
Enhancement of e-Commerce

via Mobile Accesses to the Internet

Ushio Sumita , Jun Yoshii

Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1,Tenoudai,Tsukuba, Ibaraki, 305-8573, Japan

(E-mail address: sumita@sk.tsukuba.ac.jp;yoshii40@sk.tsukuba.ac.jp)

Abstract

The potential of the Internet has been expanded substantially by a new gen-
eration of mobile devices, opening the door for rapid growth of m-commerce.
While the traditional PC access to the Internet continues to be vital for
exploiting the advantages of the Internet, the mobile access appears to at-
tract more people because of flexible accesses to the Internet in a ubiquitous
manner. Accordingly, e-commerce is now in the process of being converted
into m-commerce. The purpose of this paper is to develop and analyze a
mathematical model for comparing e-commerce via the traditional PC ac-
cess only with m-commerce which accommodates both the traditional PC
access and the mobile access. The distribution of the number of products
purchased by time t and the distribution of the time required for selling K
products are derived explicitly, enabling one to assess the impact of mobile
devices on e-businesses. Numerical examples are given for illustrating behav-
ioral differences between m-commerce consumers and traditional e-commerce
consumers.
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1. Introduction

The potential of the Internet has been expanded substantially by a new
generation of mobile devices, opening the door for rapid growth of m-commerce.
While the traditional PC access to the Internet continues to be vital for ex-
ploiting the advantages of the Internet, the mobile access appears to attract
more people because of flexible accesses to the Internet in a ubiquitous man-
ner. Accordingly, e-commerce is now in the process of being converted into
m-commerce.

Because of the fact that the mobile technology is still young, the study
of the impacts of mobile devices on e-businesses is also rather new in the
literature. Roto[1] and Kim[2] provide the current state of mobile devices
and m-businesses. Chae and Kim[3] discuss the business implications of m-
commerce, and Barwise[4] and Hammond[5] predict the evolutional trend of
m-commerce in the foreseeable future. Wu and Hisa[6] propose the hyper-
cube innovation model for analyzing the characteristics of m-commerce with
focus on three axes: changes in business models, changes in core components
and stake holders. Siau, Sheng and Nah[7], and Park and Fader[8] investigate
the benefits of m-commerce to consumers and how e-commerce has changed
the consumer behavior. Büyüközkan[9] develops an analytical approach for
determining the mobile commerce user requirements. All of these papers are
either empirical, qualitative or static in their analytical nature and, to the
best knowledge of the authors, no study exists in the literature for captur-
ing behavioral differences between e-commerce and m-commerce based on a
mathematical stochastic model.

The purpose of this paper is to develop and analyze a mathematical
model for comparing e-commerce via the traditional PC access only with
m-commerce which accommodates both the traditional PC access and the
mobile access. More specifically, we consider consumers who intend to de-
cide whether or not they should buy a product by exploring the Internet
for information. In order to capture their behavioral patterns, each day is
decomposed into three periods. The first period of a day represents working
hours, while the second period and the third period of a day correspond to
evening hours and sleeping hours at home respectively. As reported in [10],
corporate employees often utilize company PCs for privately accessing the
Internet. Accordingly, during the first period of a day, the PC access is as-
sumed to be available from time to time for the private use of the Internet.
The mobile access is also possible if consumers choose to do so. It is natural
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to assume that the PC access supersedes the mobile access during evening
hours at home. Accordingly, only the PC access is considered during the
second period of a day. Since the third period of a day represents sleeping
hours, the consumers are inactive in using the Internet.

Three classes of consumers are considered concerning the ways they access
the Internet: those who access the Internet only through PCs throughout
the period under consideration; those who access the Internet originally only
through PCs but start using the mobile access at some time later; and those
who access the Internet through both PCs and mobile devices from the very
beginning. These classes of consumers are denoted by CPC , CPC→BOTH and
CBOTH , with the entire consumer class defined by C = CPC ∪ CPC→BOTH ∪
CBOTH . (Referring to [11], an anonymous referee pointed out the importance
of incorporating CPC→BOTH in our model, which was missing in the original
version of this paper.) Each time the Internet is accessed for information, a
consumer makes one of the three decisions: to purchase the product, not to
purchase the product, or to remain undecided. We assume that the product
is purchased at most once by any consumer in the period under consideration
for our analysis.

In order to capture the stochastic behavior of a consumer in C in a unified
manner, we consider a semi-Markov process having six transient states and
two absorbing states. Transient states i and 3 + i correspond to the i-th
period of a day for i = 1, 2, 3. Absorbing states 0 and 7 describe the decision
of purchasing and that of not purchasing respectively. Starting at state 1,
those consumers in CPC continue to move states 1, 2 and 3 in a cyclic manner
until they reach either state 0 or state 7. The behavior of those consumers
in CBOTH is similar except that they start at state 4 and continue to move
states 4, 5 and 6 until they reach absorption. Those consumers in CPC→BOTH
start at state 1 as for those in CPC . At the end of the dwell time in state 3,
however, they move to state 4 with probability 1 − r where 0 < r < 1 and
start using the mobile access. With remaining probability r, they remain as
an exclusive PC access user of the Internet and move to state 1. From the
point of view of the unified semi-Markov model, those consumers in CPC can
be interpreted as having r = 1.

Through dynamic analysis of the semi-Markov process, the two stochastic
performance measures of interest can be evaluated: the distribution of the
number of products sold by time t and the distribution of the time required for
selling K products. This analysis, in turn, enables one to assess the impact
of mobile devices on e-businesses by comparing such stochastic performance
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measures for m-commerce against those for traditional e-commerce.
The structure of this paper is as follows. In Section 2, a mathemati-

cal model is developed for capturing the consumer behavior in m-commerce
based on a semi-Markov process approach. Section 3 is devoted to dynamic
analysis of the semi-Markov model. The two stochastic performance mea-
sures are introduced in Section 4 and the associated distributions are derived
explicitly, which can be computed based on the results in Section 3. Nu-
merical examples are given in Section 5 for illustrating behavioral differences
between m-commerce consumers and traditional e-commerce consumers. Fi-
nally, some concluding remarks are given in section 6.

Throughout the paper, vectors and matrices are indicated by underbar
and doubleunderbar respectively, e.g. ξ, P (t), etc. The vector with all com-
ponents equal to 0 is denoted by 0. The identity matrix is denoted by I.

2. Development of Mathematical Model for m-Commerce Con-
sumer Behavior: Semi-Markov Process Approach

For capturing the consumer behavior in m-commerce described in the
previous section more formally, we consider a semi-Markov process {J(t) :
t ≥ 0} defined on N = {0, 1, . . . , 7}. Here, the i-th period of a day for those
consumers in CPC is represented by state i, and that for those in CBOTH
corresponds to state i+ 3, i = 1, 2, 3. The two states 0 and 7 are absorbing,
where the former corresponds to the decision of purchasing the product while
the latter represents the decision of not purchasing the product. Given that
neither the decision of purchasing nor that of not purchasing is made, we
assume, for the time being, that the dwell time of the semi-Markov process
in state i is absolutely continuous with probability density function (p.d.f.)
ai(x), i = 1, . . . , 6. The corresponding distribution function, the survival
function and the hazard rate function are denoted by

Ai(x) =

∫ x

0

ai(x)dx ; Āi(x) = 1− Ai(x) ; ηi(x) =
ai(x)

Āi(x)
. (2.1)

