
A Lattice Framework for Pricing Display Advertisement Options with the Stochastic
Volatility Underlying Model

Bowei Chena,∗, Jun Wanga

aUniversity College London, Gower Street, London, WC1E 6DY, United Kingdom

Abstract

Advertisement (abbreviated ad) options are a recent development in online advertising. Simply, an ad option is a first look contract
in which a publisher or search engine grants an advertiser a right but not obligation to enter into transactions to purchase impressions
or clicks from a specific ad slot at a pre-specified price on a specific delivery date. Such a structure provides advertisers with more
flexibility of their guaranteed deliveries. The valuation of ad options is an important topic and previous studies on ad options
pricing have been mostly restricted to the situations where the underlying prices follow a geometric Brownian motion (GBM). This
assumption is reasonable for sponsored search; however, some studies have also indicated that it is not valid for display advertising.
In this paper, we address this issue by employing a stochastic volatility (SV) model and discuss a lattice framework to approximate
the proposed SV model in option pricing. Our developments are validated by experiments with real advertising data: (i) we find
that the SV model has a better fitness over the GBM model; (ii) we validate the proposed lattice model via two sequential Monte
Carlo simulation methods; (iii) we demonstrate that advertisers are able to flexibly manage their guaranteed deliveries by using the
proposed options, and publishers can have an increased revenue when some of their inventories are sold via ad options.

Keywords: Online Advertising, Guaranteed Delivery, First Look Contract, Advertisement Option, Option Pricing, Lattice
Framework, Stochastic Volatility

1. Introduction

Options have been widely used in many fields: financial
options are an important derivative when speculating profits
as well as hedging risk (Wilmott, 2006); real options are an
effective decision-making tool for business projects valuation
and corporate risk management (Boer, 2002). Recently, op-
tions have been introduced into the field of online advertising
to solve the so called non-guaranteed delivery problem as well
as to provide advertisers with greater flexibility in purchasing
premium ad inventories. Moon and Kwon (2010) proposed an
ad option for advertisers to make a flexible choice of payment
at either cost-per-mille (CPM) or cost-per-click (CPC). They
are two popular online advertising payment schemes: the for-
mer allows an advertiser to pay when his ad is displayed 1000
times to online users while with the latter an advertiser pays
only when his ad is clicked by an online user. The proposal
of Moon and Kwon (2010) was similar to an option paying
the worst and cash (Zhang, 1998) because the option payoff

depends on the minimum difference between CPM and CPC.
Wang and Chen (2012) proposed a simple European ad option
between buying and non-buying the impressions that will be
created in the future, and discussed the option pricing based
on the one-step binomial lattice method (Sharpe, 1978). Their
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ad option was priced from the perspective of a risk-averse pub-
lisher who wants to hedge the expected revenue in the next step.
Chen, Wang, Cox, and Kankanhalli (2015) investigated a spe-
cial option for sponsored search whereby an advertiser can tar-
get a set of keywords for a certain number of total clicks in the
future. Each candidate keyword can be specified with a fixed
payment price and the option buyer can exercise the option mul-
tiple times at any time prior to or on the contract expiration
date. Their design was a generalization of the dual-strike call
option (Zhang, 1998) and the multi-exercise option (Marshall,
2012).

In this paper, we discuss an ad option that gives an adver-
tiser a right but not obligation to purchase the future impres-
sions or clicks from a specific ad slot (or user tag or keyword)
at a pre-specified price. The pre-specified price is also called
the strike price, which can be same or different to the payment
scheme of its underlying ad format. For example, the underly-
ing price (i.e., the winning payment price) of a display impres-
sion from real-time bidding (RTB) is usually measured by CPM
while the proposed ad option can be specified with a strike price
in terms of CPC for this impression. The publisher or search en-
gine who grants this right in exchange for a certain amount of
upfront fee, is called the option price. Obviously, ad options
are more flexible than guaranteed contracts (Bharadwaj, Ma,
Schwarz, Shanmugasundaram, Vee, Xie, and Yang, 2010) as on
the delivery date. If the advertiser thinks that the spot market
is more beneficial, he can join RTB as a bidder and his cost of
not using an ad option is only the option price. A contract with
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Table 1: Summary of lattice methods used in pricing a call option written on an asset with the GBM underlying model. Detailed description of notations is provided
in Table 2.

Model Movement scales u, d (or u,m, d) Transition probabilities q1, q2, · · · qk

Binomial lattice (one factor)
CRR u = eσ

√
∆t, d = 1/u. q1 = er∆t−d

u−d , q2 = 1 − q1.
Tian-BIN u =

γζ
2 (ζ + 1 +

√
ζ2 + 2ζ − 3), γ = er∆t, q1 = er∆t−d

u−d , q2 = 1 − q1.
d =

γζ
2 (ζ + 1 −

√
ζ2 + 2ζ − 3), ζ = eσ

2∆t.

Haahtela-BIN u = e
√

eσ2∆t−1+r∆t, d = e−
√

eσ2∆t−1+r∆t. q1 = er∆t−d
u−d , q2 = 1 − q1.

Trinomial lattice (one factor)
Boyle-TRIN u = eλσ

√
∆t, q1 =

(ζ+γ2−γ)u−(γ−1)
(u−1)(u2−1) ,

m = 1, q2 = 1 − q1 − q3, ζ = e2r∆t(eσ2∆t − 1
)
,

d = e−λσ
√

∆t. q3 =
(ζ+γ2−γ)u2−(γ−1)u3

(u−1)(u2−1) , γ = er∆t.

KR-TRIN u = eλσ
√

∆t, q1 = 1
2λ2 +

(r− 1
2σ

2)
√

∆t
2λσ ,

m = 1, q2 = 1 − 1
λ2 ,

d = e−λσ
√

∆t. q3 = 1
2λ2 −

(r− 1
2σ

2)
√

∆t
2λσ .

Tian-TRIN u = $ +
√
$2 − m2, q1 =

md−γ(m+d)+γ2ζ
(u−d)(u−m) ,

m = γζ2, γ = er∆t, ζ = eσ
2∆t, q2 =

γ(u+d)−ud−γ2ζ
(u−m)(m−d) ,

d = $ −
√
$2 − m2, $ =

γ
2 (ζ4 + ζ3). q3 =

um−γ(u+m)+γ2ζ
(u−d)(m−d) .

