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ABSTRACT

The recently defined class of integer programming games (IPG) models situations where multiple
self-interested decision makers interact, with their strategy sets represented by a finite set of linear
constraints together with integer requirements. Many real-world problems can suitably be fit in this
class, and hence anticipating IPG outcomes is of crucial value for policy makers and regulators.
Nash equilibria have been widely accepted as the solution concept of a game. Consequently, their
computation provides a reasonable prediction of games outcome.
In this paper, we start by showing the computational complexity of deciding the existence of a Nash
equilibrium for an IPG. Then, using sufficient conditions for their existence, we develop two general
algorithmic approaches that are guaranteed to approximate an equilibrium under mild conditions.
We also showcase how our methodology can be changed to determine other equilibria definitions.
The performance of our methods is analysed through computational experiments in a knapsack
game, a competitive lot-sizing game and a kidney exchange game. To the best of our knowledge,
this is the first time that equilibria computation methods for general integer programming games
have been designed and computationally tested.

Keywords Nash equilibria · Correlated equilibria · Mixed integer programming · Algorithmic
game theory · Integer programming games

1 Problem statement and background

We start by defining some general notation. If Ci is a set for each i ∈ M , then we denote their Cartesian product
as C =

∏
i∈M Ci. The operator (·)−i is used to denote (·) for all j ∈ M \ {i}; e.g., if M = {1, 2, 3}, for a

vector x = (x1, x2, x3), we have x−1 = (x2, x3) and, for a Cartesian product of sets C = C1 × C2 × C3, we have
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INTEGER PROGRAMMING GAMES

C−2 = C1×C3. If C is a set, we use the notation ∆(C) to represent the space of Borel probability measures over C.
If C =

∏
i∈M Ci, the associated set of independent probability distributions is denoted by ∆ =

∏
i∈M ∆(Ci). For

the latter notations note that ∆ ⊆ ∆(C).

Integer programming games (IPGs). Following the seminal work in (Köppe et al., 2011), Carvalho (2016);
Carvalho et al. (2018a) defined integer programming games. An IPG is a game with a finite set of players M =
{1, 2, . . . ,m} such that for each player p ∈M , the set of strategies is given by

Xp = {xp : Apxp ≤ bp, xpi ∈ N for i = 1, . . . , Bp},

where Ap is an rp × np rational matrix (where np ≥ Bp) and bp is a rational column vector of dimension rp. An
xp ∈ Xp is called a (pure) strategy of player p. Each player p has a continuous payoff function Πp : X → R that can
be evaluated in polynomial time. Note that accordingly with our notation, X is the set

∏
i∈M Xp which corresponds

to all possible game outcomes, i.e., all possible combinations of players’ strategies. An x ∈ X is called a profile of
strategies.

An IPG is a non-cooperative complete information game, i.e., players are self-interested and have full information of
each other’s payoffs and strategies. We restrict our focus to the simultaneous case, i.e., players select their strategies
simultaneously.

Extensions for mixed strategies. Under the simultaneous play assumption, as motivated later, players may consider
to randomize among their pure strategies. Hence, for a player p ∈ M , it is of interest to consider her set of mixed
strategies ∆(Xp). For a player p’s mixed strategy σp ∈ ∆(Xp), its support is defined as supp(σp) = {xp ∈ Xp :
σp(xp) > 0}, i.e., the set of player p’s strategies played with strictly positive probability. A σ ∈ ∆ =

∏
i∈M ∆(Xp)

is called a mixed profile of strategies, and if |supp(σp)| = 1 holds for all p ∈M , σ is called a pure profile of strategies.
For the sake of simplicity, whenever the context makes it clear, we use the term (strategy) profile to refer to a pure
profile. A player p’s expected payoff for a profile of strategies σ ∈ ∆ is

Πp(σ) =

∫
X

Πp(xp, x−p)dσ. (1)

The same definition of expected payoff covers joint probability distributions τ ∈ ∆(X) ⊇ ∆ with τ(x) representing
the probability assigned to profile x. Similarly, the support of τ ∈ ∆(X) is defined as supp(τ) = {x ∈ X : τ(x) > 0}.

Solution concepts. Ideally, each player would like to ensure that her best response, also designated by best reaction,
is selected given the opponents’ strategy σ−p ∈ ∆−p. In other words, each player p solves

maximize
xp∈Xp

Πp(xp, σ−p), (2)

where for sake of simplicity, (xp, σ−p) denotes the profile of strategies in which the pure strategy xp is played with
probability 1 by player p and the remaining players behave accordingly with σ−p. Note that a mixed strategy for a
player p is simply a convex combination of her pure strategies. Thus, when computing best responses it is sufficient
to restrict ourselves to pure strategies as done in Problem (2). An IPG is completely defined given Problem (2) for all
players. Therefore, for now on, we will use them to represent an IPG.

We now introduce the most broadly accepted concept of solution for a game.

Definition 1 A Nash equilibrium (NE) (Nash, 1951) is a profile of strategies σ ∈ ∆ such that

Πp(σ) ≥ Πp(xp, σ−p), ∀p ∈M ∀xp ∈ Xp. (3)

The profile σ is called a mixed Nash equilibrium, and if it is a pure profile of strategies, it is also called a pure Nash
equilibrium.

It is now easy to verify if a given σ ∈ ∆ is a NE by computing each player p ∈ M best response to σ−p (i.e., by
solving Problem (2)) and confirming that she cannot increase her payoff more than Πp(σ), i.e., inequalities (3) are not
violated. In other words, in an NE, no player has incentive to unilaterally deviate from it.

The following two definitions are relaxations of the concept of Nash equilibrium which are of interest to this work.

Definition 2 An ε-equilibrium (ε ≥ 0) is a profile of strategies σ ∈ ∆ such that

Πp(σ) + ε ≥ Πp(xp, σ−p), ∀p ∈M ∀xp ∈ Xp. (4)
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Definition 3 A joint probability distribution τ ∈ ∆(X) is a correlated equilibrium (CE) (Aumann, 1974, 1987) if∫
X−p∪{x̄p}

Πp(x̄p, x−p) dτ ≥
∫
X−p∪{x̄p}

Πp(x̂p, x−p) dτ ∀p ∈M,∀x̄p, x̂p ∈ Xp. (5)

In an ε-equilibrium, no player can unilaterally deviate from it and increase her payoff by more than ε. In a correlated
equilibrium a joint probability distribution is considered instead of an independent one for each player. Correlated
equilibria can be interpreted as a third party signaling the players on how they play such that deviating from that
recommendation does not increase their payoffs (Inequalities (5)). We remark that the set of correlated equilibria
contains the set of Nash equilibria.

Preliminary results. The goal of this work is to compute equilibria for IPGs. However, the fact that players can
have continuous variables means that their strategy sets can be uncountable. Thus, the support of an equilibrium σ
can also be uncountable. Next, we state a set of sufficient conditions that enable us to restrict to equilibria with finite
support.

Definition 4 Player p’s payoff function is called separable if

Πp(x) =

k1∑
j1=1

. . .

km∑
jm=1

apj1...jmf
1
j1(x1) . . . fmjm(xm), (6)

where apj1...jm ∈ R and the fpj are real-valued continuous functions.

An IPG where all players’ payoff functions are separable (i.e., take the form (6)) and strategy sets are nonempty and
bounded is called separable.

Example 1 Consider a 2-player game, M = {1, 2}, with payoff functions

Π1(x) = x1
1 · x1

2 + x1
1 · x1

3 · x2
1

Π2(x) = x1
2 · x1

3 · x2
1.

Both players’ payoffs are separable as they take the form (6): k1 = 3, k2 = 2, f1
1 = x1

1 ·x1
2, f1

2 = x1
1 ·x1

3, f1
3 = x1

2 ·x1
3,

f2
1 = 1, f2

2 = x2
1, a1

11 = a1
22 = a2

32 = 1 and the remaining a coefficients are zero.

In Carvalho et al. (2018a) the following useful results based on Stein et al. (2008) were proven:

Theorem 5 (Carvalho et al. (2018a)) Every IPG such that Xp is nonempty and bounded for all p ∈ M has a Nash
equilibrium.

Theorem 6 (Carvalho et al. (2018a)) For any Nash equilibrium σ of a separable IPG, there is a Nash equilibrium σ̄
such that each player p mixes among at most kp + 1 pure strategies and Πp(σ) = Πp(σ̄).

Theorem 5 ensures that under a mild condition on the players’ sets of strategies, an IPG has an NE. Furthermore, if
an IPG is separable, any NE can be converted in a payoff-equivalent NE with a finite support. Since a NE is a CE,
any separable IPG has a CE with finite support. In this work, we will thus focus on equilibria with finite support.
Consequently, for finitely-supported σ ∈ ∆, player p’s expected payoff is

Πp(σ) =
∑

x∈supp(σ)

Πp(x)
∏
i∈M

σi(xi), (7)

and for τ ∈ ∆(X), it is
Πp(τ) =

∑
x∈supp(τ)

Πp(x)τ(x). (8)

To end this section, we define potential games for which the existence of pure NE can be guaranteed.

Definition 7 A game is potential Monderer and Shapley (1996) if there is a real-valued function Φ : X −→ R such
that its value strictly increases when a player switches to a strategy that strictly increases her payoff.

Lemma 8 (Monderer and Shapley (1996)) The maximum of a potential function for a game is a pure Nash equilib-
rium.

3
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2 Contributions

In Carvalho et al. (2018a), the authors discuss the existence of Nash equilibria for integer programming games. It
is proven that deciding the existence of pure Nash equilibria for IPGs is Σp2-complete and that even the existence of
Nash equilibria is Σp2-complete. However, the latter proof seems incomplete in the “proof of only if”. Thus, our first
contribution is the presentation of a completely new and correct proof (reduction).

Our second and main contribution is in the development of a flexible framework to compute an NE for IPGs. Based
on the theorems of the previous section, we are able to show that our framework (i) is guaranteed to compute an NE
for IPGs in which all the players’ sets of strategies are nonempty and bounded lattice points, and (ii) it is guaranteed
to compute an ε-equilibrium for IPG under some mild conditions that are expected to be satisfied in real-world games.
Nevertheless, our framework is capable of processing any IPG, although, it might fail to stop, e.g., if the input game
has no equilibria.

Our framework requires game theory and mathematical optimization algorithms. In fact, it is an iterative approach in-
tegrating different components from both fields. Those components can be divided in optimization algorithms, search
of NE, and heuristics. Each of them offers the user the flexibility of selecting the algorithm/solver most appropriated
for the IPG at hand. However, for the search of NE solver, we strongly advise the use of Porter-Nudelman-Shoham
method due to its practical efficiency, simple implementation and easy integration of heuristics. We also show how to
adapt our method to determine correlated equilibria.

To conclude the paper, we evaluate our methodology’s performance through computational experiments in three dif-
ferent integer programming games: the knapsack game, the lot sizing game and the kidney exchange game. Given that
this is the first general-purpose algorithm for IPGs, there is no other method in the literature to which our experiments
can be compared.

Our paper is structured as follows. Section 3 reviews the literature in algorithmic game theory for the computation
of Nash equilibria. In Section 4, we classify the computational complexity of deciding the existence of NE for IPGs.
Section 5 formalizes our framework, develops two methods to compute ε-equilibria for IPGs (approximated NE),
providing specialized functions to speed up the methods, and extensions to CE. In Section 6, we introduce three
relevant IPGs, and validate our methods through computational experiments on these games. Finally, we conclude and
discuss further research directions in Section 7.

3 Related literature

There are important real-world games (e.g., in electricity markets (Pereira et al., 2005), production planning (Li and
Meissner, 2011), health-care (Carvalho et al., 2016), where each player’s payoff maximization subject to her set of
feasible strategies is described by a mixed integer programming formulation as required in the definition of IPGs.
This motivates the importance of understanding the equilibria of IPGs, as they indicate their likely outcome and thus,
its impact to the participants (players) and to the society. Concretely, in the game examples mentioned, the players
are companies and countries that provide services to the population. Hopefully, this competition will be sufficiently
profitable to the players so that they can create jobs, invest in technological innovation, while providing high quality
service to the population. Thus, the computation of equilibria can allow us to anticipate these games outcomes and
serve policy makers in their task of guaranteeing social welfare.

Moreover, IPGs contain the well-known class of finite games (Carvalho et al., 2018a), i.e., games with a finite number
of strategies and players, and quasi-concave games, i.e., game with convex strategies sets and quasi-concave payoffs.
The existing tools and standard approaches for finite games and quasi-concave games are not directly applicable to
general IPGs. Additionally, the previous literature on IPGs focuses in the particular structure of specific games.

Pure Nash equilibria. Kostreva (1993) describes the first theoretical approach to compute pure NE to IPGs, where
integer variables are required to be binary. The binary requirement in a binary variable x is relaxed by adding in
the payoff a penalty Px(1 − x) where P is a very large number. Then, the Karush-Kuhn-Tucker (KKT) (Karush,
1939; Kuhn and Tucker, 1951) conditions are applied to each player optimization problem and merged into a system
of equations for which the set of solutions contains the set of pure equilibria. To find the solutions for that system
of equations, the author recommends the use of a homotopy path following (Zangwill and Garcia, 1981) or Gröbner
basis (Cox et al., 2007). Additionally, it must be verified which of the system’s solutions are equilibria2, which results
in long computational times. Gabriel et al. (2013) proposed an optimization model for which the optimal solution is a
pure Nash equilibrium of a game that approximates an IPG with concave payoffs. In that paper, integer requirements

2The KKT conditions applied to non-concave maximization problems are only necessary.
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are relaxed, the players’ concave optimization problems are transformed in constrained problems through the KKT
conditions; then, the complementary conditions are also relaxed but their deviation from zero is minimized. On the
few experimental results presented, this approach leads to a pure Nash equilibrium for the original game. However,
there is neither a theoretical nor computational evidence showing the applicability of these ideas to the general case.
Hemmecke et al. (2009) considered IPGs with an additional feature: a player p’s set of feasible strategies depends on
the opponents’ strategies. The authors study (generalized) pure equilibria assuming that the player’s decision variables
are all integer and payoffs are monotonously decreasing in each variable. Köppe et al. (2011) were the pioneers to
investigate the computation of all pure NE to IPGs where all the players’ decision variables are integer and their payoffs
are differences of piecewise-linear concave functions. In order to compute NE, the authors use generating functions of
integer points inside of polytopes. The application of Köppe et al.’s results relies on computational implementations
that are still in the preliminary stage, although theoretically the approach can be proven to run in polynomial time
under restrictive conditions, such as a fixed number of players and a fixed number of players’ decision variables,
to name a few. More recently, Del Pia et al. (2017) concentrated on the computation of pure NE for IPGs where
the strategy sets are given by totally unimodular constraint matrices. They identify the cases where such games are
potential and pure equilibria can be computed in polynomial time, and showed some cases where computing pure
equilibria is PLS-complete (Polynomial Local Search).

