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Abstract

Knowledge graphs (KGs) have proven to be effective for high-quality recom-

mendation, where the connectivities between users and items provide rich and

complementary information to user-item interactions. Most existing methods,

however, are insufficient to exploit the KGs for capturing user preferences, as

they either represent the user-item connectivities via paths with limited expres-

siveness or implicitly model them by propagating information over the entire

KG with inevitable noise. In this paper, we design a novel hierarchical at-

tentive knowledge graph embedding (HAKG) framework to exploit the KGs

for effective recommendation. Specifically, HAKG first extracts the expressive

subgraphs that link user-item pairs to characterize their connectivities, which

accommodate both the semantics and topology of KGs. The subgraphs are

then encoded via a hierarchical attentive subgraph encoding to generate effec-

tive subgraph embeddings for enhanced user preference prediction. Extensive

experiments show the superiority of HAKG against state-of-the-art recommen-

dation methods, as well as its potential in alleviating the data sparsity issue.
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Figure 1: A toy example of the KGs in Yelp, which contains users, business, categories, cities

as entities; interaction, friendship, location, categorization as entity relations.

1. Introduction

Recommender systems have been widely applied to ease the information

explosion problem by providing personalized item recommendation [1]. Much

effort has been devoted to the traditional collaborative filtering (CF) [2], which

however suffers from the sparsity of user-item interactions and the cold start

problem [3]. To alleviate these issues, knowledge graphs (KGs) [4] have been

incorporated into recommender systems as the auxiliary data sources, such as

item attributes and user profiles [5]. By exploring the interlinks of KGs, the

connectivities between users and items help reveal their underlying relationship,

which are complementary to the user-item interactions [6]. Till now, two types

of KG-aware recommendation algorithms have been broadly studied, namely

path-based [6] and propagation-based methods [5, 3]. Despite of their success,

the former methods represent the user-item connectivities via linear paths with

limited expressiveness, which are insufficient to capture the rich semantics and

the topology of KGs. The latter methods model such connectivities by propa-

gating information over the entire KG, which inevitably introduce noise that is

irrelevant to the specific user-item connectivity, thus misleading the inference of

user preferences.

Toy Example. Figure 1 depicts a toy example of the KGs in business

domain (i.e., Yelp). To infer Mike’s preference over KFC, path-based methods

extract separate paths that link Mike and KFC with length constraint (e.g., ≤ 3)
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to model their connectivity, such as ‘Mike→McDonald’s→May→ KFC’. Nev-

ertheless, we argue that such linear paths can only capture the partial semantics

of the user-item connectivity, which is originally expressed by the subgraph with

rich semantics and non-linear topology. For instance, the subgraph between

Mike and KFC reveals the strong interest of Mike over KFC. This is evidenced

by the composite relations between KFC and McDonald’s that Mike has inter-

acted with before: belong to the same category (i.e. Food), located in the same

city (i.e. SunCity), and simultaneously rated by two friends (i.e. May and Amy).

Due to the limited expressiveness of paths in describing the user-item connec-

tivities, path-based methods fail to exploit the semantics and topology of KGs

for capturing user preferences. Instead of directly representing the user-item

connectivities, propagation-based methods implicitly model them by propagat-

ing information over the entire KG, where the user preferences are generally

learned by aggregating information from all the neighbors. For instance, the

preference of Mike is estimated by the aggregation of information from all his

neighbors (e.g., Walmart, McDonald’s and Jim), which however, may introduce

noise (e.g., Walmart and Jim) that is irrelevant to the specific connectivity be-

tween Mike and KFC, thus misleading the inference of Mike’s tastes over KFC.

Due to the inevitable noise from the entire KG, propagation-based methods are

suboptimal to characterize the pair-wise user-item connectivities for accurate

user preference prediction.

To ease these issues, we propose a novel framework named hierarchical

attentive knowledge graph embedding (HAKG) to exploit the KGs for enhanced

recommendation. In particular, HAKG explores the subgraphs that connect

the user-item pairs in KGs for characterizing their connectivities, which is con-

ceptually advantageous to most existing methods in that: (1) as a non-linear

combination of separate paths, the subgraph contains both the rich semantics

and topology of KGs, which is more expressive than linear paths; and (2) the

subgraph only preserves entities and relations that are relevant to the specific

user-item connectivity, which is able to avoid introducing noise from the entire

KG.
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With these advantages in mind, HAKG aims to effectively encode the com-

prehensive information of subgraphs into low-dimensional representations (i.e.,

embeddings) for better revealing user preferences. The subgraph encoding is

achieved via a hierarchical attentive embedding learning procedure with two

core steps: (1) entity embedding learning, which learns embeddings for entities

in the subgraph with a layer-wise propagation mechanism. In particular, each

layer updates an entity’s embedding based on the semantics propagated from

its neighbors, and multiple layers are stacked to encode the subgraph topol-

ogy into the learned entity embeddings; and (2) subgraph embedding learning,

which attentively aggregates the entity embeddings to derive a holistic sub-

graph embedding. We deploy a novel self-attention mechanism to discriminate

the importance of entities in the subgraph, so as to learn an effective subgraph

embedding for better representing the user-item connectivity.

To summarize, our main contributions lie in three folds:

• We propose to leverage the expressive subgraphs for better characterizing the

user-item connectivities, so as to remedy the shortcomings of both path-based

and propagation-based recommendation methods with KGs.

• We develop a novel framework HAKG, which effectively encodes the sub-

graphs between user-item pairs via a hierarchical attentive embedding learn-

ing procedure. By doing so, both the semantics and topology of KGs are fully

exploited for enhanced item recommendation.

• We conduct extensive experiments on three real-world datasets. The results

demonstrate the effectiveness of HAKG over the state-of-the-art methods

in terms of recommendation performance, especially for inactive users with

sparse interactions over items.

2. Related Work

KGs have become an increasingly popular data source leveraged in a broad

spectrum of disciplines, such as human-level intelligence [7] and sentiment anal-

ysis [8], with recommendation being not exception. Comprehensive overviews
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on representation, acquisition and applications of KGs can be found in the

survey [9]. In this section, we mainly focus on reviewing the KG-aware recom-

mender systems, which incorporate the KGs to enhance recommendation. They

can be generally classified into three categories: direct-relation based, path-

based and propagation-based methods. In addition, a brief review on studies

which connect recommender systems with other related topics, i.e., cognitive

models, binary codes and sentiment analysis, is provided as well.

Direct-relation based Methods. A line of research captures the direct rela-

tions between connected entities in KGs for entity embedding learning. Most of

these methods are built on the conventional translation-based embedding tech-

niques. For instance, KTUP [10] jointly learns the recommendation model and

the KG completion task based on TransH [11]. ACAM [12] incorporates the KG

embedding task via TransH to learn better item attribute embeddings. RCF [13]

models the user preferences and item relations via DistMult [14]. Similarly, JN-

SKR [15] enhances DistMult with non-sampling strategy to achieve efficient

model training. Many researchers also incorporate KGs into sequential recom-

menders via conventional embedding techniques. For example, KERL [16] is a

reinforcement learning based sequential recommender, which encodes the KGs

via TransE to enhance state representations. MKM-SR [17] involves KG em-

bedding learning as an auxiliary task to promote the major task of sequential

recommendation. Chorus [18] leverages TransE to model the item relations in

KGs and integrates with their temporal dynamics for item embedding learning.

