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Abstract

We consider two-stage robust optimization problems, which can be seen as games be-
tween a decision maker and an adversary. After the decision maker fixes part of the
solution, the adversary chooses a scenario from a specified uncertainty set. Afterwards,
the decision maker can react to this scenario by completing the partial first-stage solution
to a full solution.

We extend this classic setting by adding another adversary stage after the second
decision-maker stage, which results in min-max-min-max problems, thus pushing two-
stage settings further towards more general multi-stage problems. We focus on budgeted
uncertainty sets and consider both the continuous and discrete case. For the former, we
show that a wide range of robust combinatorial optimization problems can be decomposed
into polynomially many subproblems, which can be solved in polynomial time for example
in the case of (representative) selection. For the latter, we prove NP-hardness for
a wide range of problems, but note that the special case where first- and second-stage
adversarial costs are equal can remain solvable in polynomial time.

Keywords: Robustness and sensitivity analysis; robust optimization; combinatorial opti-
mization; budgeted uncertainty; multistage optimization

1 Introduction

As many real-world decision problems are affected by uncertainty, robust optimization has
been developed as a methodology to incorporate knowledge of the uncertainty proactively.
For some general constraint

f(xxx,ccc) ≤ b
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with decision variables xxx and parameter vector ccc, we assume that ccc is uncertain and comes
from an uncertainty set U . The classic robust optimization approach (see [BTEGN09]) is to
reformulate the uncertain constraint to the robust counterpart

max
ccc∈U

f(xxx,ccc) ≤ b.

This has the disadvantage that one solution xxx needs to be feasible for all possible choices ccc
simultaneously, while it is often possible in practice to adjust the solution after the uncertainty
has been revealed [BTGGN04]. By splitting the decision variables into xxx (the here-and-now
part) and yyy (the wait-and-see part, which can be decided with knowledge of the scenario),
the two-stage adjustable problem becomes

max
ccc∈U

min
yyy∈X (xxx)

f(xxx,ccc,yyy) ≤ b,

where X (xxx) contains additional constraints on yyy that may depend on xxx.
While this approach is general, the analysis of such problems can be strengthened if we

assume more structure in the set of feasible solutions and in the function f . In particular, we
may consider the case where some combinatorial optimization problem is given, and where the
objective functions f(xxx,ccc) and f(xxx,ccc,yyy) are linear in xxx and yyy. That is, for some combinatorial
optimization problem, where X ⊆ {0, 1}n is the set of its feasible solutions, the classic one-
stage problem is of the form

min
xxx∈X

max
ccc∈U

ccctxxx.

Again, one can split the decision variable into a here-and-now part and a wait-and-see part
to obtain the following problem, which is known in the literature under the name two-stage
adjustable problem, or two-stage problem for short. For sets of feasible solutions X ,X (xxx) ⊆
{0, 1}n, the problem is to find

min
xxx∈X

max
ddd∈U

min
yyy∈X (xxx)

ccctxxx+ dddtyyy.

This problem has been considered extensively, see e.g., [CGKZ18, KZ17a, KZ17b] or the
general survey [KZ16]. However, note that there is a substantial difference between the
one-stage and the two-stage problem: In the one-stage problem, the uncertainty affects the
here-and-now variables (that is, the vectors ccc and xxx are multiplied with each other). In the
two-stage problem on the other hand, the uncertainty affects the wait-and-see variables (that
is, the vectors ddd and yyy are multiplied with each other). One could also say that in the one-
stage problem the uncertainty affects the past, while in the two-stage problem the uncertainty
affects the future. This substantial difference is also the reason that the one-stage problem in
general is not a special case of the two-stage problem, even though the naming might suggest
this.

One step further towards multi-stage problems. We propose a variant of the two-stage
problem, which indeed contains the one-stage problem as a special case. In this variant
the uncertainty is split into two parts, such that the first part affects the here-and-now
variables, and the second part affects the wait-and-see variables (that is, both parts of the
uncertainty affect past decisions). We call this variant two-stage robust optimization with
two-stage uncertainty. Formally, the problem is to find

min
xxx∈X

max
ccc∈U

min
yyy∈X (xxx)

max
ddd∈U(ccc)

ccctxxx+ dddtyyy,
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where U(ccc) is the second-stage uncertainty set that may depend on the first-stage uncertainty
choice ccc.

Compared to the classical two-stage problem, our variant includes an additional stage after
the second decision of the decision-maker. Problems of this type go one step further towards
general multi-stage problems (see, e.g., [BD16, GH21]). They are also closely related to the
vibrant field of explorable uncertainty [FMP+00, FMO+07, EHK+08, MMS17, DEMM18],
which has been presented using various framing, such as queries [GGI+15, HdL21], probes
[GGM06, GM07, Lee22], testing [DEMM20], or information discovery [VGY20]. What these
approaches have in common is that the decision maker plays an active role in receiving
information about which scenario will be chosen from the uncertainty set. Such an effect also
occurs in our model, where the first-stage choice of items forces the adversary to reveal their
costs. Different to most such models, the decision maker is forced to pack the items that have
been queried, and the process is restricted to a single stage of queries.

We furthermore remark that it is a very natural problem variant: One could imagine for
example a business owner, who has two consecutive business periods to deliver a promised
product to her customer. At the start of every business period a decision has to be made, such
that the sum of both decisions results in a finished product (that is, if in the first business
period only a small portion of the product is produced, then in the second business period,
all of the remaining product must be produced). However, each business period is subject
to uncertainties, which are not known at the start of the business period. In this example,
uncertainty affects the past, hence we are in a situation where the classical two-stage problem
is not applicable.

While in general many different choices for the uncertainty sets U and U(ccc) are possible,
the results in this paper mainly focus on so-called budgeted uncertainty sets as introduced
by Bertsimas and Sim [BS03, BS04]. In this setting, the adversary can choose up to Γ items
where costs become increased. Uncertainty sets of this type have seen frequent application
to a diverse set of applications, such as wine grape harvesting [BMV10], load planning of
trains [BGKS14], inventory control [BT06], and evacuation planning [GDT15]. We extend
such uncertainty sets to our new setting. Recall that the uncertainty in our new setting is
split into two parts. Therefore, we consider the case where the adversary can increase costs
of items in the first stage and increase costs of items in the second stage, in such a way
that the total number of cost increases in the first and second stage combined is at most Γ.
This is clearly a natural generalization of the classical budgeted uncertainty to two stages.
We consider both the cases where the increases in cost are discrete (the so-called discrete
budgeted uncertainty) or continuous (the so-called continuous budgeted uncertainty).

Our contributions. In Section 2 we formally introduce two-stage uncertainty and provide an
example and some easy observations. In Section 3 we consider the two-stage robust problem
with two-stage uncertainty in combination with two-stage continuous budgeted uncertainty.
Our main result is that for any nominal problem where solving the linear relaxation gives
an integer solution, we can decompose the robust problem into O(n2) nominal problems and
O(n3) two-stage problems of a special structure. This special structure (and different gener-
alizations of it) has been considered in the literature before, under the names coordination
problem [CG21], optimization with interaction costs [LĆP19] and two-stage optimization un-
der the expected value criterion [GKZ20]. This reveals an unexpected connection between the
two-stage robust problem with two-stage uncertainty and the coordination problem [CG21],
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or the interaction cost problem [LĆP19], or the two-stage expected value criterion problem
[GKZ20].

As a particular consequence, we obtain that if these problems can be solved in polynomial
time, so can the robust problem. This implies that the robust counterparts of many typical
combinatorial optimization problems such as selection remain solvable in polynomial time.

Apart from the main result, we also discuss a variant of budgeted uncertainty sets, which
is sometimes used in the robust optimization literature (see, e.g., [NO13, CGKZ18]), and in
which case the robust problem becomes easy as well.

We then consider the setting of two-stage discrete budgeted uncertainty in Section 4, where
we show that the robust problem allows a compact mixed-integer programming formulation,
but becomes NP-hard for a wide range of combinatorial optimization problems. We also show
that in the special case where cost vectors do not differ between first and second adversarial
stage (that is, ccc = ddd), problems becomes easier.

In Section 5, we run computational experiments. These experiments assess the benefit of
our approach in comparison to classic one-stage robust optimization. They also assess the
running time of our approach.

Our paper concludes with Section 6, where we point out further open questions.

2 Problem definition

In this section, we first formally define the two-stage robust optimization problem with two-
stage uncertainty. We then formally define two-stage budgeted uncertainty sets. After that,
we give an example of the concepts introduced. Finally, we conclude the section with some
easy general observations. Throughout the whole paper, we use the notation [n] = {1, . . . , n}
and write vectors in bold.

2.1 Definition of the two-stage robust problem

The starting point is some combinatorial optimization problem, which we call the nominal
problem. We assume that Xnom ⊆ {0, 1}n is the set of feasible solutions to the nominal
problem and that Xnom can be described in matrix form, i.e. Xnom = {xxx ∈ {0, 1}n : Axxx ≥ bbb}
for some matrix A ∈ Rm×n and some right-hand-side bbb ∈ Rm. For a given cost vector ccc ∈ Rn,
the nominal problem is hence to solve

Nom(ccc) = min
xxx∈Xnom

ccctxxx.

Throughout this paper, we will consider several classical combinatorial optimization prob-
lems. Recall that the selection problem is given by the set of feasible solutions Xnom =
{xxx ∈ {0, 1}n :

∑
i∈[n] xi = p} for some constant p. A related problem, the representa-

tive selection problem, is defined by the set of feasible solutions Xnom = {xxx ∈ {0, 1}n :∑
i∈Tj xi = 1, j ∈ [`]} for an item partition T1∪T2∪ . . .∪T` = [n], i.e., we have Ti∩Tj = ∅ for

i 6= j. Also note that commonly studied graph problems like the shortest path problem,
the spanning tree problem and the assignment problem (see [KVKV11] for definitions)
fit into our framework of combinatorial optimization problems.

For every nominal combinatorial optimization problem, the corresponding two-stage prob-
lem variant is the following: In the first stage, a vector xxx ∈ {0, 1}n can be selected without
any restriction. However, in the second stage, a vector yyy ∈ {0, 1}n must be selected, such
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that xxx and yyy together form a feasible solution (formally, this means that xxx + yyy ≤ 111 and
xxx+ yyy ∈ Xnom). The vector xxx is called the first-stage solution, or the here-and-now part, and
the vector yyy is called the second-stage solution, or the wait-and-see part.