Mixed Nash equilibria. Lee and Baldick (2003) studied the computation of mixed equilibria for an IPG in the
context of the electric power market. There, the players’ set of strategies is approximated through its discretization,
resulting in a finite game to which there are general algorithms to compute NE. Nevertheless, there is a trade-off
between having a good discretized approximation and an efficient computation of NE: the more strategies are contained
in the discretization, the longer the time to compute a NE will be. Stein et al. (2008); Stein (2007) restricted their
attention to separable games, meaning that all their results hold for separable IPGs. The authors were able to provide
bounds on the cardinality of the NE support and present a polynomial-time algorithm for computing ε-equilibria of
two-player separable games with fixed strategy spaces and payoff functions satisfying the Hölder condition.

None of the approaches above tackles general IPGs, failing to either consider mixed NE or continuous and integer
decision variables for the players.

4 Computational complexity

In what follows, we show that even in the simplest case, linear integer programming games with two players, the
existence of Nash equilibria is a Σp2-complete problem.

Theorem 9 The problem of deciding if an IPG has a Nash equilibrium is Σp2-complete problem.

Proof. The proof that this decision problem belongs to Σp2 can be found in Carvalho et al. (2018a). It remains to show
that it is Σp2-hard. We will reduce the following Σp2-complete probleme (Eggermont and Woeginger, 2013) to it:

Problem: SUBSET-SUM-INTERVAL

INSTANCE A sequence q1, q2, . . . , qk of positive integers; two positive integers R
and r with r ≤ k.

QUESTION Does there exist an integer S with R ≤ S < R + 2r such that none of
the subsets I ⊆ {1, . . . , k} satisfies

∑
i∈I qi = S?

Our reduction starts from an instance of SUBSET-SUM-INTERVAL. We construct the following instance of IPG:

• The game has two players, M = {Z,W}, with player Z (W ) controlling the decision vector z (w).

5
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• Player Z solves

max
z

1

2
z0 +

k∑
i=1

qizi +Qz(2w − z) (9a)

s.t.
1

2
z0 +

k∑
i=1

qizi ≤ z (9b)

z0, z1, . . . , zk ∈ {0, 1} (9c)
R ≤ z ≤ R+ 2r − 1, z ∈ N. (9d)

where Q =
∑k
i=1 qi. We add binary variables y ∈ {0, 1}r and we make z = R +

∑r−1
i=0 2iyi. Note that

z2 = Rz +
∑r−1
i=0 2iyiz. Thus, we can replace yiz by a new variable hi and add the respective McCormick

constraints Mccormick (1976). In this way, we can equivalently linearize the previous problem:

max
z,y,h

1

2
z0 +

k∑
i=1

qizi + 2Qzw −QRz −
r−1∑
i=0

2ihi (10a)

s.t.
1

2
z0 +

k∑
i=1

qizi ≤ z (10b)

z0, z1, . . . , zk ∈ {0, 1} (10c)
R ≤ z ≤ R+ 2r − 1, z ∈ N (10d)

z = R+

r−1∑
i=0

2iyi (10e)

y0, y1, . . . , yr−1 ∈ {0, 1} (10f)
hi ≥ 0 i = 0, . . . , r − 1 (10g)
hi ≥ z + (R+ 2r − 1)(yi − 1) i = 0, . . . , r − 1 (10h)
hi ≤ z +R(yi − 1) i = 0, . . . , r − 1 (10i)
hi ≤ (R+ 2r − 1)yi i = 0, . . . , r − 1. (10j)

For sake of simplicity of our reasoning, we consider the quadratic formulation (9). The linearization above
serves the purpose of showing that the proof is valid even under linear payoff functions for the players.

• Player W solves

max
w

(1− z0)w0 (11a)

s.t. R ≤ w ≤ R+ 2r − 1 (11b)
w0 ∈ R. (11c)

(Proof of if). Assume that the SUBSET-SUM-INTERVAL instance has answer YES. Then, there is an S such that
R ≤ S < R + 2r and for all subsets I ⊆ {1, . . . , k},

∑
i∈I qi 6= S. Let player W strategy be w∗ = S and w∗0 = 0.

Note that the term Qz(2w − z) in player Z’s payoff is dominant and attains a maximum when z is equal to w. Thus,
we make z∗ = w∗ = S and since

∑k
i=1 qizi is at most S − 1, we also make z∗0 = 1. Next, we choose z∗i such that the

remaining payoff of playerZ is maximized. By construction, playerZ is selecting her best response to (w∗, w∗0). Since
z∗0 = 1, then player W is also selecting an optimal strategy. Therefore, we can conclude that this is an equilibrium.

(Proof of only if). Assume that the SUBSET-SUM-INTERVAL instance has answer NO. Then, for all S such that
R ≤ S < R + 2r, there is a subset I ⊆ {1, . . . , k} with

∑
i∈I qi = S. In this case, player Z will always make

z0 = 0 which gives incentive for player W to choose w0 as large as possible. Since w0 has no upper bound, there is
no equilibrium for the game.

6
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5 Algorithmic approach

As shown in the previous section, the problem of deciding the existence of NE for IPGs is complete for the second
level of the polynomial hierarchy3, which is a class of problems believed to be hard to solve. In fact, even when an
IPG is guaranteed to have an NE, it is unlikely that it can be determined in polynomial time. To provide evidence in
this direction, the following definition is required.

Definition 10 A normal-form game, also called strategic-form game, is a finite game whose description is given by a
multidimensional payoff matrix for all possible pure strategy profiles.

Any normal-form game can be equivalently reformulated as an IPG in polynomial time (Carvalho et al., 2018a):
essentially, for each player, one just needs to associate a binary variable for each of her pure strategies and a constraint
enforcing that only one variable takes value 1, i.e., only one pure strategy is played. Chen and Deng (2006) proved that
computing an NE for a normal-form game, even with only two players, is PPAD-complete4. In simple words, for a
PPAD-complete problem it is known that a solution exists; however the proof of solution existence is non-constructive
and it is believed to be “hard” to compute it. The result in Chen and Deng (2006) together with Theorem 5 and the
fact that finite games (and thus, normal-form games) are separable (see Carvalho et al. (2018a)) leads to:

Lemma 11 The problem of computing an NE to an IPG with non-empty bounded strategy sets is PPAD-hard, even for
separable IPG with only binary variables.

Despite of this theoretical intractability evidence, in what follows, we leverage on the power of mixed integer program-
ming solvers and practical NE search approaches to build an efficient framework for the computation of equilibria to
IPGs in practice. In the remainder of the paper, we focus on separable IPGs since their set of NE can be characterized
by finitely-supported equilibria (Theorem 6).

In Section 5.1, we will analyze the standard idea in mathematical programming of looking at the game obtained by
relaxing the integrality requirements and we will argue that this seems not to provide useful information about the
original set of NE for the associated IPG. Hence, another perspective it taken to tackle the problem. In Section 5.2, we
design our algorithmic scheme for computing equilibria. It iteratively tightens an inner approximation to the original
IPG. This framework incorporates two crucial components: an algorithm for searching an NE for normal-form games
and a mathematical programming solver for computing best responses. While they can be left as a choice for the
user who may have specific implementations exploring problem structure, in Section 5.2.1, we review the Porter-
Nudelman-Shoham method (PNS) (Porter et al., 2008) for searching the NE of normal-form games, given its practical
effectiveness and flexibility to take advantage of the overall iterative methodology. The basic algorithm obtained from
our framework is modified in Section 5.2.2, in an attempt to improve its performance. Finally, in Section 5.3, we
describe the extension of our methodology to correlated equilibria.

Before proceeding, it is worthy to clarify that in all our experiments, we consider players payoffs of the form

Πp(xp, x−p) = (cp)Txp − 1

2
(xp)TQppx

p +
∑

k∈M :i 6=p

(xk)TQpkx
p, (12)

i.e., separable (recall Definition 6) quadratic payoff functions with bilateral (pairwise) interactions. The correctness of
our methodology follows for more general payoff function forms. Thus, the value of this remark comes instead from
concrete choices of our methodology components, as we will remark along the text.

5.1 Game relaxations

A typical procedure to solve optimization problems consists in relaxing constraints that are hard to handle and to use
the information associated with the relaxed problem to guide the search for the optimum. Thus, in this context, such
ideas seem a natural direction to investigate. Call relaxed integer programming game (RIPG) the game resulting from
an IPG when the integrality constraints are removed. In the following examples, we compare the NE of an IPG with
the ones of the associated RIPG.

Example 2 (RIPG has more equilibria than IPG) Consider an instance with two players, in which player A solves

max
xA

5xA1 x
B
1 + 23xA2 x

B
2 subject to 1 ≤ xA1 + 3xA2 ≤ 2 and xA ∈ {0, 1}2

3The second level of the polynomial hierarchy is Σp2 .
4PPAD stands for Polynomial Parity Arguments on Directed graphs.

7



INTEGER PROGRAMMING GAMES

and player B solves

max
xB

5xA1 x
B
1 + 23xA2 x

B
2 subject to 1 ≤ xB1 + 3xB2 ≤ 2 and xB ∈ {0, 1}2.

There is only one feasible strategy for each player in the IPG. Thus, it is easy to see that it has a unique equilibrium:
(xA, xB) = ((1, 0), (1, 0)). This equilibrium also holds for RIPG. However, RIPG possesses at least one more
equilibrium: (xA, xB) = ((0, 2

3 ), (0, 2
3 )).

Example 3 (RIPG has less equilibria than IPG) Consider the game where player A solves

max
xA

12xA1 x
B
1 + 5xA2 x

B
2 subject to 2xA1 + 2xA2 ≤ 3 and xA ∈ {0, 1}2,

and player B solves

max
xB

12xA1 x
B
1 + 5xA2 x

B
2 + 100xB1 subject to 2xB1 + xB2 ≤ 1 and xB ∈ {0, 1}2.

There are at least 2 equilibria: (xA, xB) = ((0, 0), (0, 0)) and (xA, xB) = ((0, 1), (0, 1)). However, none is an
equilibrium of the associated RIPG. In fact, in the RIPG, it is always a dominant strategy for player B to select
xB = ( 1

2 , 0), and the unique equilibrium is (xA, xB) = ((1, 0), ( 1
2 , 0)). In conclusion, the game has at least 2

equilibria while the associated relaxation has 1.

These examples show that no bounds on the number of NE and, thus, on the players’ payoffs in an NE can be extracted
from the relaxation of an IPG.

Moreover, there are no general methods to compute mixed equilibria of RIPGs, implying that we would be restricted to
pure equilibria (which may fail to exist). The exception is the case where payoffs are separable with linear functions,
i.e., of the form (6) with fpj linear. Under this setting, any mixed strategy profile of RIPG can be re-written as a pure
strategy profile without changing players’ payoffs (see the proof of Theorem 7 in Carvalho et al. (2019) where this is
shown). In other words, such RIPGs are guaranteed to have pure equilibria.

5.2 Algorithm formalization

Our goal is to determine an NE. Thus, from the Nash equilibrium definition, we aim to find σ = (σ1, . . . , σm) such
that

σp ∈ ∆(Xp) ∀p ∈M (13a)

Πp(σp, σ−p) ≥ Πp(xp, σ−p) ∀p ∈M, ∀xp ∈ Xp, (13b)

that is, we aim to determine a mixed profile of strategies such that no player has incentive to unilaterally deviate from
it. The number of pure strategies in each Xp is likely to be infinite or, in case all variables are integer and bounded, to
be exponential. Moreover, even with only two players, the left-hand-side of Inequalities (13b) is non-linear; recall the
expected payoff (7). Thus, in general, tackling Problem (13) directly will not be possible in practice.

We then follow the motivating idea of column generation (Gilmore and Gomory, 1961) and cutting plane (Gomory,
1958) approaches: many pure strategy profiles will be played with zero probability (Theorem 6) and only a subset of
the Constraints (13b) will be binding under an equilibrium. Indeed, we will decompose an IPG through its sampled
games, i.e., the IPG restricted to finite subsets of X .

Algorithm 1 presents our general methodology. In Step 1, we obtain our first sampled game represented by the subset
of pure strategy profiles S; computationally, we use its polymatrix normal-form representation, i.e., since players’
interactions are bilateral (12), we just need to save the payoffs for all pairs of pure strategies. Then, in Step 2, we
search for an NE σk of the obtained sampled game; note that any algorithmic approach for normal-form games can
be applied in this step. In Step 3, we verify if there is a player with incentive to deviate. Here, with exception to the
last iteration of the algorithm, we can both determine a player best reaction (2), or use some heuristic that finds a pure
strategy that does not decrease by more than ε the player payoff in comparison with the sampled game equilibrium.
If no player has incentive to deviate, the algorithm returns an ε-equilibrium. Otherwise, in Step 4, the sampled game
approximation is refined by adding the new pure strategy found in Step 3. We note that when ε = 0, the algorithm
outputs a NE. We call Algorithm 1 sampled generation method (SGM).

Figure 1 illustrates in normal-form (bimatrix-form) the sampled games progressively obtained through SGM. Intu-
itively, we expect SGM to enumerate the most “relevant” strategies and/or “saturate” the space X after a sufficient

8
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Algorithm 1: Sampled generation method (SGM).
Input: An IPG instance and ε ≥ 0.
Output: ε-equilibrium, last sampled game and number of iterations.

Step 1 Initialization:
S =

∏m
p=1 S

p ← Initialization(IPG) // Generation of sampled game. Details in Table 2
k ← 0
set Sdevk to be

∏m
p=1 ∅ // Record players deviation sets.

Step 2 Solve sampled game k:
σk ← SearchNE (S) // Computation of NE. Details in Section 5.2.1
list← PlayerOrder(Sdev0 , . . . , Sdevk ) // A list ordering players. Details in Table 2

Step 3 Termination:
for p ∈ list do

x(k + 1)← DeviationReaction(p, σ−pk ,Πp(σk), ε, IPG) // Incentive to deviate. Details in Table 2
if Πp(σk) + ε < Πp(x(k + 1), σ−pk ) then

go to Step 4

return σk, S, k
Step 4 Generation of next sampled game:

k ← k + 1
Spdevk ← {x(k)} // Record the deviation.
Sp ← Sp ∪ {x(k)}
go to Step 2

Player 2

S2
x2,2 · · · x2,j

Player 1

S1

↓
x1,1 −→

...
. . . ↓

x1,j+1

Figure 1: SGM for m = 2. The notation xp,k represents the player p’s strategy added at iteration k. A vertical
(horizontal) arrow represents player 1 (player 2) incentive to unilaterally deviate from the sampled game computed
equilibrium to a new strategy.

number of iterations and thus, approximate an equilibrium of the original IPG. Hopefully, we will not need to enumer-
ate all feasible strategies in order to compute an equilibrium.

Before providing the SGM’s proof of correctness, in an attempt to clarify the method and highlight its particularities
when continuous variables exist, we present the following example.