Though significant improvements have been achieved, these methods gen-

erally fail to capture the complex semantics of user-item connectivities for en-

hanced embedding learning, as they only consider the direct relations between

entities in the KGs.

Path-based Methods. Many methods explore the linear paths that con-

nect entity pairs in the KGs to improve recommendation performance. For

instance, PER [19], and SimMF [20] represent the user-item connectivities by

defining different meta-path patterns. HERec [21] and HINE [22] leverage a
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meta-path based random walk strategy to generate path instances as the input

of embedding learning process. HAN [23] aggregates features from meta-path

based neighbors to learn entity embeddings via node-level and semantic-level

attentions. However, this method discards all intermediate entities along the

meta-path by only considering two end entities, which results in information

loss. HCDIR [24] leverages the meta-path based neighbors to enhance user em-

bedding learning for cross domain insurance recommendation. ACKRec [25]

generates entity embeddings based on meta-paths to assist knowledge concept

recommendation in MOOCs platform. MetaHIN [26] incorporates meta-paths

into a meta-learning framework for cold-start recommendation. NIRec [27]

learns interactive patterns between meta-paths with fast Fourier transform to

improve CTR prediction. However, defining effective meta-paths requires do-

main knowledge, which can be rather labor-intensive for complicated KGs with

diverse entities and relations.

To address this limitation, the recently proposed RKGE [4] and KPRN [6]

automatically extract the paths linking user-item pairs with length constraint,

and then model these paths via recurrent neural networks (RNNs). Later,

KARN [28] encodes the paths between users and items with RNNs and attention

networks to assist in click-through rate (CTR) prediction. This method, how-

ever, relies on the additional information from users’ clicked history sequences

and textual information of items. Recently, ADAC [29] supervises the path

finding in KGs via reinforcement learning algorithms to help achieve fast con-

vergence and improve explainability. KGPolicy [30] explores the paths in KGs

by employing a reinforcement learning agent for high-quality negative sampling.

Besides, Fu et al. [31] proposes a fairness-aware path reranking algorithm for

explainable recommendation.

Despite of the effectiveness, path-based methods generally suffer from the

limited expressiveness of linear paths in describing the complicated user-item

connectivities. In contrast, our HAKG explores the expressive subgraphs that

link the user-item pairs to represent their connectivities, so as to exploit the

semantics and topology of KGs for revealing user preferences.
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Propagation-based Methods. Recent methods model the user-item connec-

tivities by propagating information over the entire KG. For instance, KGCN [32]

propagates the item information within KGs to generate better item embeddings

via graph convolutional networks (GCNs) [33]. Most recently, KGAT [5] recur-

sively propagates information from an entity’s neighbors to refine its embedding,

and an attention mechanism is utilized to discriminate the importance of neigh-

bors. KGRL [34] encodes the KGs via GCNs to guide the reinforcement learning

process for interactive recommendation. KGSF [35] captures the semantic re-

lations between words and items in KGs for conversational recommendation.

KGQR [36] propagates user preferences over KGs to solve the sample efficiency

problem in interactive recommenders.

Despite of the better exploration of the KG topology, the information diffu-

sion over the entire KG would inevitably introduce noise that is irrelevant to the

specific user-item connectivity, and thus adversely degenerates the embedding

learning ability. Moreover, instead of explicitly encoding the user-item connec-

tivities, most these methods model them with merely user and item embeddings,

and thus fail to fully exploit the connectivities for revealing user preferences.

In contrast, HAKG represent the user-item connectivities by constructing sub-

graphs with relevant entities and relations, which are further encoded by a hi-

erarchical attentive embedding learning procedure for accurate user preference

prediction.

Connecting Recommendation with Other Related Topics. Recom-

mender systems could also be designed and evaluated considering cognitive fac-

tors. Angulo et al. [37] proposed a special issue on bridging cognitive models

and recommender systems, which highlights the advantages of bridging differ-

ent fields for the study of cognitive architectures for recommendation, as well

as recommender systems shaping cognitive architectures. Expert recommender

systems can automate procedures and tasks in a cognitive manner by lever-

aging the assessment from collaborative human expertise. For instance, Yang

et al. [38] leverage intuitionistic fuzzy sets (IFSs) for improving standard rec-

ommendations. In the fast-growing e-commerce scenario, hashing for recom-
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mendation has attracted increasing attention as binary codes can significantly

reduce the storage and make calculations efficient. For example, Suthee et

al. [39] build a variational deep semantic hashing (VDSH) model based on vari-

ational auto-encoders. Li et al. [40] propose a novel deep collaborative hashing

(DCH) model that learns efficient binary codes for dealing with out-of-sample

cases. In addition, affective computing and sentiment analysis shows the great

potential in intelligent systems. For instance, Bi et al. [41] conduct asymmetric

impact-performance analysis for understanding customer satisfaction. Schuur-

mans et al. [42] leverage the hierarchical structure to help better understand

customer intentions. By revealing which features customers would like to enjoy,

affective computing and sentiment analysis would play a key role in enhancing

recommendations.

3. Hierarchical Attentive Knowledge Graph Embedding

This section first provides the formulation of the investigated task in this

paper, and presents an overview of the proposed framework – Hierarchical At-

tentive Knowledge Graph Embedding for effective recommendation. We then

go into the details of the components of HAKG, and finally discuss the model

optimization and model complexity.

3.1. Task Formulation and HAKG Framework

We denote the user set and item set as U = {u1, u2, · · · , u|U|} and I =

{i1, i2, · · · , i|I|}, with |U| and |I| as the number of users and items, respectively.