Summarizing the above, we have that

X = {0, 1}n

is the set of feasible first-stage solutions, and

X (xxx) =
{
yyy ∈ {0, 1}n : A(xxx+ yyy) ≥ bbb, xxx+ yyy ≤ 111

}
.

is the set of feasible second-stage solutions. Note that X (000) = Xnom is the set of feasible
solutions for the nominal problem. To treat the case that a first-stage solution xxx ∈ X is
chosen such that X (xxx) = ∅, we define min ∅ =∞. This means that the first-stage solution xxx
has infinite costs in this case.

We now define our new two-stage problem variant, as well as several of its subproblems. In
the adversarial recourse problem, we solve for given xxx ∈ X , ccc ∈ U , and yyy ∈ X (xxx) the problem

AdvRec(xxx,ccc,yyy) = max
ddd∈U(ccc)

ccctxxx+ dddtyyy,

i.e., we only consider the last problem stage. One layer above this is the recourse problem,
where we solve

Rec(xxx,ccc) = min
yyy∈X (xxx)

max
ddd∈U(ccc)

ccctxxx+ dddtyyy.

The adversarial problem is to solve

Adv(xxx) = max
ccc∈U

min
yyy∈X (xxx)

max
ddd∈U(ccc)

ccctxxx+ dddtyyy

and finally, the two-stage robust problem with two-stage uncertainty is given as follows

Rob = min
xxx∈X

max
ccc∈U

min
yyy∈X (xxx)

max
ddd∈U(ccc)

ccctxxx+ dddtyyy.

We sometimes simply refer to this as the robust problem, if the context is clear.

2.2 Definition of two-stage budgeted uncertainty

Budgeted uncertainty sets describe uncertain scenarios, in which the adversary can increase
the cost of up to Γ items, where the value Γ is called the budget. We assume that there
are n items in total. For every item i = 1, . . . , n, we are given two numbers ci and ci with
0 ≤ ci ≤ ci. The initial cost of the item is given by ci, but the adversary can spend one unit
of budget to increase the cost to ci. In the case of continuous budgeted uncertainty, this cost
increase can also be fractional.

We extend the notion of continuous budgeted uncertainty to two-stage uncertainty sets by
assuming that the adversary has a fixed budget Γ ≥ 0 that can be distributed throughout the
first and second stage. That is, in the first stage we use a standard set (see [BS03]) of the
form

U =

ccc ∈ Rn+ : ci = ci + (ci − ci)δi, δi ∈ [0, 1] ∀i ∈ [n],
∑
i∈[n]

δi ≤ Γ

 ,
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while for the second adversarial stage, only the remaining budget can still be used. That is,
given a first-stage cost vector ccc, the amount of the available budget that has already been
used is

∑
i∈[n](ci− ci)/(ci− ci), therefore the remaining budget is Γ−

∑
i∈[n](ci− ci)/(ci− ci).

The corresponding second-stage uncertainty set is

U(ccc) =

ddd ∈ Rn+ : di = di + (di − di)δi, δi ∈ [0, 1] ∀i ∈ [n],
∑
i∈[n]

δi ≤ Γ−
∑
i∈[n]

ci − ci
ci − ci

 .

In summary, U and U(ccc) together enforce that the adversary can distribute a budget of Γ
over the first and second stage combined. Finally, discrete budgeted two-stage uncertainty
sets are defined the same way as U and U(ccc) with the only difference that we use δi ∈ {0, 1}
instead of δi ∈ [0, 1] for both sets.

2.3 Example

We give an example of the concepts introduced earlier in this section. In this example, we
have a two-stage robust selection problem with two-stage discrete budgeted uncertainty.
The parameters for the selection problem are as follows: We have three items (n = 3). Two
out of three items need to be packed (p = 2). Furthermore, the adversary can increase the
costs of only one item to its upper bound (Γ = 1). Finally, every item has costs as described
in Table 1, such that the first-stage costs and second-stage costs are equal (ci = di and ci = di
for all i).

i 1 2 3

ci 3 1 4
ci 7 10 5

Table 1: Example uncertain selection problem.

In the classic one-stage problem, an optimal solution is to pack items 1 and 3 with objective
value 7 + 4 = 11 (the adversary increases the cost of item 1). In the two-stage setting, it is
possible to pack only item 1 in the first stage. If the adversary increases the costs of this item,
we complete the solution by packing item 2 in the second stage with total costs 7 + 1 = 8. If
the adversary decides to keep the budget for the second stage, we then complete the solution
by packing item 3 with total costs 3 + 5 = 8. Hence, we save three units in comparison to the
one-stage solution.

This example showcases an interesting fact: The possibility to wait-and-see in the two-stage
setting offers an advantage to the decision maker compared to the one-stage setting. We will
determine the magnitude of this advantage using computational experiments in Section 5.

2.4 General observations

In this subsection, we make two easy general observations about two-stage robust problems
with two-stage uncertainty. One observation is that they indeed do contain the one-stage
problem as a special case. The second observation is that the problem collapses to a classical
one-stage problem in the case where U and U(ccc) are independent of each other.
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Observation 1. The two-stage robust problem with two-stage uncertainty contains the robust
one-stage problem as a special case.

Proof. Assume that a one-stage problem minxxx∈Xnom maxccc∈U is given. By defining the costs of
each scenario in U(ccc) to be sufficiently large (e.g., set U(ccc) = {dddwc} with dwci > maxccc∈U ‖ccc‖1),
any optimal solution to the two-stage problem with two-stage uncertainty

min
xxx∈X

max
ccc∈U

min
yyy∈X (xxx)

max
ddd∈U(ccc)

ccctxxx+ dddtyyy

cannot choose to buy an item in the second stage. Hence, both problems are equivalent.

Observation 2. If the first-stage and second-stage uncertainty sets are independent in the
sense that U(ccc) is constant with respect to ccc ∈ U , then the two-stage robust problem with
two-stage uncertainty is equivalent to a classic robust one-stage problem.

Proof. Let U ′ := U(ccc) be the constant value of U(ccc). Using the fact that for fixed xxx ∈ X ,
the term maxccc∈U ccc

txxx is constant, we can rewrite the two-stage robust problem with two-stage
uncertainty the following way:

min
xxx∈X

max
ccc∈U

min
yyy∈X (xxx)

max
ddd∈U ′

ccctxxx+ dddtyyy

= min
xxx∈X

(
max
ccc∈U

ccctxxx+ min
yyy∈X (xxx)

max
ddd∈U ′

dddtyyy

)
= min
xxx∈X

min
yyy∈X (xxx)

max
ddd∈U ′

(
dddtyyy +

(
max
ccc∈U

ccctxxx

))
= min
xxx∈X ,yyy∈X (xxx)

max
ccc∈U ,ddd∈U ′

(ccc,ddd)t(xxx,yyy)

This corresponds to a classic robust one-stage problem where the set of feasible solutions is
{(xxx,yyy) | xxx ∈ X , yyy ∈ X (xxx)} and the uncertainty set is U × U ′.

3 Two-stage continuous budgeted uncertainty

In this section, we consider two-stage continuous budgeted uncertainty. Our main result is a
decomposition result similar to the decomposition result of [BS03]. This decomposition result
also reveals a surprising connection between two-stage continuous budgeted uncertainty and
the coordination problem [CG21], or optimization with interaction costs [LĆP19], or two-stage
optimization under the expected value criterion [GKZ20]. In Subsection 3.1 we state the main
result, which we then prove in Subsection 3.2. Finally, in Subsection 3.3 we consider a different
variant of continuous budgeted uncertainty that is also sometimes used in the literature.

3.1 Statement of the main result

Let P = {xxx ∈ [0, 1]n : Axxx ≥ bbb} be the polyhedron of the LP-relaxation of the nominal
problem. In this section we make use of the assumption that we can use the LP-relaxation
to find an optimal solution for the nominal problem, that is:

P is an integral polyhedron. (A)
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We now state the main result of this section. It says that we can decompose the robust
problem into multiple nominal problems and multiple so-called problems of type (1), which
are two-stage problems with a special structure.

Definition 3. A problem of type (1) is the following problem, where ãaa, b̃bb, c̃cc ∈ Rn+ and ṽ ≥ 0
are constant coefficients:

min ãaatxxx+ b̃bb
t
yyy(1) + c̃cctyyy(2) + ṽ (1a)

s.t. A(xxx+ yyy(1)) ≥ bbb (1b)

A(xxx+ yyy(2)) ≥ bbb (1c)

xxx+ yyy(1) ≤ 111 (1d)

xxx+ yyy(2) ≤ 111 (1e)

xi ∈ {0, 1} ∀i ∈ [n] (1f)

y
(1)
i , y

(2)
i ∈ {0, 1} ∀i ∈ [n]. (1g)

Theorem 4. Let a robust two-stage combinatorial optimization problem with two-stage con-
tinuous budgeted uncertainty be given. If assumption (A) holds, then a solution to the robust
problem can be obtained by taking the minimum of the objective values of

• O(n2) many problems of nominal type, and

• O(n3) many problems of type (1).

In particular, if problem of type (1) can be solved in polynomial time, so can the robust
problem.

We note the similarity of the classic result from [BS03], which states that robust problems
with one-stage budgeted uncertainty can be decomposed into O(n) nominal problems. By
including an additional stage on the decision variables and an additional stage on the adver-
sarial variables, the problem complexity is now increased both in the number and the type of
subproblems that need to be considered.

We now explain how problem of type (1) relates to the existing literature. By setting
zzz(1) = xxx+ yyy(1) and zzz(2) = xxx+ yyy(2), the problem becomes

min
zzz(1),zzz(2)∈Xnom

∑
i∈[n]

b̃iz
(1)
i +

∑
i∈[n]

c̃iz
(2)
i +

∑
i∈[n]

(ãi − b̃i − c̃i)z(1)
i z

(2)
i .

Note that a bilinear term was introduced to the objective by the substitution. This par-
ticular problem has been considered by other authors before: In fact, it is an instance of
the coordination problem (with potentially negative interaction costs) [CG21]. It is also a
diagonal combinatorial optimization problem with interaction costs [LĆP19], see also [IT21].
Furthermore, it is a two-stage combinatorial optimization problem with two scenarios under
the expected value criterion [GKZ20]. Based on what is already known about problems (1)
in [GKZ20], we can conclude the following complexity results.

Corollary 5. The robust two-stage counterparts with two-stage continuous budgeted uncer-
tainty for the representative selection problem, the selection problem, and the short-
est path problem in series-parallel graphs are solvable in polynomial time.
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Note that it is a currently open research problem to determine the complexity of other com-
binatorial optimization problems of type (1). Finally, note that the constants in problems (1)
are non-negative. Hence, an approximation guarantee for these subproblems translates to an
approximation guarantee of the original problem.