Note: CRR (Cox, Ross, and Rubinstein, 1979); Tian-BIN and Tian-TRIN (Tian, 1993); Haahtela-BIN (Haahtela, 2010);
Boyle-TRIN (Boyle, 1988); and KR-TRIN (Kamrad and Ritchken, 1991).

a such structure is also called a first look at inventory (shortly
first look) contract or tactic (Interactive Advertising Bureau of
Canada, 2015). It means that an advertiser is given the oppor-
tunity to buy inventories which a publisher offers to him, and
if he has no use for it, it can be sold onto another ad network.
The ad options proposed by our this study and Wang and Chen
(2012), and Chen et al. (2015) are first look contracts while the
ad option studied by Moon and Kwon (2010) is not a first look
contract.

When pricing an ad option, the previous research is mostly
restricted in their usage to those situations where the underlying
price follows a geometric Brownian motion (GBM) (Samuel-
son, 1965). According to Yuan, Wang, and Zhao (2013), Yuan,
Wang, Chen, Mason, and Seljan (2014) and Chen, Yuan, and
Wang (2014), there is only a very small number of ad invento-
ries whose CPM or CPC satisfies this assumption. Therefore,
the previous studies fail to provide an effective unified frame-
work that covers general situations. In this paper, we address
the issue and provide a more general pricing framework. We
use a stochastic volatility (SV) model to describe the underly-
ing price movement for cases where the GBM assumption is
not valid. Based on the SV model, a censored binomial lattice
is then constructed for option pricing. We also examine sev-
eral previous binomial and trinomial lattice methods to price
an ad option whose underlying inventory prices follow a GBM
model, and deduce the close-form solutions to examine their
convergence performance. Our developments are validated by
experiments using real advertising data. We examine the fit-
ness of the underlying model, valid the proposed option pricing
method, and illustrate that the options provide a more flexible
way of selling and buying ads. In particular, we show that an

advertiser can have better deliveries in a bull market (where the
underlying price increases). On the other hand, a publisher or
search engine is able to reduce the revenue volatility over time.
In a bear market (where the underlying price decreases), there
is a growth in total revenue. To our best knowledge, this is the
first work that discusses lattice methods for the ad option eval-
uation.

The rest of the paper is organized as follows. Section 2 re-
views the related work. Section 3 introduces the preliminaries
of lattice methods for pricing an ad options with the GBM un-
derlying model. Section 4 discusses our lattice method to price
an ad option with the SV underlying model. Section 5 presents
our experimental results. Section 6 concludes the paper.

2. Literature Review

The ad options discussed in this paper are closely connected
to financial options, whose evaluation can be traced back to Bache-
lier (1900), who proposed to use a continuous-time random
walk as the underlying process to price an option written on
a stock. Samuelson (1965) then replaced the Bachelier’s as-
sumption with a geometric form, called the geometric Brow-
nian motion (GBM). Based on the GBM, Black and Scholes
(1973) and Merton (1973) discussed a risk-neutral option pric-
ing method independently, called the Black-Scholes-Merton (BSM)
model, opening the floodgates to option pricing. Various nu-
merical procedures have appeared in this field, including lattice
methods, finite difference methods, Monte Carlo simulations,
etc. These numerical procedures are capable of evaluating more
complex options when the close-form solution does not exist.
In our discussion, we focus on lattice methods.
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Sharpe (1978) initiated the concept of pricing a call option
written on an asset with simple up and down two-state price
changes. We call this the one-step binomial lattice method and
use it as a pedagogical framework to explain the continuous-
time option pricing model without reference to stochastic calcu-
lus. Cox, Ross, and Rubinstein (1979) then developed a multi-
step binomial framework, called the Cox-Ross-Rubinstein (CRR)
model, which can converge with the BSM model if the length
of the time step is sufficiently small. Boyle (1986) proposed a
trinomial lattice, whereby the asset price can either move up-
wards, downwards, or stay unchanged in a given time period.
Other contributors to one factor lattice methods include Kam-
rad and Ritchken (1991), Tian (1993) and Haahtela (2010). The
technical details and differences of these methods are presented
in Table 1, where the movement scale is the ratio of the price
in the next state to the current one, and the transition proba-
bility is the risk-neutral probability that the asset price moves
from the current state to the next one, which is labelled from
the upper state to the lower state. It is also worth noting that all
of these methods adopt Samuelson’s GBM assumption for the
underlying asset price.

The GBM assumption may not always be valid empirically.
This motivates a general Ornstein-Uhlenbeck (OU) diffusion
process for option pricing. Nelson and Ramaswamy (1990)
discussed the conditions under which a sequence of binomial
processes converges weakly to an OU diffusion process and in-
vestigated its application to pricing an option written on an as-
set with constant volatility. Primbsa, Rathinamb, and Yamadac
(2007) then proposed a pentanomial lattice method that incor-
porates the skewness and kurtosis of the underlying asset price
and found that the limiting distribution is compounded Pois-
son. Nelson and Ramaswamy (1990) and Primbsa, Rathinamb,
and Yamadac (2007) solved the lattice pricing for the non-GBM
underlyings which have constant volatility. Florescu and Viens
(2005, 2008) proposed lattice methods that deal with a general
SV underlying model. However, their method is not very prac-
tical in terms of computational efficiency as the transition prob-
abilities are restricted by many conditions and need to be esti-
mated independently before building up the price lattice. From
our point of view, a direct censor on transition probabilities of
each node, as discussed in (Nelson and Ramaswamy, 1990),
would be more efficient. Our proposed method in Section 4 is
based on this idea.

3. Preliminaries of Lattice Method

This section introduces the basic settings of the lattice based
option pricing framework in the context of online advertising.
The previous lattice methods introduced in Table 1 are exam-
ined. For the reader’s convenience, the key notations and termi-
nologies used throughout the paper are described in Table 2. We
here discuss the case where an ad option allows its buyer to pay
a fixed CPC for display impressions. Therefore, the strike price
of the option is the fixed CPC and the underlying price is the
uncertain winning payment CPM from RTB, where each sin-
gle impression being auctioned off is paid at the second highest
bid (Edelman, Ostrovsky, and Schwarz, 2007; Google, 2011).

Table 2: Summary of key notations and abbreviations.
Notation Description
T Option expiration date (in terms of year).
n Total number of time steps and the length of

each time step is ∆t = T/n.
r̂, r̃, r Constant risk-less interest rate: r̂ is the discrete-

time interest rate in ∆t; r̃ = 1 + r̂; and r is a
continuous-time interest rate where er∆t = r̃.

u,m, d State transition size (or movement scale) in up-
ward, unchanged and downward movement.

q1, . . . , qn Risk-neutral state transition probability, la-
belled from the top node to the bottom node.

