτ | ≤ max{Sτ , S−1τ }, by (4.1) and (4.5), we find that

(Sτ )
γ |lnSτ |β = O(min(u, 1− u)−A) (4.6)

for any fixed γ, β ∈ R. Using (4.4) again, for arbitrarily small A > 0,

∂Φ−1(u)

∂u
=

1

Φ′(Φ−1(u))
=
√

2π exp{Φ−1(u)2/2}

=
√

2π exp
[
(
√
−2 ln(u) + o(1))2/2

]
= O(min(u, 1− u)−1−A). (4.7)

Note that ∂Sτ/∂θ = a0Sτ for a constant a0, and ∂vτ (Sτ , θ)/∂θ can be expressed as the
form a1Φ

′(−d2)(a2 lnSτ +a3)+a4SτΦ
′(−d1)(a5 lnSτ +a6) for some constants ai, i = 1, . . . , 6.

Overall, g′θ(u) can be expressed as a function of Sτ , i.e.,

g′θ(u) = v′0(θ)−a0[Φ(d1)−1]Sτ−a1Φ′(−d2)(a2 lnSτ +a3)−a4SτΦ′(−d1)(a5 lnSτ +a6). (4.8)

Using |Φ(·)| ≤ 1, |Φ′(·)| ≤ 1/
√

2π, and (4.6), we find that |g′θ(u)| = O(min(u, 1− u)−A). By
(4.8), we have

∂g′θ(u)

∂Sτ
=− a0[Φ(d1)− 1]− a0Φ′(d1)/(σ

√
T − τ)

+ a1Φ
′′(−d2)(a2 lnSτ + a3)S

−1
τ /(σ

√
T − τ)− a1a2Φ′(−d2)S−1τ

− a4Φ′(−d1)(a5 lnSτ + a6) + a4Φ
′′(−d1)(a5 lnSτ + a6)/(σ

√
T − τ)− a4a5Φ′(−d1).

By the chain rule, we have

∂g′θ(u)

∂u
=
∂g′θ(u)

∂Sτ

∂Sτ
∂u

=
∂g′θ(u)

∂Sτ

Sτ
σ
√
τΦ′(Φ−1(u))

.

By using (4.6) and (4.7), and thanks to the boundedness of Φ′′(·), |∂g′θ(u)/∂u| = O(min(u, 1−
u)−1−A). The boundary growth condition is thus verified.

To compare the performances of Monte Carlo and RQMC based sensitivity estimators, we
need to know the theoretical value of the CVaR sensitivity. Although the VaR has a closed
form, it is difficult to compute the sensitivity of CVaR analytically. To get an accurate
estimate as the benchmark, we use the RQMC-based estimate (2.4) by replacing v̂α,n with
the theoretical value of VaR vα = gθ(α) with 100 replications, each using a large sample size
n = 224. We denote this method as RQMC2, and compare it with the crude estimate (2.4)
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for sample sizes n = 210, . . . , 220. In our numerical experiments, we take α = 0.9. For Case
1, the benchmark is c′α(S0) = −0.1337. For Case 2, the benchmark is c′α(r) = −3.8585. In
Figures 1 and 2, we compare both the mean errors and RMSEs for Monte Carlo and RQMC.
We observe that the mean error and RMSE for RQMC overlap considerably with a decay
rate of nearly O(1/n). RQMC yields a much better error rate of convergence compared to
that of Monte Carlo. RQMC2 is actually an RQMC quadrature În(f) for the discontinuous
function f(u) = g′θ(u)1{gθ(u) > vα}/(1 − α). The mean error of RQMC2 is very close to
O(1/n), as predicted by Proposition 3.4. Comparing RQMC and RQMC2, we find that the
performance of the sensitivity estimator (2.4) is similar to that of the quadrature rule for the
discontinuous function f(u). Both share an error rate of nearly O(1/n). Although RQMC2
is an unbiased estimate of c′α(θ), it needs to know the true value of vα(θ) which is impossible
for most cases. Without the unbiasedness, the usual estimate (2.4) seems to be comparable
to the unbiased one.