It is clear that ai(x) = ai+3(x) for i = 1, 2, 3. Because of this, we write
a1(x) = a4(x) = aW (x), a2(x) = a5(x) = aE(x) and a3(x) = a6(x) = aS(x)
interchangeably. AW (x), ĀW (x), ηW (x), etc. are defined accordingly. Since
states 0 and 7 are absorbing, the dwell time in those states are infinite. The
corresponding survival functions can then be written as

Ā0(x) = Ā7(x) = 1 for all x ≥ 0 . (2.2)
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For those consumers in CPC , the Internet accesses occur in state i = 1
and i = 2 according to a Poisson processes with intensity λ1 = λW :PC and
λ2 = λE:PC respectively. The corresponding probabilities of purchasing ( not
purchasing ) for each access are denoted by α1 = αW :PC and α2 = αE:PC (
β1 = βW :PC and β2 = βE:PC ) with 0 < αi+βi < 1, and the consumer remains
undecided with probability 1− (αi + βi) > 0, for i = 1, 2. Consequently, one
has

ξW :PC = λW :PCαW :PC ; θW :PC = λW :PCβW :PC

ξE:PC = λE:PCαE:PC ; θE:PC = λE:PCβE:PC , (2.3)

where ξW :PC (θW :PC) is the transition intensity from state 1 to state 0 ( state
7). ξE:PC and θE:PC are defined similarly. At the end of the third period of a
day, a consumer in CPC decides to start using a mobile phone with probability
1 − r. This means that, upon completion of the dwell time in state 3, the
consumer moves to state 1 with probability r and to state 4 with probability
1− r.

A consumer in CBOTH may employ both a PC and a mobile device for
accessing the Internet. The Poisson intensity for PC accesses is denoted by
λ4:PC = λW :BOTH(PC), and that for mobile accesses is written as λ4:Mobile =
λW :BOTH(Mobile). The probabilities of purchasing ( not purchasing ) for each
access are defined as before and are denoted by α4 = αW :BOTH and α5 =
αE:PC ( β4 = βW :BOTH and β5 = βE:PC ). In parallel with (2.3), one then has

ξW :BOTH = λW :BOTH · αW :BOTH ,

θW :BOTH = λW :BOTH · βW :BOTH , (2.4)

where
λW :BOTH = λW :BOTH(PC) + λW :BOTH(Mobile) . (2.5)

For evening hours, those consumers in CPC and those in CBOTH are indiffer-
ent and their stochastic behavioral structures are identical. We note that
ξW :PC < ξW :BOTH and θW :PC < θW :BOTH . These differences together with
probability r representing the population growth of the mobile access users
characterize the impact of mobile accesses on e-commerce in our model. The
transition structure of the semi-Markov process is depicted in Figure 2.1.

In order to deal with the case in which the three periods of a day are
constant, we subsequently choose, for each i ∈ {1, . . . , 6}, a sequence of
distribution functions (Ai(k, x))∞k=1 such that Ai(k, x)→ U(x−τi) as k →∞,
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where τi is the constant dwell time in state i and U(x) is a step function
defined by U(x) = 1 for x ≥ 0 and U(x) = 0 for x < 0.

１１１１
７７７７

００００

３３３３
２２２２

1x

3x
2x( )2xEη
( )1xWη

( )3)1( xr Rη−

４４４４

６６６６
５５５５

4x

6x
5x

( )3xr Rη

( )4xWη
( )5xEη ( )6xRη

BOTHW :ξ

PCW :ξ

BOTHW:θ

PCE:ξ

PCE :ξ

PCE:θ
PCW :θ

PCE:θ

Figure 2.1：Transition Structure of the Semi-Markov Process

3. Dynamic Analysis of the Semi-Markov Process

In this section, we derive explicitly the transition probability matrix P (t)
of the semi-Markov process J(t), where P (t) is defined by

P (t) = [Pij(t)] ; Pij(t)
def
= P[J(t) = j|J(0) = i] , i, j ∈ N . (3.1)

For this purpose, the age process X(t) associated with the semi-Markov
process J(t) is introduced as the elapsed time since the last transition of J(t)
into the current state at time t. Clearly the bivariate process [J(t), X(t)]
becomes Markov and the first step of our analysis is to evaluate the joint
distribution function defined by

Fij(x, t) = P[X(t) ≤ x, J(t) = j|J(0) = i] , (3.2)

and the corresponding joint p.d.f.

d

dx
Fij(x, t) = fij(x, t) , (3.3)
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where the delta function δ(t) is employed for describing the boundary condi-
tions with respect to x. More specifically, one sees that

fi1(0+, t) = δ{i=1}δ(t) + r

∫ ∞
0

fi3(x, t)ηS(x)dx ; (3.4)

fi2(0+, t) = δ{i=2}δ(t) +

∫ ∞
0

fi1(x, t)ηW (x)dx ; (3.5)

fi3(0+, t) = δ{i=3}δ(t) +

∫ ∞
0

fi2(x, t)ηE(x)dx ; (3.6)

fi4(0+, t) = δ{i=4}δ(t)

+

∫ ∞
0

{(1− r)fi3(x, t) + fi6(x, t)} ηS(x)dx ; (3.7)

fi5(0+, t) = δ{i=5}δ(t) +

∫ ∞
0

fi4(x, t)ηW (x)dx ; (3.8)

fi6(0+, t) = δ{i=6}δ(t) +

∫ ∞
0

fi5(x, t)ηE(x)dx . (3.9)

Here, δ{ST} = 1 if statement ST is true, and δ{ST} = 0 otherwise. The delta
function δ(t) is the unit operator associated with convolution, i.e. g(t) =∫∞

0
g(x)δ(t− x)dx for any integrable function g(t) on [0,∞).

In order to evaluate the joint p.d.f. given in (3.3), we introduce the
following Laplace transforms.

αi(s) =

∫ ∞
0

e−sxai(x)dx for i = 1, . . . , 6 (3.10)

βi(s) =

∫ ∞
0

e−sxĀi(x)dx =
1− αi(s)

s
for i = 1, . . . , 6 (3.11)

ζ̂(0+, s) = [ζ̂ij(0+, s)] ; ζ̂ij(0+, s)
def
=

∫ ∞
0

e−stfij(0+, t)dt for i, j ∈ N
(3.12)

ϕ̂(x, s) = [ϕ̂ij(x, s)] ; ϕ̂ij(x, s)
def
=

∫ ∞
0

e−stfij(x, t)dt for i, j ∈ N (3.13)

ˆ̂ϕ(v, s) = [ ˆ̂ϕij(v, s)] ; ˆ̂ϕij(v, s)
def
=

∫ ∞
0

e−vxϕ̂ij(x, s)dx for i, j ∈ N
(3.14)
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For notational convenience, we also define




C4 = CW :BOTH = ξW :BOTH + θW :BOTH

C1 = CW :PC = ξW :PC + θW :PC ,
C2,5 = CE:PC = ξE:PC + θE:PC

(3.15)

as well as the following functions, vectors, and matrices.

d1(s) = 1− rαW (s+ C1)αE(s+ C2,5)αS(s) (3.16)

d2(s) = 1− αW (s+ C4)αE(s+ C2,5)αS(s) (3.17)

ξ̂(s) =




ξ̂1(s)

ξ̂2(s)

ξ̂3(s)

ξ̂4(s)

ξ̂5(s)

ξ̂6(s)




=




ξW :PCβW (s+ C1)
ξE:PCβE(s+ C2,5)

0
ξW :BOTHβW (s+ C4)
ξE:PCβE(s+ C2,5)

0




(3.18)

θ̂(s) =




θ̂1(s)

θ̂2(s)

θ̂3(s)

θ̂4(s)

θ̂5(s)

θ̂6(s)