As we focus on the personalized ranking task, we binarize the user-item rating

matrix into implicit feedback matrix R ∈ R|U|×|I| by following state of the

art [43, 5], where the entry ru,i = 1 if the user u has rated the item i, and

0 otherwise. Table 1 summarizes all the notations utilized in this paper. For

generality, we use ‘entity’ to refer to the objects (e.g., user, business, category,

and city) that can be mapped into a KG (denoted as G). The definitions of KGs

and the investigated task are given as below.
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Table 1: Notations

Notations Descriptions

U = {u1, u2, · · · , u|U|} User set

I = {i1, i2, · · · , i|I|} Item set

R|U|×|I| User-item implicit feedback matrix

ru,i, r̃u,i Observed and estimated ranking scores

G,G(u,i) Knowledge Graph and the subgraph for (u, i)

E, E(u,i) Entity sets of G,G(u,i)

L,L(u,i) Link sets of G,G(u,i)

n = |E(u,i)| The number of entities in G(u,i)

P(u,i) The sampled path set for (u, i)

K = |P(u,i)| The number of sampled paths for (u, i)

eh ∈ Rde , th ∈ Rdt Embeddings of entity eh and its type th

rh,k ∈ Rdr Embedding of the relation between eh, ek

de, dt, dr Embedding sizes of entity, entity type and relation

Nh Neighbors of entity eh in G(u,i)

L The number of propagation layers

H(u,i) ∈ Rn×de Entity embedding matrix of G(u,i)

A(u,i) ∈ Rm×n Attention weight matrix for entities in G(u,i)

m The number of attention heads

eu, ei,g(u,i) ∈ Rde Embeddings of u, i and G(u,i)

Definition 1. Knowledge Graph. Let E ,L denote the sets of entities and

links, respectively. A KG is defined as an undirected graph G = (E ,L) with

entity type and link type mapping functions φ : E → A and ϕ : L → R. Each

entity e ∈ E belongs to an entity type φ(e) ∈ A, and each link l ∈ L belongs to

a link type ϕ(l) ∈ R. The types of entities |A| > 1 or the types of links |R| > 1

in KGs.

Definition 2. KG-aware Top-N Recommendation. Given the KG G, for

each user u ∈ U , our task is to generate a ranked list of top-N items that will

be of interest to user u.
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Figure 2: The overall framework of HAKG describing the case of a user-item pair, which

consists of three modules: Subgraph Construction, Hierarchical Attentive Subgraph Encoding

and Preference Prediction. The Hierarchical Attentive Subgraph Encoding is composed of

two core steps: Entity Embedding Learning and Subgraph Embedding Learning.

The overall framework of HAKG is illustrated by Figure 2, composed of

three modules: (1) Subgraph Construction – it automatically constructs the ex-

pressive subgraph that links the user-item pair to represent their connectivity;

(2) Hierarchical Attentive Subgraph Encoding – the subgraph is further encoded

via a hierarchical attentive embedding learning procedure, which first learns em-

beddings for entities in the subgraph with a layer-wise propagation mechanism,

and then attentively aggregates the entity embeddings to derive the holistic sub-

graph embedding; (3) Preference Prediction – with the well-learned embeddings

of the user-item pair and their subgraph connectivity, it uses non-linear layers

to predict the user’s preference towards the item.

3.2. Subgraph Construction

It is computationally prohibitive to construct subgraphs between user-item

pairs via traditional graph mining methods, such as BFS [44] and DFS [45] with

an O(|E|+ |L|) complexity, where |E| and |L| denote the number of entities and

links of the KG. To this end, we propose a more efficient subgraph construction

strategy to reduce the complexity, which converts the subgraph mining into

path sampling and then reconstructs the subgraphs by assembling the sampled

paths between user-item pairs.

Path Sampling. It is not feasible to extract all the paths between user-item

pairs from the KG, since the number of paths grows exponentially with the
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increasing of path length [6]. Actually, paths with a short length (no more than

six) are sufficient to model the user-item connectivity, whereas long paths may

bring in remote neighbors with noise [4]. For efficiency, we uniformly sample

K paths, each with length up to six, that connect a user-item pair. We take a

similar approach as DeepWalk [46] for path sampling. Specifically, starting from

the user u, we conduct random walks with a maximal depth of six, and only

keep the paths that lead to the item i. As such, we generate a set of sampled

paths for (u, i) and denote the path set as P(u,i), which can be done offline. The

impact of the number of sampled paths K (i.e., |P(u,i)|) has been investigated

in the experiments (cf. Section 4.4). Note that, we employ the uniform path

sampling for simplicity and leave the exploration of non-uniform samplers (e.g.,

importance sampling [32]) as the future work.

Path Assembling. By assembling the sampled paths in P(u,i), we generate

the subgraph G(u,i) for (u, i). In particular, we traverse P(u,i) to map the objects

and connections along a path into G(u,i) as entities and links, respectively. Take

the path: Mike → McDonald’s → May → KFC in Figure 1 as an example.

The objects Mike, McDonald’s, May, KFC are mapped as different types of

entities: e1, e2, e3, e7; and the connections between entities (e.g., Mike and

McDonald’s) are mapped as links with relations (e.g., r1,2). As we can see,

G(u,i) comprehensively integrates the semantics from entities, entity types and

relations in KGs. which is then fed into the hierarchical attentive subgraph

encoding module to learn a holistic subgraph embedding for characterizing the

user-item connectivity.

3.3. Hierarchical Attentive Subgraph Encoding

Hierarchical attentive subgraph encoding learns effective subgraph embed-

dings for better representing the user-item connectivities. It however, is non-

trivial due to (1) the rich semantics from the heterogeneous entities and relations

of the subgraph, as well as the high-order subgraph topology; (2) the varying im-

portance of entities in the subgraph for inferring the target user’s preference. To

address these challenges of subgraph encoding, we equip HAKG with a hierar-
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chical attentive embedding learning procedure, which consists of two core steps:

(1) entity embedding learning – it exploits both the semantics and topology of

the subgraph via a layer-wise propagation mechanism, so as to learn effective

embeddings for entities in the subgraph; and (2) subgraph embedding learning

– it attentively aggregates the entity embeddings to derive the holistic subgraph

embedding, where a self-attention mechanism is leveraged to discriminate the

importance of entities.

3.3.1. Entity Embedding Learning

Entity embedding learning generates effective entity embeddings by encoding

both the semantics and topology of the subgraph. To achieve this, we lever-

age a layer-wise propagation mechanism, where each layer updates an entity’s

embedding based on the semantics propagated from its neighbors; and multi-

ple layers are stacked to exploit the high-order subgraph topology. Specifically,

there are three major operations: embedding initialization, semantics propaga-

tion and semantics aggregation, as illustrated by Figure 3.

Embedding Initialization. We initialize the entity embeddings by incorpo-

rating the heterogeneous entity types. Specifically, we first adopt an embedding

look-up layer to project each entity eh (e.g., KFC) and its corresponding entity

type th (e.g., business) with two low dimensional vectors eh ∈ Rde and th ∈ Rdt ,

where de and dt are the respective embedding sizes. The two vectors are then

fused as the initial embedding for eh, to be refined by the layer-wise propagation
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process, denoted as:

e
(0)
h = f(eh ⊕ th), (1)

where e
(0)
h is the initial embedding of eh at propagation layer l = 0; f(x) =

σ (Wx + b), with W and b as the transformation matrix and bias term, re-

spectively; and ⊕ denotes the concatenation operation. In this way, the het-

erogeneous type information is explicitly incorporated into entity embedding

learning for better encoding the rich semantics within subgraphs.