Figure 1: CVaR sensitivity of the put option for θ = S0 (Case 1) and α = 0.9. All errors are
based on 100 replications for n = 210, . . . , 220. The figure has two reference lines proportional
to labeled powers of n. Differently from Monte Carlo (MC) and RQMC, RQMC2 uses the
estimate (2.4) by replacing v̂α,n with the true value of VaR vα = 0.859. The benchmark is
c′α(S0) = −0.1337.
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The analysis for a call option is similar. In this case, the option price at time τ is

vτ = E[e−r(T−τ)(ST −K)+|Sτ ] = SτΦ(d1)−Ke−r(T−τ)Φ(d2), (4.9)
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Figure 2: CVaR sensitivity of the put option for θ = r (Case 2) and α = 0.9. All errors are
based on 100 replications for n = 210, . . . , 220. The figure has two reference lines proportional
to labeled powers of n. Differently from Monte Carlo (MC) and RQMC, RQMC2 uses the
estimate (2.4) by replacing v̂α,n with the true value of VaR vα = 0.859. The benchmark is
c′α(r) = −3.8585.
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and the derivative g′θ(u) becomes

g′θ(u) = v′0(θ)− Φ(d1)
∂Sτ
∂θ
− ∂vτ (Sτ , θ)

∂θ
. (4.10)

The numerical results are not reported in this paper for saving space.

4.2 Multiple Assets

In this subsection, we consider a portfolio of d assets Sit , i = 1, . . . , d. The underlying asset
prices follow a geometric Brownian motion. At time τ , the asset prices are

Siτ = Si0 exp{(µi − σ2
i /2)τ + σiBi(τ)}, i = 1, . . . , d, (4.11)

where B(t) = (B1(t), . . . , Bd(t))
> is a d-dimensional Brownian motion with correlation ma-

trix ρ = (ρij)i,j=1,...,d, µi is the drift under the real-world distribution for the ith asset, and
σi is the associated volatility. It is clear that B(τ) ∼ N(0, τρ). Let A be a decomposition
of ρ satisfying AA> = ρ. Then B(τ) can be simulated via

B(τ) =
√
τAz =

√
τAΦ−1d (u), (4.12)
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where u ∼ U(0, 1)d and z = Φ−1d (u) := (Φ(u1), . . . ,Φ(ud))
> ∼ N(0,1d). By doing so, Siτ is

a function of u or z.
Suppose that the portfolio is composed of J European options, where the jth option is

written on the kjth asset with a maturity Tj and a strike Kj, j = 1, . . . , J . Denote the

price of the jth option at time t ≤ Tj by vjt = vjt (S
kj
t , θ), which can be obtained via the

Black–Scholes formula (4.2) or (4.9). The portfolio value loss at time τ is

L(θ) = gθ(u) =
J∑
j=1

[vj0(S
kj
0 , θ)− vjτ (Skjτ , θ)] =

J∑
j=1

gj,θ(u),

where gj,θ(u) = vj0(S
kj
0 , θ)− vjτ (S

kj
τ , θ) is the loss of the jth option. The derivative is then

g′θ(u) =
J∑
j=1

[
∂vj0(S

kj
0 , θ)

∂θ
− ∂vjτ (S

kj
τ , θ)

∂θ

]
=

J∑
j=1

g′j,θ(u),

where g′j,θ(u) can be obtained by (4.3) or (4.10) depending on the type of the option.
If d−1 components of u are fixed and the remaining one uj ∼ U(a, b), gθ(u) is a function

of uj or zj = Φ−1(uj). As a function of zj, by (4.2) and (4.9), its derivative ∂gθ(u)/∂zj can
be expressed as a linear combination of terms like ec1zjΦ(c2zj +c3) or ec4zj , where c1, c2, c3, c4
are some constants. So the equation ∂gθ(u)/∂zj = 0 has a finite number of roots for zj ∈ R.
Since gθ(u) is infinitely times differentiable with respect to zj, gθ(u) is piecewise strictly
monotonic with respect to zj (or equivalently uj), verifying Assumption 2.3 (see Remark 3.10
for greater details).

We next focus on the growth condition required in Theorem 3.13. The remaining condi-
tions in Theorem 3.13 can be easily verified. Since g′θ(u) is a linear combination of g′j,θ(u),
it suffices to verify the growth condition for g′j,θ(u). Without loss of generality, assume that
the jth option is a put option on the first asset, i.e., kj = 1. By (4.11) and (4.12), we have

S1
τ = S1

τ (u) = S1
0 exp{(µ1 − σ2

1/2)τ + σ1
√
τ

d∑
i=1

a1izi}, zi = Φ−1(ui),

where aij are the entries of the matrix A. From (4.3) and (4.10), we find that g′j,θ(u) can
be expressed as a function of S1

τ , say h(S1
τ (u)). For any v ⊂ 1:d, ∂vh(S1

τ (u)) is a linear

combination of terms with the form h(d
′)(S1

τ (u))
∏d′

i=1 ∂
viS1

τ (u), where d′ ≤ d, vi ∩ vi′ = ∅
for any i 6= i′, and ∪d′i=1vi = v. Note that

d′∏
i=1

∂viS1
τ (u) = [S1

τ (u)]d
′∏
i∈v

σ1
√
τa1i

Φ′(Φ−1(ui))
.