Example 4 (Computing an equilibrium with SGM) Consider an IPG with two players. Player iwishes to maximize
the payoff function maxxi≥0−(xi)2 + xix−i. The best reaction is given by xi(x−i) = 1

2x
−i, for i = 1, 2. The only

equilibrium is (x1, x2) = (0, 0). Let us initialize SGM with the sampled game Si = {10} for i = 1, 2, and always
start by checking first if player 1 has incentive to deviate. Then, in each iteration k, the sampled game has the pure
equilibrium (x1,k, x2,k−1) = ( 5

2k−1 ,
10

2k−1 ) if k is odd and (x1,k, x2,k−1) = ( 10
2k−1 ,

5
2k−1 ) if k is even. See Table 1 and

Figure 2 for an illustration of SGM iterative process evolution.

Player 2
10 x2,2 = 5

2

Player 1
10 (0,0) (-75.0, 18.75)

x1,1 =5 (25,-50) (-12.5,6.25)
x1,3 = 5

4 (10.9375,-87.5) (1.5625,-3.125)
Table 1: Sampled game after 3 iterations of SGM.

9
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Thus, SGM converges to the equilibrium (0, 0). If in the input of SGM, ε = 10−6 then, after 14 iterations, SGM would
return an ε-equilibrium of the game. Remark that in this case ε cannot be zero.

Figure 2: Players’ best reaction functions. The gray line represents the players deviations in each iteration of SGM.

Our goal is to guarantee that SGM computes an ε-equilibrium in finite time. To this end, some conditions on the IPGs
are necessary. If a player p’s set of feasible strategies is unbounded, the game may fail to have equilibria, and even if
it has equilibria, SGM may not converge. Furthermore, as pointed out by Stein et al. (2008) for a specific separable
game, it seems that there must be some bound on the speed variation (how fast it can change) of the payoffs in order
to guarantee that an algorithm computes an equilibrium in finite time. The Lipschitz condition ensures this bound.

Theorem 12 If X is nonempty and bounded, then in a finite number of steps, SGM computes

1. an NE, if all players’ decision variables are integer;

2. an ε-equilibrium with ε > 0, if each player p’s payoff function is Lipschitz continuous in Xp.

Proof.

SGM stops once an equilibrium of the sampled game coincides with an equilibrium (case 1) or an ε-equilibrium (case
2) of the IPG. Suppose that the method does not stop. This means that in every iteration at least a new strategy is added
to the current S.

Case 1: Given that X is bounded and players’ variables are integer, each player has a finite number of strategies.
Thus, after a finite number of iterations, the sampled game will coincide with IPG, i.e., S = X . This means
that an NE of the sampled game is an NE of the IPG.

Case 2: Each player p payoff function is Lipschitz continuous inXp, which means that there is a positive real number
Lp such that

|Πp(xp, σ−p)−Πp(x̂p, σ−p)| ≤ Lp ‖ xp − x̂p ‖ ∀xp, x̂p ∈ Xp,

where ‖ · ‖ is the Euclidean norm.
Consider an arbitrary iteration of SGM with σ as an NE of the current sampled game S. If σ is not an
ε-equilibrium of the original game, then there is a player p with incentive to deviate to xp ∈ Xp \ Sp, i.e.

Πp(xp, σ−p) > Πp(σ) + ε. (14)

Hence,

‖ xp − x̂p ‖> ε

Lp
, ∀x̂p ∈ Sp.

10
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Otherwise, there is x̂p ∈ Sp such that ‖ xp − x̂p ‖≤ ε
Lp which contradicts Inequality 14:

Πp(xp, σ−p)−Πp(σ)=Πp(xp, σ−p)−Πp(x̂p, σ−p) + Πp(x̂p, σ−p)−Πp(σ)

≤Πp(xp, σ−p)−Πp(x̂p, σ−p)

≤|Πp(xp, σ−p)−Πp(x̂p, σ−p)|

≤Lp ‖ xp − x̂p ‖≤ Lp ε
Lp

= ε.

The first step follows from the fact that σ is an NE of the sampled game and thus Πp(x̂p, σ−p) ≤ Πp(σ). The
next inequality holds because we are just applying the absolute value. The third step follows from the fact
that player p’s payoff is Lipschitz continuous in Xp.
Consequently, in each iteration of SGM, each newly added strategy xp to Sp is more than ε

Lp away from any
other strategy in Sp. Thus, after a sufficiently large number of iterations (if SGM has not stopped), it holds

‖ xp − x̂p ‖≤ ε

Lp
, ∀p ∈M,∀xp ∈ Xp.

Therefore, given an NE of the current sampled game, no player can improve her payoff more than ε through
unilateral deviations. In this way, σ is an ε-equilibrium of the IPG. �

A payoff function which is linear in that player’s variables is Lipschitz continuous; a quadratic payoff function when
restricted to a bounded set satisfies the Lipschitz condition. In Section 6.1.3, we will describe the knapsack game and
the kidney exchange game which have linear payoffs, and the lot-sizing game which has quadratic payoffs. Therefore,
Lipschitz continuity seems not to be too restrictive in practice.

5.2.1 Computation of NE for normal-form games

A relevant fact about computing equilibria for a sampled game with the set of strategies S ⊆ X is that S is finite
and, consequently, enables the use of general algorithms to compute equilibria of normal-form games. Given the good
results achieved by PNS (Porter et al., 2008) for the computation of a NE in normal-form games, this is the method that
our framework will apply to solve the sampled games (additional advantages for adopting PNS will be given in the end
of this section). PNS solves the constrained program (13) associated with a sampled game (i.e., X = S) through the
resolution of simpler subproblems. Note that in constraints (13b) the expected payoffs (7) are highly non-linear due
to the multiplication of the probability variables. To this end, PNS bases its search for an equilibrium σ by guessing
its support and using the fact that in an equilibrium σ ∈ ∆, each player must be indifferent among her strategies in the
support at which her payoff is maximized (Constraints (16a) and (16b)). Thus, an equilibrium σ of a sampled game S
satisfies

vp =Πp(x̂p, σ−p) ∀p ∈M, ∀x̂p ∈ supp(σp) (16a)

vp ≥Πp(xp, σ−p) ∀p ∈M, ∀xp ∈ Sp (16b)∑
xp∈supp(σp)

σp(xp) =1 ∀p ∈M (16c)

σp(xp) ≥ 0 ∀p ∈M, ∀xp ∈ supp(σp) (16d)
σp(xp) = 0 ∀p ∈M, ∀xp ∈ Sp \ supp(σp), (16e)

with supp(σp) ⊆ Sp and vp an auxiliary variable to represent player p maximum payoff. Problem (16) is called
Feasibility Problem. When the payoff functions have the form (12), the constraints in Problem (16) become linear,
and thus, it becomes solvable in polynomial time.

The computation of an NE to the sampled game S reduces to (i) finding an NE support and (ii) solving the associated
Feasibility Problem. Therefore, support sets in S are enumerated and the corresponding Feasibility Problems are
solved, until an NE is found (i.e., a Feasibility Problem is proven to be feasible). PNS implements this enumeration
with an additional step that decreases the number of Feasibility Problems to be solved, in other words, it reduces the
number of candidates to be the support of an equilibrium. A strategy xp ∈ Xp is conditionally dominated given a
subset of strategies R−p ⊆ X−p for the remaining players, if the following condition holds

∃x̂p ∈ Xp ∀x−p ∈ R−p : Πp(xp, x−p) < Πp(x̂p, x−p). (17)

PNS prunes the support enumeration search by making use of conditionally dominated strategies, since such strategies
will never be selected with positive probability in an equilibrium. In addition, we consider in the support enumeration
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the property given by Theorem 6: each player p has a support size of at most kp + 1; recall that to determine kp + 1,
one just needs write player p’s payoff as in the form (6).

We conclude SGM description by highlighting an additional advantage of PNS, besides being in practice the fastest
algorithm. The authors’ implementation of PNS (Porter et al., 2008) searches the equilibria by following a specific
order for the enumeration of the supports. In specific, for two players’ games, |M | = 2, the algorithm starts by
enumerating supports, first, by increasing order of their total size and, second, by increasing order of their balance
(absolute difference in the players’ support size). The idea is that in the case of two players, each equilibrium is
likely to have supports with the same (small) size. When |M | > 2, PNS exchanges the importance of these two
criteria. We expect SGM to start converging to an equilibrium as it progresses. Therefore, it may be advantageous
to use the past computed equilibria to guide the support enumeration. Including rules for support enumeration in
PNS is straightforward; these rules can be problem specific. On the other hand, doing so for other state-of-the-art
algorithms is not as easy. For instance, the well-known Lemke and Howson (1964) algorithm implies to start the
search for equilibria in an artificial equilibrium or in an equilibrium of the game (allowing to compute a new one).
Thus, since at iteration k of SGM, none of the equilibria computed for the sampled games in iterations 1 to k− 1 is an
NE of the current sampled game, there is no direct way of using past information to start or guide the Lemke-Howson
algorithm. Moreover, this algorithm’s search is performed by enumerating vertices of polytopes built according to
the game strategies. Therefore, since in each iteration of SGM a new strategy is added to the sampled game, these
polytopes may change deeply.

5.2.2 Modified SGM

Based on the framework described, we can slightly change the scheme of SGM presented in Algorithm 1, in an attempt
to speed up its running time. Its new version will be a depth-first search: while in SGM the size of the sampled game
strictly increases from one iteration to the next one, in its depth-first search version it will be possible to backtrack to
previous sampled games, with the aim of decreasing the size of the sampled game. In each iteration of the improved
SGM, we search for an equilibrium which has in the support the last strategy added to the sampled game; in case such
equilibrium does not exist, the method backtracks, and computes a new equilibrium to the previous sampled game.
While in each iteration of SGM all supports can be considered, in the modified SGM (m-SGM) we limit the search to
the ones with the new added strategy. Therefore, this modified SGM attempts to keep the size of the sampled game
small and decreases the number of supports enumerated.

Next, we concentrate in proving under which conditions the m-SGM computes an ε-equilibrium in finite time and
provide its detailed description.

Theorem 13 Let S = S1×S2× . . .×Sm represent a sampled game associated with some IPG. If the finite game that
results from S has a unique equilibrium σ, then one of the following implications holds:

1. σ is an equilibrium of the IPG;

2. given any player p with incentive to deviate from σp to xp ∈ Xp, the finite game game associated with
S′ = S1 × · · · × Sp−1 × (Sp ∪ {xp})× Sp+1 × · · · × Sm has xp in the support of all its equilibria.

Proof. Suppose σ is not an equilibrium of the IPG. Then, by the definition of equilibrium, there is a player, say player
p, with incentive to unilaterally deviate to some xp ∈ Xp \Sp. By contradiction, assume that there is an equilibrium τ
in S′ such that xp is played with zero probability (it is not in the support of τ ). First, τ is different from σ because now
S′ contains xp. Second, τ is an equilibrium for the game restricted to S, contradicting the fact that σ was its unique
equilibrium. �

In this way, if in an iteration of SGM the sampled game has an unique NE, in the subsequent iteration, we can prune the
support enumeration search of PNS by forcing the new strategy added to be in the support of the NE to be computed.
Note that it might occur that in the consecutive sampled games there is more than one NE and thus, an equilibrium
with the new added strategy in the support may fail to exist (Theorem 13 does not apply). Therefore, backtracking
is introduced so that a previously processed sampled game can be revisited and its support enumeration continued in
order to find a new NE and to follow a promising direction in the search. In Algorithm 2, m-SGM is described. The
subroutines called by it are described in Table 2 and can be defined independently. We will propose an implementation
of them in Section 6.2.

Figure 3 illustrates m-SGM. Fundamentally, whenever m-SGM moves forward (Step 3) a new strategy x(k + 1) is
added to the sampled game k that is expected to be in the support of the equilibrium of that game (due to Theorem 13).
For the sampled game k, if the algorithm fails to compute an equilibrium with x(k) in the support and Sdevk+1

not in
the supports (see “if” part of Step 4) the algorithm backtracks: it revisits the sampled game k − 1 with Sdevk added,

12
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Algorithm 2: Modified SGM (m-SGM).
Input: An IPG instance and ε ≥ 0.
Output: ε-equilibrium, last sampled game and number of the last sampled game.

Step 1 Initialization:
S =

∏m
p=1 S

p ← Initialization(IPG)

k ← 0
set Sdevk , Sdevk+1 and Sdevk+2 to be

∏m
p=1 ∅

σk ← (1, . . . , 1) is Nash equilibrium of the current sampled game S
list← PlayerOrder(Sdev0 , . . . , Sdevk )

Step 2 Termination:
while list non empty do

p← list.pop()

x(k + 1)← DeviationReaction(p, σ−pk ,Πp(σk), ε, IPG)

if Πp(σk) + ε < Πp(x(k + 1), σ−pk ) then
go to Step 3

return σk, S, k
Step 3 Generation of next sampled game:

k ← k + 1
Spdevk ← Spdevk ∪ {x(k)}
Sp ← Sp ∪ {x(k)}
Sdevk+2 ←

∏m
p=1 ∅

Step 4 Solve sampled game k:
Sizesord ← SortSizes(σ0, . . . , σk−1)
Strategiesord ← SortStrategies(S, σ0, . . . , σk−1)
σk ← PNSadaptation(S, x(k), Sdevk+1 , Sizesord, Strategiesord)

if PNSadaptation(S, x(k), Sdevk+1 , Sizesord, Strategiesord) fails to find equilibrium then
S← S\Sdevk+1

remove from memory σk−1 and Sdevk+2

k ← k − 1
go to Step 4 (backtrack)

else
list← PlayerOrder(Sdev0 , . . . , Sdevk )
go to Step 2

ALGORITHMS DESCRIPTION

Initialization(IPG) Returns sampled game of the IPG with one feasible strategy for each player.

PlayerOrder(Sdev0 , . . . , Sdevk ) Returns a list of the players order that takes into account the algorithm history.

DeviationReaction(p, σ
−p
k
,Πp(σk), ε, IPG) If there is xp ∈ Xp such that Πp(xp, σ

−p
k

) > Πp(σk) + ε, returns xp; otherwise, returns any
player p’s feasible strategy.

SortSizes(σ0, . . . , σk−1) Returns an order for the support sizes enumeration that takes into account the algorithm history.

SortStrategies(S, σ0, . . . , σk−1) Returns an order for the players’ strategies in S that takes into account the algorithm history.

PNSadaptation(S, x(k), Sdevk+1
, Sizesord, Strategiesord) Applies PNS in order to return a Nash equilibrium σ of the sampled game S of the IPG such that

x(k) ∈ supp(σ) and Sdevk+1
∩ supp(σ) = ∅; It makes the support enumeration according

with Sizesord and Strategiesord .

Table 2: Specialized subroutines. The algorithm history keeps record of the order in which strategies where added to
the sampled game.
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x(2)
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Sampled game 0

Sampled game 2

Sampled game 3
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x(2)

backtracking

x(2)

x(3)

backtracking

backtracking

Figure 3: Illustration of the sampled games generated by modified SGM during its execution.

so that no equilibrium is recomputed. It is crucial for the correctness of the m-SGM that it starts from a sampled game
of the IPG with an unique equilibrium. To this end, the initialization determines one feasible solution for each player.
See example 6 in the Appendix A to clarify the application of m-SGM.