Semantics Propagation. The semantics propagation operation models the

semantics propagated from neighbors for the target entity. In KGs, the rich se-

mantics from various relations (e.g. friendship, interaction, location) are critical

for understanding the diverse user intents [6], which however are generally over-

looked in most existing studies. To this end, we propose to explicitly model the

heterogeneous relations during propagation for better encoding the semantics

of subgraphs. In particular, we represent the relation between the target entity

eh and its neighbor ek as rh,k,1 and define the semantics to be propagated from

ek to eh at layer l as follows:

s
(l)
h←k =

1√
|Nh||Nk|

(
W

(l)
1 · (e

(l−1)
k ⊕ rh,k)

)
, (2)

where 1/
√
|Nh||Nk| is the graph Laplacian norm as used in GCNs, with |Nh|

and |Nk| as the number of neighbors of eh and ek in the subgraph G(u,i), respec-

tively; W
(l)
1 is the trainable weight matrix at propagation layer l; e

(l−1)
k is the

embedding of neighbor ek generated from the (l− 1)-th layer; rh,k ∈ Rdr is the

embedding of the linked relation rh,k, with dr as the embedding size; and the

concatenation of the two embeddings e
(l−1)
k ⊕ rh,k encodes the semantics from

neighbor ek along the relation rh,k. Such composite semantics are further trans-

formed into s
(l)
h←k, which will be propagated to the target entity eh for refining

its embedding. In this way, HAKG sufficiently encodes the rich semantics of

the subgraph from various entities and relations, contributing to a better entity

embedding learning.

1For simplicity, we set rh,k = rk,h.
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Semantics Aggregation. The semantics aggregation operation aggregates the

semantics from neighbors to refine the target entity’s embedding. Specifically,

given s
(l)
h←k, we update the embedding of eh at propagation layer l as follows:

e
(l)
h = σ

(
W

(l)
2 e

(l−1)
h +

∑
∀ek∈Nh

s
(l)
h←k

)
, (3)

where σ is the activation function of ReLU; W
(l)
2 e

(l−1)
h preserves the informa-

tion of eh’ embedding from previous layers, which is able to alleviate the over-

smoothing issue by serving as the residual connections [2]. In Equation (3), we

aggregate the semantics s
(l)
h←k from eh’s neighbors Nh to update its embedding

e
(l)
h at layer l. As such, after iteratively propagating L layers, eh is able to

aggregate the semantics from its high-order (i.e., L-order) neighbors for refining

its embedding, and the final entity embedding of eh is obtained by:

eh = e
(L)
h ∀eh ∈ G(u,i), (4)

where e
(L)
h is the output entity embedding from the last propagation layer L. As

such, the layer-wise propagation mechanism sufficiently encodes the semantics

and high-order topology of the subgraph into the well-learned entity embed-

dings. We further constitute an entity embedding matrix H(u,i) for the subgraph

G(u,i) as follows:

H(u,i) =
[
e1, e2, · · · , en

]
, (5)

where n is the number of entities in G(u,i). The entity embedding matrix H(u,i) ∈

Rn×de is then fed into the subgraph embedding learning step to generate a

holistic subgraph embedding for G(u,i), so as to better characterize the complex

user-item connectivity.

3.3.2. Subgraph Embedding Learning

Subgraph embedding learning generates the holistic subgraph embedding by

attentively aggregating the entity embeddings, where the self-attention mecha-

nism is employed to discriminate the importance of entities in the subgraph for

enhanced embedding learning.
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Self-attention Mechanism. For the subgraph G(u,i) with n entities, the self-

attention mechanism takes the entity embedding matrix H(u,i) ∈ Rn×de as

input, and outputs the importance of entities in G(u,i) via an attention network,

formulated as:

a(u,i) = softmax
(
w2 · σ(W1H

T
(u,i))

)
, (6)

where W1 ∈ Rda×de and w2 ∈ Rda are the trainable weight matrix and weight

vector of the attention network, with da as the hidden-layer size; σ is the ac-

tivation function of tanh; and a(u,i) ∈ Rn is the vector of attention scores for

all entities in G(u,i), normalized by the softmax function. As such, the a(u,i)

usually assigns higher importance to a specific set of entities, which is expect

to reflect an aspect of the rich semantics within the subgraph. To this end, we

generate multiple such attention score vectors that can focus on different aspects

of G(u,i) to capture its holistic semantics. This is implemented by extending the

attention network in Equation (6) into a multi-head attention, defined as:

A(u,i) = softmax
(
W2 · σ(W1H

T
(u,i))

)
, (7)

where W2 ∈ Rm×da is the trainable weight matrix, with m as the number of

attention heads; A(u,i) ∈ Rm×n is the attention score matrix, where the row

vectors discriminate the importance of entities in describing the different aspects

of G(u,i); and the number of attention heads m thus controls how many aspects

of G(u,i) need to be concerned on for revealing the u’s preference towards i.

Based on the attention score matrix A(u,i), we derive the subgraph embed-

ding for G(u,i) as follows:

g(u,i) = fg
(
A(u,i)H(u,i)

)
. (8)

In Equation (8), we multiply A(u,i) and the entity embedding matrix H(u,i) to

compute m weighted sums of entity embeddings A(u,i)H(u,i), which are then

aggregated by the function fg to obtain the holistic subgraph embedding g(u,i).

The aggregation function fg can be implemented with several operations (e.g.,

max-pooling, mean-pooling and vanilla attention mechanism), and we experi-

mentally find out the mean-pooling operation outperforms the other choices, as
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will be introduced in Section 4.3. It is worth pointing out the multiplication

A(u,i)H(u,i) ∈ Rm×de is size invariant with regard to the number of entities

n in the subgraph, and thus HAKG can learn embeddings for subgraphs with

variable sizes. In sum, by leveraging a multi-head self-attention mechanism, the

subgraph embedding g(u,i) is able to provide a comprehensive description of the

connectivity between u and i, which is then utilized to predict the u’s preference

towards i.

3.4. Preference Prediction

Different from most prior works that merely utilize the user and item em-

beddings to predict user preferences, we content that the subgraphs connecting

user-item pairs help reveal their underlying relationship, and thus are crucial

for inferring the user preferences. Based on this assumption, we incorporate

the user embedding eu, item embeddings ei, as well as the subgraph embedding

g(u,i) for better preference prediction, achieved by:

r̃u,i = MLP ([eu,g(u,i), ei]), (9)

where r̃u,i is the estimated ranking score for user u on item i. In Equation (9), we

generate the prediction by feeding the concatenation of the three embeddings

into a multi-layer perceptron, which has proven to be powerful in modeling

the non-linear user-item connectivities [43]. Following the premise that neural

networks can learn more abstractive features of data by using a small number of

hidden units for higher layers [43], we empirically implement a tower structure

for the MLP, halving the layer size for each successive higher layer. We adopt

ReLU as the activation function for hidden layers and sigmoid function for the

output layer to control the estimated ranking score r̃u,i into the range of [0, 1].

3.5. Model Optimization and Complexity

Objective Function. Following [43], we address the top-N recommen-

dation task as a binary classification problem, where the target value 1 means
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a user-item interaction is observed and 0 otherwise. Formally, we adopt the

negative log-likelihood as the objective function, formulated by:

J = −
∑

(u,i)∈R+

log r̃u,i −
∑

(u,j)∈R−

log(1− r̃u,j) (10)

where R+ and R− denote the sets of observed and non-observed user-item

interactions, respectively. For each observed interaction, we treat it as a positive

instance, and pair it with one negative item that the user has not interacted with.