Q{i}(tk) Risk-neutral probability on node i at time tk.
Q Risk-neutral probability measure.
P Real-world probability measure.
Mi Mi is CPM at time step i, i = 0, . . . , n.
M(t) M(t) is CPM at time t.
Ci Ci is CPC at time step i.
C(t) C(t) is CPC at time t.
H Constant CTR.
Φn Option payoff on the expiration date.
FM , FC Strike price in terms of CPM, CPC.
π0 Option price at time 0 (i.e., the time step 0).
N(·) Cumulative distribution function of a standard

normal distribution.
N(x, y2) Normal distribution with mean x and standard

deviation y, where x, y ∈ R.
µ Constant drift for the underlying price.
σ Constant volatility of the underlying price.
σ(t) Stochastic volatility of the underlying price.
κ, θ, δ Constant speed, long-term mean, and volatility

for the stochastic volatility model.
CPC Cost-per-click.
CPM Cost-per-mille (i.e., 1000 impressions).
CTR Click-through rate.
E[·] Expectation.
std(·) Standard deviation.
x ∧ y min{x, y}, where x, y ∈ R.
(·)+ max{0, ·}.

Other ad option cases can be discussed in the same manner,
such as an ad option allows its buyer to pay a fixed CPM for
display impressions, or an ad option allows its buyer to pay a
fixed CPM or CPC for clicks.

Suppose that an advertiser buys an ad option in time 0 which
allows him to purchase several impressions from a publisher’s
ad slot in time 1 at a fixed CPC, denoted by FC . As impres-
sions are normally auctioned off at a CPM value, the under-
lying price is the winning payment CPM from RTB, denoted
by Mi, i = 0, 1. In time 1, the underlying price may rise
or fall, denoted by M{u}1 or M{d}1 . Let us consider the upward
case. If M{u}1 /(1000H) ≥ FC , the advertiser will exercise the
option; if M{u}1 /(1000H) < FC , he will not exercise the op-
tion but join RTB instead. Note that H represents a constant
CTR; therefore, the underlying and strike prices can be com-
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pared on the same measurement basis. Mathematically, we
use the option payoff function Φ

{u}
1 to describe the above de-

cision making, Φ
{u}
1 := (M{u}1 /(1000H) − FC)+. Similarly, if

the winning payment CPM moves downward, the option payoff

Φ
{d}
1 := (M{d}1 /(1000H) − FC)+.

We follow a general economic settings and consider that
the advertiser is risk-neutral so that he exercises the ad option
only if the option payoff is maximized (Wilmott, 2006). We use
the so-called risk-neutral probability measure for option pric-
ing (Björk, 2009). In finance, it is defined by the statement that
the expected risky return of an asset is equal to a risk-less bank
interest return. In the online advertising environment, the risk-
neutral probability measure Q = (q, 1−q) satisfies the following
equation

r̃M0 ≡ quM0 + (1 − q)dM0, (1)

where r̃ = (1+r̂) is the risk-less return over the period from time
0 to time 1, u = M{u}1 /M0 and d = M{d}1 /M0 are the movement
scales of CPM. Therefore, we can obtain the risk-neutral tran-
sition probability q = (̃r − d)/(u− d). Note that here q equals to
q1 in Table 1, which describes the probability that CPM moves
upward in time 1. Since the option value can be considered
as a bivariate function of time and underlying price, the option
value at time 0 can be obtained by discounting the expected
option value at time 1 under Q = (q, 1 − q) (Björk, 2009, see
Martingale). The option value at time 1 is actually the option
payoff; therefore, the option price at time 0 can be obtained by
discounting the expected payoff, that is

π0 = r̃−1EQ[Φ1] = r̃−1
(
qΦ
{u}
1 + (1 − q)Φ{d}1

)
. (2)

This option price π0 is fair because it rules out arbitrage (Var-
ian, 1987; Björk, 2009). Arbitrage means that an advertiser can
obtain a profit larger or smaller than the risk-less bank inter-
est rate with certainty. Consider if the option price is overesti-
mated, i.e., π0 > r̃−1(qΦ

{u}
1 + (1− q)Φ{d}1 ), the advertiser can sell

short an ad option at time 0 and save the money into bank to get
the risk-less profit r̃π0−(qΦ

{u}
1 +(1−q)Φ{d}1 ). Converse strategies

can be used to obtain arbitrage if the option price is underesti-
mated. Up to this point, we have discussed the option pricing
framework that is the one-step binomial method, initially pro-
posed by Sharpe (1978). For a multi-step binomial lattice, as
shown in Figure 1(a), the possible values of CPM and the cor-
responding risk-neutral transition probabilities can be estimated
directly by investigating various combinations of each one-step
model, so the option price π0 can be obtained as follows

π0 = r̃−n
n∑

j=0

(
n
j

)
q j(1 − q)n− j

(u jdn− jM0

1000H
− FC

)+

. (3)

If for any j ≥ j∗, u jdn− jM0/(1000H) ≥ FC , then

π0 =
M0

1000H

n∑
j= j∗

(
n
j

)
q̃ j(1 − q̃)n− j − FC r̃−n

n∑
j= j∗

(
n
j

)
q j(1 − q)n− j

=
M0

1000H
ψ( j∗, n, q̃) − FC r̃−nψ( j∗, n, q), (4)

where q̃ = q × (u/̃r). If each time step ∆t = T/n is sufficiently
small, a continuous-time closed-form formula for π0 can be ob-
tained as follows

π0 =
M0

1000H
N(ς1) − FCe−rTN(ς2), (5)

ς1 =
1

σ
√

T

(
ln

{ M0

1000HFC

}
+ (r +

1
2
σ2)T

)
, (6)

ς2 = ς1 − σ
√

T , (7)

which is very similar to the BSM model (Black and Scholes,
1973; Merton, 1973).

Figure 1(b) exhibits a trinomial lattice. There are 6 param-
eters: u,m, d are state movement scales; q1, q2, q3 are the corre-
sponding risk-neutral transition probabilities. These parameters
uniquely determine the movement of CPM, which then deter-
mines a unique value of an ad option written on CPM. They
must be restricted such that the constructed trinomial lattice
converges to the log-normal distribution of CPM in continuous
time (i.e., the GBM assumption). We use the moment matching
technique (Cox et al., 1979) to define the basic restrictions as
follows:

q1 + q2 + q3 = 1, (8)

q1u + q2m + q3d = γ = er∆t, (9)

q1u2 + q2m2 + q3d2 = γ2ζ = e2r∆teσ
2∆t (10)

where 0 ≤ q1, q2, q3 ≤ 1. Since there are 6 parameters, 3 addi-
tional equations are necessary to define a unique solution. Here
we examine the additional conditions discussed by previous re-
search (Boyle, 1988; Kamrad and Ritchken, 1991; Tian, 1993)
and use the same settings to price a display ad option.