Corollary 6. Let a combinatorial optimization problem be given, for which assumption (A)
holds. If the problem of type (1) is α-approximable, then the robust two-stage combinatorial
optimization problem with two-stage continuous budgeted uncertainty is α-approximable as
well.

Using the results in [GKZ20], we can conclude the following consequence.

Corollary 7. The robust two-stage counterpart with two-stage continuous budgeted uncer-
tainty of the spanning tree problem is O(log n)-approximable.

3.2 Proof of the main result

Let P (xxx) = {yyy ∈ [0, 1]n : A(xxx + yyy) ≥ bbb,xxx + yyy ≤ 111} be the polyhedron of the LP-relaxation
of X (xxx). We start with the observation that assumption (A) is equivalent to assuming that
each P (xxx) is integral.

Lemma 8. Assumption (A) is equivalent to:

P (xxx) is an integral polyhedron for all xxx ∈ {0, 1}n. (A’)

Proof. Note that P (000) = P , which means that (A’) immediately implies (A). We now prove
the opposite direction.

We assume that (A) holds. Let some yyy ∈ P (xxx) be a fractional extreme point of P (xxx) for
some fixed xxx ∈ {0, 1}n. Consider the point zzz = yyy + xxx, which is contained in P . As zzz is
fractional, it is is not an extreme point of P . This means that there exist integral extreme
points zzz(1), . . . , zzz(K) of P and weights λ1, . . . , λK with λk ∈ (0, 1),

∑
k∈[K] λk = 1 such that

zzz =
∑

k∈[K] λkzzz
(k). We claim that for every k, it holds that zzz(k) − xxx ∈ P (xxx). Indeed, it is

immediately clear, that A(xxx+(zzz(k)−xxx)) ≥ bbb and that xxx+(zzz(k)−xxx) ≤ 111. Furthermore, because
zzz = xxx+ yyy ≤ 111, it holds that zi = 1 for all i ∈ [n] where xi = 1. Therefore, we also have that

z
(k)
i = 1 for each such i and each k ∈ [K]. This implies that zzz(k) − xxx ∈ [0, 1]n. In total, we

have that zzz(k) − xxx is contained in P (xxx) for each k = 1, . . . ,K, and yyy =
∑

k∈[n] λk(zzz
(k) − xxx).

This gives a contradiction, as yyy was assumed to be an extreme point. We conclude that (A’)
holds.

To prove Theorem 4, we first start by considering the adversarial recourse problem. For
constant xxx,ccc and yyy, the adversarial recourse problem AdvRec(xxx,ccc,yyy) can be written as a
linear program with respect to the variables δδδ.

AdvRec(xxx,ccc,yyy) = ccctxxx+ max
∑
i∈[n]

(di + (di − di)δi)yi

s.t.
∑
i∈[n]

δi ≤ Γ−
∑
i∈[n]

ci − ci
ci − ci

0 ≤ δi ≤ 1 ∀i ∈ [n]
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By introducing dual variables π(2) and ρ
(2)
i , this linear program can be dualized, yielding an

equivalent formulation as a minimization problem. Integrating this minimization problem
into the recourse problem using weak and strong duality, we reach the following problem
formulation:

Rec(xxx,ccc) = ccctxxx+ min
∑
i∈[n]

diyi +

Γ−
∑
i∈[n]

ci − ci
ci − ci

π(2) +
∑
i∈[n]

ρ
(2)
i (2a)

s.t. A(xxx+ yyy) ≥ bbb (2b)

xxx+ yyy ≤ 111 (2c)

π(2) + ρ
(2)
i ≥ (di − di)yi ∀i ∈ [n] (2d)

yi ∈ {0, 1} ∀i ∈ [n] (2e)

π(2) ≥ 0 (2f)

ρ
(2)
i ≥ 0 ∀i ∈ [n]. (2g)

Consider the case that variables yyy are fixed. Then the following is a well-known argument
(see, e.g., [BS03]). The optimization problem has an optimal solution such that

ρ
(2)
i = [(di − di)yi − π(2)]+ = [di − di − π(2)]+yi,

where [x]+ denotes the positive part max{x, 0}. The first part of the equality follows from

the fact that in an optimal solution ρ
(2)
i is as small as possible while satisfying inequalities

(2d) and (2g). The second part follows from the fact that yi is binary. For the remainder of
this section, let

Π := {di − di : i ∈ [n]} ∪ {0}.

Note that with respect to the variable π(2), if all other variables are fixed, then the objective
function is piecewise linear in π(2). Therefore the optimum is obtained at a point where the
slope of this piecewise linear function changes. Because the set Π is exactly the set of all

these points, we have that π(2) ∈ Π. Let K be the cardinality of Π and π
(2)
1 , . . . π

(2)
K be all the

elements of Π, that is

Π = {π(2)
1 , . . . , π

(2)
K }.

Using this notation, problem (2) is equivalent to

ccctxxx+ min
k∈[K]

min
yyy∈X (xxx)

∑
i∈[n]

(di + [di − di − π
(2)
k ]+)yi +

Γ−
∑
i∈[n]

ci − ci
ci − ci

π
(2)
k . (3)

Lemma 9. Problem (3) is an equivalent formulation of the recourse problem of the robust
two-stage combinatorial optimization problem with two-stage continuous budgeted uncertainty.

Note that for each k ∈ [K], problems (3) are problems where assumption (A’) can be
applied. In particular, minimizing a linear objective over X (xxx) is equivalent to minimizing a
linear objective over its relaxation P (xxx). We thus dualize the inner minimization problem,
combine the resulting K dual problems into a single problem, and integrate the decision

10



variables and the constraints of the adversarial stage. This yields the following reformulation
of the adversarial problem:

Adv(xxx,ccc) = max t+
∑
i∈[n]

(ci + (ci − ci)δi)xi (4a)

s.t. t ≤ (bbb−Axxx)tααα(k) + (xxx− 111)tβββ(k) + (Γ−
∑
i∈[n]

δi)π
(2)
k ∀k ∈ [K] (4b)

(Atααα(k))i − β(k)
i ≤ di + [di − di − π

(2)
k ]+ ∀i ∈ [n], k ∈ [K] (4c)∑

i∈[n]

δi ≤ Γ (4d)

δi ∈ [0, 1] ∀i ∈ [n] (4e)

ααα(k) ∈ Rm+ ∀k ∈ [K] (4f)

βββ(k) ∈ Rn+ ∀k ∈ [K]. (4g)

Here, variables ααα(k) are duals for the constraints Ayyy ≥ bbb−Axxx, while variables βββ(k) are duals
for constraints yyy ≤ 111−xxx. The variable t and the inequalities containing it are used to replace
the outer minimum in problem (3). Variables δδδ are introduced to model where the adversary
distributes the uncertainty of the first stage. Note that we can replace (ci − ci)/(ci − ci) by
δi.

Lemma 10. If assumption (A) holds, then problem (4) is an equivalent formulation of the
adversarial problem of the robust two-stage combinatorial optimization problem with two-stage
continuous budgeted uncertainty.

Problem (4) is a linear program. We can hence dualize this problem, introducing dual

variables z(k), y
(k)
i , π(1), and ρ

(1)
i for the constraints (4b), (4c), (4d), and (4e), respectively.

Furthermore, we add first-stage decision variables xxx ∈ {0, 1}n to reach the following compact
formulation of the two-stage robust problem with two-stage uncertainty Rob:

min
∑
i∈[n]

cixi +
∑
k∈[K]

∑
i∈[n]

(di + [di − di − π
(2)
k ]+)y

(k)
i

+ Γ
∑
k∈[K]

π
(2)
k z(k) + Γπ(1) +

∑
i∈[n]

ρ
(1)
i (5a)

s.t. Ayyy(k) ≥ (bbb−Axxx)z(k) ∀k ∈ [K] (5b)

(1− xi)z(k) ≥ y(k)
i ∀i ∈ [n], k ∈ [K] (5c)∑

k∈[K]

π
(2)
k z(k) + π(1) + ρ

(1)
i ≥ (ci − ci)xi ∀i ∈ [n] (5d)

∑
k∈[K]

z(k) = 1 (5e)

xi ∈ {0, 1} ∀i ∈ [n] (5f)

y
(k)
i ≥ 0 ∀i ∈ [n], k ∈ [K] (5g)

z(k) ≥ 0 ∀k ∈ [K] (5h)

π(1) ≥ 0 (5i)

11



ρ
(1)
i ≥ 0 ∀i ∈ [n]. (5j)

For the next step, a normalization of variable values will turn out to be helpful. Note that in

any feasible solution, the inequality y
(k)
i ≤ z(k) holds due to constraints (5c). We introduce

new variables ỹ
(k)
i such that the equation y

(k)
i = z(k)ỹ

(k)
i holds and the new variables ỹ

(k)
i are

bounded by 1. If z(k) 6= 0, then the value of ỹ
(k)
i is uniquely defined by the above equation

and we have ỹ
(k)
i ∈ [0, 1]. If z(k) = 0, then the above equation trivially holds and we accept

any choice for ỹ
(k)
i ∈ [0, 1]. We can hence substitute any occurrence of y

(k)
i in problem (5) by

z(k)ỹ
(k)
i in order to obtain the following equivalent problem:

min
∑
i∈[n]

cixi +
∑
k∈[K]

∑
i∈[n]

(di + [di − di − π
(2)
k ]+)z(k)ỹ

(k)
i

+ Γ
∑
k∈[K]

π
(2)
k z(k) + Γπ(1) +

∑
i∈[n]

ρ
(1)
i (6a)

s.t. A(xxx+ ỹyy(k)) ≥ bbb ∀k ∈ [K] (6b)

xxx+ ỹyy(k) ≤ 111 ∀k ∈ [K] (6c)∑
k∈[K]

π
(2)
k z(k) + π(1) + ρ

(1)
i ≥ (ci − ci)xi ∀i ∈ [n] (6d)

∑
k∈[K]

z(k) = 1 (6e)

xi ∈ {0, 1} ∀i ∈ [n] (6f)

ỹ
(k)
i ∈ [0, 1] ∀k ∈ [K], i ∈ [n] (6g)

z(k) ≥ 0 ∀k ∈ [K] (6h)

π(1) ≥ 0 (6i)

ρ
(1)
i ≥ 0 ∀i ∈ [n]. (6j)

Lemma 11. If assumption (A) holds, then problem (6) is an equivalent formulation of the
robust two-stage combinatorial optimization problem with two-stage continuous budgeted un-
certainty.