We adopt mini-batch Adam [47] as the optimizer, and leverage the dropout

strategy [2] to ease the over-fitting problem in optimizing deep neural network

models. The optimization process is described by Algorithm 1, which is mainly

composed of three parts: (1) Subgraph Construction (lines 1-3); (2) Hierarchical

Attentive Subgraph Encoding (lines 6-9), where lines 6-7 describe the Entity

Embedding Learning and lines 8-9 present the Subgraph Embedding Learning;

and (3) Preference Prediction (line 10).

Complexity Analysis. The time cost of HAKG mainly comes from: (a) sub-

graph construction, (b) entity embedding learning, and (c) subgraph embedding

learning. For (a), the computational complexity is O(|R|n), where |R| is the

number of observed user-item interactions, and n is the average number of en-

tities in the subgraphs. For (b), it takes O(|R|Lnd2e), where L is the number

of propagation layers, and de is the embedding size of entities. For (c), the

matrix multiplication has computational complexity O(|R|mnde), where m is

the number of attention heads and usually less than 10. The overall training

complexity would be O(|R|Lnd2e). In practice, L, n, de � |R|. Hence, the time

complexity of HAKG is linear to the number of user-item interactions |R|, and

quadratic to the embedding size de.

17



Algorithm 1: HAKG Optimization
Input: G,R,K, L, de, dt, dr, da,m, λ, γ, max iter

// Subgraph Construction

1 foreach (u, i) pair in training set do

2 Sample K paths P(u,i) ;

3 Assemble P(u,i) into subgraph G(u,i);

4 for iter = 1; iter ≤ max iter; iter + + do

5 foreach (u, i) pair do

// Entity Embedding Learning

6 Generate eh based on Equations (1-4)

7 Constitute H(u,i) based on Equation (5)

// Subgraph Embedding Learning

8 Generate A(u,i) based on Equations (6-7)

9 Generate g(u,i) based on Equation (8)

// Preference Prediction

10 Calculate r̃u,i based on Equation (9);

11 Update parameters by back propagation;

4. Experiments and analysis

We conduct extensive experiments on three real-world datasets with the goal

of answering three research questions:

RQ1: How does our proposed HAKG perform compared with state-of-the-art

recommendation methods? Can it achieve better recommendation performance

under different data sparsity levels?

RQ2: How do the key designs of HAKG facilitate to improve the recommenda-

tion performance?

RQ3: How do different settings of hyper-parameters affect HAKG?

4.1. Experimental Setup

Datasets. Three benchmark datasets are utilized: (1) MovieLens-1M2

is a widely used dataset in movie recommendations [3], which describes the

2https://grouplens.org/datasets/movielens/
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user ratings towards movies ranging from 1-5; (2) Last-FM3 is a music listen-

ing dataset collected from the Last.fm online music system, where the tracks

are viewed as items. We use the same version of this dataset as in [5]; (3)

Yelp4 records the user ratings on local business scaled from 1-5. Additionally,

social relations among users and business attributes (e.g., category, city) are

also included.

Note that as the main task of this paper is to perform the top-N recommen-

dation, we binarized the users’ explicit ratings into implicit feedback for the

three datasets. Generally, there are two types of widely-used strategies to bina-

rize the ratings into implicit feedback as ground truth, indicating whether the

user has preference towards the item. The first type is only considering ratings

no less than a threshold (e.g., 3) as implicit feedback [3, 32, 48, 49]. The second

type is to directly binarize the original user ratings into implicit feedback. We

follow state-of-the-art methods [6, 27, 43, 50] by using the second strategy in

our study, which is the common setting in the area of recommender systems.

Besides user-item interactions, we merge more information into KGs for each

dataset. We combine MovieLens-1M with IMDb5 as MI-1M by linking the titles

and release dates of movies, so as to get side information about movies, such

as genres, actors and directors. For Last-FM, we map tracks into objects in

the database called Freebase via title matching to get attributes of tracks, such

as artists, engineers, producers, versions, types, contained songs, etc. For Yelp,

we extract knowledge from the social network and local business information

network (e.g., category, city). Table 2 summarizes the statistics of the three

datasets.

Evaluation Protocols. We adopt leave-one-out, which has been widely used in

the previous efforts [50, 43], to evaluate the recommendation performance. For

each user, we hold out her latest interaction as the test set, the second latest

3https://grouplens.org/datasets/hetrec-2011/.
4http://www.yelp.com/dataset-challenge
5https://www.imdb.com/.
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Table 2: Statistics of the datasets.

MI-1M Last-FM Yelp

User-Item

Interactions

#Users 6,040 23,566 37,940

#Items 3,382 48,123 11,516

#Interactions 756,684 3,034,796 229,178

Data Density 3.704% 0.268% 0.052%

Knowledge

Graphs

#Entities 18,920 138,362 46,606

#Relation Types 10 10 6

#Links 968,038 2,007,423 302,937

one for validation, and utilize the remaining data as training set. Aligning

with [50, 43, 6], during testing phase, for each user, we randomly sample 100

items that the user has not interacted with as the negative items, and then

rank her test item together with these negative items, so as to reduce the test

complexity. We adopt Hit@N , NDCG@N and MRR@N as evaluation metrics,

compute the three metrics for each test user and report the average score at

N = {1, 2, · · · , 15} by following [43, 6]. Note that as the major task of this paper

is to improve the recommendation accuracy, we only adopt the accuracy-based

evaluation metrics and leave the evaluation based on diversity- and novelty-

oriented metrics as future work [51, 52]. The three metrics are defined as follows,

and higher metric values generally indicate better ranking accuracy.

• Hit@N measures whether the algorithm can recommend the test item within

top-N ranked list. The value would be 1 if the test item appears in the

recommendation list, and 0 otherwise.

• NDCG@N rewards each hit based on its position in the ranked list, indicat-

ing how strongly an item is recommended.

• MRR@N measures the reciprocal of the rank of each hit for each user.

Comparison Methods. We compare HAKG with four types of state-of-the-

art recommendation methods:

• Plain CF-based with only user-item interactions: (a) MostPop - it rec-

ommends the most popular items to all users without personalization; (b)
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BPRMF [53] - it is a classic algorithm that minimizes matrix factorization

(MF) model with pairwise ranking loss for implicit feedback. (c) NeuMF [43]-

it is a state-of-the-art deep learning based method that combines MF with a

MLP model for top-N recommendation.

• Direct-relation based method with KGs: (d) CKE [54] - it is a representative

direct-relation based method, which leverages the embeddings derived from

TransR [55] to enhance MF.