Figure 2 compares the convergence performance of discussed
binomial and trinomial lattice methods for option pricing. Eq. (7)
is used as the golden line to examine how quickly that the cal-
culated option price from lattice methods approximate to the
closed-form value (because these methods are all based on the
GBM assumption). Figure 2(a) illustrates the situation when
the option value at time 0 is in the money (i.e., M0/(1000H) ≥
FC) and Figure 2(b) shows the out of the money case (i.e.,
M0/(1000H) < FC). Several findings are worth mentioning
here. First, the convergence rate of the trinomial lattice is fast
than that of the binomial lattice; however, more nodes need to
be computed for the former, i.e., (n+1)2 nodes for the trinomial
lattice while there are only (n + 1)(n + 2)/2 nodes for binomial
lattice. Second, the Tian-TRIN (Tian, 1993) model has a better
convergence performance than the others.

4. Censored Binomial Lattice for the SV Underlying Model

When the GBM assumption is not valid empirically, the SV
model can be used to describe the underlying price movement.
Let us extend the case whereby an ad option allows its buyer to
pay a fixed CPC for display impressions. The SV model for the
uncertain winning payment CPM can be expressed as follows:

dM(t) = µM(t)dt + σ(t)M(t)dW(t), (11)

dσ(t) = κ(θ − σ(t))dt + δ
√
σ(t)dZ(t), (12)
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Figure 1: Lattice framework: (a) the binomial lattice for CPM; (b) the trinomial lattice for CPM.
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Figure 2: Comparison of the convergence performance of the binomial and trinomial lattice methods for pricing a display ad option with the GBM underlying: (a)
the option value at time 0 is in the money where M0 = 2, FC = 0.005, CTR = 0.3, r = 0.05, T = 31/365 and σ = 0.5; and (b) the option value at time 0 is out of
the money where M0 = 2, FC = 0.075, CTR = 0.3, r = 0.05, T = 31/365 and σ = 0.5. Detailed descriptions of notations and terminology are provided in Table 2.

where W(t) and Z(t) are standard Brownian motions under the
real world probability measure P satisfying E[dW(t)dZ(t)] = 0,
and µ and σ(t) are the constant drift and volatility of CPM, and
κ, θ, δ are the volatility parameters. The drift factor κ(θ − σ(t))
ensures the mean reversion of σ(t) towards its long-term value
θ. The volatility factor δ

√
σ(t) avoids the possibility of negative

σ(t) for all positive values of κ and θ. It is worth noting that the
proposed model is very similar to the Heston model (Heston,
1993) while the significant difference is that the hidden layer is
driven by dσ(t) rather than dσ(t)2. Let X(t) = ln(M(t)), Eq. (11)
can be re-written as the following risk-neutral form:

dX(t) =

(
r −

σ2(t)
2

)
dt + σ(t)dWQ(t), (13)

where r is the constant continuous-time risk-less interest rate
and WQ := W(t) +

∫ t
0

µ−r
σ(s) ds is a standard Brownian motion un-

der the risk-neutral probability measure Q, so E[dWQ(t)dZ(t)] =

0. The process X(t) can be weakly approximated by a series
of binomial processes, say X̃(ti), i = 1, . . . , n. For more de-
tails about the approximation conditions, see (Nelson and Ra-
maswamy, 1990). We will briefly verify these conditions in the
following discussion.

In Algorithm 1, we present our method of calculating the
option price for a display ad option whose underlying is the SV
model. Simply, a binomial lattice for X̃(ti) is first constructed
to approximates X(t) weakly. The lattice is constructed from
time step 0 to time step n, and at each time step, nodes are
calculated from top to bottom. In the following discussion, the
mathematical details of Steps ¬-® are introduced.

Step ¬ We start from the first node X̃{1}(tk) in Figure 3,
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Figure 3: Censored binomial lattice for the SV underlying. Detailed description of notations is provided in Table 2.

whose two successors can be expressed as follows

X̃{1,u}(tk + ∆t) = (J{1}(tk) + 1)σ(tk + ∆t)
√

∆t

+

(
r −

σ2(tk + ∆t)
2

)
∆t, (14)

X̃{1,d}(tk + ∆t) = (J{1}(tk) − 1)σ(tk + ∆t)
√

∆t

+

(
r −

σ2(tk + ∆t)
2

)
∆t, (15)

where J{1}(tk)σ(tk + ∆t)
√

∆t is the point on the grid closest to
X̃{1}(tk), given by

J{1}(tk) = inf
J∗∈N

∣∣∣∣ J∗σ(tk + ∆t)
√

∆t − X̃{1}(tk)
∣∣∣∣. (16)

Eqs. (14)-(15) can be rewritten in terms of their conditional
increments:

X̃{1,u}(tk + ∆t) − X̃{1}(tk)

= σ(tk + ∆t)
√

∆t − K{1}(tk) +

(
r −

σ2(tk + ∆t)
2

)
∆t, (17)

X̃{1,d}(tk + ∆t) − X̃{1}(tk)

= − σ(tk + ∆t)
√

∆t − K{1}(tk) +

(
r −

σ2(tk + ∆t)
2

)
∆t, (18)

where K{1}(tk) is the grid adjusting parameter for the successors
of the first node at time tk. As shown in Figure 3, the value
of K{i}(tk), i = 1, 2, . . . , k, can be either positive or negative, To
satisfy the approximation condition lim∆t→0 |X(tk+∆t)−X(tk)| =
0, the following equation holds:

E
[
X̃{1}(tk + ∆t) − X̃{1}(tk) | F (tk)

]
=

(
r −

σ2(tk + ∆t)
2

)
∆t. (19)

Then, we can obtain a system of equations

(
σ(tk + ∆t)

√
∆t − K{1}(tk)

) q{1}1 (tk)
Q{1}(tk)

+

(
− σ(tk + ∆t)

√
∆t − K{1}(tk)

) q{1}2 (t)
Q{1}(t)