As each variable ρ
(1)
i occurs in only one constraint, we can write

ρ
(1)
i = [(ci − ci)xi − π(1) −

∑
k∈[K]

π
(2)
k z(k)]+

due to an argument that is similar to another argument above. In the following lemma, we
now want to prove that all optimal solutions to problem (6) have a special structure. Indeed,
let us assume that all variables in problem (6) except zzz are fixed. The remaining problem in
zzz is of the following form:

min
∑
k∈[K]

(Γπ
(2)
k +

∑
i∈[n]

(di + [di − di − π
(2)
k ]+)ỹ

(k)
i )z(k)

+
∑
i∈[n]

[(ci − ci)xi − π(1) −
∑
k∈[K]

π
(2)
k z(k)]+

12



s.t.
∑
k∈[K]

z(k) = 1

z(k) ≥ 0 ∀k ∈ [K].

Lemma 12. Let any aaa,ccc ∈ Rk and bbb,ddd ∈ Rn be given. For an optimization problem of the
type

min
∑
k∈[K]

akz
(k) +

∑
i∈[n]

di[bi −
∑
k∈[K]

ckz
(k)]+

s.t.
∑
k∈[K]

z(k) = 1

z(k) ≥ 0 ∀k ∈ [K],

there is an optimal solution zzz with

• z(k1) = 1 for one k1 and z(k) = 0 for all k 6= k1, or

• z(k1) = (bi′−ck2)/(ck1−ck2) ≥ 0, z(k2) = (ck1−bi′)/(ck1−ck2) ≥ 0 for some k1, k2 ∈ [K]
and i′ ∈ [n], and z(k) = 0 for all other k 6= k1, k2.

Proof. Let bbb′ = (b′1, . . . , b
′
∆)t contain all unique values of bbb in sorted order from smallest to

largest. We write b′0 = −∞, b′∆+1 = +∞. In each segment
∑

k∈[K] ckz
(k) ∈ [b′i′ , b

′
i′+1] for fixed

i′ ∈ {0, . . . ,∆}, the objective becomes linear. Hence, we guess the segment i′ of the optimal
solution and find

min
∑
k∈[K]

akz
(k) +

∑
i:bi>b′i′

di(bi −
∑
k∈[K]

ckz
(k))

s.t.
∑
k∈[K]

z(k) = 1

b′i′ ≤
∑
k∈[K]

ckz
(k) ≤ b′i′+1

z(k) ≥ 0 ∀k ∈ [K].

We first consider the case that i′ ∈ {1, . . . ,∆ − 1}. Adding two slack variables, we have a
linear program with K + 2 variables and 3 constraints. This means that in an optimal basis
solution, there are at most three non-zero variables. We distinguish the following cases:

1. Two slack variables and one z(k1) are non-zero. In this case, z(k1) = 1 as claimed.

2. One slack variable and two variables z(k1) and z(k2) are non-zero. This implies that the
chosen optimal basis solution satisfies the following system of equations:

z(k1) + z(k2) = 1

ck1z
(k1) + ck2z

(k2) = b′i′ or b′i′+1

As this is a basis solution, we know that the columns (1, ck1)t and (1, ck2)t are linearly
independent. Hence, ck1 6= ck2 . Without loss of generality, we assume ck1 > ck2 , which
gives z(k1) = (bi′ − ck2)/(ck1 − ck2) > 0 and z(k2) = (ck1 − bi′)/(ck1 − ck2) > 0.

13



3. If both slack variables are zero, we get b′i′ = b′i′+1, which contradicts the assumption
that bbb′-values are pairwise distinct.

Finally, if i′ = 0 or i′ = ∆, then the linear program has K + 1 variables and 2 constraints.
Again, the first two cases of the above case distinction are possible. We conclude that there
always exists an optimal solution to zzz as claimed.

Using Lemma 12, we can rewrite problem (6) by enumerating possible values of zzz. Let us
first assume that z(k) = 1 for some k ∈ [K]. Each remaining problem is then as follows:

min
∑
i∈[n]

cixi +
∑
i∈[n]

(di + [di − di − π
(2)
k ]+)ỹi + Γπ

(2)
k + Γπ(1) +

∑
i∈[n]

[ci − ci − π(1) − π(2)
k ]+xi

s.t. A(xxx+ ỹyy) ≥ bbb
xxx+ ỹyy ≤ 111

xi ∈ {0, 1} ∀i ∈ [n]

ỹi ∈ [0, 1] ∀i ∈ [n]

π(1) ≥ 0.

Notice that the cost function is piecewise linear in variable π(1). We hence conclude that

there is an optimal solution where π(1) ∈ {ci − ci − π
(2)
k : i ∈ [n]} ∪ {0}. Enumerating these

O(n) possible values for π(1), each subproblem is then of the form

min c̃cctxxx+ d̃dd
t
ỹyy + const. (7a)

s.t. A(xxx+ ỹyy) ≥ bbb (7b)

xxx+ ỹyy ≤ 111 (7c)

xi ∈ {0, 1} ∀i ∈ [n] (7d)

ỹi ∈ [0, 1] ∀i ∈ [n]. (7e)

Note that for each fixed xxx, assumption (A’) can be applied, because the remaining problem
is to optimize a linear objective over P (xxx). We can therefore assume that ỹi ∈ {0, 1} as well.
This leaves for every i ∈ [n] with (xi, ỹi) 6= (0, 0) only two choices: Either xi = 1 and ỹi = 0,
or xi = 0 and ỹi = 1. For each i ∈ [n], one can determine which choice is cheaper (with
respect to the objective). Hence, problem (7) can be reduced to a nominal problem. In total,
we have O(n2) different nominal problems, as there are O(n) choices for both k and π(1).

In summary, in the first case of the main theorem, we have to solve the following nominal

problems for each k ∈ [K] and π(1) ∈ {ci − ci − π
(2)
k : i ∈ [n]} ∪ {0}:

min
∑
i∈[n]

min{ci, di}zi +M (8a)

s.t. Azzz ≥ bbb (8b)

zi ∈ {0, 1} ∀i ∈ [n] (8c)

with constants M = Γπ
(2)
k + Γπ(1)

ci = ci + [ci − ci − π(1) − π(2)
k ]+

di = di + [di − di − π
(2)
k ]+
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Let us now assume that two of the zzz-variables are active. Using Lemma 12, we have

z(k1) = ((ci′ − ci′)xi′ − π(1) − π(2)
k2

)/(π
(2)
k1
− π(2)

k2
)

z(k2) = (π
(2)
k1
− (ci′ − ci′)xi′ + π(1))/(π

(2)
k1
− π(2)

k2
)

π
(2)
k1
z(k1) + π

(2)
k2
z(k2) = (ci′ − ci′)xi′ − π(1),

where we only need to consider the case where both the variables z(k1) and z(k2) are active,
that is we only need to consider combinations with 0 < z(k1), z(k2) < 1. Using these values in
problem (6), we find the following subproblems:

min
∑
i∈[n]

cixi

+
∑
i∈[n]

(di + [di − di − π
(2)
k1

]+)
(ci′ − ci′)xi′ − π(1) − π(2)

k2

π
(2)
k1
− π(2)

k2

ỹ
(k1)
i

+
∑
i∈[n]

(di + [di − di − π
(2)
k2

]+)
π

(2)
k1
− (ci′ − ci′)xi′ + π(1)

π
(2)
k1
− π(2)

k2

ỹ
(k2)
i

+ Γ((ci′ − ci′)xi′ − π(1)) + Γπ(1) +
∑
i∈[n]

ρ
(1)
i (9a)

s.t. A(xxx+ ỹyy(k)) ≥ bbb ∀k ∈ {k1, k2} (9b)

xxx+ ỹyy(k) ≤ 111 ∀k ∈ {k1, k2} (9c)

(ci′ − ci′)xi′ − π(1) + π(1) + ρ
(1)
i ≥ (ci − ci)xi ∀i ∈ [n] (9d)

xi ∈ {0, 1} ∀i ∈ [n] (9e)

ỹ
(k)
i ∈ [0, 1] ∀i ∈ [n], k ∈ {k1, k2} (9f)

(ci′ − ci′)xi′ − π(1) − π(2)
k2
≥ 0 (9g)

π
(2)
k1
− (ci′ − ci′)xi′ + π(1) ≥ 0 (9h)

π(1) ≥ 0 (9i)

ρ
(1)
i ≥ 0 ∀i ∈ [n]. (9j)

Note that constraints (9g) and (9h) are consequences of the constraints z(k1) ≥ 0 and z(k2) ≥ 0
from problem (6). Notice how π(1) cancels out in constraint (9d).

We claim that in an optimal solution, we have xi′ = 1. Indeed, assume that xi′ = 0. Then,

constraint (9g) implies that π(1) ≤ −π(2)
k2

. But note that π
(2)
k2
∈ Π and the set Π contains

only non-negative numbers by definition. Because we also have π(1) ≥ 0, this actually implies

that π
(2)
k2

= π(1) = 0. But inserting these values into the equality for z(k1), we see that

z(k1) = 0, which is a contradiction to the assumption that both z(k1) and z(k2) are active, that
is z(k1), z(k2) > 0. We conclude that xi′ = 1. Furthermore, because the variable π(1) appears
only in constraints (9g), (9h) and (9i), we conclude that there is an optimal π(1) that is either

equal to ci′ − ci′ − π
(2)
k2

, or equal to ci′ − ci′ − π
(2)
k1

, or equal to 0. Finally, we have

ρ
(1)
i = [(ci − ci)xi − ci′ − ci′ ]+ = [(ci − ci)− ci′ − ci′ ]+xi.
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Incorporating all these simplifications into problem (9), one sees that problem (9) becomes
one of type (1), with continuous yyy(1), yyy(2). For fixed xxx ∈ {0, 1}n, the remaining problem
decomposes into two independent problems in variables yyy(1), yyy(2). Due to assumption (A’),
we can thus consider yyy(1), yyy(2) ∈ {0, 1}n instead of yyy(1), yyy(2) ∈ [0, 1]n. This means that we have
transformed the problem into a problem of type (1).