Next, m-SGM correctness will be proven.

Lemma 14 In the m-SGM, the sampled game 0 is never revisited.

Proof. If the sampled game 0 is revisited, it would be because the algorithm backtracks. Suppose that at some
sampled game k > 0, the algorithm consecutively backtracks up to the sampled game 0. Consider the first sampled
game j < k that is revisited in this consecutive bactracking such that the last time that it was built by the algorithm
it had an unique equilibrium where x(j) was in the support and its successor, sampled game j + 1, had multiple
equilibria. By Theorem 13, when the algorithm moves forward from this sampled game j to j + 1, all its equilibria
have x(j + 1) in their support. Therefore, at this point, the m-SGM successfully computes an equilibrium and moves
forward. The successor, sampled game j + 2, by construction, has at least one equilibrium and all its equilibria must
have x(j + 1) or x(j + 2) in the supports. Thus, either the algorithm (case 1) backtracks to the sampled game j + 1
or (case 2) proceeds to the sampled game j + 3. In case 1, the algorithm successfully computes an equilibrium with
x(j + 1) in the support and without x(j + 2) in the support, since the backtracking proves that there is no equilibrium
with x(j + 2) in the support and, by construction, the sampled game j + 1 has multiple equilibria. Under case 2, the
same reasoning holds: the algorithm will backtrack to the sampled game j + 2 or move forward to the sampled game
j + 3. In this way, because of the multiple equilibria in the successors of sampled game j, the algorithm will never be
able to return to the sampled game j and thus, to the sampled game 0. �

Observe that when a sampled game k − 1 is revisited, the algorithm only removes the strategies Sdevk+1
from the

current sampled game k (“if” part of Step 4). This means that in comparison with the last time that the algorithm built
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the sampled game k − 1, it has the additional strategies Sdevk . Therefore, there was a strict increase in the size of the
sampled game k − 1.

Lemma 15 There is a strict increase in the size of the sampled game k when the m-SGM revisits it.

Corollary 16 If X is nonempty and bounded, then in a finite number of steps, m-SGM computes

1. an equilibrium if all players’ decision variables are integer;

2. an ε-equilibrium with ε > 0, if each player p’s payoff function is Lipschitz continuous in Xp.

Proof. The while of Step 2 ensures that when the algorithm stops, it returns an equilibrium (case 1) or ε-equilibrium
(case 2). Since by Lemma 14 the algorithm does not revisit sampled game 0, it does not run into an error5. Moreover,
if the algorithm is moving forward to a sampled game k, there is a strict increase in the size from the sampled game
k − 1 to k. Likewise, if the algorithm is revisiting a sampled game k, by Lemma 15, there is also a strict increase
with respect to the previous sampled game k. Therefore, applying the reasoning of Theorem 12 proof, m-SGM will
compute an equilibrium (case 1) or ε-equilibrium (case 2) in a finite number of steps. �

Algorithm m-SGM is initialized with a sampled game that contains one strategy for each player which ensures that its
equilibrium is unique. However, note that in our proof of the algorithm correctnes,s any initialization with a sampled
game with a unique equilibrium is valid. Furthermore, m-SGM might be easily adapted in order to be initialized with a
sampled game containing more than one NE. In the adaptation, backtracking to the sampled game 0 can occur and thus,
the PNS support enumeration must be total, this is, all NE of the sampled game 0 must be feasible. The fundamental
reasoning is similar to the one of the proof of Lemma 14: if there is backtracking up to the initial sampled game 0, it is
because it must contain an NE not previously computed, otherwise the successors would have successfully computed
one.

5.3 Extensions: correlated equilibria

The SGM framework can be easily adapted to determine other game solution concepts. For example, one may aim
to compute a well-supported ε-equilibrium, i.e., a profile of strategies σ ∈ ∆ where each player pure strategy in the
support is an ε-best response. This would require to simply change Step 2 of SGM that computes an equilibrium of
the sampled game to compute a well-supported ε-equilibrium. Concretely, if one is using PNS, in Problem (2), we
would replace Constraints (16a) and (16b) by

Πp(x̂p, σ) ≥Πp(xp, σ)− ε ∀p ∈M, ∀x̂p ∈ supp(σp),∀xp ∈ Sp. (18a)

Alternatively, in a two-player IPG, one could aim to compute a 1
2 -equilibrium to take advantage of the existence of

a linear time algorithm to compute a 1
2 -equilibrium for normal-form games, reducing considerably the computational

time of SGM as the most costly step will be replaced by a linear time algorithm (Daskalakis et al., 2006).

Another important solution concept is the one of correlated equilibrium, introduced in Section 1. The main factor
that distinguishes these two definitions is that in correlated equilibria are not restricted to independent distributions for
each player. In fact, the set of correlated equilibria contains the set of Nash equilibria. This difference considerably
decreases the difficulty of determining correlated equilibria. For instance, compare the expected payoffs (7) and (8):
the first is highly non-linear in σ ∈ ∆, while the second is linear in τ ∈ ∆(X). This is the motivation behind
PNS which by fixing a potential support for a Nash equilibrium already eliminates a term from the non-linearity
in (7). On the other hand,

∏
σi(xi) is replaced by a unique probability σ(x) when we consider correlated equilibria.

Correlated equilibria can be interpreted as a third party signaling the players on what they should do; this is a reasonable
assumption in many applications where players have access to news, historical behavior, etc. In the framework of
SGM, Step 2 and Step 3 must be changed in order to compute a CE for an IPG.

In Step 2, we must compute a CE of the sampled game. Mathematically, τ ∈ ∆(S) is a correlated equilibrium of a
sampled game S if ∑

x∈S:xp=x̄p

Πp(x)τ(x) ≥
∑

x∈S:xp=x̄p

Πp(x̂p, x−p)τ(x) ∀p ∈M,∀x̄p, x̂p ∈ Sp (19a)∑
x∈S

τ(x) =1 (19b)

τ(x) ≥0 ∀x ∈ S. (19c)
5By construction sampled game 0 as a unique equilibrium.
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Note that all constraints are linear. Hence, we can even add a linear objective function allowing to compute the asso-
ciated optimal correlated equilibrium without increasing this step time complexity. For example, one could compute
the correlated equilibrium that maximizes the social welfare∑

p∈M
Πp(τ) =

∑
p∈M

∑
x∈S

Πp(x)τ(x).

In Step 3, the instructions inside the cycle for player p are also modified. For each x̄p ∈ Sp, we must solve

Πp
∗ = max

x̂p∈Xp

∑
x∈S:xp=x̄p

Πp(x̂p, x−p)τ(x), (20)

i.e., compute player p best response to τ when she is “advised’ by the third party to play x̄p. If Πp
∗ >∑

x∈S:xp=x̄p Πp(x)τ(x), then Constraint (19a) is not satisfied for the IPG and hence, the computed strategy by solving
Problem (20) must be added to the sampled game. In fact, it is easy to see that we can reduce this verification step to
the x̄p ∈ supp(τ).

Once a correlated equilibrium to IPG has been obtained, we also verify whether it gives origin to a Nash equilibrium:

Definition 17 For τ ∈ ∆(X), a τ -based Nash equilibrium is a Nash equilibrium σ where for each player p ∈ M ,
supp(σp) ⊆ {x̄p ∈ Sp :

∑
x∈S:xp=x̄p τ(x) > 0} and Πp(σ) = Πp(τ)6.

Finally, we note that in Stein (2007) (Theorem 3.3.6), it is shown that for separable games there is a CE described by
a finitely supported distribution.

6 Computational investigation

Section 6.1 presents the three (separable) simultaneous IPGs, the knapsack game, the kidney exchange game and
the competitive lot-sizing game, in which SGM and m-SGM will be tested for the computation of NE and CE. In
Section 6.2, our implementations of the specific components in Table 2 are described, which have practical influence
in the algorithms’ performance. Our algorithms are validated in Section 6.3 by computational results on instances of
the three presented IPGs. Our instances and implementations are publicly available7.

6.1 Case studies

Next, the three games in which we test our algorithms are described: the knapsack game, the simplest purely integer
programming game that one could devise, the kidney exchange game and the competitive lot-sizing game whose
practical applicability is discussed.

6.1.1 Knapsack game.

One of the most simple and natural IPGs would be one with each player’s payoff function being linear in her variables.
This is our main motivation to analyze the knapsack game. Under this setting, each player p aims to solve

max
xp∈{0,1}n

n∑
i=1

vpi x
p
i +

m∑
k=1,k 6=p

n∑
i=1

cpk,ix
p
i x
k
i (21a)

s. t.
n∑
i=1

wpi x
p
i ≤W

p. (21b)

The parameters of this game are integer (but are not required to be non-negative). This model can describe situations
where m entities aim to decide in which of n projects to invest such that each entity budget constraint (21b) is satisfied
and the associated payoffs are maximized (21a). The second summation in the payoff (21a) can describe a benefit,
cpk,i > 0, or a penalization, cpk,i < 0, when both player p and player k invest in project i; note also that since all

variables are binary (xpi )
2

= xpi ; player p’s payoff function is linear in xp. This means that in our algorithms, when

6Since σ is a Nash equilibrium, Πp(σ) = Πp(τ) is equivalent to Πp(xp, σ−p) = Πp(τ),∀xp ∈ supp(σp). We use this in the
feasibility problem to compute τ -based Nash equilibria when τ is a correlated equilibrium.

7https://github.com/mxmmargarida/IPG
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we verify if a player has incentive to deviate from her current strategy, the variables x−p are fixed, and thus, the best
reaction corresponds to an integer linear program.

In the knapsack game, each player p’s set of strategies Xp is bounded, since she has at most 2n feasible strategies.
Therefore, by Theorem 6, it suffices to study finitely supported equilibria. Since payoffs are linear, through the proof
of Theorem 6, we deduce that the bound on the equilibria supports for each player is n + 1. We can sightly improve
this bound using basic polyhedral theory (see Nemhauser and Wolsey (1988)). First, note that a player p’s optimization
problem is linear in her variables, implying her set of pure optimal strategies to a fixed profile of strategies σ−p ∈ ∆−p

to be in a facet of conv(Xp). Second, the part in the payoffs of player p’s opponents that depends on player p’s strategy,
only takes into account the expected value of xp. The expected value of xp is a convex combination of player p’s pure
strategies. Thus, putting together these two observations, when player p selects an optimal mixed strategy σp to
σ−p, the expected value of xp is in a facet of conv(Xp). A facet of conv(Xp) has dimension n − 1, therefore, by
Carathéodory’s theorem (Bertsekas et al., 2003), any point of this facet can be written as a convex combination of n
strategies of Xp. Thus,

Lemma 18 Given an equilibrium σ of the knapsack game, there is an equilibrium τ such that |supp(τp)| ≤ n and
Πp(σ) = Πp(τ), for each p = 1, . . . ,m.

6.1.2 Two-player kidney exchange game

Roth et al. (2005) introduced a kidney exchange game between transplantation centers. We recover the 2-player
kidney exchange game version of Carvalho et al. (2016). In this game, there are two countries with their own kidney
exchange programs (KEPs), i.e., a national system that allows patients in a need of a kidney transplant to register with
an incompatible donor, and to perform donor exchanges. Mathematically, KEPs are represented by directed graphs
where each vertex is an incompatible patient-donor pair and an arc from a vertex v to a vertex u means that the donor
of pair v is compatible with the patient of pair u. The goal of a KEP is to maximize the patients benefit by finding
disjoint cycles in the graph, i.e., feasible kidney exchanges. In the kidney exchange game, countries try to optimize
their patients benefit by joining their KEP pools. In this game, countriesA andB aim to solve the following problems:

(CountryA) maximize
xA∈{0,1}|CA|+|I|

∑
c∈CA

wAc x
A
c +

∑
c∈I

wAc x
A
c x

B
c (22a)

subject to
∑

c∈CA:i∈c

xAc +
∑

c∈I:i∈c
xAc ≤ 1 ∀i ∈ V A, (22b)

(CountryB) maximize
xB∈{0,1}|CB |+|I|

∑
c∈CB

wBc x
B
c +

∑
c∈I

wBc x
A
c x

B
c (23a)

subject to
∑

c∈CB :i∈c

xBc +
∑

c∈I:i∈c
xBc ≤ 1 ∀i ∈ V B , (23b)

where V p and Cp are the set of incompatible patient-donor pairs and feasible cycles of country p ∈ {A,B}, wpc
is the benefit of the patients from country p ∈ {A,B} in cycle c, and I is the set of feasible international cycles.
Essentially, countries directly decide their national-wide exchanges, while international exchanges require them both
to agree. In Carvalho et al. (2016), the international exchange decisions are taken instead by an independent agent that
maximizes the overall benefit over the available pairs for international exchanges:

maximize
y∈{0,1}|I|

∑
c∈I

(wAc + wBc )yc (24a)

subject to
∑

c∈I:i∈c
yc ≤ 1−

∑
c∈CA:i∈c

yAc −
∑

c∈CB :i∈c

yBc ∀i ∈ V A ∪ V B , (24b)

with yA ∈ {0, 1}|CA| and yB ∈ {0, 1}|CB | corresponding to the internal exchanges selected by country A and B,
respectively. Here, countries A and B simultaneously choose their internal exchanges, and afterwards the independent
agent selects the international exchanges. In our IPG (22)-(23), countries A and B simultaneously choose their internal
exchanges and the international exchanges they would like to take place. Without this simplification in our IPG, each
country would have in its constraints the independent agent optimization, rendering even the computation of a player
best reaction computationally hard (Smeulders et al., 2020). In our setting, there is no independent agent decision.
Instead, there is a direct agreement of the countries in the international exchanges (bilateral terms in the payoffs). In
fact, we can prove that the obtained game contains the pure Nash equilibria of the original game in Carvalho et al.
(2016).
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Lemma 19 Any pure Nash equilibrium of Carvalho et al. (2016) has an equivalent pure Nash equilibrium in the IPG
described by Problems (22) and (23), in the sense that countries internal strategies coincide, as well as, their agreed
international exchanges (thus, payoffs are maintained).

Proof. Let (ŷA, ŷB , ŷ) be a pure Nash equilibrium of the game in Carvalho et al. (2016). We claim that (x̂A, x̂B)
with x̂p = (ŷp, ŷ) for p ∈ {A,B} is a pure Nash equilibrium of the IPG described by Problems (22) and (23). To
see this, we show that player A has no incentive to deviate from (x̂A, x̂B); for player B the reasoning is completely
analogous. First, note that any deviation from the international exchanges in y can only decrease player A’s benefit
as player B has agreed exactly on the international exchanges ŷ. Hence, we just need to consider deviations from
the internal exchanges ŷA (and eventually, replace some ones by zeros in ŷ for international exchanges that become
unavailable). However, if player A can increase the benefit of internal exchanges in the IPG, this would have also been
true in the game in Carvalho et al. (2016).