=




θW :PCβW (s+ C1)
θE:PCβE(s+ C2,5)

0
θW :BOTHβW (s+ C4)
θE:PCβE(s+ C2,5)

0




(3.19)

ψ
0
(s) = [ψ0:1(s), . . . , ψ0:6(s)]T , (3.20)

where

ψ0:1(s) = d2(s){ξ̂1(s) + αW (s+ C1)ξ̂2(s)}
+(1− r)αW (s+ C1)αE(s+ C2,5)αS(s)

×{ξ̂4(s) + αW (s+ C4)ξ̂5(s)} ;

ψ0:2(s) = d2(s){rαE(s+ C2,5)αS(s)ξ̂1(s) + ξ̂2(s)}
+(1− r)αE(C2,5)αS(s){ξ̂4(s) + αW (s+ C4)ξ̂5(s)} ;

ψ0:3(s) = rd2(s)αS(s){ξ̂1(s) + αW (s+ C1)ξ̂2(s)}
+(1− r)αS(s){ξ̂4(s) + αW (s+ C4)ξ̂5(s)} ;

ψ0:4(s) = d1(s){ξ̂4(s) + αW (s+ C4)ξ̂5(s)} ;

ψ0:5(s) = d1(s){αE(s+ C2,5)αS(s)ξ̂4(s) + ξ̂5(s)} ;

ψ0:6(s) = d1(s)αS(s){ξ̂4(s) + αW (s+ C4)ξ̂5(s)} .
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Similarly, we define

ψ
7
(s) = [ψ7:1(s), . . . , ψ7:6(s)]T , (3.21)

with

ψ7:1(s) = d2(s){θ̂1(s) + αW (s+ C1)θ̂2(s)}
+(1− r)αW (s+ C1)αE(s+ C2,5)αS(s)

×{θ̂4(s) + αW (s+ C4)θ̂5(s)} ;

ψ7:2(s) = d2(s){rαE(s+ C2,5)αS(s)θ̂1(s) + θ̂2(s)}
+(1− r)αE(C2,5)αS(s){θ̂4(s) + αW (s+ C4)θ̂5(s)} ;

ψ7:3(s) = rd2(s)αS(s){θ̂1(s) + αW (s+ C1)θ̂2(s)}
+(1− r)αS(s){θ̂4(s) + αW (s+ C4)θ̂5(s)} ;

ψ7:4(s) = d1(s){θ̂4(s) + αW (s+ C4)θ̂5(s)} ;

ψ7:5(s) = d1(s){αE(s+ C2,5)αS(s)θ̂4(s) + θ̂5(s)} ;

ψ7:6(s) = d1(s)αS(s){θ̂4(s) + αW (s+ C4)θ̂5(s)} .

G
1
(s) =

[
1 αW (s+ C1) αW (s+ C1)αE(s+ C2,5)

rαE(s+ C2,5)αS(s) 1 αE(s+ C2,5)
rαS(s) rαW (s+ C1)αS(s) 1

]

gT (s) = [αW (s+ C1)αE(s+ C2,5), αE(s+ C2,5), 1]

G
2
(s) = (1− r)αS(s)

[
g(s), αW (s+ C4)g(s), αW (s+ C4)αE(s+ C2,5)g(s)

]

G
3
(s) =

[
1 αW (s+ C4) αW (s+ C4)αE(s+ C2,5)

αE(s+ C2,5)αS(s) 1 αE(s+ C2,5)
αS(s) αW (s+ C4)αS(s) 1

]

G(s) =

[
d2(s)G

1
(s) G

2
(s)

0 d1(s)G
3
(s)

]
(3.22)

Then the following theorem holds.

Theorem 3.1. Let ζ̂(0+, s) and ˆ̂ϕ(v, s) be as in (3.12) and (3.14) respec-

tively. One then has:

a) ζ̂(0+, s) =
1

d1(s)d2(s)




0 0T 0
ψ

0
(s) G(s) ψ

7
(s)

0 0T 0


 ,
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where d1(s) , d2(s) , ψ
0
(s) , ψ

7
(s) and G(s) are as given in (3.16) , (3.17) ,

(3.20) , (3.21) and (3.22) respectively.

b) ˆ̂ϕ(v, s) = ζ̂(0+, s)

× diag
{ 1

s+ v
, βW (s+ v + C1) , βE(s+ v + C2,5) , βS(s+ v) ,

βW (s+ v + C4) , βE(s+ v + C2,5) , βS(s+ v) ,
1

s+ v

}
,

where diag{a1, . . . , an} denotes an n × n diagonal matrix with diagonal ele-
ments a1, . . . , an.

Proof. In addition to the boundary conditions in (3.4) through (3.9) for states
1 through 6 respectively, one sees, for states 0 and 7, that

fi0(0+, t) = ξW :PC

∫ ∞
0

fi1(x, t)dx

+ ξE:PC

∫ ∞
0

{fi2(x, t) + fi5(x, t)} dx

+ ξW :BOTH

∫ ∞
0

fi4(x, t)dx (3.23)

and

fi7(0+, t) = θW :PC

∫ ∞
0

fi1(x, t)dx

+ θE:PC

∫ ∞
0

{fi2(x, t) + fi5(x, t)} dx

+ θW :BOTH

∫ ∞
0

fi4(x, t)dx . (3.24)

By taking the Laplace transform of (3.4) through (3.9) and the above two
equations with respect to t, one finds that

ζ̂i0(0+, s) = ξW :PC ζ̂i1(0+, s)βW (s+ C1)

+ ξE:PC

{
ζ̂i2(0+, s) + ζ̂i5(0+, s)

}
βE(s+ C2,5)

+ ξW :BOTH ζ̂i4(0+, s)βW (s+ C4) ; (3.25)
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ζ̂i1(0+, s) = δ{i=1} + rζ̂i3(0+, s)αS(s) ; (3.26)

ζ̂i2(0+, s) = δ{i=2} + ζ̂i1(0+, s)αW (s+ C1) ; (3.27)

ζ̂i3(0+, s) = δ{i=3} + ζ̂i2(0+, s)αE(s+ C2,5) ; (3.28)

ζ̂i4(0+, s) = δ{i=4} +
{

(1− r)ζ̂i3(0+, s) + ζ̂i6(0+, s)
}
αS(s) ; (3.29)

ζ̂i5(0+, s) = δ{i=5} + ζ̂i4(0+, s)αW (s+ C4) ; (3.30)

ζ̂i6(0+, s) = δ{i=6} + ζ̂i5(0+, s)αE(s+ C2,5) ; (3.31)

ζ̂i7(0+, s) = θW :PC ζ̂i1(0+, s)βW (s+ C1)

+ θE:PC

{
ζ̂i2(0+, s) + ζ̂i5(0+, s)

}
βE(s+ C2,5)

+ θW :BOTH ζ̂i4(0+, s)βW (s+ C4) . (3.32)

By describing (3.25) through (3.32) in matrix form, it follows that

ζ̂(0+, s) =




0T

uT1
uT2
uT3
uT4
uT5
uT6
0T




+ ζ̂(0+, s) γ(s) , (3.33)

where ui is the i-th unit vector in R8 and

γ(s) =




0 0T 0

ξ̂(s) B(s) θ̂(s)
0 0T 0


 , (3.34)

with

B(s) =




0 αW (s+ C1) 0 0 0 0
0 0 αE(s+ C2,5) 0 0 0

rαR(s) 0 0 (1− r)αR(s) 0 0
0 0 0 0 αW (s+ C4) 0
0 0 0 0 0 αE(s+ C2,5)
0 0 0 αR(s) 0 0


.