In summary, in the second case of the main theorem, we have to solve one instance of
the following problem of type (1) for each tuple (k1, k2, i

′, π(1)) with the property that k1 ∈
[K] and k2 ∈ [K], k1 6= k2 and i′ ∈ [n] and π(1) ∈ {ci′ − ci′ − π

(2)
k2
, ci′ − ci′ − π

(2)
k1
, 0} and

π
(2)
k1
− ci′ + ci′ +π(1) ≥ 0 and ci′ − ci′ −π(1)−π(2)

k2
≥ 0 and π(1) ≥ 0. Note that there are O(n3)

many tuples with these properties.

min ãaatxxx+ b̃bb
t
yyy(1) + c̃cctyyy(2) + ṽ (10a)

s.t. A(xxx+ yyy(1)) ≥ bbb (10b)

A(xxx+ yyy(2)) ≥ bbb (10c)

xxx+ yyy(1) ≤ 111 (10d)

xxx+ yyy(2) ≤ 111 (10e)

xi ∈ {0, 1} ∀i ∈ [n] (10f)

y
(1)
i , y

(2)
i ∈ {0, 1} ∀i ∈ [n] (10g)

with constants ãi = ci + [(ci − ci)− ci′ − ci′ ]+

b̃i = (di + [di − di − π
(2)
k1

]+)
(ci′ − ci′)xi′ − π(1) − π(2)

k2

π
(2)
k1
− π(2)

k2

c̃i = (di + [di − di − π
(2)
k2

]+)
π

(2)
k1
− (ci′ − ci′)xi′ + π(1)

π
(2)
k1
− π(2)

k2

ṽ = Γ((ci′ − ci′)xi′ − π(1)) + Γπ(1).

We have thus completed the proof of Theorem 4. We summarize our detailed findings in the
following lemma, which implies the main theorem:

Lemma 13. Let a robust two-stage combinatorial optimization problem with two-stage con-
tinuous budgeted uncertainty be given. If assumption (A) holds, then a solution to the robust
problem can be obtained by taking the minimum of the objective values of

• an instance of the nominal problem (8) for each of the O(n2) values of (k, π(1)), as
described there, and

• an instance of the problem (10) (which is a problem of type (1)) for each of the O(n3)
values of (k1, k2, i

′, π(1)), as described there.

Proof. Due to Lemma 11, problem (6) is an equivalent reformulation of the robust problem.
Due to Lemma 12, all solutions to problem (6) have the property that there is either exactly
one value, or exactly two values of k such that z(k) 6= 0. If exactly one z(k) is non-zero, then
the arguments above imply that the optimum solution can be found by taking the minimum
of O(n2) instances of problem (8). If exactly two z(k) are non-zero, then the arguments above
imply that the optimum solution can be found by taking the minimum of O(n3) instances of
problem (10).
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3.3 A variant of continuous budgeted uncertainty

We now consider a variant of the budgeted uncertainty sets with the difference that the budget
bounds the absolute increase of the cost. That is, we consider sets

Uvar =

ccc ∈ Rn+ : ci = ci + δi, δi ∈ [0, ci − ci] ∀i ∈ [n],
∑
i∈[n]

δi ≤ Γ


for the adversarial first stage and sets

Uvar(ccc) =

ddd ∈ Rn+ : di = di + δi, δi ∈ [0, di − di] ∀i ∈ [n],
∑
i∈[n]

δi ≤ Γ−
∑
i∈[n]

(ci − ci)


for the adversarial second stage. Sets of this structure are sometimes used as well, see, e.g.
[NO13, CGKZ18]. In the following it does not make a difference if δδδ is continuous or discrete.
In the latter case, we assume without loss of generality that ccc− ccc and ddd− ddd are integer.

Similar to classic single stage min-max robust optimization problems with uncertainty set
Uvar, we show that it suffices to solve two instances of nominal optimization problems to
determine an optimal solution for the two-stage problem.

Theorem 14. The robust two-stage combinatorial optimization problem with two-stage bud-
geted uncertainty variant Uvar can be decomposed into two problems of nominal type.

Proof. Let any first-stage solution xxx ∈ X be given. If the adversary decides to invest a budget
γ ≤ Γ on these items, the resulting costs are min{ccctxxx + γ,ccctxxx}. Hence, we can assume that
γ ≤ (ccc−ccc)txxx, which leads to costs ccctxxx+γ. Now consider any second-stage solution yyy ∈ X (xxx).

The remaining budget Γ− γ leads to second-stage costs min{dddtyyy + Γ− γ,dddtyyy}. In total, the
costs are thus

ccctxxx+ γ + min{dddtyyy + Γ− γ, dddtyyy}

= min{ccctxxx+ γ + dddtyyy + Γ− γ, ccctxxx+ γ + ddd
t
yyy}

= min{ccctxxx+ dddtyyy + Γ, ccctxxx+ γ + ddd
t
yyy}

Hence, for the adversary it is optimal to spend as much as possible in the first stage, using
γ = min{Γ, (ccc−ccc)txxx}. Intuitively, due to the fact that all cost increases to the items contribute
equally to the used budget of the adversary, it does not make sense for the adversary to safe
any usable budget to attack the first stage solution for the second stage. Thus, the robust
problem is equivalent to

min

{
Γ + min

xxx∈X

(
ccctxxx+ min

yyy∈X (xxx)
dddtyyy

)
, min
xxx∈X

(
c̄cctxxx+ min

yyy∈X (xxx)
d̄dd
t
yyy

)}
,

which can be rewritten as two nominal problems

min

{
Γ + min

xxx∈X (000)
vvvtxxx, min

xxx∈X (000)
wwwtxxx

}
with vi = min{ci, di} and wi = min{c̄i, d̄i}. Recall that X (000) denotes the set of feasible
solutions for the nominal problem.

Note that Theorem 14 does not require assumption (A).
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4 Two-stage discrete budgeted uncertainty

In this section we first derive compact mixed-integer programming models for the case of
two-stage discrete budgeted uncertainty and then show that, contrary to the continuous case,
a wide range of combinatorial optimization problems become NP-hard to solve. We finally
consider a special case, where first-stage and second-stage costs coincide, and show that such
problems become easier to solve. Like in the last section, we only consider optimization
problems where assumption (A) holds.

4.1 Models

We now consider budgeted uncertainty sets as defined in Section 3 with the difference that
the adversarial variables δi determining the distribution of the uncertainty budget need to
be discrete, i.e., we have δi ∈ {0, 1} instead of δi ∈ [0, 1]. While for one-stage problems, this
does not have any impact on the problem, it is well known to make a difference for two-stage
problems (see, e.g., [CGKZ18, GLW20]).

Discrete variables in the inner adversarial recourse problem AdvRec(xxx,ccc,yyy) can be relaxed
without changing the optimal objective value, which means that we find the same recourse
problem Rec(xxx,ccc) as before in (2). We once again define the set

Π := {di − di : i ∈ [n]} ∪ {0}

of possible dual variable values, and let Π = {π(2)
1 , . . . , π

(2)
K } to find the following adversarial

problem Adv(xxx):

max t+
∑
i∈[n]

(ci + (ci − ci)δi)xi (11a)

s.t. t ≤ (bbb−Axxx)tααα(k) + (xxx− 111)tβββ(k) + (Γ−
∑
i∈[n]

δi)π
(2)
k ∀k ∈ [K] (11b)

(Atααα(k))i − β(k)
i ≤ di + [di − di − π

(2)
k ]+ ∀i ∈ [n], k ∈ [K] (11c)∑

i∈[n]

δi ≤ Γ (11d)

δi ∈ {0, 1} ∀i ∈ [n] (11e)

ααα(k) ∈ Rm+ ∀k ∈ [K] (11f)

βββ(k) ∈ Rn+ ∀k ∈ [K] (11g)

The only difference to problem (4) lies in the variables δδδ, which are now discrete instead of
continuous. Let [Γ]0 := {0, 1, . . . ,Γ}. We guess the value of γ :=

∑
i∈[n] δi, where we have

that γ ∈ [Γ]0. Problem (11) hence decomposes to:

max
γ∈[Γ]0

max t+
∑
i∈[n]

(ci + (ci − ci)δi)xi (12a)

s.t. t ≤ (bbb−Axxx)tααα(k) + (xxx− 111)tβββ(k) + (Γ− γ)π
(2)
k ∀k ∈ [K] (12b)

(Atααα(k))i − β(k)
i ≤ di + [di − di − π

(2)
k ]+ ∀i ∈ [n], k ∈ [K] (12c)
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∑
i∈[n]

δi = γ (12d)

δi ∈ {0, 1} ∀i ∈ [n] (12e)

ααα(k) ∈ Rm+ ∀k ∈ [K] (12f)

βββ(k) ∈ Rn+ ∀k ∈ [K]. (12g)

Note that the constraints (12b) do not depend on variables δδδ anymore. This means that
variables δδδ and ααα(k),βββ(k) have become decoupled and we can relax problem (12) for each
choice of γ without affecting the objective value by considering δi ∈ [0, 1] instead of δi ∈ {0, 1}.
We dualize each subproblem, and introduce dual variables z(k,γ), y

(k,γ)
i , π(γ), and ρ

(γ)
i for

constraints (12b), (12c), (12d), and (12e), respectively. Combining the resulting problems,
and integrating the variables and constraints of the first stage, we find the following non-
linear compact formulation of the two-stage robust problem with two-stage discrete budgeted
uncertainty Rob:

min
∑
i∈[n]

cixi + t (13a)

s.t. t ≥
∑
k∈[K]

(Γ− γ)π
(2)
k z(k,γ)

+
∑
k∈[K]

∑
i∈[n]

(di + [di − di − π
(2)
k ]+)y

(k,γ)
i + γπ(γ) +

∑
i∈[n]

ρ
(γ)
i ∀γ ∈ [Γ]0 (13b)

π(γ) + ρ
(γ)
i ≥ (ci − ci)xi ∀i ∈ [n], γ ∈ [Γ]0 (13c)

Ayyy(k,γ) ≥ (bbb−Axxx)z(k,γ) ∀k ∈ [K], γ ∈ [Γ]0 (13d)

(1− xi)z(k,γ) ≥ y(k,γ)
i ∀i ∈ [n], k ∈ [K], γ ∈ [Γ]0 (13e)∑

k∈[K]

z(k,γ) = 1 ∀γ ∈ [Γ]0 (13f)

xi ∈ {0, 1} ∀i ∈ [n] (13g)

y
(k,γ)
i ≥ 0 ∀i ∈ [n], k ∈ [K], γ ∈ [Γ]0 (13h)

z(k,γ) ≥ 0 ∀k ∈ [K], γ ∈ [Γ]0 (13i)

π(γ) ≥ 0 ∀γ ∈ [Γ]0 (13j)

ρ(γi) ≥ 0 ∀γ ∈ [Γ]0, i ∈ [n]. (13k)

Note that the products between xi and z(k,γ) variables can be linearized, which results in a
mixed-integer programming formulation. We can analyze variables z(k,γ) in a similar way as
in Section 3, as the following lemma states.

Lemma 15. There is an optimal solution to problem (13) where for each γ ∈ [Γ]0, there is
one k′ ∈ [K] such that

z(k,γ) =

{
1 if k = k′,

0 otherwise.