= 0,

q{1}1 (tk) + q{1}2 (tk) = Q{1}(t),

where q{1}1 (tk) and q{1}2 (tk) are the risk-neutral probabilities that
the successor of the first node at time tk rises or falls in time
tk + ∆t, and Q{1}(tk) is the risk-neutral probability for the first
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Algorithm 1 Censored binomial lattice method for pricing a
display ad option with the SV underlying model. Detailed de-
scription of notations is provided in Table 2.

function OptionPricingCBL(M0, σ0, κ, θ, δ,H,T, n, r, FC)
∆t ← T/n; r̃ ← er∆t;
for k ← 0 to n − 1 do

for i ∈ nodes in time step k do
if i = 1 then

Step ¬;
else

Step ;
end if

end for
end for
π0 ← Eq. (22) (see Step ®);

end function

node at time tk. Solving the above equations then gives

q{1}1 (tk) =



Q{1}(tk)
2

(
1 +

K{1}(tk)
σ(tk+∆t)

√
∆t

)
,

if 0 ≤ Q{1}(tk)
2

(
1 +

K{1}(tk)
σ(tk+∆t)

√
∆t

)
≤ Q{1}(tk),

0, if Q{1}(tk)
2

(
1 +

K{1}(tk)
σ(tk+∆t)

√
∆t

)
< 0,

Q{1}(tk), if Q{1}(tk)
2

(
1 +

K{1}(tk)
σ(tk+∆t)

√
∆t

)
≥ Q{1}(tk),

=

(
Q{1}(tk) ∧

Q{1}(tk)
2

(
1 +

K{1}(tk)

σ(tk + ∆t)
√

∆t

))+
, (20)

q{1}2 (tk) = Q{1}(tk) − q{1}1 (tk). (21)

Eqs. (20) and (21) show that transition probabilities q{1}1 (tk)
and q{1}2 (tk) are censored in the approximation.

Step  The successors of other nodes can be constructed in
the same manner as that of X̃{1}(tk). Since the transition prob-
abilities are censored directly at each node, K{i}(tk), J{i}(tk) and
Q{i}(tk) can be calculated sequentially from top to bottom along-
side the lattice construction for the underlying price. The nodes
need to be kept the recombining pattern; therefore, the follow-
ing equations hold for 1 ≤ i ≤ k:

X̃{i,d}(tk + ∆t)

= (J{i}(tk) − 1)σ(tk + ∆t)
√

∆t +

(
r −

σ2(tk + ∆t)
2

)
∆t

= X̃{i+1,u}(tk + ∆t)

= (J{i+1}(tk) + 1)σ(tk + ∆t)
√

∆t +

(
r −

σ2(tk + ∆t)
2

)
∆t,

therefore

J{i+1}(tk) = J{i}(tk) − 2,

K{i+1}(tk) = J{i+1}(tk)σ(tk + ∆t)
√

∆t − X̃{i+1}(tk).

The transition probabilities for the node X̃{i+1}(tk) can be then
estimated by Eqs. (20)-(21). Hence, the rolling risk-neutral

probability distribution Q{i}(tk) for each node can be quickly
computed as follows:

Q{i}(tk + ∆t) =


q{1}1 (tk), if i = 1,
q{i−1}

2 (tk) + q{i}1 (tk), if 1 < i < k + 1,
q{k+1}

2 (tk), if i = k + 1,

subjected to the initial condition Q(t0) = 1.
Step ® The binomial lattice can be constructed by steps ¬-

 for each time step until the contract expiration date. Finally,
the option price can be obtained as follows:

π0 = r̃−n
n+1∑
i=1

Q{i}(tn)
( 1
1000H

eX̃{i}(tn) − FC
)+

. (22)

Similar to Eq. (4), Eq. (22) is also the discrete form of the risk-
neutral terminal pricing (Björk, 2009).

In the above discussion, we actually followed Florescu and
Viens (2005) to construct the binomial lattice and used vari-
ables K{i}(tk) and J{i}(tk) to tune the grid so that the constructed
binomial framework is recombining. Compared to Florescu
and Viens (2005), our method simplifies the lattice construc-
tion process by censoring the probabilities at each node di-
rectly. In the meantime, the structure satisfies the approxima-
tion conditions proposed by Nelson and Ramaswamy (1990).
Figure 4 presents an empirical example of constructing a cen-
sored binomial lattice for pricing a display ad option written
on an ad slot from a SSP in the UK. The given values of the
model parameters are estimated from the training data. Fig-
ure 4(a) shows a censored binomial lattice for the underlying
CPM and Figure 4(b) illustrates how the option value is calcu-
lated backward iteratively from the expiration date to time 0.
For the sake of comparison, Figure 5 illustrates the binomial
lattices constructed by the CRR model with the same parame-
ter settings. Obviously, the changing volatility can be found in
Figure 4(a) while 5(a) exhibits a constant volatility over time.
We find that the option price given by the SV model is slightly
smaller than that of the CRR model. This is because the long-
term mean value of volatility is 0.2959, smaller than its initial
value 0.8723. Therefore, the drift drags the volatility down-
side to its long-term level and the option value based on the SV
model contains less risk than the CRR model.

5. Empirical Evaluation

This section presents our experimental results. We exam-
ine the GBM assumption with real advertising data, compare
the fitness of underlying models, validate the proposed lattice
method via Monte Carlo simulations, analyse if an advertiser
can have better deliveries under a fixed daily budget, and dis-
cuss the effects on the publisher’s (or search engine’s) revenue.

5.1. Datasets and Experimental Design

Table 3 presents the two datasets used in experiments: a
RTB dataset from a SSP in the UK; and a sponsored search
dataset from Google AdWords. The RTB dataset contains all
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Figure 4: Empirical example of binomial lattices for an ad slot from the SSP dataset: (a) the censored binomial lattice for CPM based on the SV model, where
r = 0.05,T = 0.0384, n = 14,CPM = 0.7417, σ0 = 0.8723, κ = 96.4953, θ = 0.2959, δ = 14.9874; (b) the censored binomial lattice for the option value. The model
parameters are estimated based on the training data.
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Figure 5: Example of binomial lattices for the same ad slot in Figure 4: (a) the CRR binomial lattice for CPM based on the GBM model, where r = 0.05,T =

0.0384, n = 14,CPM = 0.7417, σ0 = 0.8723. Here we use the same parameters’ values in Figure 4; (b) the CRR binomial lattice for the option value.

advertisers’ bids and the corresponding winning payment CPMs
(per transaction). The Google dataset is obtained by using Google’s
Traffic Estimation service (Yuan and Wang, 2012). Tables 4-5
illustrates our experimental settings. Each dataset is divided
into several experimental groups and each group is specified
with one training, one development and one test set. The model
parameters are estimated in the training set. Display ad options
are priced in the development set. The actual bids in the test
set are used to examine the priced options. The default value of
CTR is set to be 0.03.