Three important remarks must be stressed. First, the result above does not hold for (general) mixed equilibria. How-
ever, as the experiments will show, we always determine pure equilibria which have the practical value of being simpler
to implement. Second, the opposite direction of the lemma does not hold: if only cross-border exchanges exist, i.e.,
CA = CB = ∅, then (xA, xB) = (0, 0) is an equilibrium of the IPG, while in Carvalho et al. (2016), the independent
agent would select at least one cross-borde exchange. Third, in the proof of Lemma 19, we did not use in our reason-
ing the length of the cycles in CA and CB . This is particularly interesting since in Carvalho et al. (2016), only the
properties of the game when there are cycles of length 2 were characterized. Thus, our methodology allow us to go
beyond this element; in practice, most countries consider cycles of length 2 and 3 (Biró et al., 2019).

Although, our IPG formulation of the kidney exchange game avoids loosing pure equilibria of the original game Car-
valho et al. (2016), this game suffers from the existence of multiple pure Nash equilibria: for any player B’s strategy
xB , there is a player A’s best response xA where only a subset of the international exchanges c ∈ I with xBc = 1 are
selected; the same holds with the players’ roles inverted; hence, (xA, x̄B) where x̄B is player B’s best response to xA
is a Nash equilibrium. Motivated by this we decided to use the concept of maximal Nash equilibrium.

Definition 20 In an IPG where all players variables are restricted to take binary values, a pure strategy xp for p ∈M
is called maximal, if (xp1, . . . , x

p
j−1, 1, x

p
j+1, . . . , x

p
np) /∈ Xp for j = 1, . . . , np with xpj = 0. A Nash equilibrium

σ ∈ ∆ is maximal if for each player p ∈M , each xp ∈ supp(σp) is maximal.

Lemma 21 For the IPG described by Problems (22) and (23), any Nash equilibrium of it restricted to maximal
strategies is a Nash equilibrium of the game without this restriction. Moreover, the pure Nash equilibria of Carvalho
et al. (2016) are contained on the equilibria of this restricted game.

Proof. Let σ be a Nash equilibrium of the restricted IPG game. If it is not a Nash equilibrium of the IPG, then w.l.o.g.
country A has incentive to deviate. This deviation must be to a non-maximal strategy x̄A. Note that we can make x̄A
maximal by changing its 0 entries to 1 until the strategy becomes infeasible. Note that making x̄A maximal does not
damage on country A’s payoff. This contradicts the fact that σ was a Nash equilibrium of the restricted game.

For the second part of the lemma, start by noting that in a pure equilibrium (yA, yB) of Carvalho et al. (2016), each
player p is certainly selecting a maximal set of internal cycles, i.e., no entry with ypc = 0 for c ∈ Cp can become
1 without violating feasibilty. Furthermore, in Carvalho et al. (2016), there is an agent that maximizes the overall
benefit of international exchanges once players have decided their internal cycles. Hence, this agent is also selecting a
maximal set of international exchanges. Therefore, by Lemma 19, (yA, yB) can be converted in an equilibrium of the
IPG described by Problems (22) and (23).

In this way, we restrict our experiments to maximal strategies (and consequently, maximal equilibria) for the kidney
exchange game in an attempt to improve social welfare outcomes, avoiding dominated equilibria. Before proceeding
to the next section, we observe that in Carvalho et al. (2016), it was show that when cycles are restricted to length 2, the
game is potential and it was conjectured a potential function when the cycles length is restricted to 3. In appendix B,
we show a negative answer to the conjectured function.

6.1.3 Competitive lot-sizing game.

The competitive lot-sizing game (Carvalho et al., 2018b) is a Cournot competition played through T periods by a set
of firms (players) that produce the same good. Each firm has to plan its production as in the lot-sizing problems (see
Pochet and Wolsey (2006)) but, instead of satisfying a known demand in each period of the time horizon, the demand
depends on the total quantity of the produced good that exists in the market. Each firm p has to decide how much will
be produced in each time period t (production variable xpt ) and how much will be placed in the market (variable qpt ).
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There are set-up and variable (linear) production costs, upper limit on production quantities, and a producer can build
inventory (variable hpt ) by producing in advance. In this way, we obtain the following model for each firm p:

max
yp,xp,qp,hp

T∑
t=1

(at − bt
m∑
j=1

qjt )q
p
t −

T∑
t=1

F pt y
p
t −

T∑
t=1

Cpt x
p
t −

T∑
t=1

Hp
t h

p
t (25a)

subject to xpt + hpt−1 = hpt + qpt for t = 1, . . . , T (25b)

0 ≤ xpt ≤M
p
t y

p
t for t = 1, . . . , T (25c)

hp0 = hpT = 0 (25d)

ypt ∈ {0, 1} for t = 1, . . . , T (25e)

where F pt is the set-up cost, Cpt is the variable cost, Hp
t is the inventory cost and Mp

t is the production capacity for
period t; at − bt

∑m
j=1 q

j
t is the unit market price. The payoff function (25a) is firm p’s total profit; constraints (25b)

model product conservation between periods; constraints (25c) ensure that the quantities produced are non-negative
and whenever there is production (xpt > 0), the binary variable ypt is set to 1 implying the payment of the setup cost
F pt .

Each firm p’s payoff function (25a) is quadratic in qp due to the term
∑T
t=1−bt(q

p
t )2. Next, we show that it satisfies

the Lipschitz condition which guarantees that our algorithms compute an ε-equilibrium in finite time. Noting that
player p does not have incentive to select qpt >

at
bt

(since it would result in null market price), we get

|
T∑
t=1

bt(q
p
t )2 −

T∑
t=1

bt(q̂
p
t )2|=|

T∑
t=1

bt
(
(qpt )2 − (q̂pt )2

)
|

=|
T∑
t=1

bt ((qpt ) + (q̂pt )) ((qpt )− (q̂pt )) |

≤

√√√√ T∑
t=1

b2t ((qpt ) + (q̂pt ))
2

√√√√ T∑
t=1

((qpt )− (q̂pt ))
2

≤

√√√√ T∑
t=1

b2t

(
2at
bt

)2

· ‖ qp − q̂p ‖

≤

√√√√ T∑
t=1

4a2
t · ‖ qp − q̂p ‖ .

In the third step, we used Cauchy–Schwarz inequality. In the fourth inequality, we use the upper bound at
bt

on the
quantities placed in the market.

In Carvalho et al. (2018b), it was proven that there is a function that is potential for this game; a maximum of this
function is a (pure) equilibrium (recall Lemma 8). This is an additional motivation to analyze our framework in this
problem: it can be compared with the maximization of the associated potential function.

6.2 Implementation details

Both our implementations of the m-SGM and SGM use the following specialized functions.

Initialization(IPG). The equilibrium computed by our methods depends on their initialization as the following
example illustrates.

Example 5 Consider an instance of the two-player competitive lot-sizing game with the following parameters: T = 1,
a1 = 15, b1 = 1, M1

1 = M2
1 = 15, C1

1 = C2
1 = H1

1 = H2
1 = 0, F 1

1 = F 2
1 = 15. It is a one-period game, therefore

the inventory variables, h1
1 and h2

1, can be removed and the quantities produced are equal to the quantities placed in
the market (that is, x1

1 = q1
1 and x2

1 = q2
1). Given the simplicity of the players optimization programs (25), we can

analytically compute the players’ best reactions that are depicted in Figure 4.
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The game possesses two (pure) equilibria: x̂ = (x̂1, ŷ1, x̂2, ŷ2) = (0, 0; 7.5, 1) and x̃ = (x̃1, ỹ1, x̃2, ỹ2) =
(7.5, 1; 0, 0). Thus, depending on the initialization of m-SGM, it will terminate with x̂ or x̃: Figure 4 depicts the
convergence to x̂ when the initial sampled game is S = {(2, 1)} × {(5, 1)} and to x̃ when the initial sampled game is
S = {(4, 1)} × {(1, 1)}.

Figure 4: Players’ best reaction functions. Pure NE are indicated in yellow. The gray arrows display the sampled game
evolution for the initial games S = {(2, 1)} × {(5, 1)} and S = {(4, 1)} × {(1, 1)}.

In an attempt to keep as small as possible the size of the sampled games (i.e., number of strategies explicitly enumer-
ated), the initialization implemented computes a unique pure strategy for each player. We experimented initializing
the algorithm with the social optimal strategies (strategies that maximize the total players’ payoffs), pure equilibrium
for the potential part of the game8, and optimal strategies if the players were alone in the game (i.e., opponents’ vari-
ables were set to be zero). In general, there was no evident advantage on the speed of computations for one of these
initializations. This result was somehow expected, since, particularly for the knapsack game instances, it is not evident
whether the game has an important coordination part (in the direction of social optimum) or an important conflict part.
Therefore, our implementation initializes with the players’ strategies that are optimal when they are alone in the game
for the knapsack and lot-sizing game. For the kidney exchange game, the initialization does not change significantly
the speed of equilibria computation but it interferes in the equilibria found which in this context is associated with
the set of patients expected to receive a transplant. For this reason, the kidney exchange game is initialized with each
country optimal strategy when it controls the opponents variables. This allows countries to select their preferred inter-
national exchanges, allowing them to take advantage of the joint KEP. Otherwise, if we keep the same initialization of
the knapsack and lot-sizing games, we will see NE with lower social welfare (i.e., total benefit for patients).

PlayerOrder(Sdev0 , . . . ,Sdevk). The equilibrium returned by our algorithms depends on the players’ order when
we check their incentives to deviate in the Termination steps: for the equilibrium σk of the sampled game k, there
might be more than one player with incentive to deviate from σk, thus the successor will depend on the player that is
selected. If players’ index order is considered, the algorithm may take longer to converge to an equilibrium: it will
be likely that it first finds an equilibrium of the game restricted to players 1 and 2, then an equilibrium of the game
restricted to players 1, 2 and 3, and so on. Thus, this implementation sorts the players by decreasing order of number
of previous iterations without receiving a new strategy.

DeviationReaction(p, σ−pk ,Πp(σk), ε, IPG). When checking if a player p has incentive to deviate, it suffices to
determine whether she has a strategy that strictly increases her payoff when she unilaterally deviates to it. Nowadays,
there are software tools that can solve mixed integer linear and quadratic programming problems9 effectively. Thus,

8We only experimented this for the knapsack game. We consider the potential part of the knapsack game, when the parameters
cpk,i in each player’s payoff function are replaced by 1

2
(cpk,i + ckp,i) in player p’s payoff.

9In the knapsack and kidney exchange games, a player’s best reaction problem is an integer linear programming problem. In
the competitive lot-sizing problem, a player best reaction problem is a mixed integer quadratic programming problem (it becomes
continuous and concave once the binary variables yp are fixed).
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our implementation solves the player p’s best reaction problem (2) to σ−pk . We use Gurobi 9.0.010 to solve these
reaction problems.

SortSizes(σ0, . . . , σk−1). Porter et al. (2008) recommend that the support strategies’ enumeration starts with sup-
port sizes ordered, first, by total size (

∑m
p=1 s

p with sp the support size for player p), and, second, by a measure of
balance (except, in case of a 2-players game where these criteria importance is reversed). However, in our methods,
from one sampled game to its successor or predecessor, the sampled game at hand just changes by one strategy, and
thus we expect that the equilibria will not change too much either (in particular, the support sizes of consecutive
sampled games are expected to be close). Therefore, our criterion to sort the support sizes is by increasing order of:

For m = 2: first, balance, second, maximum player’s support size distance to the one of the previously computed
equilibrium, third, maximum player’s support size distance to the one of the previously computed equilibrium
plus 1 and, fourth, sum of the players’ support sizes;

For m ≥ 3: first, maximum player’s support size distance to the one of the previously computed equilibrium, second,
maximum player’s support size distance to the one of the previously computed equilibrium plus 1, third, sum
of the players’ support sizes and, fourth, balance.

For the initial sampled game, the criteria coincide with PNS.

SortStrategies(S, σ0, . . . , σk−1). Following the previous reasoning, the strategies of the current sampled game are
sorted by decreasing order of their probability in the predecessor equilibrium. Thus, the algorithm will prioritize
finding equilibria using the support strategies of the predecessor equilibrium.

Note that the function PNSadaptation(S, x(k),Sdevk+1
, Sizesord, Strategiesord) is specific for the m-SGM. The basic

SGM calls PNS without any requirement on the strategies that must be in the support of the next equilibrium to be
computed; in other words, x(k) and Sdevk+1

are not in the input of the PNS.

6.3 Computational results

In this section, we will present the computational results for the application of the modified SGM and SGM to the
knapsack, kidney exchange and competitive lot-sizing games in order to define a benchmark and to validate the impor-
tance of the modifications introduced. For the competitive lot-sizing game, we further compare these two methods with
the maximization of the game’s potential function (which corresponds to a pure equilibrium). In our computational
analyzes, we also include the SGM adaption for the computation of CE.

For building the games’s data, we have used the Python’s random module; see Foundation (2012). All algorithms
have been coded in Python 3.8.3. Since for our three IPGs the Feasibility Problems are linear (due to the bilateral
interaction of the players in each of their objective functions), we use Gurobi 9.0.0 to solve them. The experiments
were conducted on a Intel Xeon Gold 6226 CPU processor at 2.70 GHz, running under Oracle Linux Server 7.9, and
restricted to a single CPU thread (with exception to Gurobi calls which were restricted to at most 2 CPU threads).

6.3.1 Knapsack Game

In these computations, the value of ε wasset to zero since this is a purely integer programming game. The parameters
vpi , cpk,i, and wpi are drawn independently from a uniform distribution in the interval [−100, 100] ∩ Z. For each value
of the pair (n,m), 10 independent instances were generated. The budget W p is set to b INS

11

∑n
i=1 w

p
i c for the instance

number “INS”.

NE computation. Tables 3 and 4 report the results of m-SGM and SGM algorithms. The tables show the number
of items (n), the instance identifier (“INS”), the CPU time in seconds (“time”), the number of sampled games (“iter”),
the type of equilibrium computed, pure (“pNE”) or strictly mixed (“mNE”), in the last case, the support size of the NE
is reported, the number of strategies in the last sampled game (

∏m
p=1 |Sp|) and the number of backtrackings (“numb.

back”). We further report the average results for each set of instances of size n. The algorithms had a limit of one
hour to solve each instance. Runs with “tl” in the column time indicate the cases where algorithms reached the time
limit. In such cases, the support size of the last sampled game’s equilibrium is reported and we do not consider those
instances in the average results row.

As the instance size grows, both in the size n and in the number of players m, the results make evident the advantage
of the m-SGM. Since a backward step is unlikely to take place and the number of sampled games is usually equal

10www.gurobi.com
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for both algorithms, the advantage is in the support enumeration: m-SGM reduces the support enumeration space by
imposing at iteration k the strategy x(k) to be in the support of the equilibrium, while SGM does not. Later in this
section, we discuss the reasons why backtracking is unlikely to occur.

In Table 3, we can observe that for instance 6 with n = 100, the m-SGM computational time is significantly higher
than SGM. This atypical case is due to the fact that both algorithms have different support enumeration priorities, and
therefore, they compute the same equilibria on their initial iterations, but at some point, the algorithms may determine
different equilibria, leading to different successor sampled games. Nevertheless, for this instances, m-SGM and SGM
output the same NE.