Proof. Let us assume that in problem (13), variables xxx, πππ and ρρρ are fixed. The remaining
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problem then reduces to the following linear program:

min t (14a)

s.t. t ≥
∑
k∈[K]

(Γ− γ)π
(2)
k z(k,γ)

+
∑
k∈[K]

∑
i∈[n]

(di + [di − di − π
(2)
k ]+)y

(k,γ)
i + const ∀γ ∈ [Γ]0 (14b)

Ayyy(k,γ) ≥ (bbb−Axxx)z(k,γ) ∀k ∈ [K], γ ∈ [Γ]0 (14c)

(1− xi)z(k,γ) ≥ y(k,γ)
i ∀i ∈ [n], k ∈ [K], γ ∈ [Γ]0 (14d)∑

k∈[K]

z(k,γ) = 1 ∀γ ∈ [Γ]0 (14e)

y
(k,γ)
i ≥ 0 ∀i ∈ [n], k ∈ [K], γ ∈ [Γ]0 (14f)

z(k,γ) ≥ 0 ∀k ∈ [K], γ ∈ [Γ]0. (14g)

Problem (14) can be decomposed by minimizing a subproblem for each γ with the right-hand
side of constraint (14b) in the objective, that is,

min
∑
k∈[K]

(Γ− γ)π
(2)
k z(k,γ) +

∑
k∈[K]

∑
i∈[n]

(di + [di − di − π
(2)
k ]+)y

(k,γ)
i + const (15a)

Ayyy(k,γ) ≥ (bbb−Axxx)z(k,γ) ∀k ∈ [K] (15b)

(1− xi)z(k,γ) ≥ y(k,γ)
i ∀i ∈ [n], k ∈ [K] (15c)∑

k∈[K]

z(k,γ) = 1 (15d)

y
(k,γ)
i ≥ 0 ∀i ∈ [n], k ∈ [K] (15e)

z(k,γ) ≥ 0 ∀k ∈ [K]. (15f)

We substitute y
(k,γ)
i = z(k,γ)ỹ

(k,γ)
i analogous to the substitution of variables in problem (6) to

find:

min
∑
k∈[K]

(Γ− γ)π
(2)
k z(k,γ) +

∑
k∈[K]

∑
i∈[n]

(di + [di − di − π
(2)
k ]+)z(k,γ)ỹ

(k,γ)
i + const (16a)

Aỹyy(k,γ)z(k,γ) ≥ (bbb−Axxx)z(k,γ) ∀k ∈ [K] (16b)

(1− xi)z(k,γ) ≥ z(k,γ)ỹ
(k,γ)
i ∀i ∈ [n], k ∈ [K] (16c)∑

k∈[K]

z(k,γ) = 1 (16d)

ỹ
(k,γ)
i ≥ 0 ∀i ∈ [n], k ∈ [K] (16e)

z(k,γ) ≥ 0 ∀k ∈ [K]. (16f)

We see that if z(k,γ) = 0, then variables ỹyy(k,γ) can be chosen arbitrarily. Consider a feasible
solution where all variables ỹyy(k,γ) are fixed. Then constraints (16b) and (16c) are true
independent of z(k,γ). The remaining problem in z(k,γ) is a linear minimization problem over
a simplex. Hence the claim follows.
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Using Lemma 15, we can assume that variables z(k,γ) in problem (13) are binary. Note,
however, that we cannot enumerate all possible choices of z(k,γ) in polynomial time, if Γ is
not a constant value. For every γ ∈ [Γ]0, we need to decide independently for which k ∈ [K]

we have z(k,γ) = 1. These are O(KΓ+1) many possibilities. We write κ
(2)
γ for the value of π

(2)
k

where z(k,γ) is equal to one.

Finally, consider variables π(γ) and ρ
(γ)
i . Using the classical argument of finding the kink

points in a piecewise linear function [BS03], we find that π(γ) ∈ {ci − ci : i ∈ [n]} ∪ {0}.
Combining these observations, we can enumerate the choice of all z(k,γ) and π(γ) variables in
polynomial time if Γ is a constant.

Theorem 16. Let a robust two-stage combinatorial optimization problem with two-stage dis-
crete budgeted uncertainty be given. If assumption (A) holds, then the robust problem can be
decomposed into O(n2Γ) many subproblems of the form:

min t (17a)

s.t. t ≥ (Γ− γ)κ(2)
γ +

∑
i∈[n]

(di + [di − di − κ(2)
γ ]+)y

(γ)
i

+ γπ(γ) +
∑
i∈[n]

(ci + [ci − ci − π(γ)]+)xi ∀γ ∈ [Γ]0 (17b)

A(xxx+ yyy(γ)) ≥ bbb ∀γ ∈ [Γ]0 (17c)

xxx+ yyy(γ) ≤ 111 ∀γ ∈ [Γ]0 (17d)

xi ∈ {0, 1} ∀i ∈ [n] (17e)

y
(γ)
i ∈ [0, 1] ∀γ ∈ [Γ]0, i ∈ [n]. (17f)

Finally, note that we can use problems (17) to find an alternative compact problem formu-

lation. To this end, we consider π(γ) and κ
(2)
γ as variables again. The brackets that enforce

the positive part are replaced by variables ρ
(2)
γ,i and ρ

(γ)
i , respectively. Note, however, that we

must require y
(γ)
i ∈ {0, 1} for this replacement. This gives the following result.

Theorem 17. The robust two-stage combinatorial optimization problem with two-stage dis-
crete budgeted uncertainty under assumption (A) can be formulated as the following compact
mixed-integer program:

min t (18a)

s.t. t ≥ (Γ− γ)κ(2)
γ +

∑
i∈[n]

ρ
(2)
γ,i +

∑
i∈[n]

diy
(γ)
i

+ γπ(γ) +
∑
i∈[n]

ρ
(γ)
i +

∑
i∈[n]

cixi ∀γ ∈ [Γ]0 (18b)

A(xxx+ yyy(γ)) ≥ bbb ∀γ ∈ [Γ]0 (18c)

xxx+ yyy(γ) ≤ 111 ∀γ ∈ [Γ]0 (18d)

κ(2)
γ + ρ

(2)
γ,i ≥ (di − di)y

(γ)
i ∀γ ∈ [Γ]0, i ∈ [n] (18e)

π(γ) + ρ
(γ)
i ≥ (ci − ci)xi ∀γ ∈ [Γ]0, i ∈ [n] (18f)

xi ∈ {0, 1} ∀i ∈ [n] (18g)
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y
(γ)
i ∈ {0, 1} ∀γ ∈ [Γ]0, i ∈ [n] (18h)

π(γ), κ(2)
γ ≥ 0 ∀γ ∈ [Γ]0 (18i)

ρ
(γ)
i , ρ

(2)
γ,i ≥ 0 ∀γ ∈ [Γ]0, i ∈ [n]. (18j)

4.2 Hardness

While the results in Section 3 show that problems with two-stage continuous budgeted uncer-
tainty can often be solved in polynomial time, we show here that this is unlikely to be possible
for two-stage discrete budgeted uncertainty, as simple problems already become NP-hard. Re-
call that for representative selection, we have X = {xxx ∈ {0, 1}n :

∑
i∈Tj xi = 1, j ∈ [`]}

with an item partition T1 ∪ T2 ∪ . . . ∪ T` = [n].

Theorem 18. Two-stage representative selection with two-stage discrete budgeted un-
certainty is NP-hard, even if |Tj | = 2 and Γ = 1.

Proof. Let an instance a1, . . . , an ∈ N of the NP-hard partition problem be given, see
[GJ79]. Let

∑
i∈[n] ai = 2A. The question is whether there exists a set X ⊆ [n] such that∑

i∈X ai =
∑

i∈X̄ ai = A with X̄ = [n] \X.
We construct an instance of the two-stage representative selection problem in the

following way. There are n sets of items Ti, each consisting of two items from which one must
be chosen. For the first item in each set, we set ci1 = −ai, ĉi1 = 4A, di1 = ai and d̂i1 = 0.
For the second item, we set ci2 = −ai, ĉi2 = 4A, di2 = −3ai, d̂i2 = M for a big constant M
(it suffices to set M > 2A). Refer to Table 2 for an overview. The instance is completed by
setting Γ = 1.

T1 T2 Tn
i 1 2 3 4 · · · 2n− 1 2n

ci −a1 −a1 −a2 −a2 · · · −an −an
ci − ci 4A 4A 4A 4A · · · 4A 4A
di a1 −3a1 a2 −3a2 · · · −an −3an

di − di 0 M 0 M · · · 0 M

Table 2: Instance used in the hardness reduction for two-stage representative selection.

Note that we can build an instance without negative item costs in the same manner by
adding a sufficiently large constant to each cost. As every feasible solution contains the same
number of items, the objective value of each solution is changed by the same constant.

Furthermore, note that the first-stage costs of items 1 and 2 in each set are the same. This
means that we only need to consider the following choices in each set: (i) Buy any of the two
items in the first stage. (ii) Buy the first item in the second stage. (iii) Buy the second item
in the second stage. Let X ⊆ [n] be the index set of those sets Ti where we decide to buy any
of the two items in the first stage.

The adversary now has two choices: Either the uncertainty budget is spent on the first-
stage choice of items, or it is spent on the future second-stage choice of items. In the first
case, a cost increase of 4A is reached, as long as any item is bought in the first stage. Then,
an optimal solution will pack the second item in each remaining set, as each has lower costs
than the first respective item. Overall, the costs become

∑
i∈X −ai + 4A −

∑
i∈X̄ −3ai. In
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the second case, packing any of the second items in each set will lead to a high penalty M
and is thus not possible in an optimal solution. Hence, we need to fill the solution with the
first item from each set. The complete costs become

∑
i∈X −ai +

∑
i∈X̄ ai.

Combining these two cases, the worst-case costs of any choice X is:

max{−
∑
i∈X

ai + 4A− 3
∑
i∈X̄

ai,−
∑
i∈X

ai +
∑
i∈X̄

ai}

= max{2
∑
i∈X

ai + 2
∑
i∈X̄

ai −
∑
i∈X

ai − 3
∑
i∈X̄

ai,−
∑
i∈X

ai +
∑
i∈X̄

ai}

= max{
∑
i∈X

ai −
∑
i∈X̄

ai,−
∑
i∈X

ai +
∑
i∈X̄

ai}

=

∣∣∣∣∣∣
∑
i∈X

ai −
∑
i∈X̄

ai

∣∣∣∣∣∣ .
Let X be an optimal choice for this problem. We see that the partition problem is a yes-
instance if and only if the objective value of X in the two-stage representative selection
problem is zero.