(3.35)
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Equation (3.33) can be solved for ζ̂(0+, s) as

ζ̂(0+, s) =




0T

uT1
uT2
uT3
uT4
uT5
uT6
0T




[
I − γ(s)

]−1

. (3.36)

It can be shown from (3.34), after a little algebra, that

[
I − γ(s)

]−1

=
1

d1(s)d2(s)



d1(s)d2(s) 0T 0
ψ

0
(s) G(s) ψ

7
(s)

0 0T d1(s)d2(s)


 ,

and part a) follows from (3.36).

For part b), we note that

fi0(x, t) = fi0(0+, t− x)Ā0(x) ; Ā0(x) = 1 ; (3.37)

fi1(x, t) = fi1(0+, t− x)ĀW (x)e−C1x ; (3.38)

fi2(x, t) = fi2(0+, t− x)ĀE(x)e−C2,5x ; (3.39)

fi3(x, t) = fi3(0+, t− x)ĀS(x) ; (3.40)

fi4(x, t) = fi4(0+, t− x)ĀW (x)e−C4x ; (3.41)

fi5(x, t) = fi5(0+, t− x)ĀE(x)e−C2,5x ; (3.42)

fi6(x, t) = fi6(0+, t− x)ĀS(x) ; (3.43)

fi7(x, t) = fi7(0+, t− x)Ā7(x) ; Ā7(x) = 1. (3.44)

These equations can be interpreted in the following manner. Since states 0
and 7 are absorbing, for the process to be in one of the two states at time t
with age x, it should have entered the state at time t− x, explaining (3.37)
and (3.44). For the process to be in state j at time t for j = 1, 2, 4, 5, as
shown in (3.38), (3.39), (3.41) and (3.42), it should have entered the state
at time t− x, and there has been no transition to any other state until time
t. The case for state 3 and state 6 in (3.40) and (3.43) is similar except that
transitions from state 3 or state 6 to state 0 or state 7 are not possible.
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By taking the Laplace transform of (3.37) through (3.44) with respect to
t, it can be seen that

ϕ̂i0(x, s) = ζ̂i0(0+, s)esx ; (3.45)

ϕ̂i1(x, s) = ζ̂i1(0+, s)e(s+C1)xĀW (x) ; (3.46)

ϕ̂i2(x, s) = ζ̂i2(0+, s)e(s+C2,5)xĀE(x) ; (3.47)

ϕ̂i3(x, s) = ζ̂i3(0+, s)esxĀS(x) ; (3.48)

ϕ̂i4(x, s) = ζ̂i4(0+, s)e(s+C4)xĀW (x) ; (3.49)

ϕ̂i5(x, s) = ζ̂i5(0+, s)e(s+C2,5)xĀE(x) ; (3.50)

ϕ̂i6(x, s) = ζ̂i6(0+, s)esxĀS(x) ; (3.51)

ϕ̂i7(x, s) = ζ̂i7(0+, s)esx . (3.52)

Again by taking the Laplace transform of (3.45) through (3.52) with respect
to x and putting the results into matrix form, the theorem follows.

�

Let the Laplace transform of P (t) with respect to t be denoted by π(s),
i.e.

π(s) =

∫ ∞
0

e−stP (t)dt . (3.53)

From the definition of P (t) in (3.1), one easily sees that π(s) = ˆ̂ϕ(0, s). The

next theorem is then immediate from Theorem 3.1.

Theorem 3.2.

π(s) = ˆ̂ϕ(0, s) = ζ̂(0+, s)

× diag
{1

s
, βW (s+ C1) , βE(s+ C2,5) , βS(s) ,

βW (s+ C4) , βE(s+ C2,5) , βS(s) ,
1

s

}

So far, we have assumed that the dwell time of the semi-Markov process
in state i is absolutely continuous with p.d.f. ai(x), i = 1, . . . , 6, given that
neither the decision of purchasing nor that of not purchasing is made. In
reality, however, the three periods of a day should be treated as constants
τ1 = τ4 = τW , τ2 = τ5 = τE and τ3 = τ6 = τS. This case can be dealt with by
considering a sequence of Laplace transforms of p.d.f’s (αi(k, s))

∞
k=1 where
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αi(k, s) → e−sτi as k → ∞, i = 1, . . . , 6. We emphasize the limit by using
the symbol ～, i.e. α̃i(s) = e−sτi . At the limit, the corresponding Laplace
transform π̃(s) of the transition probability matrix P̃ (t) can be obtained by
substituting α̃i(s) = e−sτi into Theorems 3.1 and 3.2. Assuming that a day
starts with the first period, of particular interest to our analysis are π̃10(s)
and π̃17(s), which are the Laplace transform of the probability of a consumer
having decided to purchase the product by time t and that of a consumer
having decided not to purchase the product by time t. These results can be
obtained directly from Theorems 3.1 and 3.2 with substitution of α̃i(s) =
e−sτi and by employing the initial probability vector uT1 , as summarized in
the next theorem.

Theorem 3.3. Suppose that the three periods of a day are represented by
constants τW , τE and τR. Let τ = τW + τE + τR, τ(PC) = C1τW +C2,5τE and
τ(BOTH) = C4τW + C2,5τE, where C1, C2,5 and C4 are as in (3.15). One
then has:

a)π̃10(s) =
1

s
· 1

1− re−τ(PC)e−sτ

×
{
ξW :PC

1− e−(s+C1)τW

s+ C1

+ ξE:PCe
−(s+C1)τW

1− e−(s+C2,5)τE

s+ C2,5

}

+
1

s
· (1− r)e−τ(PC)e−sτ

(1− re−τ(PC)e−sτ )(1− e−τ(BOTH)e−sτ )

×
{
ξW :BOTH

1− e−(s+C4)τW

s+ C4

+ ξE:PCe
−(s+C4)τW

1− e−(s+C2,5)τE

s+ C2,5

}

b)π̃17(s) =
1

s
· 1

1− re−τ(PC)e−sτ

×
{
θW :PC

1− e−(s+C1)τW

s+ C1

+ θE:PCe
−(s+C1)τW

1− e−(s+C2,5)τE

s+ C2,5

}

+
1

s
· (1− r)e−τ(PC)e−sτ

(1− re−τ(PC)e−sτ )(1− e−τ(BOTH)e−sτ )

×
{
θW :BOTH

1− e−(s+C4)τW

s+ C4

+ θE:PCe
−(s+C4)τW

1− e−(s+C2,5)τE

s+ C2,5

}
.

We are now in a position to prove the following main theorem by inverting
the results in Theorem 3.3 a) and b) into the real domain. For notational
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convenience, the following intervals are introduced for k = 0, 1, 2, · · · .

Int[k,W ] = {t : kτ ≤ t < kτ + τW} (3.54)

Int[k,E] = {t : kτ + τW ≤ t < kτ + τW + τE} (3.55)

Int[k, S] = {t : kτ + τW + τE ≤ t < (k + 1)τ} (3.56)

Here, Int[k,W ], Int[k,E] and Int[k, S] represent the working hours, the
evening hours and the sleeping hours, respectively, of the k-th day. We also
write bxc to mean the integer part of a real number x. Proof of the theorem
is rather lengthy and cumbersome, and only the outline is provided in a
succinct manner in Appendix.

Theorem 3.4. Let Int[k,W ], Int[k,E] and Int[k, S] be as in (3.54), (3.55)
and (3.56) respectively. Let τ and Ci be as in Theorem 3.3 and define M(t) =
b t
τ
c. For notational convenience, we also define the following functions.