We note that the bound n for the players’ support sizes in an equilibrium (recall Lemma 18) did not contribute to prune
the search space of PNS support enumeration, since the algorithm terminates with sampled games ofmuch smaller size.

CE computation. Next, we present the computational results when the scheme of SGM is adapted for the determi-
nation of CE as described in Section 5.3.

Tables 5 and 6 summarize our experiments. The columns meaning is the same as before. The new column “τ -
based NE?” answers whether the computed correlated equilibrium τ leads to a NE; recall Definition 17. And column
“1− Social(σ)

Social(τ) ” provides the social welfare decrease by moving from the correlated equilibrium τ to the NE σ computed
in the previous experiment. We do not provide this column for the 2-player case because it is always 0.

For the 2-player case, see Table 5, the computation of CE is much faster than the computation of NE (recall Table 3).
In fact, although the number of iterations for the computation of CE is larger, it compensates the fact that searching
for a CE is much faster than searching for a NE of the sampled games. The most surprising conclusion is on the fact
that all computed CE allowed the computation of NE. This stresses further interest on CE search.

In the 3-player case, see Table 6, conclusions are similar: the computation of CE is generally much faster than the
computation of NE (an outlier is instance 7 with n = 4) and the number of iterations is larger for CE determination.
On the other hand, not all CE allowed to determine a NE accordingly with Definition 17. Moreover, in this case, the
selection of a CE in the sampled game that optimizes social welfare seems to payoff in comparison with the social
welfare of the previous computed NE.

6.3.2 Two-player kidney exchange game

As in the experiments for the knapsack game, the value of ε is zero. We used the instances of Constantino et al.
(2013)11 based on the US population (Saidman et al., 2006). From this dataset, we used compatability graphs with
sizes (i.e., total number of vertices) equal to 20, 40, 60 and 80 vertices. Given that the primary goal is to maximize the
number of patients receiving a kidney, we used unitary weights, i.e., wpc corresponds to the number of patients from
country p in the cycle c. For each graph size, there are 50 instances, except for size 20 where there are 49 instances.
The bound on the cycles length considered was 3. Finally, we assign half of the vertices to each country.

NE computation. Table 7 presents our results for the computation of Nash equilibria. Besides the previous de-
scribed column entries, the table presents the average time in seconds to determine a social optimum (“Social opt
time”), the average ratio between the NE social welfare and the social optimum (“price of NE”), each country average
payoff decrease ratio when acting alone in comparison to joining the game and playing the NE (“Πp decrease”), and
the percentage of solved instances (“% Solved”).

The second column of the table already reflects the difficulty of the best reaction integer programs: computing the
social optimum is equivalent to optimizing the sum of the players payoffs subject to their restrictions. This problem is
NP-hard when cycles are limited to length 3. Nevertheless, we were able to compute a pure NE for all our instances in
less than 1 second. For graphs of size 20 and 40, the loss on social welfare for playing a NE is not significant, and the
players’ benefit for joining the game is considerable. On the other hand, for the graph of size 100, the conclusion is
reversed. Thus, our results reveal the need of designing game rules ensuring that both the social welfare is increased,
as well as, the players benefit for participating in the game.

CE computation. Table 8 summarizes our results for the computation of CE. Since the support size of all deter-
mined CE is 1, it is easy to see that they are themselves NE. These results seem to indicate that it would be enough
to search for CE in order to determine a NE. However, the determination of CE is more costly as the termination step
of SGM must solve for each player p as many Problems (20) as the size of Sp of the sampled game, while for the

11Instances available in https://rdm.inesctec.pt/dataset/ii-2019-001
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m-SGM SGM

n INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time iter pNE mNE
∏m
p=1 |S

p|

20 0 0.03 10 0 [3, 3] [5, 6] 0 0.03 10 0 [3, 3] [5, 6]

1 0.02 8 0 [3, 3] [4, 5] 0 0.02 8 0 [3, 3] [4, 5]

2 0.01 4 0 [2, 2] [2, 3] 0 0.01 4 0 [2, 2] [2, 3]

3 0.01 6 0 [2, 2] [4, 3] 0 0.01 6 0 [2, 2] [4, 3]

4 0.01 4 1 0 [3, 2] 0 0.01 4 1 0 [3, 2]

5 0.01 4 0 [2, 2] [3, 2] 0 0.01 4 0 [2, 2] [3, 2]

6 0.01 4 1 0 [3, 2] 0 0.01 4 1 0 [3, 2]

7 0.01 5 0 [2, 2] [3, 3] 0 0.01 5 0 [2, 2] [3, 3]

8 0.01 5 0 [2, 2] [3, 3] 0 0.01 5 0 [2, 2] [3, 3]

9 0.01 4 1 0 [3, 2] 0 0.01 4 1 0 [3, 2]

time iter pNE mNE |S1| |S2| time iter pNE mNE |S1| |S2|

avg 0.01 5.40 0.3 0.7 3.30 3.10 0.01 5.40 0.3 0.7 3.30 3.10

n INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time iter pNE mNE
∏m
p=1 |S

p|

40 0 1.02 18 0 [6, 6] [10, 9] 0 1.48 18 0 [6, 6] [10, 9]

1 1.83 17 0 [4, 4] [8, 10] 0 3.54 17 0 [4, 4] [8, 10]

2 0.07 14 0 [4, 4] [7, 8] 0 0.07 14 0 [4, 4] [7, 8]

3 0.18 16 0 [5, 5] [10, 7] 0 0.27 16 0 [5, 5] [10, 7]

4 0.01 5 0 [2, 2] [3, 3] 0 0.01 5 0 [2, 2] [3, 3]

5 0.01 5 0 [2, 2] [3, 3] 0 0.01 5 0 [2, 2] [3, 3]

6 0.02 7 0 [2, 2] [4, 4] 0 0.02 7 0 [2, 2] [4, 4]

7 0.98 20 0 [6, 6] [9, 12] 0 1.78 20 0 [6, 6] [9, 12]

8 0.25 15 0 [5, 5] [8, 8] 0 0.41 15 0 [5, 5] [8, 8]

9 11.70 20 0 [5, 5] [10, 11] 0 21.99 20 0 [5, 5] [10, 11]

time iter pNE mNE |S1| |S2| time iter pNE mNE |S1| |S2|

avg 1.61 13.70 0.0 1.0 7.20 7.50 2.96 13.70 0.0 1.0 7.20 7.50

n INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time iter pNE mNE
∏m
p=1 |S

p|

80 0 0.56 18 0 [5, 5] [9, 10] 0 0.78 18 0 [5, 5] [9, 10]

1 0.79 17 0 [8, 8] [9, 9] 0 1.12 17 0 [8, 8] [9, 9]

2 0.18 14 0 [5, 5] [8, 7] 0 0.26 14 0 [5, 5] [8, 7]

3 10.55 22 0 [6, 6] [11, 12] 0 21.17 22 0 [6, 6] [11, 12]

4 tl 30 0 [8, 9] [15, 16] 0 tl 29 0 [9, 9] [15, 15]

5 7.21 20 0 [7, 7] [11, 10] 0 12.25 20 0 [7, 7] [11, 10]

6 5.04 19 0 [7, 7] [10, 10] 0 8.56 19 0 [7, 7] [10, 10]

7 0.04 9 0 [4, 4] [5, 5] 0 0.04 9 0 [4, 4] [5, 5]

8 2.14 18 0 [7, 7] [10, 9] 0 3.19 18 0 [7, 7] [10, 9]

9 24.65 27 0 [5, 5] [14, 14] 0 58.41 27 0 [5, 5] [14, 14]

time iter pNE mNE |S1| |S2| time iter pNE mNE |S1| |S2|

avg 5.69 18.22 0.0 0.9 9.67 9.56 11.75 18.22 0.0 0.9 9.67 9.56

n INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time iter pNE mNE
∏m
p=1 |S

p|

100 0 0.12 14 0 [5, 5] [8, 7] 0 0.14 14 0 [5, 5] [8, 7]

1 0.09 11 0 [5, 5] [6, 6] 0 0.10 11 0 [5, 5] [6, 6]

2 62.70 25 0 [7, 7] [15, 11] 0 108.07 25 0 [7, 7] [15, 11]

3 0.23 14 0 [5, 5] [8, 7] 0 0.33 14 0 [5, 5] [8, 7]

4 0.46 17 0 [5, 5] [9, 9] 0 0.69 17 0 [5, 5] [9, 9]

5 tl 28 0 [9, 9] [15, 14] 0 tl 27 0 [7, 7] [14, 14]

6 1297.12 27 0 [7, 8] [13, 15] 0 142.88 29 0 [7, 8] [12, 18]

7 94.07 27 0 [7, 7] [12, 16] 0 176.02 27 0 [7, 7] [12, 16]

8 7.90 20 0 [6, 6] [10, 11] 0 15.06 20 0 [6, 6] [10, 11]

9 tl 28 0 [8, 8] [15, 14] 0 tl 28 0 [8, 8] [15, 14]

time iter pNE mNE |S1| |S2| time iter pNE mNE |S1| |S2|

avg 182.84 19.38 0.0 0.8 10.12 10.25 55.41 19.62 0.0 0.8 10.00 10.62

Table 3: Computational results for the determination of NE on the e knapsack game with m = 2.
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m-SGM SGM

n INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time iter pNE mNE
∏m
p=1 |S

p|

10 0 0.01 5 0 [2, 1, 2] [3, 2, 2] 0 0.01 5 0 [2, 1, 2] [3, 2, 2]

1 0.02 7 0 [1, 2, 2] [2, 3, 4] 0 0.02 7 0 [1, 2, 2] [2, 3, 4]

2 11.32 19 0 [4, 3, 5] [6, 7, 8] 0 17.32 19 0 [4, 3, 5] [6, 7, 8]

3 0.07 16 0 [3, 2, 2] [6, 6, 6] 0 0.13 16 0 [3, 2, 2] [6, 6, 6]

4 0.01 4 1 0 [2, 2, 2] 0 0.01 4 1 0 [2, 2, 2]

5 0.01 6 0 [2, 2, 1] [4, 3, 1] 0 0.01 6 0 [2, 2, 1] [4, 3, 1]

6 0.01 7 1 0 [3, 3, 3] 0 0.01 7 1 0 [3, 3, 3]

7 0.01 4 1 0 [2, 2, 2] 0 0.01 4 1 0 [2, 2, 2]

8 21.44 22 0 [2, 3, 2] [8, 10, 6] 0 33.07 22 0 [2, 3, 2] [8, 10, 6]

9 0.02 10 0 [2, 1, 2] [5, 3, 4] 0 0.02 10 0 [2, 1, 2] [5, 3, 4]

time iter pNE mNE |S1| |S2| |S3| time iter pNE mNE |S1| |S2| |S3|

avg 3.29 10.00 0.3 0.7 4.10 4.10 4.50 5.06 10.00 0.3 0.7 4.10 4.10 4.50

n INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time iter pNE mNE
∏m
p=1 |S

p|

20 0 0.02 8 0 [2, 1, 2] [4, 2, 4] 0 0.02 8 0 [2, 1, 2] [4, 2, 4]

1 0.04 10 0 [2, 2, 3] [4, 4, 4] 0 0.04 10 0 [2, 2, 3] [4, 4, 4]

2 0.01 4 1 0 [2, 2, 2] 0 0.01 4 1 0 [2, 2, 2]

3 0.02 8 0 [1, 2, 2] [3, 4, 3] 0 0.02 8 0 [1, 2, 2] [3, 4, 3]

4 0.10 13 0 [2, 3, 2] [5, 5, 5] 0 0.15 13 0 [2, 3, 2] [5, 5, 5]

5 0.02 8 1 0 [3, 4, 3] 0 0.02 8 1 0 [3, 4, 3]

6 1.72 17 0 [4, 3, 2] [7, 7, 5] 0 3.94 17 0 [4, 3, 2] [7, 7, 5]

7 0.07 13 0 [2, 2, 3] [5, 5, 5] 0 0.08 13 0 [2, 2, 3] [5, 5, 5]

8 0.08 13 0 [3, 4, 3] [6, 5, 4] 0 0.09 13 0 [3, 4, 3] [6, 5, 4]

9 0.01 5 1 0 [3, 2, 2] 0 0.01 5 1 0 [3, 2, 2]

time iter pNE mNE |S1| |S2| |S3| time iter pNE mNE |S1| |S2| |S3|

avg 0.21 9.90 0.3 0.7 4.20 4.00 4.20 0.44 9.90 0.3 0.7 4.20 4.00 4.20

n INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time iter pNE mNE
∏m
p=1 |S

p|

40 0 0.12 15 0 [4, 2, 3] [7, 3, 7] 0 0.14 15 0 [4, 2, 3] [7, 3, 7]

1 0.77 19 0 [4, 4, 1] [8, 9, 4] 0 1.02 19 0 [4, 4, 1] [8, 9, 4]

2 0.48 16 0 [1, 2, 3] [6, 6, 6] 0 1.45 19 0 [3, 3, 3] [6, 8, 7]

3 0.07 13 0 [2, 3, 2] [4, 6, 5] 0 0.07 13 0 [2, 3, 2] [4, 6, 5]

4 tl 28 0 [4, 4, 4] [10, 10, 10] 0 tl 28 0 [4, 4, 4] [10, 10, 10]

5 2.81 23 0 [4, 3, 4] [9, 8, 8] 0 4.47 23 0 [4, 3, 4] [9, 8, 8]

6 0.22 16 0 [2, 3, 2] [7, 7, 4] 0 0.30 16 0 [2, 3, 2] [7, 7, 4]

7 11.25 24 0 [4, 5, 2] [10, 10, 6] 0 27.52 24 0 [4, 5, 2] [10, 10, 6]

8 1.67 18 0 [4, 2, 3] [7, 4, 9] 0 2.85 18 0 [4, 2, 3] [7, 4, 9]

9 tl 29 0 [5, 4, 4] [12, 9, 10] 0 tl 28 0 [5, 4, 3] [11, 9, 10]

time iter pNE mNE |S1| |S2| |S3| time iter pNE mNE |S1| |S2| |S3|

avg 2.17 18.00 0.0 0.8 7.25 6.62 7.75 4.73 18.38 0.0 0.8 7.25 6.88 8.00

Table 4: Computational results for the determination of NE on the knapsack game with m = 3.

verification of NE, a single best response is solved12. Another advantage of the computed CE is the small positive
average gain between the NE previously determined and the CE computed. This is might be explained by the fact that
the CE of each sampled game optimizes social welfare.

6.3.3 Competitive lot-sizing game

Through dynamic programming, a player p’s best reaction (25) for a fixed (y−p, x−p, q−p, h−p) can be computed
in polynomial time if there are no production capacities, neither inventory costs (Carvalho et al., 2018b). For this
reason, we decided to concentrate on these simpler instances. In our computations, the value of ε was set to 10−6.
The parameters at, bt, F

p
t and Cpt were draw independently from a uniform distribution in the intervals [20, 30] ∩ Z,

[1, 3] ∩ Z, [10, 20] ∩ Z, [5, 10] ∩ Z, respectively. For each value of the pair (m,T ), 10 instances were generated.