As the representative selection problem can be interpreted as a graph-based con-
nectivity problem, where every set Tj corresponds to a set of parallel edges, which are then
arranged sequentially, we can conclude that also shortest path and minimum spanning
tree problems are hard. Furthermore, the representative selection problem can be
reduced to an instance of the Assignment problem, which hence also is hard. We add four
vertices for each set Tj (two on each side of the bipartite graph) and set the costs of the
two only possible assignments among those four vertices such that it corresponds to the two
possible selections in Tj . All other costs are set to large values.

Corollary 19. Two-stage shortest path, minimum spanning tree and Assignment
problems with two-stage discrete budgeted uncertainty are NP-hard, even for series-parallel
graphs and if Γ = 1.

We now show that hardness also holds for the selection problem, where X = {xxx ∈
{0, 1}n :

∑
i∈[n] xi = p}.

Theorem 20. Two-stage selection with two-stage discrete budgeted uncertainty is NP-
hard, even if Γ = 1.

Proof. As before, let an instance a1, . . . , an ∈ N,
∑

i∈[n] ai = 2A of the NP-hard partition
problem be given, see [GJ79]. The questions is whether there exists a set X ⊆ [n] such that∑

i∈X ai =
∑

i∈X̄ ai = A with X̄ = [n] \X.
We construct an instance of the two-stage selection problem in the following way. There

are 2n + 1 items, where n items are of type (α), one item is of type (β), and n items are of
type (γ). Items of type (α) each correspond to one of the given weights ai, with ci = ci = ai
and di = di = 2ai. The item of type (β) has ci = 0, ci = 2A, and di = di = M , where
M ≥ 4A denotes denotes a sufficiently large constant such that items with this cost will never
be packed in an optimal solution. Finally, items of type (γ) all have ci = ci = di = M and
di = 0, see Table 3. We complete the instance by setting p = n+ 1 and Γ = 1.
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α β γ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
i 1 . . . n n+ 1 n+ 2 . . . 2n+ 1

ci a1 . . . an 0 M . . . M
ci a1 . . . an 2A M . . . M
di 2a1 . . . 2an M 0 . . . 0

di 2a1 . . . 2an M M . . . M

Table 3: Instance used in the hardness reduction for two-stage selection.

We may assume that no first-stage solution packs any item of type (γ). Let us assume that
the item of type (β) is not packed. Then the adversary will not increase any item costs in the
first stage, but is able to give one of the items packed in the second stage the high cost M .
Hence, any optimal solution will pack item β already in the first stage. Let X ⊆ [n] be the
index set of items of type (α) packed in the first stage. The adversary now has two possible
strategies: Either to increase the costs of item β, or to save the budget for the second stage.
In the first case we can pack items of type (γ) to reach a complete solution with no additional
costs. In the second case we are forced to complete our solution by packing items of type (α).
The total costs are hence

∑
i∈X

ai + max

2A,
∑
i∈X̄

2ai

 = 2A+ max

∑
i∈X

ai,
∑
i∈X̄

ai

 .

We find that the partition problem is a yes-instance if and only if we can choose a solution
X to the two-stage selection problem with total costs less or equal to 3A.

4.3 Special case of equal costs

The results in Section 4.2 show that most combinatorial optimization problems become hard
to solve under two-stage discrete budgeted uncertainty. We now show that these results do
not necessarily hold for the specific case that ccc = ddd and ccc = ddd. That is, we consider the
following problem: First the decision maker chooses a set of items and pays ci for each such
item. Then the adversary can choose up to Γ many of these items and increase their costs
to ci, thereby forcing the decision maker to pay the additional cost difference ci − ci for all
items whose costs were increased. This process is now repeated, where the decision maker
chooses a second set of items with costs ci to create a feasible solution, and the adversary can
spend the remaining budget to increase item costs. This setting is hence similar to the classic
setting of one-stage robust optimization insofar there are no different cost vectors between
the first and the second stage, see Table 1 in Section 1 for an example of this setting.

Consider the case Γ = 1 in problem (18). Note that κ
(2)
1 and π(0) are multiplied with zero

in constraint (18b). We can therefore make them sufficiently large to fulfill constraints (18e)
for γ = 1 and (18f) for γ = 0, respectively. Hence, after appropriately renaming variables,
the problem formulation is equivalent to the following mixed-integer program:

min t
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s.t. t ≥ π(0) +
∑
i∈[n]

ρ
(0)
i +

∑
i∈[n]

ciy
(0)
i +

∑
i∈[n]

cixi

t ≥ π(1) +
∑
i∈[n]

ρ
(1)
i +

∑
i∈[n]

ciy
(1)
i +

∑
i∈[n]

cixi

A(xxx+ yyy(0)) ≥ bbb
A(xxx+ yyy(1)) ≥ bbb
xxx+ yyy(0) ≤ 111

xxx+ yyy(1) ≤ 111

π(0) + ρ
(0)
i ≥ (ci − ci)y

(0)
i ∀i ∈ [n]

π(1) + ρ
(1)
i ≥ (ci − ci)xi ∀i ∈ [n]

xi ∈ {0, 1} ∀i ∈ [n]

y
(0)
i , y

(1)
i ∈ {0, 1} ∀i ∈ [n]

π(0), π(1) ≥ 0

ρ
(0)
i , ρ

(1)
i ≥ 0 ∀i ∈ [n].

Note that the variables π(0) and ρ
(0)
1 , . . . , ρ

(0)
n appear only in two constraints (apart from

the non-negativity constraints). An analogous observation holds for the variables π(0) and

ρ
(0)
1 , . . . , ρ

(0)
n . This fact together with the structure of those constraints implies that the

problem has an optimal solution where ρρρ(0) = ρρρ(1) = 000 and

π(0) = max{ci − ci : i ∈ [n], y
(0)
i = 1} and

π(1) = max{ci − ci : i ∈ [n], xi = 1}.

Note that if ρ
(0)
i > 0, then one can decrease ρ

(0)
i > 0 and increase π(0) by the same amount.

This means that in an optimal solution, both π(0) and π(1) take one of the O(n) values in
the set {ci − ci : i ∈ [n]}. We can therefore enumerate possible values for π(0) and π(1). Each
subproblem is then as follows:

min t (19a)

s.t. t ≥ π(0) +
∑
i∈[n]

ciy
(0)
i +

∑
i∈[n]

cixi (19b)

t ≥ π(1) +
∑
i∈[n]

ciy
(1)
i +

∑
i∈[n]

cixi (19c)

A(xxx+ yyy(0)) ≥ bbb (19d)

A(xxx+ yyy(1)) ≥ bbb (19e)

xxx+ yyy(0) ≤ 111 (19f)

xxx+ yyy(1) ≤ 111 (19g)

y
(0)
i = 0 ∀i ∈ [n] : ci − ci > π(0) (19h)

xi = 0 ∀i ∈ [n] : ci − ci > π(1) (19i)
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xi ∈ {0, 1} ∀i ∈ [n] (19j)

y
(0)
i , y

(1)
i ∈ {0, 1} ∀i ∈ [n]. (19k)

By constraints (19h) and (19i), some variables are forced to be zero. In the following, we refer
to the corresponding variables as being ”forbidden”.

Theorem 21. The two-stage representative selection problem with two-stage discrete
budgeted uncertainty and with |Tj | = 2, Γ = 1, ccc = ddd and ccc = ddd can be solved in O(n3) time.

Proof. We show that problem (19) can be solved in O(n) time for the representative se-
lection problem with |Tj | = 2, implying the claimed result. The objective of problem (19) is

to minimize
∑

i∈[n] cixi+max{π(0) +
∑

i∈[n] ciy
(0)
i , π(1) +

∑
i∈[n] ciy

(1)
i }, while constraints (19h)

and (19i) imply that some choices in xxx and yyy(0) are forbidden.
Let us denote as items 1 and 2 an arbitrary part where one of the two items need to be

chosen. Let c1 ≤ c2. If it is possible to choose x1, then this is not worse than any other

choice. If x1 is forbidden, then we take the cheapest option allowed between y
(0)
1 and y

(0)
2 in

combination with y
(1)
1 . Only if both choices in y(0) are forbidden, the only feasible choice is

to pack x2. If also x2 is not allowed, then the problem is infeasible. Table 4 lists all possible
cases how item choices may be forbidden (marked with X) with an optimal solution for each
case. To solve the problem, we hence only need to iterate through all items once.

i xi y
(0)
i y

(1)
i

1 1 0 0
2 0 0 0

i xi y
(0)
i y

(1)
i

1 X 1 1
2 0 0 0

i xi y
(0)
i y

(1)
i

1 1 0 0
2 X 0 0

i xi y
(0)
i y

(1)
i

1 X 1 1
2 X 0 0

i xi y
(0)
i y

(1)
i

1 1 X 0
2 0 0 0

i xi y
(0)
i y

(1)
i

1 1 0 0
2 0 X 0

i xi y
(0)
i y

(1)
i

1 1 X 0
2 0 X 0

i xi y
(0)
i y

(1)
i

1 X X 1
2 0 1 0

i xi y
(0)
i y

(1)
i

1 X X 0
2 1 X 0

i xi y
(0)
i y

(1)
i

1 X X 1
2 X 1 0

i xi y
(0)
i y

(1)
i

1 1 0 0
2 X X 0

i xi y
(0)
i y

(1)
i

1 X 1 1
2 X X 0

i xi y
(0)
i y

(1)
i

1 1 X 0
2 X X 0

i xi y
(0)
i y

(1)
i

1 X X 0
2 X X 0

Table 4: Proof of Theorem 21: Possible item choices.

We show that it is also possible to show a similar result for selection.

Theorem 22. The two-stage selection problem with two-stage discrete budgeted uncertainty
and with Γ = 1, ccc = ddd and ccc = ddd can be solved in O(n5) time.
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Proof. We show that problem (19) can be solved in O(n3) time for the selection problem,
implying the claimed result.

We sort all items such that c1 ≤ c2 ≤ . . . ≤ cn. We define different types of items:

1. Items A = {i ∈ [n] : ci − ci > π(0), ci − ci > π(1)}, i.e., items that are forbidden for
both yyy(0) and xxx.

2. Items B = {i ∈ [n] : ci − ci ≤ π(0), ci − ci ≤ π(1)}, i.e., items that can be packed freely.

3. Items C = {i ∈ [n] : ci− ci > π(0), ci− ci ≤ π(1)}, i.e., items that are only forbidden for
yyy(0). Such items only exist if π(0) < π(1).

4. Items D = {i ∈ [n] : ci − ci ≤ π(0), ci − ci > π(1)}, i.e., items that are only forbidden
for xxx. Such items only exist if π(0) > π(1).