5.2. Fitness of GBM and SV Models

The following two conditions hold if the GBM assumption
is valid empirically: (i) the normality of the logarithm ratios
of the winning payment price1; and (ii) the independence of
the logarithm ratios from the previous data. Normality can be

1The logarithm ratio of winning payment price Li is defined by Li =

ln(Mi+1/Mi) or Li = ln(Ci+1/Ci).

graphically checked by a histogram or Q-Q plot, and be sta-
tistically verified by the Shapiro-Wilk test (Shapiro and Wilk,
1965); independence can be tested by the autocorrelation func-
tion (ACF) (Tsay, 2005) and the Ljung-Box statistic (Ljung and
Box, 1978). It is worth noting that the above two conditions are
necessary conditions while we follow Marathe and Ryan (2005)
and consider the GBM assumption is valid empirically if they
are not rejected by real data.

Figure 6 presents an empirical example of testing the GBM
assumption for an ad slot from the SSP dataset, where the un-
derlying winning CPM cannot be described accurately as a GBM.
In fact, none of the 31 ad slots in the SSP dataset satisfy the
GBM model. Therefore, we use the SV model for the ad slots
in the SSP dataset. Figure 7 presents an example of a keyword
from the Google dataset. The keyword’s winning CPC satisfies
the GBM assumption. The log-normality of CPC is validated
in Figure 7(a)-(c) and the independence is confirmed by Fig-
ure 7(d). The overview results of the Google dataset is shown
in Figure 8. There are 14.25% and 17.20% of the keywords
in the US and UK markets respectively that can be accurately

8



Table 3: Summary of datasets for experiments.
Dataset SSP Google AdWords
Period 08/01/2013 - 14/02/2013 26/11/2011 - 14/01/2013

Number of ad slots or keywords 31 557
Number of advertisers 374 ×

Number of impressions 6646643 ×

Number of bids 33043127 ×

Winning payment price
√ √

Bid quote GBP/CPM GBP/CPC

Table 4: Experimental settings of the SSP dataset.
Training set (31 days) Development & test set (7 days)

08/01/2013-07/02/2013 08/02/2013-14/02/2013

Table 5: Experimental settings of the Google AdWords dataset.
Market Group Training set (31 days) Development & test set (31 days)

US

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012
3 10/06/2012-12/07/2012 12/07/2012-17/08/2012
4 10/11/2012-11/12/2012 11/12/2012-10/01/2013

UK

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012
3 12/06/2012-13/07/2012 13/07/2012-19/08/2012
4 18/10/2012-22/11/2012 22/11/2012-24/12/2012

described by the GBM model. We will price the remaining key-
words using the SV model.

Figure 9 gives an empirical example showing the model fit-
ness for the situation where the GBM assumption is not valid.
Three different instances of simulated paths are generated from
the GBM and SV models for the same keyword. Figure 9(a),(c),(d)
compares the simulations from these two models with the ac-
tual winning payment CPCs in real-time auctions. The smooth
movement pattern of these three instances are also examined in
Figure 9(b),(d),(f). It is obvious that the SV model has a bet-
ter fitness to the data. In addition, the Euclidean distance (also
called the L-2 distance) is used to examine the similarity of the
simulated path and the test data. The overall results of the ad
slots and keywords in our datasets are presented in Tables 6-7,
which show that the SV model has a general better fitness to
real data.

5.3. Validation of the Option Pricing Model

We now examine the proposed ad option pricing method via
two sequential Monte Carlo simulation methods. By using the
terminal value pricing formula (Björk, 2009), the option price
π0 can be estimated as follows:

π0 =

ñ∑
j=1

r̃ −n
( 1
1000H

M j(tn) − FC
)+

, (23)

where M j(tn) can be generated by either Euler or Milstein dis-
cretisation schemes (Glasserman, 2003):

Euler Scheme

M(ti + ∆t) = M(ti)e(r− 1
2σ

2(ti))∆t+σ(ti)
√

∆tεi , (24)

σ(ti + ∆t) = σ(ti) + κ(θ − σ(ti))∆t + δ
√
σ(ti)∆tεi, (25)

Milstein Scheme

M(ti + ∆t) = M(ti)e(r− 1
2σ

2(ti))∆t+σ(ti)
√

∆tεi , (26)
σ(ti + ∆t) = σ(ti) + κ(θ − σ(ti))∆t

+ δ
√
σ(ti)∆tεi +

1
4
δ2∆t(ε2

i − 1), (27)

where εi ∼ N(0, 1), εi ∼ N(0, 1).
These two methods have been widely used in validating the

pricing models for exotic options in finance. There are two
strong benefits. First, they are developed directly based on the
discretisation forms of the underlying dynamics, easy to imple-
ment and have good convergence performance to the closed-
form solution. Second, they provide a natural criteria for con-
trolling errors. Consider that the errors are controlled with 95%
probability, the following criteria can be used to test the option
price calculated from our proposed model:

πBinSV
0 ∈

[
πMC

0 − 1.96
r̃ −nstd(Φ(M(tn)))

√
ñ︸                                 ︷︷                                 ︸

=πMC, Lower
0

,

πMC
0 + 1.96

r̃ −nstd(Φ(M(tn)))
√

ñ︸                                 ︷︷                                 ︸
=π

MC, Upper
0

]
,
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Figure 6: Empirical example of testing the GBM conditions of an ad slot from the SSP dataset: (a) the plot of the average daily winning payment CPMs from
auctions; (b) the histogram of the logarithm ratios of the CPM, i.e., ln(Mi+1/Mi), i = 1, . . . , n− 1; (c) the QQ plot of the logarithm ratios; (d) the plot of the ACFs of
the logarithm ratios. The Shapiro-Wilk test is with p-value 0.0009 and the Ljung-Box test is with p-value 0.1225.

where πBinSV
0 represents the option price calculated from our

proposed censored binomial lattice method, πMC
0 represents the

option price calculated from Monte Carlo simulations, πMC, Lower
0

and πMC, Upper
0 represent the lower and upper bounds of πMC

0 .
Figure 10 provides our model validation test. We price an ad

option using the proposed censored binomial lattice and the dis-
cussed two Monte Carlo simulation methods respectively. The
model parameters are changed in certain intervals against each
other in order to investigate the sensitivity of the calculated op-
tion price to the values of parameters. It is not difficult to see
that our proposed lattice method is robust and accurate because
πBinSV

0 is very close to πMC
0 and always lies in the confidence

interval for different model parameters’ values.