Hξ:a(m, t) =
ξW :PC

C1

(
1− e−C1τW

) 1− {re−τ(PC)
}m

1− re−τ(PC)
(3.57)

Hξ:b(m, t) =
ξE:PC

C2,5

e−C1τW
(
1− e−C2,5τE

) 1− {re−τ(PC)
}m

1− re−τ(PC)
(3.58)

Hξ:c(m, t) =
ξW :BOTH

C4

(
1− e−C4τW

) 1− r
r − e−(C4−C1)τW

×
{

1− {re−τ(PC)
}m

1− re−τ(PC)
− 1− e−τ(BOTH)m

1− e−τ(BOTH)

}
(3.59)

Hξ:d(m, t) =
ξE:PC

C2,5

e−C4τW
(
1− e−C2,5τE

) 1− r
r − e−(C4−C1)τW

×
{

1− {re−τ(PC)
}m

1− re−τ(PC)
− 1− e−τ(BOTH)m

1− e−τ(BOTH)

}
(3.60)

Then the probability P̃10(t) can be obtained as follows.
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i) If t ∈ Int[M(t),W ], then

P̃10(t) = Hξ:a(M(t), t) +Hξ:b(M(t), t) +Hξ:c(M(t), t) +Hξ:d(M(t), t)

+
ξW :PC

C1

{
re−τ(PC)eC1τ

}M(t) (
e−C1M(t)τ − e−C1t

)

+
ξW :BOTH

C4

{
re−τ(PC)eC4τ

}M(t) (
e−C4M(t)τ − e−C4t

)

× 1− r
r − e−(C4−C1)τW

{
1− {r−1e−(C4−C1)τW

}M(t)
}
.

ii) If t ∈ Int[M(t), E], then

P̃10(t) = Hξ:a(M(t) + 1, t) +Hξ:b(M(t), t) +Hξ:c(M(t) + 1, t) +Hξ:d(M(t), t)

+
ξE:PC

C2,5

e−(C1−C2,5)τW
{
re−τ(PC)eC2,5τ

}M(t)
(e−C2,5(M(t)τ+τW ) − e−C2,5t)

+
ξW :PC

C2,5

e−(C4−C2,5)τW
{
re−τ(PC)eC2,5τ

}M(t) (
e−C2,5(M(t)τ+τW ) − e−C2,5t

)

× 1− r
r − e−(C4−C1)τW

{
1− {r−1e−(C4−C1)τW

}M(t)
}
.

iii) If t ∈ Int[M(t), S], then

P̃10(t) = Hξ:a(M(t)+1, t)+Hξ:b(M(t)+1, t)+Hξ:c(M(t)+1, t)+Hξ:d(M(t)+1, t) .

The counterpart of Theorem 3.4 for P̃17(t) can be obtained in a similar
manner, where ξW :BOTH , ξW :PC and ξE:PC should be replaced by θW :BOTH ,
θW :PC and θE:PC respectively. In parallel with (3.57) through (3.60), we
define Hθ:a(m, t) through Hθ:d(m, t) by replacing ξW :BOTH , ξW :PC or ξE:PC

in the first factor by θW :BOTH , θW :PC or θE:PC respectively. The result is
summarized in Theorem 3.5 below.

Theorem 3.5. Let Int[k,W ], Int[k,E] and Int[k, S] be as in (3.54), (3.55)
and (3.56) respectively. Let τ , Ci and M(t) be as in Theorem 3.3. Then the
probability P̃17(t) can be obtained as follows.
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i) If t ∈ Int[M(t),W ], then

P̃17(t) = Hθ:a(M(t), t) +Hθ:b(M(t), t) +Hθ:c(M(t), t) +Hθ:d(M(t), t)

+
θW :PC

C1

{
re−τ(PC)eC1τ

}M(t) (
e−C1M(t)τ − e−C1t

)

+
θW :BOTH

C4

{
re−τ(PC)eC4τ

}M(t) (
e−C4M(t)τ − e−C4t

)

× 1− r
r − e−(C4−C1)τW

{
1− {r−1e−(C4−C1)τW

}M(t)
}
.

ii) If t ∈ Int[M(t), E], then

P̃17(t) = Hθ:a(M(t) + 1, t) +Hθ:b(M(t), t) +Hθ:c(M(t) + 1, t) +Hθ:d(M(t), t)

+
θE:PC

C2,5

e−(C1−C2,5)τW
{
re−τ(PC)eC2,5τ

}M(t)
(e−C2,5(M(t)τ+τW ) − e−C2,5t)

+
θW :PC

C2,5

e−(C4−C2,5)τW
{
re−τ(PC)eC2,5τ

}M(t) (
e−C2,5(M(t)τ+τW − e−C2,5t

)

× 1− r
r − e−(C4−C1)τW

{
1− {r−1e−(C4−C1)τW

}M(t)
}
.

iii) If t ∈ Int[M(t), S], then

P̃17(t) = Hθ:a(M(t)+1, t)+Hθ:b(M(t)+1, t)+Hθ:c(M(t)+1, t)+Hθ:d(M(t)+1, t) .

From Theorems 3.4 and 3.5, the two absorption probabilities e10 and e17

can be obtained by letting t→∞.

Theorem 3.6. Starting at state 1 at time 0, let e10 and e17 be the absorption
probabilities in state 0 and state 7 respectively. One then has

e10 = P̃10(∞)

=

{
ξW :PC

C1

(
1− e−C1τW

)
+
ξE:PC

C2,5

e−C1τW
(
1− e−C2,5τE

)} 1

1− reτ(PC)

+

{
ξW :BOTH

C4

(1− e−C4τW ) +
ξE:PC

C2,5

e−C4τW (1− e−C2,5τE)

}

× 1− r
r − e−(C4−C1)τW

{
1

1− re−τ(PC)
− 1

1− e−τ(BOTH)

}
;
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e17 = P̃17(∞)

=

{
θW :PC

C1

(
1− e−C1τW

)
+
θE:PC

C2,5

e−C1τW
(
1− e−C2,5τE

)} 1

1− reτ(PC)

+

{
θW :BOTH

C4

(1− e−C4τW ) +
θE:PC

C2,5

e−C4τW (1− e−C2,5τE)

}

× 1− r
r − e−(C4−C1)τW

{
1

1− re−τ(PC)
− 1

1− e−τ(BOTH)

}
.

For those users who have both the PC access and the mobile access to the
Internet from the beginning, the initial state would be state 4. Accordingly,
also of interest to our analysis would be the probabilities P̃40(t) and P̃47(t).
These probabilities can be obtained merely by adopting the initial state vec-
tor uT4 in place of uT1 . Theorems 3.7 and 3.8 below provide the counterparts
of Theorems 3.4 and 3.5.

Theorem 3.7. Let Int[k,W ], Int[k,E] and Int[k, S] be as in (3.54), (3.55)
and (3.56) respectively. Let τ , Ci and M(t) be as in Theorem 3.3. Then the
probability P̃40(t) can be obtained as follows.

i) If t ∈ Int[M(t),W ], then

P̃40(t) =
ξW :BOTH

C4

(
1− e−C4τW

) 1− e−τ(BOTH)M(t)

1− e−τ(BOTH)

+
ξW :BOTH

C4

(e−τ(BOTH)eC4τ )M(t)
(
e−C4M(t)τ − e−C4t

)

+
ξE:PC

C2,5

e−C4τW
(
1− e−C2,5τE

) 1− e−τ(BOTH)M(t)

1− e−τ(BOTH)
.

ii) If t ∈ Int[M(t), E], then

P̃40(t) =
ξW :BOTH

C4

(
1− e−C4τW

) 1− e−τ(BOTH)(M(t)+1)

1− e−τ(BOTH)

+
ξE:PC

C2,5

e−C4τW
(
1− e−C2,5τE

) 1− e−τ(BOTH)M(t)

1− e−τ(BOTH)

+
ξE:PC

C2,5

e−(C4−C2,5)τW (e−τ(BOTH)eC2,5τ )M(t)

×(e−C2,5(M(t)τ+τW ) − e−C2,5t) .
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iii) If t ∈ Int[M(t), S], then

P̃40(t) =
ξW :BOTH

C4

(
1− e−C4τW

) 1− e−τ(BOTH)(M(t)+1)

1− e−τ(BOTH)

+
ξE:PC

C2,5

e−C4τW
(
1− e−C2,5τE

) 1− e−τ(BOTH)(M(t)+1)

1− e−τ(BOTH)
.