Note that each item i ∈ [n] is of exactly one of these types. We now distinguish whether
π(0) = π(1), π(0) < π(1), or π(0) > π(1) holds.

1. Let us assume that π(0) = π(1), i.e., there are only item types A and B. Note that we
can assume items in A are always packed using yyy(1) in sorted order. We claim that

there exists an optimal solution where y
(1)
i = 0 for all items i ∈ B. To see this, let us

assume that y
(1)
i = 1 for some i ∈ B. Then there exist some j ∈ B with y

(0)
j = 1. Hence,

setting either xi = 1 or xj = 1 in combination with y
(1)
i = 0 and y

(0)
j = 0 does not give

a worse objective value. We furthermore claim that items of type B are always packed

using first xi = 1 in sorted order, and then y
(0)
i = 1 in sorted order (i.e., packing with

xxx has preference). Let us assume that this is not the case and there exist i < j with

y
(0)
i = 1 and xj = 1. Then using y

(0)
j = 1 and xi = 1 instead gives the same objective

value with respect to xxx+ yyy(0), but an objective value that is not worse with respect to
xxx+ yyy(1).

In summary, we only need to guess the cardinality of |A|. For each such value, an
optimal solution can be constructed in O(n) time, giving a total time of O(n2).

2. Let us assume that π(0) < π(1), i.e., there are only items of types A, B and C. Using
similar arguments as in the previous case, we find that items in A are packed in order
using yyy(1), items in B are packed in order using first xxx and then yyy(0), and items in C are
packed in order using only xxx. Guessing the cardinality of items packed in A and C, we
can construct an optimal solution in O(n3) time.

3. Let us assume that π(0) > π(1), i.e., there are only items of types A, B and D. Using
similar arguments as in the first case, items in A are packed in order using yyy(1), items
in B are packed in order using first xxx and then yyy(0). Items in D can be packed by both
yyy(0) and yyy(1), and can be assumed to be packed in order by each vector. Let us guess∑

i∈[n] xi =
∑

i∈B xi. We then construct an optimal yyy(0) solution by packing remaining

items in B and D in order, and construct an optimal yyy(1) solution by packing remaining
items in A and D in order. Hence, this setting can be solved in O(n2) time.

We can conclude that problem (19) can be solved in O(n3) time as claimed.
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5 Experiments

In the previous sections we analyzed the complexity of our two-stage approach, identifying
easy and hard problem cases. The purpose of this section is to assess the benefit of our
approach in comparison to classic one-stage robust optimization, i.e., what is the advantage
of an additional stage that allows the decision maker to observe the costs of the items chosen
in the first stage before completing the solution? To this end, we perform computational
experiments which compare the objective value of both settings.

5.1 Setup

We focus on instances of the selection problem, for which we need to determine the number
of items n, the number of items that must be selected p, the uncertainty parameter Γ, as well
as lower and upper bounds on first- and second-stage costs. For these experiments, we choose
a fixed size n = 20 and vary both p and Γ.

To generate lower and upper bounds on item costs, we uniformly sample three random
integers in {1, . . . , 100} per item i. Let v(1) ≤ v(2) ≤ v(3) be these values after sorting them.
We then set ci = di = v(1), ci = v(2), and di = v(3). This setting reflects a higher degree
of uncertainty for decisions that lie in the future. We generate 50 instances this way. When
changing parameters p and Γ, the same set of instances is solved for better comparability.

Each instance is solved with two methods. The first reflects the one-stage setting, where
a complete solution must be bought in one step, i.e., a static policy is used which may not
depend on the reaction of the adversary. Formally, this corresponds to the problem

min
xxx∈X

min
yyy∈X (xxx)

max
ccc∈U

max
ddd∈U(ccc)

ccctxxx+ dddtyyy.

In our case, by dualizing the inner adversarial problem with budgeted uncertainty, this is
equivalent to the following mixed-integer program:

min
∑
i∈[n]

(cixi + diyi) + Γπ +
∑
i∈[n]

ρi

s.t.
∑
i∈[n]

(xi + yi) ≥ p

π + ρi ≥ (ci − ci)xi + (di − di)yi ∀i ∈ [n]

xi + yi ≤ 1 ∀i ∈ [n]

xi, yi ∈ {0, 1} ∀i ∈ [n]

The second method is our two-stage problem Rob with discrete budgeted uncertainty, mod-
eled through the compact formulation (18). Note that the optimal objective value resulting
from Rob with discrete budgeted uncertainty R2D is less or equal to the objective value of
Rob with continuous budgeted uncertainty R2C , which is in turn less or equal to the objective
value of the one-stage approach R1. Hence, the ratio gap = R1/R2D−1 is an upper bound to
the corresponding ratio R1/R2C − 1. We use this definition of gap to measure the difference
between the one-stage and two-stage approaches.

All instances are solved with CPLEX 12.8. on a virtual server with Intel Xeon Gold 5220
CPU running at 2.20GHz. Each process is single-threaded. We use a time limit of 300 seconds
per instance. As the computation times for solving the one-stage approach are small (< 0.1
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seconds across all instances), we provide CPLEX with the one-stage solution as a warmstart
when solving the two-stage model.

5.2 Results

We show average values of gap over the 50 test instances using different values for p and Γ in
Figure 1 and median computation times of the two-stage model in Figure 2.

We first consider average gap values. In this figure, darker colors indicate higher average
gap values and thus a larger benefit of using the two-stage model instead of the one-stage
model. All values in Figure 1 are given in percent. Combinations with p = 1, p = 20, or
p = Γ are not shown, because in these cases we know a priori that there is no gap.

It can be seen that the average value of gap depends on the combination of p and Γ
parameters. For p = 8 and Γ = 1, a maximum value of 7.29% is reached. Further relatively
high values are in the region of small Γ and value of p up to around 14. To provide an
intuition why the two-stage setting is particularly beneficial in this region, consider Γ = 1.
If the adversary decides to spend this budget on the first-stage solution, then the decision
maker can choose items according to their nominal costs in the second stage, i.e., completely
ignore uncertainty. In other words, the information reveal by the adversary is particularly
large. For increasing values of p, the additional costs caused by the adversary become less
significant in comparison to the total costs of the solution, and the gap value becomes smaller
again. Instead, slightly higher values of Γ give slightly higher gap values. In comparison, if
Γ is close to p, then the adversary can attack nearly all items. Accordingly, the information
which items are attacked becomes less valuable to the decision maker.

We now consider median computation times as presented in Figure 2, where we rounded
values to the next integer second. Recall that a time limit of 300 seconds was used. In
the nominal selection problem, there are

(
n
p

)
many feasible solutions, which may give the

impression that problems with p ≈ n/2 are the hardest to solve. This is not the case; instead,
we note that the larger the value of p, the higher the computation times, in particular in
the region where Γ ≈ p/2. A possible explanation for this behavior is that in the two-stage
setting, we also must make a decision when to buy an item (whether in the first stage or in
the second stage). Hence, with more items that we need to select, more such decisions arise.

On the one hand, the relatively high median computation times for large values of p (recall
that each one-stage problem requires less than 0.1 seconds to solve) show a disadvantage
of the two-stage setting, which is the increased problem complexity. On the other hand,
in combination with Figure 1 we note that the hardest problems are also those where the
two-stage setting is least relevant. That is, problems with large parameter p may be hard to
solve, but in such cases the two-stage setting would not be useful in the first place. In the
parameter range where the two-stage setting is most beneficial, computation times remain
small, which indicates that the approach may also be useful in practice.

6 Conclusions

In this paper we extended the notion of two-stage robust problems by introducing two-stage
uncertainty, where the adversary has the opportunity to react to the second stage of the
decision maker. In particular, classic two-stage problems of the form

min
xxx∈X

max
ccc∈U

min
yyy∈X (xxx)

CCCtxxx+ ccctyyy
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7.10 3.71 1.61 0.70 0.24 0.05

7.29 4.80 2.29 1.11 0.51 0.21 0.04

7.13 5.06 2.89 1.59 0.73 0.38 0.15 0.03

6.17 4.80 3.26 1.93 0.98 0.53 0.29 0.10 0.02

5.64 4.73 3.45 2.25 1.41 0.72 0.35 0.22 0.08 0.02

4.94 4.39 3.50 2.43 1.61 1.00 0.53 0.28 0.17 0.06 0.02

3.92 3.89 3.20 2.38 1.80 1.22 0.73 0.37 0.22 0.15 0.05 0.02

3.33 3.64 3.24 2.50 1.87 1.43 0.98 0.57 0.30 0.20 0.10 0.03 0.01

2.73 3.09 3.02 2.61 2.00 1.53 1.15 0.78 0.42 0.27 0.16 0.08 0.02 0.01

2.19 2.53 2.65 2.40 2.05 1.56 1.18 0.92 0.65 0.37 0.24 0.15 0.09 0.03 0.01

1.55 1.94 2.14 1.98 1.84 1.49 1.16 0.82 0.64 0.44 0.28 0.18 0.11 0.06 0.02 0.00

1.01 1.28 1.39 1.36 1.34 1.17 1.03 0.83 0.60 0.44 0.28 0.19 0.11 0.07 0.03 0.00 0.00
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Figure 1: Average values of gap.
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Figure 2: Median computation times for the two-stage approach.
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imply that the adversary needs to make a forward-facing decision that affects item choices
not yet made, whereas in our setting, we consider a more natural extension of the one-stage
problem

min
xxx∈X

max
ccc∈U

ccctxxx

where the adversary remains backward-facing, i.e., affects a decision already fixed. Analyzing
two-stage continuous budgeted uncertainty sets, we show that a similar decomposition as
in the classic paper [BS03] is possible, resulting in a range of combinatorial optimization
problems that remain solvable in polynomial time. This result does not hold for two-stage
discrete budgeted sets, where already simple combinatorial optimization problems become
NP-hard.

This paper makes a first sortie into a new type of robust optimization problems, where
many further interesting problems remain to be considered. An open question is whether
problem (1) can be solved in polynomial time for the case of spanning tree. Furthermore,
the special case where ccc = ddd and ccc = ddd can still be solved for some problems with Γ =
1. It is an open problem if this remains possible for higher values of Γ. Also note that
the hardness proofs for two-stage discrete budgeted uncertainty do not give consequences
on inapproximability; it is therefore interesting to consider if approximation algorithms are
possible. Finally, other uncertainty sets can be considered. Recall that one-stage problem
is NP-hard for all relevant combinatorial optimization problems with discrete uncertainty
UD = {ccc(1), . . . , ccc(N)}. We conjecture that the two-stage setting proposed here with a variant
of two-stage discrete uncertainty moves up one level in the complexity hierarchy and problems
become Σp

2-hard in many cases.
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