By (4.5) and (4.7),∣∣∣∣∣
d′∏
i=1

∂viS1
τ (u)

∣∣∣∣∣ = O

(∏
i∈v

min(ui, 1− ui)−Ai−1
∏
i/∈v

min(ui, 1− ui)−Ai
)
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for arbitrarily small Ai > 0. Taking the derivative of (4.8) d′ times with respect to Sτ , we
can see that |h(d′)(S1

τ (u))| is bounded by a linear combination of terms [S1
τ (u)]γ| lnS1

τ (u)|β
for constants γ and β. This is due to the fact that

∣∣Φ(i)(·)
∣∣ is bounded for any nonnegative

integer i. Similar to (4.6), for any γ, β, and arbitrarily small Ai > 0,

[S1
τ (u)]γ| lnS1

τ (u)|β = O

(
d∏
i=1

min(ui, 1− ui)−Ai
)
.

The growth condition for g′j,θ(u) is thus satisfied with arbitrarily small rates Ai > 0. The

RQMC-based CVaR sensitivity estimate yields a mean error rate of O(n−1/2−1/(4d−2)+ε) as
confirmed by Theorem 3.13.

In the numerical study, we consider the following simple test portfolios:

• Portfolio A. One call and one put options on d = 10 independent underlying assets.
Each option has a maturity of 0.25 and a strike of 95. Each asset has an initial value
of 100 and a volatility of 20%. The real-world interest rates are µi = 8%, and the
risk-free interest rate is r = 3%.

• Portfolio B. Same as Portfolio A, but with each pair of underlying assets having
correlation 0.2, i.e., ρij = 0.2 for any i 6= j.

The risk horizon we choose is again τ = 1/52 years, and we consider θ = r. For Portfolio A
with independent assets, we take the matrixA = 1d in (4.12). For Portfolio B with correlated
assets, we take the principal components construction (Glasserman, 2004) for obtaining A,
that is A = (

√
λ1v1, . . . ,

√
λdvd) where λ1 ≥ · · · ≥ λd are the eigenvalues of the correlation

matrix ρ and v1, . . . ,vd are the corresponding eigenvectors of unit length. To get an accurate
estimate as the benchmark, we run the RQMC method with 100 replications, each using a
large sample size n = 222. Figures 3 and 4 show the convergence results of Monte Carlo
and RQMC for the two portfolios, respectively. It is clear that RQMC performs better than
Monte Carlo. The mean error rate of RQMC diminishes compared to the case of a single
option. As predicted by the theoretical rate O(n−1/2−1/(4d−2)+ε), RQMC suffers from the
curse of dimensionality although the rate is asymptotically better than the Monte Carlo rate
O(n−1/2).

Sensitivity estimation of CVaR is more challenging for RQMC due to both discontinuity
and high dimensionality. To overcome the impact of high dimensionality, some dimension
reduction strategies are proposed in the literature (Wang and Tan, 2013; Weng et al., 2016).
It is widely believed that RQMC can be very effective if the effective dimensions of the
function is low (Caflisch et al., 1997). The decomposition of the correlation matrix ρ = AA>

is not unique, and it has an impact on the effective dimensions of the two important functions
g′θ(u)1{gθ(u) > vα} and 1{gθ(u) ≤ vα}. It therefore leaves room for choosing a proper
matrix A in (4.12) to reduce the effective dimensions. On the other hand, to overcome the
impact of discontinuity, one may resort to some smoothing methods, such as conditioning
(Zhang and Wang, 2019). RQMC enjoys a faster rate of convergence if the integrand is
sufficiently smooth. He (2019) showed that RQMC together with conditioning achieves a
mean error of O(n−1+ε) for option pricing problems. We leave these strategies of improving
RQMC efficiency for future research.
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Figure 3: CVaR sensitivity of Portfolio A (independent assets) for θ = r and α = 0.9. All
errors are based on 100 replications for n = 210, . . . , 220. The figure has a reference line
O(n−1/2). The benchmark is c′α(r) = 8.0814.
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4.3 Delta-Gamma Approximation