• Path-based methods with KGs: (e) FMG [56] - it predefines various types

of meta-graphs and employs Matrix Factorization on the similarity matrix of

each meta-graph to make recommendations; (f) MCRec [50] - it is a state-

of-the-art deep learning based method which extracts meta-paths between

user-item pairs as their connectivities and encodes the paths with convolu-

tion neural networks; (g) HAN [23] - it is a recently proposed heterogeneous

network embedding model, which leverages node-level and semantic-level at-

tentions to learn the importance of entities and meta-paths6; (h) RKGE [4]

- it exploits the semantics of separate linear paths with the power of RNNs,

and linearly aggregates the path embeddings for inferring user preferences;

(i) KPRN [6] - it is a strong baseline which incorporates entity types into

path embedding learning and performs weighted-pooling across the path em-

beddings to predict user preferences.

• Propagation-based method with KGs: (j) KGAT [5] - it is a recently proposed

state-of-the-art model that propagates information over the entire KG via

GCNs to derive user and item embeddings, and use their inner products as

estimated user preferences.

Parameter Settings. The optimal parameter settings for all the compari-

6We adapt HAN for the top-N recommendation task. Specifically, we first learn entity

embeddings by HAN and then employ the dot product of user and item embeddings to predict

user preferences. For fair comparison, we optimize HAN with negative log-likelihood loss

function.
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son methods are achieved by either empirical study or adopting the settings

as suggested by the original papers. For HAKG, we apply a grid search in

{0.001, 0.002, 0.01, 0.02} to find out the best learning rate γ; the optimal set-

ting for L2 regularization coefficient λ is searched in {10−5, 10−4, 10−3, 10−2}.

The best settings for other hyper-parameters are as follows: the batch size is

256; the embedding sizes of entity de, entity type dt and relation dr are set as

de = 128, dt = dr = 32; the hidden layer size of the self-attention mechanism

is set as da = 128, and the number of attention heads is set as m = 5 on

the three datasets; and the size of predictive factors of MLP is set as 32. In

addition, the number of sampled paths K for each user-item pair is set to 15

and the propagation layer is set as L = 2 on the three datasets. We initialize

the model parameters with the Xavier initializer [5]. The detailed analysis of

hyper-parameter sensitivity will be introduced in Section 4.4.

4.2. Performance Comparison (RQ1)

In this subsection, we first compare the top-N recommendation accuracy of

HAKG with other state-of-the-art methods, and then investigate how does the

exploitation of KGs help alleviate the data sparsity issue. We also compare the

embedding learning ability and the training time of HAKG with representative

recommenders.

Overall Performance Comparison. Figure 4 presents the overall perfor-

mance comparison results on the three datasets w.r.t. Hit@N , NDCG@N and

MRR@N with N = {1, 2, · · · , 15}. We summarize the major findings as below.

First of all, among all the comparisons, most KG-aware methods outperform

the plain CF-based methods on the three datasets, which indicates that incor-

porating KGs is able to greatly improve the recommendation performance. It is

worth noting that NeuMF achieves better performance than BPRMF, implying

the effectiveness of applying deep neural networks (i.e., MLP) to capture the

non-linear user-item interactions. Moreover, the direct-relation based method

CKE underperforms the path-based methods RKGE and KPRN, verifying that

modeling only first-order relations fails to make full use of the information within
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Figure 4: Overall performance comparison on the three datasets w.r.t Hit@N , NDCG@N and

MRR@N with N = {1, 2, · · · , 15}.

KGs. It meanwhile indicates that path-based methods can better explore the

user-item connectivities by explicitly encoding the paths to infer user prefer-

ences.

Second, in terms of path-based baselines, both KPRN and RKGE are based

on the automatically mined semantic paths, while FMG and MCRec heavily

rely on the quality of handcrafted meta-paths. The performance of KPRN

and RKGE far exceeds that of FMG, MCRec and HAN, verifying that the

pre-defined features fail to uncover all potential relations between entities. In

addition, HAN achieves unsatisfactory performance on the three datasets. This

might because HAN forgoes all intermediate entities along the meta-path, which

leads to information loss and is insufficient to capture the holistic semantics of

user-item connectivities. The observation is consistent with [50]. Furthermore,

KPRN performs better than RKGE as it additionally takes the different impor-

tance of paths into consideration via a weighted-pooling operation. In addition,

the most recent propagation-based method KGAT outperforms the path-based
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methods KPRN and RKGE, which implies the superiority of graph neural net-

works in modeling the high-order connectivities via information propagation.

However, KGAT has a large gap with HAKG on the three datasets, which ver-

ifies that propagating information over the full KG is less efficient to model

the pair-wise user-item connectivity for accurate recommendation, as it would

introduce noise that is irrelevant to the specific connectivity into embedding

learning process.

Overall, our proposed HAKG consistently achieves the best performance

among all the comparisons on the three datasets w.r.t. all evaluation metrics.

The relative improvements achieved by HAKG over the runner up w.r.t. Hit,

NDCG amd MRR are 10.7%, 10.1%, 13.6% on average, respectively. The im-

provements are statistically significant proven by commonly used paired t-test

over 20-round results [2] with p-value< 0.05. We attribute the superiority of

HAKG in recommendation performance to two core advantages: (1) the ex-

pressiveness of subgraphs in characterizing user-item connectivities; and (2) the

effectiveness of hierarchical attentive embedding learning procedure in encoding

the subgraphs for revealing user preferences.

Performance Comparison w.r.t. Data Sparsity Levels. We further in-

vestigate whether exploiting the rich information within KGs helps alleviate

the data sparsity issue. Towards this end, we perform experiments over user

groups of different sparsity levels. In particular, following state-of-the-art meth-

ods [5, 2], we divide the test users into four groups based on interaction number

per user in the training set, and each group has the same total interactions. The

density of each user group then can be calculated by #total interactions
#users×#items . Specif-

ically, the density of the four groups are 1.5%, 5.1%, 9.6%, 18.9% in MI-1M;

0.05%, 0.17%, 0.35%, 0.91% in Last-FM; and 0.02%, 0.16%, 0.43%, 1.19% in

Yelp. That is, the sparsity level of the four groups decrease gradually, where

the first group is the sparsest one. Figure 5 illustrates the results w.r.t. Hit@10,

NDCG@10 and MRR@10 on different user groups in the three datasets, and

similar trends can be observed on the other settings of N .
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Figure 5: Performance comparison on user groups with different sparsity levels on the three

datasets w.r.t. Hit@10, NDCG@10 and MRR@10. Similar trends can be observed on the

other settings of N .

We can find that: first of all, HAKG consistently outperforms all compar-

isons w.r.t. different user groups on the three datasets, and meanwhile the

improvements become more significant as the interactions of user groups are

sparser. This verifies the advantage of modeling user-item connectivities via

the expressive subgraphs, which enriches the embeddings of inactive users by

exploiting the information within KGs. In addition, KGAT achieves unsatisfac-

tory performance on the densest user group (i.e., the fourth group) in MI-1M

and Last-FM, suggesting that propagating information over the entire KG can-

not distill the salient relations for accurate recommendation. Contrarily, the

subgraph shows its superiority in retaining only the relevant entities and rela-

tions for modeling the specific user-item connectiv·ity .