For easiness of implementation and fair comparison with the computation of the potential function optimum, we do
not use the dynamic programming procedure to solve a player best reaction problem, but Gurobi 9.0.0.

12We note that we can skip the solving of Problem (20) for the x̄p ∈ Sp such that
∑
x∈S:xp=x̄p τ(x) = 0. If we do this in

the kidney exchange game, them the CE computation becomes faster than the NE computation since the support of the correlated
equilibria is 1.
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SGM

n INS time iter τ -based NE? |supp(τ)|
∏m
p=1 |S

p|

20 0 0.05 10 YES 9 [5, 6]

1 0.04 8 YES 9 [4, 5]

2 0.02 4 YES 4 [2, 3]

3 0.02 6 YES 4 [4, 3]

4 0.01 4 YES 1 [3, 2]

5 0.01 4 YES 4 [3, 2]

6 0.01 4 YES 1 [3, 2]

7 0.02 5 YES 4 [3, 3]

8 0.02 5 YES 4 [3, 3]

9 0.01 4 YES 1 [3, 2]

time iter τ -based NE |supp(τ)| |S1| |S2|

avg 0.02 5.40 1.0 4.1 3.30 3.10

n INS time iter τ -based NE? |supp(τ)|
∏m
p=1 |S

p|

40 0 0.26 18 YES 36 [10, 9]

1 0.24 15 YES 16 [7, 9]

2 0.26 15 YES 16 [7, 9]

3 0.28 17 YES 22 [10, 8]

4 0.04 5 YES 4 [3, 3]

5 0.05 5 YES 4 [3, 3]

6 0.07 7 YES 4 [4, 4]

7 0.92 29 YES 36 [17, 13]

8 0.20 15 YES 25 [8, 8]

9 0.51 24 YES 25 [12, 13]

time iter τ -based NE |supp(τ)| |S1| |S2|

avg 0.28 15.00 1.0 18.8 8.10 7.90

n INS time iter τ -based NE? |supp(τ)|
∏m
p=1 |S

p|

80 0 0.92 18 YES 25 [9, 10]

1 1.34 27 YES 64 [14, 14]

2 0.68 16 YES 25 [9, 8]

3 4.97 48 YES 36 [25, 24]

4 4.68 42 YES 99 [20, 23]

5 0.88 20 YES 49 [11, 10]

6 0.91 21 YES 47 [11, 11]

7 0.31 9 YES 16 [5, 5]

8 0.71 18 YES 48 [10, 9]

9 1.50 25 YES 36 [14, 12]

time iter τ -based NE |supp(τ)| |S1| |S2|

avg 1.69 24.40 1.0 44.5 12.80 12.60

n INS time iter τ -based NE? |supp(τ)|
∏m
p=1 |S

p|

100 0 0.87 14 YES 25 [8, 7]

1 0.89 15 YES 25 [8, 8]

2 5.61 43 YES 49 [22, 22]

3 0.88 14 YES 25 [8, 7]

4 1.00 16 YES 25 [9, 8]

5 5.60 40 YES 81 [23, 18]

6 2.63 32 YES 79 [17, 16]

7 3.69 27 YES 49 [11, 17]

8 2.58 27 YES 36 [14, 14]

9 8.49 48 YES 78 [26, 23]

time iter τ -based NE |supp(τ)| |S1| |S2|

avg 3.22 27.60 1.0 47.2 14.60 14.00

Table 5: Computational results for the determination of CE on the knapsack game with m = 2.
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SGM

n INS time iter τ -based NE? |supp(τ)|
∏m
p=1 |S

p| 1− Social(σ)
Social(τ)

10 0 0.01 5 YES 4 [3, 2, 2] 0.00

1 0.03 7 YES 4 [2, 3, 4] 0.00

2 8.36 44 NO 84 [11, 17, 18] 0.18

3 0.10 15 NO 7 [5, 6, 6] 0.05

4 0.01 4 YES 1 [2, 2, 2] 0.00

5 0.02 6 YES 4 [4, 3, 1] 0.00

6 0.02 7 YES 1 [3, 3, 3] 0.00

7 0.01 4 YES 1 [2, 2, 2] 0.00

8 0.46 23 NO 16 [8, 11, 6] 0.10

9 0.04 10 YES 4 [5, 3, 4] 0.00

time iter τ -based NE |supp(τ)| |S1| |S2| |S3| 1− Social(σ)
Social(τ)

avg 0.91 12.50 0.7 12.6 4.50 5.20 4.80 0.03

n INS time iter τ -based NE? |supp(τ)|
∏m
p=1 |S

p| 1− Social(σ)
Social(τ)

20 0 0.04 8 YES 4 [4, 2, 4] 0.00

1 0.05 10 YES 9 [4, 4, 4] 0.00

2 0.01 4 YES 1 [2, 2, 2] 0.00

3 0.04 8 YES 4 [3, 4, 3] 0.00

4 0.12 14 YES 9 [5, 6, 5] 0.00

5 0.04 8 YES 1 [3, 4, 3] 0.00

6 0.81 26 NO 27 [9, 10, 9] 0.05

7 0.10 13 YES 9 [5, 5, 5] 0.00

8 0.48 23 NO 32 [9, 8, 8] 0.13

9 0.02 5 YES 1 [3, 2, 2] 0.00

time iter τ -based NE |supp(τ)| |S1| |S2| |S3| 1− Social(σ)
Social(τ)

avg 0.17 11.90 0.8 9.7 4.70 4.70 4.50 0.02

n INS time iter τ -based NE? |supp(τ)|
∏m
p=1 |S

p| 1− Social(σ)
Social(τ)

40 0 0.47 19 YES 16 [9, 3, 9] 0.00

1 83.66 71 NO 17 [38, 16, 19] 0.10

2 1.93 30 NO 36 [10, 11, 11] 0.03

3 0.27 14 YES 9 [4, 6, 6] 0.00

4 tl 134 262 [41, 47, 48]

5 1.42 28 NO 28 [11, 8, 11] 0.00

6 0.42 18 YES 10 [7, 7, 6] 0.00

7 642.17 102 NO 194 [52, 32, 20] 0.02

8 1.70 29 NO 61 [12, 5, 14] 0.02

9 1137.81 112 NO 135 [53, 21, 40] -

time iter τ -based NE |supp(τ)| |S1| |S2| |S3| 1− Social(σ)
Social(τ)

avg 207.76 47.00 0.3 56.22 21.78 12.11 15.11 0.02

Table 6: Computational results for the determination of CE on the knapsack game with m = 3.

m-SGM SGM

avg. avg.

|V | Social opt Price of ΠA ΠB time iter |S1| |S2| numb. back pNE % Solved Price of ΠA ΠB time iter |S1| |S2| pNE % Solved

time NE decrease decrease NE increase increase

20 0.02 0.89 0.23 0.22 0.01 1.84 1.53 1.31 0.00 49 1.0 0.89 0.23 0.22 0.01 1.84 1.53 1.31 49 100

40 0.09 0.91 0.11 0.14 0.05 3.08 2.14 1.94 0.00 50 1.0 0.91 0.11 0.14 0.05 3.08 2.14 1.94 50 100

80 0.83 0.92 0.05 0.05 0.98 3.44 2.44 2.00 0.00 50 1.0 0.92 0.05 0.05 0.97 3.44 2.44 2.00 50 100

Table 7: Average results for the determination of (maximal) NE on the kidney exchange game.

SGM

avg.

|V | time iter τ -based NE |supp(τ)| |S1| |S2| 1− Social(σ)
Social(τ)

20 0.02 1.84 49 1.0 1.53 1.31 0.01

40 0.18 3.08 50 1.0 2.14 1.94 0.02

80 5.23 3.50 50 1.0 2.50 2.00 0.01

Table 8: Average results for the determination of (maximal) CE on the kidney exchange game.
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As previously mentioned, Section 6.1.3, the lot-sizing game is potential, which implies the existence of a pure equi-
librium. In particular, each sampled game of the competitive lot-sizing game is potential and therefore, it has a pure
equilibrium. In fact, our algorithms will return a pure equilibrium: both m-SGM and SGM start with a sampled game
with only one strategy for each player and thus, one pure equilibrium. This equilibrium is given to the input of our
PNS implementation, which implies that players’ supports of size one will be prioritized leading to the computation
of a pure equilibrium. This pure equilibrium will be in the input of the next PNS call, resulting in a pure equilib-
rium output. This reasoning propagates through the algorithms’ execution. Even though our algorithms find a pure
equilibrium, it is expected that the potential function maximization method will provide an equilibrium faster than our
methods, since our algorithms deeply depend on the initialization (which in our implementation does not take into
account the players’ interaction).

Table 9 reports the results for the m-SGM, SGM and potential function maximization. The table displays the number
of periods (T ), the number of players (m) and the number of instances solved by each method (“numb. pNE”). In this
case all instances were solved within the time frame of one hour and a pure Nash equilibrium was determined by both
our methods.

In this case, m-SGM does not present advantages with respect to SGM. This is mainly due to the fact that the sam-
pled games always have pure equilibria and our improvements have more impact when many mixed equilibria exist.
The maximization of the potential functions allowed the computation of equilibria to be faster. This highlights the
importance of identifying if a game is potential. On the other hand, the potential function maximization allows the
determination of one equilibrium, while our method with different Initialization and/or PlayerOrder implementa-
tions may return different equilibria and, thus, allows larger exploration of the set of equilibria.

Algorithm PlayerOrder has a crucial impact in the number of sampled games to be explored in order to compute
one equilibrium. In fact, when comparing our implementation with simply keeping the players’ index order static, the
impact on computational times is significant.

We do not report our results for the computation of CE since there was no social welfare improvement on the CE
determined, and all CE computed were pure NE.

m-SGM SGM Potential Function Maximization

avg. numb. avg. numb. avg numb.

m T time iter |S1| |S2| |S3| numb. back pNE time iter |S1| |S2| |S3| pNE time pNE

2 10 0.08 15.00 8.00 8.00 0.00 10 0.06 15.00 8.00 8.00 10 0.00 10

20 0.13 16.00 9.00 8.00 0.00 10 0.11 16.00 9.00 8.00 10 0.01 10

50 0.26 16.10 9.00 8.10 0.00 10 0.23 16.10 9.00 8.10 10 0.02 10

100 0.51 17.00 9.00 9.00 0.00 10 0.44 17.00 9.00 9.00 10 0.03 10

3 10 0.30 30.60 11.30 10.80 11.90 0.00 10 0.26 30.60 11.30 10.80 11.90 10 0.01 10

20 0.42 31.80 11.90 11.00 12.10 0.00 10 0.35 31.80 11.90 11.00 12.10 10 0.03 10

50 0.77 32.70 12.10 11.50 12.60 0.00 10 0.63 32.70 12.10 11.50 12.60 10 0.04 10

100 1.56 34.20 12.50 12.00 13.20 0.00 10 1.28 34.20 12.50 12.00 13.20 10 0.07 10

Table 9: Average results for the determination of NE for the competitive lot-sizing game.

6.3.4 Final remarks

In the application of our two methods in all the studied instances of these games, backtracking never occurred. Indeed,
we noticed that this is a very unlikely event (even though it may happen, as shown in Example 6). This is the reason
why both m-SGM and SGM, in general, coincide in the number of sampled games generated. It is in the support
enumeration for each sampled game that the methods differ. The fact that in each iteration of m-SGM the last added
strategy is mandatory to be in the equilibrium support, makes m-SGM faster. The backtracking will reveal useful for
problems in which it is “difficult” to find the strategies of a sampled game that enable to define an equilibrium of an
IPG.

At this point, for the games studied, in comparison with the number of pure profiles of strategies that may exist in a
game, not too many sampled games had to be generated in order to find an equilibrium, meaning that the challenge is
to make the computation of equilibria for sampled games faster.

Comparison: m-SGM and PNS. In the case of the knapsack game, the number of strategies for each player is
finite. In order to find an equilibrium of it, we can explicitly determine all feasible strategies for each player and, then
apply directly PNS. In Tables 10 and 11, we compare this procedure with m-SGM, for n = 5, n = 7 and n = 10 (in
these cases, each player has at most 25 = 32, 27 = 128 and 210 = 1024 feasible strategies, respectively). We note
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that the computational time displayed in these tables under the direct application of PNS does not include the time to
determine all feasible strategies for each player (although, for n = 5, n = 7 and n = 10 is negligible). Based on these
results it can be concluded that even for small instances, m-SGM already performs better than the direct application
of PNS, where all strategies must be enumerated.

m-SGM direct PNS
n m INS time iter pNE mNE

∏m
p=1 |S

p| numb. back time pNE mNE
∏m
p=1 |S

p|
5 2 0 0.01 3 1 0 [2, 2] 0 0.02 1 0 [26, 17]

1 0.01 2 1 0 [1, 2] 0 0.01 1 0 [8, 14]
2 0.01 2 1 0 [1, 2] 0 0.01 1 0 [8, 15]
3 0.00 1 1 0 [1, 1] 0 0.02 1 0 [15, 17]
4 0.02 4 1 0 [2, 3] 0 0.01 1 0 [17, 10]
5 0.01 2 1 0 [1, 2] 0 0.01 1 0 [17, 15]
6 0.01 3 1 0 [2, 2] 0 0.01 1 0 [16, 14]
7 0.01 2 1 0 [1, 2] 0 0.02 1 0 [14, 21]
8 0.01 4 1 0 [2, 3] 0 0.01 1 0 [20, 15]
9 0.01 2 1 0 [1, 2] 0 0.01 1 0 [22, 9]

avg. number of avg. number of
time iter |S1| |S2| pNE mNE time |S1| |S2| pNE mNE
0.01 2.50 1.40 2.10 10 0 0.01 16.30 14.70 10 0

m INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time pNE mNE
∏m
p=1 |S

p|
3 0 0.01 2 1 0 [2, 1, 1] 0 0.03 1 0 [14, 21, 4]

1 0.01 3 1 0 [2, 1, 2] 0 0.07 1 0 [20, 10, 29]
2 0.02 4 0 1 [2, 2, 2] 0 1.58 0 1 [25, 23, 16]
3 0.01 2 1 0 [1, 2, 1] 0 0.05 1 0 [18, 18, 19]
4 0.02 4 1 0 [2, 2, 2] 0 0.07 1 0 [12, 21, 17]
5 0.02 4 1 0 [2, 2, 2] 0 0.12 1 0 [20, 19, 16]
6 0.01 3 1 0 [2, 2, 1] 0 0.09 1 0 [14, 18, 15]
7 0.02 4 1 0 [2, 2, 2] 0 0.05 1 0 [11, 22, 14]
8 0.02 5 1 0 [3, 2, 2] 0 0.03 1 0 [8, 20, 16]
9 0.03 5 0 1 [2, 3, 2] 0 0.93 0 1 [14, 21, 22]

avg. number of avg. number of
time iter |S1| |S2| |S3| pNE mNE time |S1| |S2| |S3| pNE mNE
0.02 3.60 2.00 1.90 1.70 8 2 0.30 15.60 19.30 16.80 8 2

n m INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time pNE mNE
∏m
p=1 |S

p|
7 2 0 0.02 5 0 1 [3, 3] 0 10.28 0 1 [28, 79]