Consider a portfolio of many assets (such as stocks, options) that depend on d risk factors.
Let ∆S denote the changes in the risk factors in a given time period τ . Hong and Liu (2009)
studied a quadratic model

L = a0 +α>∆S + ∆S>A∆S, (4.13)

where a0 ∈ R, α = (α1, . . . , αd)
> and A ∈ Rd×d are known. Assume that A is positive

definite, and ∆S ∼ N(µ,Σ) with mean µ = (µ1, . . . , µd)
> and covariance Σ (also positive

definite). The simple model (4.13) is actually the delta-gamma approximation of the loss
studied in Section 4.2. Glasserman et al. (2000) used the approximation to guide the selection
of effective variance reduction techniques in estimating VaR.

The mean and covariance are estimated from historical data. We are interested in es-
timating CVaR sensitive to the parameter θ = µk for some k ≤ d. Let Σ = CC> be a
decomposition of the covariance. We may write

∆S = µ+Cz = µ+CΦ−1d (u),

where u ∼ U(0, 1)d and z = Φ−1d (u) ∼ N(0,1d). It then gives

L(θ) = a0 +α>µ+ µ>Aµ+ (α>C + 2µ>AC)z + z>C>ACz.
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Figure 4: CVaR sensitivity of Portfolio B (correlated assets) for θ = r and α = 0.9. All
errors are based on 100 replications for n = 210, . . . , 220. The figure has a reference line
O(n−1/2). The benchmark is c′α(r) = 15.1564.
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If d − 1 components of z are fixed, L is a quadratic function of the remaining component,
which is piecewise strictly monotonic. Assumption 2.3 is therefore verified. The derivative
is then

L′(θ) = g′θ(u) = αk + 2A>k·µ+ 2(AC)k·Φ
−1
d (u),

where Ak· denotes the kth row of the matrix A and similarly for (AC)k·. It then follows by
(4.5) and (4.7) that the growth condition for g′θ(u) is satisfied with arbitrarily small rates.
The RQMC-based CVaR sensitivity estimate yields a mean error rate of O(n−1/2−1/(4d−2)+ε)
as confirmed by Theorem 3.13. The quadratic model (4.13) is much simpler than the model
in Section 4.2. We do not report the numerical results here.

5 Conclusion

In this paper we found convergence rates of RQMC for CVaR sensitivity estimation. The
theoretical results show that RQMC yields an asymptotically faster error rate than Monte
Carlo, but the rate deteriorates as the dimension d increases. It is important to note that
the results we proved are the worst-case error rates. A good performance can be expected
from RQMC in high dimensions if dimension reduction methods and smoothing methods are
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well utilized. We hope that the established theoretical results could be helpful for guiding a
good way to improve plain RQMC.
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6 Appendix

Lemma 6.1. Let Li = gθ(ũi), where {ũ1, . . . , ũn} is a scrambled (t,m, d)-net in base b ≥ 2
with n = bm. If Assumption 3.8 is satisfied, there are at most bt of the observations L1, . . . , Ln
with equal value w.p.1.

Proof. Suppose that ũ1, . . . , ũn are obtained by scrambling u1, . . . ,un as described in (3.4).
Assume that ui 6= ui′ with unequal components on the jth coordinate, i.e., uji 6= uji′ . We
write uji =

∑∞
k=1 aijkb

−k and uji′ =
∑∞

k=1 ai′jkb
−k in the b-adic expansion, where aijk, ai′jk ∈

{0, 1, . . . , b−1}. Let s = min{k ≥ 1 : aijk 6= ai′jk}. For all k < s, aijk = ai′jk, but aijs 6= ai′js.
Denote ãijk and ãi′jk as random permutations of aijk and ai′jk, respectively. According to the
scrambling procedure (3.4), for all k ≥ s+ 1, ãijk and ãi′jk are independent because different
permutations are applied. Recall that all permutations are independent. This implies that
conditional on ãijk, ãi′jk for all k ≤ s, ũji ∼ U(

∑s
k=1 ãijkb

−k, 1) and ũji′ ∼ U(
∑s

k=1 ãi′jkb
−k, 1)

independently. This uniformity property can be proved as in the proof of (Owen, 1995,
Proposition 2), which showed each ũi ∼ U[0, 1)d. By Assumption 3.8, conditional on all
ũ`i , ũ

`
i′ with ` 6= j and ãijk, ãi′jk for k ≤ s (denote these information as F), Li and Li′ are

independent continuous random variables, implying P(Li = Li′|F) = 0. By the law of total
expectation, we have

P(Li = Li′) = E[P(Li = Li′|F)] = 0.