Theorem 3.8. Let Int[k,W ], Int[k,E] and Int[k, S] be as in (3.54), (3.55)
and (3.56) respectively. Let τ , Ci and M(t) be as in Theorem 3.3. Then the
probability P̃47(t) can be obtained as follows.

i) If t ∈ Int[M(t),W ], then

P̃47(t) =
θW :BOTH

C4

(
1− e−C4τW

) 1− e−τ(BOTH)M(t)

1− e−τ(BOTH)

+
θW :BOTH

C4

(e−τ(BOTH)eC4τ )M(t)
(
e−C4M(t)τ − e−C4t

)

+
ξE:PC

C2,5

e−C4τW
(
1− e−C2,5τE

) 1− e−τ(BOTH)M(t)

1− e−τ(BOTH)
.

ii) If t ∈ Int[M(t), E], then

P̃47(t) =
θW :BOTH

C4

(
1− e−C4τW

) 1− e−τ(BOTH)(M(t)+1)

1− e−τ(BOTH)

+
θE:PC

C2,5

e−C4τW
(
1− e−C2,5τE

) 1− e−τ(BOTH)M(t)

1− e−τ(BOTH)

+
ξE:PC

C2,5

e−(C4−C2,5)τW (e−τ(BOTH)eC2,5τ )M(t)

×(e−C2,5(M(t)τ+τW ) − e−C2,5t) .

iii) If t ∈ Int[M(t), S], then

P̃47(t) =
θW :BOTH

C4

(
1− e−C4τW

) 1− e−τ(BOTH)(M(t)+1)

1− e−τ(BOTH)

+
θE:PC

C2,5

e−C4τW
(
1− e−C2,5τE

) 1− e−τ(BOTH)(M(t)+1)

1− e−τ(BOTH)
.

Corresponding to Theorem 3.6, one has the following theorem by letting
t→∞ in Theorems 3.7 and 3.8.
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Theorem 3.9. Starting at state 4 at time 0, Let e40 and e47 be the absorption
probabilities in state 0 and state 7 respectively. One then has

e40 = P̃40(∞)

=

{
ξW :BOTH

C4

(
1− e−C4τW

)
+
ξE:PC

C2,5

e−C4τW
(
1− e−C2,5τE

)} 1

1− eτ(BOTH)
;

e47 = P̃47(∞)

=

{
θW :BOTH

C4

(
1− e−C4τW

)
+
θE:PC

C2,5

e−C4τW
(
1− e−C2,5τE

)} 1

1− eτ(BOTH)
.

4. Analysis of Dynamic Sales Volume and Sales Completion Time

Using the results of the semi-Markov model discussed in Section 3, we are
now in a position to assess the impact of the mobile access to the Internet
on enhancement of e-commerce. Let the population of CPC , CPC→BOTH and
CBOTH be defined by

NPC = |CPC | ; NPC→BOTH = |CPC→BOTH | ; NBOTH = |CBOTH | , (4.1)

where |A| denotes the cardinality of a set A. Given NPC , NPC→BOTH and
NBOTH , of interest then is the distribution of the sales volume at time t. Also,
of equal importance would be the distribution of the sales completion time
for K products. In this section, we derive these two distributions explicitly.

In order to capture individual consumer behaviors better from an appli-
cation point of view, we redefine the state space of the semi-Markov model
N = {0, 1, . . . , 7} as S = {Buy, UD,¬Buy}, where Buy corresponds to state
0, UD (UnDecided) aggregates the six states {1, . . . , 6}, and ¬Buy means
state 7. Furthermore, for distinguishing consumers who belong to different
classes, we write P̃

r
(t) = [P̃r:ij(t)] where P̃

1
(t) is the transition probability

matrix of the semi-Markov process with r = 1 and P̃
r
(t) denotes that with

0 < r < 1. Accordingly, we define

PPC:Buy(t) = P̃1:10(t) ; PPC:UD(t) =
6∑
j=1

P̃1:1j(t) ;

PPC:¬Buy(t) = P̃1:17(t) , (4.2)
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PPC→BOTH:Buy(t) = P̃r:10(t) ; PPC→BOTH:UD(t) =
6∑
j=1

P̃r:1j(t) ;

PPC→BOTH:¬Buy(t) = P̃r:17(t) , (4.3)

and

PBOTH:Buy(t) = P̃r:40(t) ; PBOTH:UD(t) =
6∑
j=1

P̃r:4j(t) ;

PBOTH:¬Buy(t) = P̃r:47(t) , (4.4)

which can be readily computed from Theorems 3.4, 3.5, 3.7 and 3.8.
For V AR ∈ {PC, PC → BOTH,BOTH}, we now introduce the fol-

lowing trivariate generating functions capturing the state of individual con-
sumers at time t.

χV AR:IND(u, v, w, t) = PV AR:Buy(t)u+ PV AR:UD(t)v + PV AR:¬Buy(t)w (4.5)

Let NV AR:Buy(t), NV AR:UD(t) and NV AR:¬Buy(t) be the number of consumers
in class CV AR who have bought the product by time t, the number of con-
sumers in class CV AR who have not decided in either way by time t and the
number of consumers in class CV AR who have decided not to buy the product
by time t, respectively. We note that NV AR = NV AR:Buy(t) + NV AR:UD(t) +
NV AR:¬Buy(t) for any t ≥ 0. Assuming that individual consumers behave
independently of each other, the collective consumer behavior can then be
described by

χV AR:ALL(u, v, w, t) = E[uNV AR:Buy(t)vNV AR:UD(t)wNV AR:¬Buy(t)]

= { χV AR:IND(u, v, w, t) }NV AR . (4.6)

Accordingly, the joint probability ofNV AR:Buy(t), NV AR:UD(t) andNV AR:¬Buy(t)
is given by

P [NV AR:Buy(t) = n1, NV AR:UD(t) = n2, NV AR:¬Buy(t) = n3]

=

(
NV AR

n1, n2, n3

)
PV AR:Buy(t)

n1PV AR:UD(t)n2PV AR:¬Buy(t)n3 .

Based on these observations, the next theorem can be shown.
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Theorem 4.1. For V AR ∈ {PC, PC → BOTH,BOTH}, let NV AR be
as in (4.1) and define KV AR(t) to be the number of products sold to those
consumers in CV AR by time t. Then KV AR(t) has the binomial distribution

with mean NV AR · PV AR:Buy(t), i.e. QV AR(k, t)
def
= P[KV AR(t) = k] for k ∈

{0, 1, . . . , NV AR} is given by

QV AR(k, t) =

(
NV AR

k

)
PV AR:Buy(t)

k{1− PV AR:Buy(t)}NV AR−k .