5.4. Delivery Performance for Advertiser

Tables 8-9 present an empirical example that compares an
advertiser’s delivery performance between RTB and ad options.
Table 8 shows the advertiser’s delivery performance in RTB
with a fixed daily budget. If the supplied impressions are at
same levels and if the average winning payment CPMs increase,
the advertiser will receive fewer impressions. In Table 9, the ad-
vertiser buys several ad options in advance. Consider if he pur-

chases an ad option with expiration date 08/02/2013, he has the
right to secure impressions that will be created on 08/02/2013
at a fixed CPC. Here the advertiser is assumed to use his daily
budget from the corresponding delivery date to pay the upfront
option price. Hence, as shown in Table 9, the advertiser’s strat-
egy is to purchase as many options as possible, and the remain-
ing daily budgets will be used on the corresponding delivery
dates. We use the actual bids from RTB to simulate the real-
time feeds of the spot market, so if the market value of a click is
higher than the fixed payment, the advertiser will use ad options
to secure the needed clicks and then pay the fixed CPCs accord-
ingly. Otherwise, the advertiser will obtain the equivalent clicks
from RTB. Our example shows a “bull market” where the aver-
age spot CPM in the test set is far higher than the initial CPM.
Therefore, ad options would be actively used by the advertiser
to purchase the clicks. Compared to Table 8, the advertiser can
receive more clicks (increased by 20.92%) in a bull market via
ad options.

Similar experiments are conducted for all ad slots in our
datasets. The overall results are presented in Tables 10-11. For
the SSP dataset, we consider the ad options that allow advertis-
ers to pay a fixed CPC to purchase impressions of targeted ad

10
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Figure 7: Empirical example of testing the GBM conditions of the keyword “canon 5d” from the Google AdWords dataset: (a) the plot of average daily winning
payment CPCs; (b) the histogram of logarithm ratios of CPC, i.e., ln(Ci+1/Ci), i = 1, . . . , n − 1; (c) the QQ plot of the logarithm ratios; (d) the plot of the ACFs of
the logarithm ratios. The Shapiro-Wilk test is with p-value 0.2144 and the Ljung-Box test is with p-value 0.6971.
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Figure 8: Summary of the GBM conditions test for all keywords in the Google AdWords dataset.
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Figure 9: Empirical example of comparing the fitness of GBM and SV models for the keyword “kinect for xbox 360” from the Google AdWords dataset. The
training period is from time step 1 to 50, the development and test periods are from time step 51 to 150. Plot (a), (c), (e) illustrates three instances of simulated paths
from the estimated GBM and SV, respectively. Plot (b), (d), (f) provides the corresponding smooth pattern and confidence interval of plot (a), (c), (e).
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Figure 10: Example of model validation tests: (a),(c),(e) Euler scheme; (b),(d),(f) Milstein scheme. The initial values and parameters settings are: M(t0) = 20, FC =

0.633, r = 0.05, σ(t0) = 0.5, κ = 3, θ = 0.75, δ = 0.35.
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Table 6: Comparing the model fitness for all 31 ad slots in the SSP dataset. L-2 distance is the Euclidean distance, and the number represents the percentage of ad
slots which shows that the SV model has a better fitness (i.e., a smaller L-2 distance).

Training set (31 days) Development & L2 distance of L2 distance of
test set (7 days) simulated paths smoothed simulated paths

08/01/2013-07/02/2013 08/02/2013-14/02/2013 54.8387% 67.7419%

Table 7: Comparing the model fitness for the non-GBM keywords in the Google AdWords dataset. L-2 distance is the Euclidean distance, and the number represents
the percentage of non-GBM keywords which shows that the SV model has a better fitness (i.e., a smaller L-2 distance).

Market Group Training set Development & L2 distance of L2 distance of
test set (31 days) simulated paths smoothed simulated paths

US

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012 82.8571% 80.0000%
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012 94.8718% 96.1538%
3 10/06/2012-12/07/2012 12/07/2012-17/08/2012 64.2857% 64.2857%
4 10/11/2012-11/12/2012 11/12/2012-10/01/2013 98.1481% 100.0000%

UK

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012 96.3636% 90.9091%
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012 98.2456% 94.7368%
3 12/06/2012-13/07/2012 13/07/2012-19/08/2012 58.0645% 67.7419%
4 18/10/2012-22/11/2012 22/11/2012-24/12/2012 72.2222% 80.5556%

slots. For the Google dataset, we consider the ad options that
allow advertisers to pay a fixed CPM to purchase clicks of their
targeted keywords. To summarize, we find that an advertiser’s
daily budget can be used more effectively in a bull market and
that his delivery increases as well. The advertiser’s average cost
spent on each impression or click is reduced. In a bear market
(i.e., the underlying price decreases), the advertiser will use the
ad options less (and sometimes not at all) and the maximum
cost is just the option price. It is worth noting that here we con-
sider the ad options are in the money at time 0 (i.e., the strike
price is less than the current underlying price). In Table 8, there
are 4 ad slots that exhibit somewhat bear markets. However,
these 4 ad slots do not receive enough bids in the test set and
the actual winning payment CPMs are just around its floor re-
serve level (i.e., the CPM is £0.01 so the per impression price is
£0.00001). Since these prices will seriously bias the results, we
do not take them into account in the situation of a bear market.

5.5. Revenue Analysis for Publisher and Search Engine

We also investigate the revenue effects when a certain amount
of future impressions or clicks can be sold in advance. Fig-
ure 11 provides two empirical examples of ad slots from the
SSP dataset: one exhibits the bull market while the other shows
the bear market. The sell ratio in the figure represents the per-
centage of future impressions that are sold in advance via ad
options; therefore, when the sell ratio equals zero, the publisher
auctions off all of the future impressions in RTB. Figure 11(a)
suggests that the publisher should sell less future impressions
in advance if the future market is bull. This is because ad op-
tions will be exercised by advertisers in the future and the ob-
tained revenues from the fixed payment are less than these im-
pressions’ market values. Of course, the publisher can choose
a certain percentage of future impressions to sell according to
his level of risk tolerance or to meet other business objectives.
For example, the publisher may be willing to sacrifice some
revenues in order to increase the advertisers’ engagement in

the long run. Conversely, in a bear market, as shown in Fig-
ure 11(b), the publisher is advised to sell more future impres-
sions in advance because there is more upfront income if more
display ad options are sold, and in the future advertisers will
not exercise the sold options. Therefore, the increased revenue
comes from the option price.