Performance Comparison on Different Data Splitting Methods. We

investigate whether different data splitting methods would impact the recom-

mendation performance of HAKG. To this end, we further conduct experiments

by adopting the split-by-ratio strategy. In particular, we randomly select a por-

tion (i.e. ρ = {80%, 85%, 90%, 95%}) of historical interactions of each user to
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Figure 6: Performance comparison between our HAKG and the strongest baseline KGAT on

different proportions of training set ρ w.r.t Hit@10, NDCG@10 and MRR@10 on the three

datasets.

constitute the training set, and the rest interactions are treated as the test set

(i.e. 1− ρ = {5%, 10%, 15%, 20%}), correspondingly. From the training set, we

randomly select 10% of interactions as validation set to tune hyper-parameters.

Figure 6 presents the performance comparison results between HAKG and the

strongest baseline KGAT w.r.t. Hit@10, NDCG@10 and MRR@10 on the three

datasets, and similar trends can be observed on the other settings of N . We can

find that HAKG consistently achieves the best performance across all evaluation

metrics w.r.t. different settings of ρ. The relative improvements achieved by

HAKG over the runner up w.r.t. different settings of ρ are 10.7%, 10.5%, 10.9%,

10.8% (Hit@10); 10.2%, 10.4%, 10.6%, 10.5% (NDCG@10); and 13.6%. 13.4%,

13.2%, 13.3% (MRR@10), on the three datasets averagely. This firmly verifies

the effectiveness of HAKG in generating better recommendation regardless of

the data splitting methods.

Embedding Learning Ability. We examine whether HAKG is able to learn

better embeddings for inferring user preferences towards items. To achieve this,

following state-of-the-arts [2], we randomly select ten users and their interacted

items from MI-1M. We then visualize their embeddings learned via represen-
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(a) CKE (b) KPRN (c) KGAT (d) HAKG
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Figure 7: Visualization of the t-SNE [57] transformed embeddings. Each ‘?’ represents a user

from MI-1M dataset and the dots with the same color denote her interacted items. Numbers

in the legend are user IDs.

Table 3: Comparisons of training time (second/hour [s/h]). ‘Average’ is the average training

time for each epoch, ‘Total’ denotes the total training time to converge.

MI-1M Last-FM Yelp

Average Total Average Total Average Total

BPRMF 61.7s 1.5h 72.7s 2.0h 9.5s 0.2h

NeuMF 67.5s 1.8h 189.5s 5.3h 12.3s 0.3h

CKE 70.1s 1.9h 129.1s 3.6h 13.7s 0.4h

KPRN 1.9h 21.4h 4.1h 45.7h 0.8h 8.2h

KGAT 106.8s 3.1h 233.7s 6.5h 20.6s 0.6h

HAKG 216.8s 6.2h 364.1s 9.8h 62.5 1.7h

tative recommenders, namely CKE, KPRN, KGAT and HAKG, as shown in

Figure 7. Comparing Figure 7(a-c) with Figure 7(d), we can observe that

the proposed HAKG, which exploits the user-item connectivities via expres-

sive subgraphs, advances the other three baselines in learning more accurate

embeddings: each user and her interacted items are close to each other in the

embedding space, and meanwhile the items of the same user tend to form a

cluster.

Training Time Comparison. We compare the training time of HAKG

with representative state-of-the-art recommenders, including the plain CF-based

methods (BPRMF, NeuMF) and KG-aware methods (CKE, KPRN, KGAT). All

the experiments are conducted on a single GPU of Nvidia GeForce GTX 1080

Ti. From the experimental results in Table 3, we can observe that HAKG yeilds

comparable complexity to the propagation-based method KGAT, and it is much

efficient than the path-based method KPRN with an relative improvement of

76.3% on average for the three datasets.
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4.3. Ablation Analysis of HAKG (RQ2)

In this subsection, we conduct an ablation analysis to investigate the efficacy

of the key designs of HAKG, including (1) entity type and relation; (2) self-

attention mechanism; (3) aggregation function fg; and (4) subgraph embedding.

Impact of Entity Type and Relation. HAKG incorporates both the en-

tity types and relations into entity embedding learning process. To study their

respective impact, we consider two variants of HAKG, including HAKG-t that

removes the entity type embedding during embedding initialization in Equation

(1), and HAKG-r that removes the relation embedding during semantics prop-

agation in Equation (2). From the results in Table 4, we notice that both the

two variants underperform HAKG, which implies that the incorporation of het-

erogeneous entity types and relations facilities to improve the recommendation

performance, by providing the rich semantic information for learning enhanced

entity embeddings.

Impact of Self-attention Mechanism. HAKG employs the self-attention

mechanism to learn entity importance during the subgraph embedding learning

process. To investigate its impact, we compare HAKG with the variant HAKG-

a, which removes the self-attention mechanism in Equation (7) and combines

entity embeddings with the mean-pooling operation. As shown in Table 4, the

performance of HAKG-a evidently declines on all three datasets, with a decrease

of 4.85% on average. This verifies that the self-attention mechanism can assist in

better user preference inference by specifying the varying importance of entities

in the subgraph.

Impact of Aggregation Function. HAKG deploys the function fg to aggre-

gate the weighted sums of entity embeddings A(u,i)H(u,i) into the subgraph

embedding in Equation (8). In HAKG, fg is implemented with the mean-

pooling operation, and here we evaluate the performance of other operations

by considering two variants HAKGmax and HAKGatt, which implement fg with

max-pooling operation and vanilla attention mechanism, respectively. From the

results in Table 4, we can observe that HAKGmax performs the worst on all three
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Table 4: Ablation analysis on the three datasets w.r.t. Hit@10 and NDCG@10. ‘Decrease’

denotes the relative performance decrease of corresponding variants compared with HAKG.

MI-1M Last-FM Yelp

Hit Decrease NDCG Decrease Hit Decrease NDCG Decrease Hit Decrease NDCG Decrease

HAKG 0.883 – 0.725 – 0.837 – 0.685 – 0.761 – 0.609 –

HAKG-t 0.869 -1.59% 0.713 -1.65% 0.821 -1.91% 0.672 -1.89% 0.750 -1.45% 0.601 -1.31%

HAKG-r 0.863 -2.27% 0.708 -2.34% 0.819 -2.15% 0.668 -2.48% 0.745 -2.10% 0.596 -2.13%

HAKG-a 0.837 -5.21% 0.686 -5.38% 0.798 -4.66% 0.653 -4.67% 0.726 -4.60% 0.581 -4.60%

HAKG-g 0.812 -8.04% 0.671 -7.45% 0.774 -7.53% 0.643 -6.13% 0.690 -9.33% 0.561 -7.88%

HAKGmax 0.850 -3.73% 0.698 -3.72% 0.813 -2.87% 0.665 -2.92% 0.735 -3.42% 0.587 -3.61%

HAKGatt 0.853 -3.40% 0.701 -3.31% 0.816 -2.51% 0.667 -2.63% 0.739 -2.89% 0.592 -2.79%

datasets. This is mainly because the max-pooling operation only preserves the

most important features, and thus leading to information loss. Furthermore,

HAKG yields better performance than HAKGatt. This implies that an average

combination is sufficient for learning effective subgraph embeddings, which can

be attributed to the well learned importance of entities from the self-attention

mechanism.