Proof. Since E[uNV AR:Buy(t)] = χNV AR:IND
(u, 1, 1, t), one sees from (4.5) and

(4.6) that

E[uNV AR:Buy(t)] = { PV AR:Buy(t)u+ (1− PV AR:Buy(t)) }NV AR ,

proving the theorem.
�

For V AR ∈ {PC, PC → BOTH,BOTH}, we next turn our attention to
the sales completion time for K products among those consumers in CV AR
where 0 < K ≤ NV AR. More formally, let TV AR(K) be the time until K
products have been sold among CV AR, i.e.

TV AR(K) = inf{t : KV AR(t) = K} . (4.7)

Let H̄V AR(K)(t) be the survival function of TV AR(K), i.e.

H̄V AR(K)(t) = P[TV AR(K) > t] . (4.8)

The next theorem then holds true.

Theorem 4.2. Let QV AR(k, t) and H̄V AR(K)(t) be as in Theorem 4.1 and
(4.8) respectively, where 0 < K ≤ NV AR. One then has

H̄V AR(K)(t) =
K−1∑

k=0

QV AR(k, t) .

Proof. From (4.7), one easily sees that TV AR(K) > t if and only if KV AR(t) <
K. This dual relationship between TV AR(K) and KV AR(t) then implies that

H̄V AR(K)(t) = P[TV AR(K) > t] = P[KV AR(t) < K] ,
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and theorem follows from Theorem 4.1.
�

The above analysis for the individual classes of consumers should be in-
tegrated so as to capture the stochastic nature of the consumer behaviors in
the entire market. More specifically, let

N = NPC +NPC→BOTH +NBOTH , (4.9)

and define K(t) to be the number of products sold by time t in the entire
market. As before, we also define T (K) to be the time required for selling K
products in the entire market where 0 < K ≤ N . One then has the following
theorem.

Theorem 4.3. Let N , K(t), K and T (K) be as described above. Let Q(k, t) =
P[K(t) = k] and define the survival function of T (K) by H̄ALL(K)(t) =
P[T (K) > t]. Then the following statements hold true.
a) For k ∈ {0, 1, . . . , N}, one has

Q(k, t) =
k∑
i=0

Q\BOTH(k − i, t)QBOTH(i, t)

where

Q\BOTH(k, t) =
k∑
i=0

QPC(k − i, t)QPC→BOTH(i, t) ,

with mathematical convention that QV AR(k, t)
def
= 0 for k > NV AR for V AR ∈

{PC, PC → BOTH,BOTH}.

b) H̄ALL(K)(t) =
K−1∑
i=0

Q(k, t)

Proof. Since K(t) = KPC(t) + KPC→BOTH(t) + KBOTH(t), part a) follows
immediately from Theorem 4.1 and the discrete convolution theorem. Part
b) can be shown as for the proof of Theorem 4.2.

�

23



5. Numerical Examples

The purpose of this section is to explore numerically how the mobile
access to the Internet would enhance e-commerce. For this purpose, the basic
values of the underlying parameters are set as in Table 5.1. It is assumed
that the decision making probabilities are indifferent, regardless of different
access times in a day and regardless of the PC access or the mobile access,
where the decision for purchasing is made with probability 0.03 and that
for not purchasing with probability 0.01 for each Internet access. The total
number of consumers is given as N = 10000 and the following five cases are
considered.

1) All consumers have only the PC access with N = NPC .

2) There exist three different types of consumers with NPC = 2500,
NPC→BOTH = 5000, and NBOTH = 2500, where the probability 1 − r
representing the growth of the mobile users is varied for :

2-1) r = 0.8 ; 2-2) r = 0.5 ; and 2-3) r = 0.2 .

3) All consumers have both the PC access and the mobile access from the
beginning with N = NBOTH .

It should be noted that the degree of the mobile use is strengthened in the
order of 1), 2-1), 2-2), 2-3) and 3).

αW :PC αE:PC αW :BOTH βW :PC βE:PC βW :BOTH

0.03 0.03 0.03 0.01 0.01 0.01

λW :PC λE:PC λW :BOTH r τW τE τR
1/24 1/24 1/12 0.8 8 8 8

Table 5.1. Basic Values of the Underlying Parameters

In Figure 5.1, the survival functions for K(240), i.e. the number of prod-
ucts sold by time t = 240, are plotted for the five cases in the order of 1),
2-1), 2-2), 2-3) and 3) from left to right. It can be readily seen that K(240)
increases stochastically in this order. With probability 0.7, for example, 1736
products or more can be sold for case 1), while this number increases from
2115, 2203 and 2229 to 2450 as the case moves from 2-1), 2-2) and 2-3) to 3)
respectively. The increase from 1736 for case 1) to 2115 for case 2-1), 21.8%
increase, is rather large considering the fact that the sifting probability 1− r
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is increased from 0 to merely 0.2 at r = 0.8. However, the subsequent in-
crease diminishes from 2115 to 2229, only 5.3% increase, as 1 − r increases
from 0.2 to 0.8. Similar observations can be made for the expected values
depicted in Figure 5.2. The monotonicity of the variance also given in Figure
5.2 reflects the fact that the support interval of K(240) increases as the case
moves from 1), 2-1), 2-2) and 2-3) to 3).

1600 1800 2000 2200 2400 2600
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0.2

0.3

0.4

0.5

0.6

0.7

0.8
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1

P[K(t) > k] (t=240, N=10000)

k

Figure 5.1. Survival Function of K(t) (t = 240, N = 10000)
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Mean

10001200140016001800200022002400260028003000

Cpc Only r = 0.8 r = 0.5 r = 0.2 Cboth Only

Varianceｋ 10000=N 10000=N

1:2:1:: =→ BOTHBOTHPCPC CCC 1:2:1:: =→ BOTHBOTHPCPC CCCOnlyCPCOnlyCBOTHOnlyCPC OnlyCBOTH
Figure 5.2 Mean and Variance of K(t) (t = 240, N = 10000)

25



Figures 5.3 and 5.4 provide the counterparts of Figures 5.1 and 5.2 for the
survival function for T (2000), i.e. the sales completion time for K = 2000
products, except that the left-most curve now corresponds to case 3) and
the right-most curve represents case 1). We observe that T (2000) decreases
stochastically as the case moves from 1), 2-1), 2-2) and 2-3) to 3). With
probability 0.7, T (2000) is greater than or equal to 273 for case 1), while
this number decreases from 219, 203 and 200 to 176 as the case moves from
2-1), 2-2) and 2-3) to 3) respectively. Again, the initial decrease from 273
(r = 1) to 219 (r = 0.8), 19.8% decrease, is large in comparison with the
subsequent decrease from 219 (r = 0.8) to 200 (r = 0.2), 8.7% decrease. The
expected sales completion time and its variance are depicted in Figure 5.4.
While the monotonicity of the expected value is observed again, the variance
fluctuates visibly in a rather strange manner. This fluctuation phenomenon
may be explained by the fact that the third period of a day, denoted by τS,
affects the distribution of T (2000) differently for different cases. The flat
parts observed in Figure 5.3 correspond to τS representing sleeping hours
during which consumers are inactive in the use of the Internet. One realizes
that the flat parts appear differently for five different curves which may result
in the fluctuation of the variance.
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Figure 5.3. Survival Function of T (K) (K = 2000, N = 10000)
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Figure 5.4. Mean and Variance of T (K) (K = 2000, N = 10000)

6. Concluding Remarks

Through a new generation of mobile devices rapidly spread in society,
the way the Internet is used has been going under revolution, where the
traditional e-commerce is in the process of being converted into m-commerce.
However, because of the fact that the mobile technology is still young, the
study of the impact of the mobile access to the Internet on e-businesses is
rather limited, where pioneering papers are either empirical, qualitative or
static in their analytical nature and, to the best knowledge of the authors,
no study exists in the literature for capturing behavioral differences between
e-commerce and m-commerce based on a mathematical stochastic model.
The purpose of this paper is to fill this gap by developing and analyzing a
mathematical model for comparing e-commerce via the traditional PC access
only with m-commerce which accommodates both the traditional PC access
and the mobile access.