Based on the above analysis, we examine the revenue ef-
fects across all ad slots and keywords in our datasets. In the
experiments, the display ad options in a bull market are priced
in the money while in a bear market they are priced out of the
money. The sell ratio is set at 0.20 in a bull market while it is set
at 0.80 in a bear market. The overall results are presented in Ta-
bles 12-13, which further confirm our analysis in the empirical
examples. The average revenue is reduced in the bull market as
well as the standard deviation (i.e., one kind of revenue risk).
However, as described, the publisher (or search engine) may be
willing to sacrifice some revenue to establish a long-term rela-
tionship with advertisers. In a bear market, the average revenue
increases significantly. This is because fewer display ad options
are exercised. Many premium advertisers join RTB so that the
market equilibrium is almost as same as that in an environment
with only auctions. Finally, the publisher (or search engine)
earns the upfront payment without providing guaranteed deliv-
eries.

6. Concluding Remarks

This paper described a new ad option tailored to the unique
environment of display advertising. A binomial lattice frame-
work with censored probabilities was proposed to price the ad
option where the underlying prices follow a SV model. We also
reviewed and examined several lattice methods for pricing the
ad option with the GBM underlying model. Our developments
were examined and validated by experiments using real adver-
tising data.

We believe that the proposed ad options will soon be wel-
comed by display advertising market. Several similar but dif-
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Table 10: Overview of the improvement in delivery performance by using ad options for all ad slots in the SSP dataset.
Bull market Bear market

Change on used budget (%) -8.7878% –
Change on delivery of impressions (%) 6.1781% –

Table 11: Overview of the improvement in delivery performance by using ad options for keywords in the Google AdWords dataset.

Market Group Change in used budget (%) Change in delivery of impressions (%)
Bull market Bear market Bull market Bear market

US

1 0.3447% 2.3438% 9.3050% -0.1122%
2 1.7748% 3.9687% 2.3153% -2.6285%
3 0.5372% 4.8567% 44.3735% -0.0940%
4 5.6288% 29.3626% 1.6433% -1.0993%

UK

1 21.4285% 6.8940% 3.0717% -0.2523%
2 5.4426% 0.0000% 0.4419% 0.0000%
3 10.9285% 3.8474% 28.7706% -2.1066%
4 6.7155% 0.1552% 16.6955% -2.1550%
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Figure 11: Empirical examples of the publisher’s revenue: (a) from an ad slot in the bull market; and (b) from an ad slot in the bear market. The sell ratio represents
the percentage of future daily impressions that are sold in advance via display ad options. Note that here the ad slot in the bear market does not receive enough bids
in the test set, so we randomly simulate some underlying prices for the bear market.

ferent developments appeared are able to support our point of
view. They are:
09/2013 AOL’s Programmatic Upfront2.
03/2013 OpenX Programmatic Guarantee3.
10/2012 Adslot Media’s Programmatic Direct Media Buying4.
10/2012 Shiny Ads Direct’s End-to-end Programmatic Direct

Advertising Platform5.
10/2012 iSOCKET’s Programmatic Direct6.

Our work differs to the above developments in many as-
pects. First, the proposed ad options provide flexible guaran-
teed deliveries (e.g., no obligation of exercise, choosing the

2www.aolplatforms.com
3www.openx.com
4www.automatedguaranteed.com
5www.shinyads.com
6www.isocket.com

fixed payment that is different to the underlying inventory mea-
surement model) while other recent developments do not pro-
vide such features. Second, we proposed a generalized pric-
ing model which can deal with those situations when the GBM
model fails.

There are three major limitations of the study in this pa-
per, which can be further explored for future research. Firstly,
we did not explicitly consider the capacity issue in option pric-
ing. Therefore, there may exist the situations that a publisher
or search engine can not guarantee the delivery of impressions
or clicks sold by options. In our current study, we consider the
seller has a good estimation of the inventories that will be cre-
ated in the future and rationally sells the future inventories in
advance via options. If the seller over sells the future inven-
tories, we also assume that he can buy some similar invento-
ries on the spot market once the option buyers request to exer-
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Table 12: Overview of the improvement in revenue by selling display ad options for ad slots in the SSP dataset.
Bull market Bear market

Change on mean (%) -7.1283% 726.3085%
Change on standard deviation (%) -2.7041% 196.0547%

Table 13: Overview of the improvement in revenue by selling display ad options for ad slots in the Google AdWords dataset.

Market Group Change in mean (%) Change in standard deviation (%)
Bull market Bear market Bull market Bear market

US

1 -20.5880% 22.3898% -0.6507% 9.3291%
2 -23.2971% 17.1898% -17.6508% 9.4175%
3 -32.8388% 69.9113% -21.9468% -2.1065%
4 -24.4710% 8.9650% -10.6024% 95.4868%

UK

1 -8.5463% 15.4155% 4.5617% 10.4116%
2 -20.0632% 4.3816% -16.0239% 6.8847%
3 -16.9050% 30.7737% -11.4811% -19.4625%
4 -21.8142% 7.6342% -19.4368% 0.3877%

cise the options. In such case, the revenues of the seller will
decrease. The capacity issue is an interesting topic to further
discuss in details because it has two challenges. The first chal-
lenge is to price an ad option with explicitly considering the
estimation of future supply and demand of inventories, where
the latter two variables can be described to be static (Wang
and Chen, 2012) or dynamic like the Poisson process (Gallego
and van Ryzin, 1994). The second challenge is considering the
penalty into option pricing. If the seller fails to deliver invento-
ries requested by option holders, the seller should pay a certain
amount of penalty fee (Chen et al., 2014). However, with the
penalty setting, some advertisers who only pursue the penalty
may game the system (Constantin, Feldman, Muthukrishnan,
and Pál, 2009), which will further affect the calculated option
price, and such effect will also generate some scenarios like the
implied volatility in financial market. The second limitation is
that the proposed model can not capture the jumps and volatility
clusters of underlying inventory prices. It might be of interest
to discuss these stylized facts in ad option pricing. The third
limitation is the zero correlation of the two standard Brown-
ian motions in our proposed dynamics. If their correlation is
not zero, the option pricing would be more sophisticated under
the lattice framework. Heston (1993) proposed a good solution
in the continuous-time settings, which can also be extended to
solve our problem in online advertising.
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