1 0.01 3 1 0 [2, 2] 0 0.09 1 0 [58, 32]
2 0.00 1 1 0 [1, 1] 0 0.16 1 0 [93, 51]
3 0.01 2 1 0 [2, 1] 0 0.12 1 0 [55, 50]
4 0.01 3 0 1 [2, 2] 0 6.62 0 1 [50, 43]
5 0.03 6 0 1 [4, 3] 0 1739.92 0 1 [68, 61]
6 0.01 3 1 0 [2, 2] 0 0.33 1 0 [70, 59]
7 0.01 2 1 0 [2, 1] 0 0.28 1 0 [82, 67]
8 0.01 4 0 1 [3, 2] 0 5.51 0 1 [53, 36]
9 0.02 5 0 1 [3, 3] 0 13.89 0 1 [45, 65]

avg. number of avg. number of
time iter |S1| |S2| pNE mNE time |S1| |S2| pNE mNE
0.01 3.40 2.40 2.00 5 5 177.72 60.20 54.30 5 5

m INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time pNE mNE
∏m
p=1 |S

p|
3 0 0.02 4 1 0 [2, 2, 2] 0 2.79 1 0 [122, 80, 118]

1 0.01 2 1 0 [2, 1, 1] 0 0.38 1 0 [33, 20, 111]
2 0.02 4 0 1 [3, 1, 2] 0 6.36 0 1 [64, 7, 20]
3 0.02 4 1 0 [2, 2, 2] 0 1.79 1 0 [30, 52, 74]
4 0.05 8 0 1 [3, 3, 4] 0 6.90 0 1 [71, 61, 56]
5 0.03 5 0 1 [2, 3, 2] 0 1.46 0 1 [59, 66, 74]
6 0.02 4 1 0 [2, 2, 2] 0 1.22 1 0 [70, 64, 66]
7 0.01 3 1 0 [2, 2, 1] 0 2.77 1 0 [83, 91, 85]
8 0.06 7 0 1 [4, 2, 3] 0 tl 0 0 [75, 88, 82]
9 0.03 6 0 1 [3, 2, 3] 0 576.75 0 1 [106, 73, 91]

avg. number of avg. number of
time iter |S1| |S2| |S3| pNE mNE time |S1| |S2| |S3| pNE mNE
0.03 4.70 2.50 2.00 2.20 5 5 66.71 70.89 57.11 77.22 5 4

Table 10: Computational results for the m-SGM and PNS to the knapsack game with n = 5, 7.

7 Conclusions and further directions

We showed that the problem of equilibria existence for IPGs is Σp2-complete and, even if an equilibrium exists, its
computation is at least PPAD-hard. This is not surprising, since verifying if a profile of strategies is an equilibrium
for an IPG implies solving each player’s best response optimization, which can be an NP-complete problem. Thus,
the goal of this paper was to also contribute with an algorithmic approach for the computation of equilibria with a
reasonable running time in practice.

To the best of our knowledge, the novel framework proposed and evaluated in this paper is the first addressing the
computation of equilibria for non-cooperative simultaneous games in which the players’ goal in the game is modelled
through a mixed integer program. These games are of practical interest given that in many real-world applications,
players’ decision problem are combinatorial and interact.
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m-SGM direct PNS
n m INS time iter pNE mNE

∏m
p=1 |S

p| numb. back time pNE mNE
∏m
p=1 |S

p|
10 2 0 0.01 3 1 0 [2, 2] 0 57.00 1 0 [879, 540]

1 0.02 4 1 0 [3, 2] 0 3.73 1 0 [734, 73]
2 0.01 2 1 0 [2, 1] 0 1.29 1 0 [587, 69]
3 0.02 4 0 1 [3, 2] 0 tl 0 0 [498, 493]
4 0.01 2 1 0 [1, 2] 0 21.88 1 0 [529, 453]
5 0.09 10 0 1 [6, 5] 0 tl 0 0 [468, 567]
6 0.01 3 1 0 [2, 2] 0 88.56 1 0 [555, 501]
7 0.01 3 1 0 [2, 2] 0 12.23 1 0 [522, 532]
8 0.01 2 1 0 [2, 1] 0 684.92 1 0 [340, 724]
9 0.01 2 1 0 [2, 1] 0 112.77 1 0 [454, 544]

avg. number of avg. number of
time iter |S1| |S2| pNE mNE time |S1| |S2| pNE mNE
0.02 3.50 2.50 2.00 8 2 122.80 575.00 429.50 8 0

m INS time iter pNE mNE
∏m
p=1 |S

p| numb. back time pNE mNE
∏m
p=1 |S

p|
3 0 0.06 9 0 1 [4, 3, 4] 0 tl 0 0 [464, 609, 236]

1 0.05 7 0 1 [2, 3, 4] 0 tl 0 0 [618, 263, 224]
2 0.02 4 1 0 [2, 2, 2] 0 152.44 1 0 [756, 200, 457]
3 0.04 7 1 0 [3, 3, 3] 0 tl 0 0 [528, 548, 691]
4 0.06 8 1 0 [3, 4, 3] 0 1059.49 1 0 [418, 587, 700]
5 0.09 9 0 1 [4, 4, 3] 0 tl 0 0 [509, 491, 540]
6 0.04 7 1 0 [3, 3, 3] 0 3042.26 1 0 [445, 491, 482]
7 0.03 5 0 1 [3, 2, 2] 0 1589.25 0 1 [634, 525, 715]
8 0.03 6 1 0 [3, 3, 2] 0 1408.38 1 0 [500, 574, 436]
9 0.04 7 0 1 [3, 3, 3] 0 tl 0 0 [559, 466, 303]

avg. number of avg. number of
time iter |S1| |S2| |S3| pNE mNE time |S1| |S2| |S3| pNE mNE
0.04 6.90 3.00 3.00 2.90 5 5 1450.36 550.60 475.40 558.00 4 1

Table 11: Computational results for the m-SGM and PNS to the knapsack game with n = 10.

In this work, we combined algorithms (and tools) from mathematical programming and game theory to devise a novel
method to determine Nash equilibria. Our basic method, SGM, iteratively determines equilibria of normal-form games
which progressively improve the approximation to the original IPG. In order to make the algorithm faster in practice,
special features were added. For this purpose, we devised the modified SGM. We also discussed our methodology
extension to correlated equilibria. Our algorithms were experimentally validated through three particular games: the
knapsack, the kidney exchange and the competitive lot-sizing games. For the knapsack game, our methods provide
equilibria to medium size instances within the time frame of one hour. The results show that this is a hard game which
is likely to have strictly mixed equilibria (i.e., no pure strategy is played with probability 1). The hardness comes
from the conflicts that projects selected by different players have in their payoffs: for some projects i a player p can
benefit from player k simultaneous investment, while player k is penalized. Surprisingly, CE which are much faster
to determine can help to find NE. For the kidney exchange and the competitive lot-sizing game, our approaches could
efficiently determine a pure equilibrium. However, it remains as a challenge the understanding on how our method
initialization can result in different equilibria. Characterizing the set of equilibria is crucial to understand the game
properties, specially, in terms of social welfare: if all equilibria are far from the social optimum (the so called price of
stability), policy makers should consider the re-design of the game rules.

Note that for the instances solved by our algorithms, there is an exponential (knapsack and kidney exchange games) or
infinite (competitive lot-sizing game) number of pure profiles of strategies. However, by observing the computational
results, a small number of explicitly enumerated pure strategies was enough to find an equilibrium. For this reason,
the explicitly enumerated strategies (the sampled games) are usually “far” from describing (even partially) a player
p’s polytope conv(Xp) and thus, at this point, this information is not used in PNS to speed up its computations. For
instance, Theorem 6 and Lemma 18 did not reduce the number of supports enumerated by PNS in each iteration of
m-SGM. Due to the fact that it is in PNS that our algorithms struggle the most, its improvement is the first aspect
to further study; we believe that exploring the possibility of extracting information from each player’s polytope of
feasible strategies will be the crucial ingredient for this.

There is a set of natural questions that this work opens. Can we adapt m-SGM to compute all equilibria (or characterize
the set of equilibria)? Can we compute an equilibrium satisfying a specific property (e.g., computing the equilibrium
that maximizes the social welfare, computing a non-dominated equilibrium)? Will in practice players play equilibria
that are “hard” to find? If a game has multiple equilibria, how to decide among them? From a mathematical point of
view, the first two questions embody a big challenge, since there seems to be hard to extract problem structure to the
general IPG class of games. The two last questions raise another one, which is the possibility of considering different
solution concepts to IPGs.
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Appendix A Illustration of backtracking step

Example 6 Consider the two-player knapsack game described by the following optimization problems
PlayerA : max

xA∈{0,1}n
15xA1 + 8xA2 − 3xA3 + 43xA4 − 15xA5 + 39xA1 x

B
1 − 90xA2 x

B
2

+ 11xA3 x
B
3 − 84xA4 x

B
4 − 43xA5 x

B
5

subject to 70xA1 − 79xA2 − 8xA3 − 62xA4 − 96xA5 ≤ −140

PlayerB : max
xB∈{0,1}n

24xB1 + 13xB2 + 44xB3 − xA4 − 45xB5 − 73xA1 x
B
1 − 58xA2 x

B
2

− 78xA3 x
B
3 − 49xA4 x

B
4 + 72xA5 x

B
5

subject to 69xB1 + 25xB2 − 39xB3 − 74xB4 + 70xB5 ≤ 40.8

In what follows, we go through each sampled game generated by m-SGM. Figure 5 displays the sampled games using
a bimatrix-form representation.

Sampled game 0. The NE is σ0 = (1; 1). However, in the original game, player A has incentive to deviate to
x(1) = (0, 0, 1, 1, 1).

Sampled game 1. The NE is σ1 = (0, 1; 1). However, in the original game, player B has incentive to deviate to
x(2) = (0, 1, 0, 0, 0).

Sampled game 2. The NE is σ2 = (0, 1; 0, 1). However, player A has incentive to deviate to x(3) = (0, 0, 0, 1, 1).

Sampled game 3. The NE is mixed with supp(σA3 ) = {(0, 0, 1, 1, 1), (0, 0, 0, 1, 1)} and supp(σB3 ) =
{(1, 1, 1, 1, 0), (0, 1, 0, 0, 0)}, σ3 = (0, 3

13 ,
10
13 ; 3

11 ,
8
11 ). However, in the original game, player B has incentive to

deviate to x(4) = (0, 0, 1, 0, 1).

Sampled game 4. The NE is σ4 = (1, 0, 0; 0, 0, 1). However, in the original game, playerA has incentive to deviate
to x(5) = (0, 1, 1, 1, 0).

Sampled game 5. There is no NE with x(5) = (0, 1, 1, 1, 0) in the support of playerA. Thus, initialize backtracking.

Sampled game 0

Player B
(1,1,1,1,0)

Player A (1,1,0,1,1) (-84,-100)

Sampled game 1

Player B
(1,1,1,1,0)

Player A (1,1,0,1,1) (-84,-100)
(0,0,1,1,1) (-48,-47)

Sampled game 2

Player B
(1,1,1,1,0) (0,1,0,0,0)

Player A (1,1,0,1,1) (-84,-100) (-39,-45)
(0,0,1,1,1) (-48,-47) (25,13)

Sampled game 3

Player B
(1,1,1,1,0) (0,1,0,0,0)

(1,1,0,1,1) (-84,-100) (-39,-45)
Player A (0,0,1,1,1) (-48,-47) (25,13)

(0,0,0,1,1) (-56,31) (28,13)

Sampled game 4

Player B
(1,1,1,1,0) (0,1,0,0,0) (0,0,1,0,1)

(1,1,0,1,1) (-84,-100) (-39,-45) (8,71)
Player A (0,0,1,1,1) (-48,-47) (25,13) (-7,-7)

(0,0,0,1,1) (-56,31) (28,13) (-15,71)

Sampled game 5

Player B
(1,1,1,1,0) (0,1,0,0,0) (0,0,1,0,1)

(1,1,0,1,1) (-84,-100) (-39,-45) (8,71)
Player A (0,0,1,1,1) (-48,-47) (25,13) (-7,-7)

(0,0,0,1,1) (-56,31) (28,13) (-15,71)
(0,1,1,1,0) (-115,-105) (-42,22) (59,2)

Revisiting Sampled game 4

Player B
(1,1,1,1,0) (0,1,0,0,0) (0,0,1,0,1)

(1,1,0,1,1) (-84,-100) (-39,-45) (8,71)
Player A (0,0,1,1,1) (-48,-47) (25,13) (-7,-7)

(0,0,0,1,1) (-56,31) (28,13) (-15,71)
(0,1,1,1,0) (-115,-105) (-42,22) (59,2)

Figure 5: Modified SGM applied to Example 6. The strategies in cyan must be in the equilibrium support, while the
strategies in gray are not considered in the support enumeration.

Revisiting sampled game 4. Keep the best reaction strategy xA = (0, 1, 1, 1, 0) that originated the sampled game 5,
but do not consider it in the support enumeration (this strategy only appears in the Feasibility Problem in order to avoid
the repetition of equilibria). A NE with xB = (0, 0, 1, 0, 1) in the support is computed: σ4 = (0, 29

39 ,
10
39 , 0; 0, 8

11 ,
3
11 )

with supports supp(σA4 ) = {(0, 0, 1, 1, 1), (0, 0, 0, 1, 1)} and supp(σB4 ) = {(0, 1, 0, 0, 0), (0, 0, 1, 0, 1)}. This NE is a
NE of the original game.
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Appendix B Kidney exchange game with L = 3

Carvalho et al. (2016) claimed that when wpc = |{v ∈ V p : v ∈ c}|, i.e., number of pairs in the cycle,

Φ(yA, yB) =
∑
c∈CA

wAc y
A
c +

∑
c∈CB

wBc y
B
c +

∑
c∈I:wAc =wBc =1

yc +
3

2

∑
c∈I:wAc =2∨wBc =2

yc(y
A, yB) (29)

where y(yA, yB) solves (24), is a (non-exact) potential function of their game. This is false as the following example
shows:

Example 7 Consider the instance of Figure 6. The green strategy (upper figure) of country A leads it to a payoff of 8
(note that no international exchanges are available), while by unilaterally deviating to the blue strategy (lower figure),
country A gets a payoff of 9 (note that in blue it is implicit the independent agent optimal international selection y). In
the upper figure the value of function (29) is 8, while in the lower figure the value is 7.5. This shows that function (29)
is not potential.
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Figure 6: A kidney exchange compatability graph instance with cycles length bounded by 3, where the circle vertices
belong to country A and the diamond vertices belong to country B.
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