Three classes of consumers are considered concerning the ways they access
the Internet. A class of consumers who access the Internet only through PCs
throughout the period under consideration is denoted by CPC . The remaining
two classes written as CPC→BOTH and CBOTH consist of those who access the
Internet originally only through PCs but start using the mobile access at
some time later and those who access the Internet through both PCs and
mobile devices from the very beginning, respectively. The entire market is
then represented by C = CPC ∪ CPC→BOTH ∪ CBOTH . Each time the Internet
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is accessed for information, it is assumed that a consumer makes one of the
three decisions: to purchase the product, not to purchase the product, or to
remain undecided.

In order to capture the stochastic behavior of a consumer in C in a unified
manner, a semi-Markov process is formulated with six transient states and
two absorbing states. Through dynamic analysis of the semi-Markov process,
the two stochastic performance measures of interest can be evaluated: the
distribution of the number of products sold by time t and the distribution
of the time required for selling K products. This analysis, in turn, enables
one to assess the impact of mobile devices on e-businesses by comparing
such stochastic performance measures for m-commerce against those for tra-
ditional e-commerce. Numerical examples are given for demonstrating the
effectiveness of the computational procedures proposed in this paper. How-
ever, this research is still in its infancy. Extensive numerical experiments
would be needed to extract some useful rules of thumb from the managerial
point of view in conducting m-commerce. In addition, efforts should be made
for estimating the values of the parameters involved in the analytical model
from real data. These studies are in progress and will be reported elsewhere.
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Appendix Outline of Proof of Theorem 3.4

From Theorem 3.3, one sees that

sπ̃10(s) =
1

1− re−τ(PC)e−sτ

×
{
ξW :PC

1− e−(s+C1)τW

s+ C1

+ ξE:PCe
−(s+C1)τW

1− e−(s+C2,5)τE

s+ C2,5

}

+
(1− r)e−τ(PC)e−sτ

(1− re−τ(PC)e−sτ )(1− e−τ(BOTH)e−sτ )

×
{
ξW :BOTH

1− e−(s+C4)τW

s+ C4

+ ξE:PCe
−(s+C4)τW

1− e−(s+C2,5)τE

s+ C2,5

}

The first factor in the second term of the right hand side of the above equation
can be written as a sum of two terms given by

(1− r)e−τ(PC)e−sτ

(1− re−τ(PC)e−sτ )(1− e−τ(BOTH)e−sτ )

=
X

1− re−τ(PC)e−sτ
+

Y

1− e−τ(BOTH)e−sτ

where

X =
1− r

r − e−(C4−C1)τW
and Y = − 1− r

r − e−(C4−C1)τW
.

Consequently, sπ̃10(s) can be expressed as a sum of geometric series’ as shown
below.

sπ̃10(s) =
ξW :PC

s+ C1

∞∑

k=0

(
re−τ(PC)

)k
e−skτ

− ξW :PCe
−C1τW

s+ C1

∞∑

k=0

(
re−τ(PC)

)k
e−s(kτ+τW )

+
ξE:PCe

−C1τW

s+ C2,5

∞∑

k=0

(
re−τ(PC)

)k
e−s(kτ+τW )

− ξE:PCe
−τ(PC)

s+ C2,5

∞∑

k=0

(
re−τ(PC)

)k
e−s(kτ+τW+τE)
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+ X
ξW :BOTH

s+ C4

∞∑

k=0

(
re−τ(PC)

)k
e−skτ

− X
ξW :BOTH

s+ C4

e−C4τW

∞∑

k=0

(
re−τ(PC)

)k
e−s(kτ+τW )

+ X
ξE:PC

s+ C2,5

e−C4τW

∞∑

k=0

(
re−τ(PC)

)k
e−s(kτ+τW )

− X
ξE:PC

s+ C2,5

e−τ(BOTH)

∞∑

k=0

(
re−τ(PC)

)k
e−s(kτ+τW+τE)

+ Y
ξW :BOTH

s+ C4

∞∑

k=0

e−τ(BOTH)ke−skτ

− Y
ξW :BOTH

s+ C4

e−C4τW

∞∑

k=0

e−τ(BOTH)ke−s(kτ+τW )

+ Y
ξE:PC

s+ C2,5

e−C4τW

∞∑

k=0

e−τ(BOTH)ke−s(kτ+τW )

− Y
ξE:PC

s+ C2,5

e−τ(BOTH)

∞∑

k=0

e−τ(BOTH)ke−s(kτ+τW+τE)

Since the inversion of the Laplace transform 1
s+α

e−sβ into the real domain is
given by

L−1

[
1

s+ α
e−sβ

]
=

∫ t

0

e−α(t−y)δ(y − β) dy = δ{0≤β≤t}e
−α(t−β),

sπ̃10(s) can be inverted, with P̃10(0) = 0, as

d

dt
P̃10(t) = ξW :PCe

−C1t

∞∑

k=0

δ{t∈Int[k,W ]}
(
re−τ(PC)eC1τ

)k

+ ξE:PCe
−(C1−C2,5)τW e−C2,5t

∞∑

k=0

δ{t∈Int[k,E]}
(
re−τ(PC)eC2,5τ

)k
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+ XξW :BOTHe
−C4t

∞∑

k=0

δ{t∈Int[k,W ]}
(
re−τ(PC)eC4τ

)k

+ XξE:PCe
−(C4−C2,5)τW e−C2,5t

∞∑

k=0

δ{t∈Int[k,E]}
(
re−τ(PC)eC2,5τ

)k

+ Y ξW :BOTHe
−C4t

∞∑

k=0

δ{t∈Int[k,W ]}
(
e−τ(BOTH)eC4τ

)k

+ Y ξE:PCe
−(C4−C2,5)τW e−C2,5t

∞∑

k=0

δ{t∈Int[k,E]}
(
e−τ(BOTH)eC2,5τ

)k
.

By integrating both sides of the the above equation from 0 to t, it then follows
that

P̃10(t) = ξW :PC

∞∑

k=0

(
re−τ(PC)eC1τ

)k ∫ t

0

δ{t′∈Int[k,W ]}e
−C1t′dt′

+ ξE:PCe
−(C1−C2,5)τW

∞∑

k=0

(
re−τ(PC)eC2,5τ

)k ∫ t

0

δ{t′∈Int[k,E]}e
−C2,5t′dt′

+ XξW :BOTH

∞∑

k=0

(
re−τ(PC)eC1τ

)k ∫ t

0

δ{t∈Int[k,W ]}e
−C4t′dt′

+ XξE:PCe
−(C4−C2,5)τW

∞∑

k=0

(
re−τ(PC)eC2,5τ

)k ∫ t

0

δ{t∈Int[k,E]}e
−C2,5t′dt′

+ Y ξW :BOTH

∞∑

k=0

(
e−τ(BOTH)eC1τ

)k ∫ t

0

δ{t∈Int[k,W ]}e
−C4t′dt′

+ Y ξE:PCe
−(C4−C2,5)τW

∞∑

k=0

(
e−τ(BOTH)eC2,5τ

)k ∫ t

0

δ{t∈Int[k,E]}e
−C2,5t′dt′ .

The theorem can now be proven by specifying the active terms for given t
and conducting the exponential integrals.
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