By the definition of (t,m, d)-net, there are at most bt points of u1, . . . ,un with equal
value. For any two distinct points, the associated random observations of L are different
w.p.1. Consequently, there are at most bt of the observations L1, . . . , Ln with equal value
w.p.1.

Remark 6.2. The constant bt may be conservative for some cases of t > 0. For example, a
Sobol’ sequence is a (t, d)-sequence in base b = 2. The value of t depends on d and is larger
than 0 for moderately large d; see Dick and Niederreiter (2008) for detailed discussion.
Direction numbers for generating Sobol’ sequences that satisfy the so-called Property A in
up to 1111 dimensions have been given in Joe and Kuo (2008). Property A was introduced
by Sobol (1976). If the unit cube [0, 1)d is divided by the planes xj = 1/2 into 2d equally-
sized subcubes, then a sequence of points in [0, 1)d satisfies Property A if, after dividing the
sequence into consecutive blocks of 2d points, each one of the points in any block belongs to
a different subcube. This property guarantees that all the points are distinct. For this case,
from the proof of Lemma 6.1, the constant bt can be replaced by 1.
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J. Matoušek. On the L2-discrepancy for anchored boxes. Journal of Complexity, 14(4):
527–556, 1998.

H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM,
Philadelphia, 1992.

A. B. Owen. Randomly permuted (t,m, s)-nets and (t, s)-sequences. In H. Niederreiter
and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, pages 299–317. Springer, 1995.

A. B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM Journal Numerical
Analysis, 34(5):1884–1910, 1997a.

25



A. B. Owen. Scrambled net variance for integrals of smooth functions. The Annals of
Statistics, 25(4):1541–1562, 1997b.

A. B. Owen. Multidimensional variation for quasi-Monte Carlo. In J. Fan and G. Li,
editors, International Conference on Statistics in honour of Professor Kai-Tai Fang’s 65th
birthday, pages 49–74, 2005.

A. B. Owen. Halton sequences avoid the origin. SIAM Review, 48(3):487–503, 2006.

A. B. Owen. Local antithetic sampling with scrambled nets. The Annals of Statistics, 36
(5):2319–2343, 2008.

A. B. Owen and D. Rudolf. A strong law of large numbers for scrambled net integration.
arXiv preprint arXiv:2002.07859, 2020.

J. K. Patel and C. B. Read. Handbook of the Normal Distribution, volume 150. Marcel
Dekker, New York, 1996.

Y. Peng, M. C. Fu, J.-Q. Hu, and B. Heidergott. A new unbiased stochastic derivative
estimator for discontinuous sample performances with structural parameters. Operations
Research, 66(2):487–499, 2018.

O. Scaillet. Nonparametric estimation and sensitivity analysis of expected shortfall. Mathe-
matical Finance, 14(1):115–129, 2004.

R. J. Serfling. Approximation theorems of mathematical statistics. Wiley, New York, 1980.

I. M. Sobol. Uniformly distributed sequences with an additional uniform property. USSR
Computational Mathematics and Mathematical Physics, 16(5):236–242, 1976.

X. Wang and K. S. Tan. Pricing and hedging with discontinuous functions: Quasi–monte
carlo methods and dimension reduction. Management Science, 59(2):376–389, 2013.

C. Weng, X. Wang, and Z. He. An auto-realignment method in quasi-Monte Carlo for pricing
financial derivatives with jump structures. European Journal of Operational Research, 254
(1):304–311, 2016.

F. Xie, Z. He, and X. Wang. An importance sampling-based smoothing approach for quasi-
Monte Carlo simulation of discrete barrier options. European Journal of Operational Re-
search, 274(2):759–772, 2019.

C. Zhang and X. Wang. Quasi-Monte Carlo-based conditional pathwise method for option
greeks. Quantitative Finance, pages 1–19, 2019.

26


	1 Introduction
	2 Background and Simulation-based Estimation
	3 RQMC-based Estimation of CVaR Sensitivity
	3.1 QMC and RQMC theory
	3.2 Strong Consistency
	3.3 Stochastic bounds

	4 Numerical study
	4.1 Single Asset
	4.2 Multiple Assets
	4.3 Delta-Gamma Approximation

	5 Conclusion
	6 Appendix