Impact of Subgraph Embedding. HAKG fuses the learned subgraph embed-

ding into user preference prediction in Equation (9). To verify its effectiveness,

we compare HAKG with the variant HAKG-g by removing the subgraph embed-

ding, that is, HAKG-g performs prediction with only user and item embeddings.

As observed in Table 4, HAKG-g consistently performs the worst in all metrics

across the three datasets. This confirms that the incorporation of subgraph

embeddings into user preference prediction can boost the recommendation per-

formance. We also examine the effects of our subgraph construction strategy

by generating subgraphs via BFS and DFS. For the smallest Yelp dataset, both

BFS and DFS take about 15 days to construct subgraphs for all user-item pairs;

while our subgraph construction strategy costs around 21 minutes, 52 minutes

and 324s on the three datasets, respectively. This demonstrates that the tradi-

tional graph mining methods are computationally prohibitive by enumerating

all the paths between a user-item pair; whereas our subgraph construction strat-

egy can scale to large-scale real-world datasets via efficient path sampling and

assembling process.
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Figure 8: Parameter sensitivity w.r.t. the number of sampled paths K on Hit@10 and

NDCG@10.
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Figure 9: Parameter sensitivity w.r.t. the number of propagation layers L on Hit@10 and

NDCG@10.

4.4. Parameter Sensitivity (RQ3)

We finally study how the representative hyper-parameters affect the perfor-

mance of HAKG, including the number of sampled paths K, the propagation

layers L, the multi-heads of self-attention mechanism m, the embedding sizes of

entity de and entity type dt. In the following experiments, we vary the hyper-

parameter being test while using the optimal settings for the rest parameters as

introduced in Section 4.1.

Number of Sampled Paths. We vary the number of sampled path K in the

range of {5, 10, 15, 20, 25, 30} to study its impact on recommendation accuracy.

As shown in Figure 8, we observe that as K increases, the performance of HAKG

improves at first since more paths could help encode the rich knowledge from

KGs. The optimal performance is obtained with K = 15 on the three datasets,

while gradually drops with further increase of K. This implies that too much

integration of paths would introduce noise even degrade the recommendation

performance of HAKG.

Propagation Layers. We study the influence of propagation layers L by
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Figure 10: Parameter sensitivity w.r.t. multi-heads of self-attention mechanism m on Hit@10

and NDCG@10.
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Figure 11: Parameter sensitivity w.r.t. the embedding sizes of entity de and entity type dt on

NDCG@10 for MI-1M and Last-FM datasets. We use log2(de) as x-axis to ensure the linear

increase of the embedding size.

varying L in the range of {1, 2, 3, 4}. The results are presented in Figure 9,

where we observe that HAKG achieves a better performance with L = 2 over

L = 1. This suggests that increasing the depth of propagation contributes to an

effective modeling of the high-order connectivities. However, the performance

decreases when stacking more layers (i.e., L = 3 and L = 4). This implies that

considering second-order relations among entities could be sufficient to help

capture the semantics of subgraphs, while stacking more propagation layers

may lead to over-fitting [32].

Multi-heads of Self-attention Mechanism. The ablation analysis in Sec-

tion 4.3 has verified the self-attention mechanism is beneficial for improving

the recommendation performance. Here, we mainly evaluate how the num-

ber of attention heads m impacts the performance of HAKG by varying m in

{1, 2, · · · , 10}. From the results in Figure 10, we can find that the performance

of HAKG first climbs up and yeilds the best with m = 5, while declines with

the further increase of m. This suggests that the setting of m indeed effects

the recommendation accuracy, by controlling how many different aspects of the
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subgraph need to be focused on for revealing user preferences. In particular, a

too small number of m is insufficient to capture the holistic semantics from the

multiple aspects of the subgraph, while using too many aspects would introduce

the redundancy information, thus limiting the performance.

Embedding Sizes. We examine how the sizes of entity embedding de and

entity type embedding dt affect HAKG, by testing all the combinations of de and

dt in the range of {16, 32, 64, 128, 256}. Due to space limitation, we only report

the performance w.r.t NDCG@10 on MI-1M and Last-FM datasets, shown by

Figure 11. Similar trends can be observed on Yelp dataset and other metrics.

From the results, we note that, given a fixed size of entity type embeddings (e.g.,

dt = 16), the performance first improves with the increase of entity embedding

size de, and the best performance is achieved when de = 128. This suggests that

embeddings with larger size can remarkably help encode useful information for

effective embedding learning. The performance however, drops a lot with further

increase of de (i.e., de = 256), as oversized embeddings may over-represent the

entities, thus introducing noise. Similar trends are also possessed by dt, and the

optimal settings of the embedding sizes are de = 128 and dt = 32 on the three

datasets.

5. CONCLUSIONS AND FUTURE WORK

We propose a novel hierarchical attentive knowledge graph embedding frame-

work to exploit the user-item connectivities in KGs for enhanced recommenda-

tion. We harvest the heterogeneous subgraphs between the user-item pairs

for comprehensively characterizing their connectivities, and design a hierarchi-

cal attentive embedding learning procedure to effectively encode the subgraphs

for revealing user preferences. Specifically, the layer-wise propagation mecha-

nism sufficiently encodes both the semantics and topology of subgraphs into the

learned entity embeddings, and the self-attention mechanism helps discriminate

the importance of entities for effective subgraph embedding learning. Exten-

sive experiments over three real-world datasets demonstrate the superiority of
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HAKG against the state-of-the-art recommendation methods, as well as its po-

tential in easing the data sparsity issue.

In the future, we plan to extend our work in two directions. The first di-

rection is to further involve the temporal context into KGs. In real world,

user preferences usually evolve over time, which can be affected by dynamic

user inclinations, item perception and popularity. Temporal context hence has

been recognized as a crucial type of information for modeling the dynamic user

preferences. Thus, we would like to adapt the proposed HAKG for dynamic rec-

ommendation by incorporating the temporal context into KGs. Specifically, we

can model the user clicked items in a sequence as a directed graph, where each

link (ik, ij) represents a user visits items ik and ij consecutively. The sequential

interactions then can be seamlessly integrated with the KG as a unified graph,

which accommodates both the transition relationship between items and the

item side information for better understanding the user preferences. Another

promising direction is to explore the KGs for diversified recommendation, which

could greatly facilitate user satisfaction [51]. Our proposed HAKG has revealed

improved accuracy by exploiting KGs in recommendation. This motivates us

to further incorporate the KGs for enhancing the diversity of recommendations.

In particular, we will attempt to combine the KG embeddings with determinan-

tal point processes [51], so as to better balance recommendation accuracy and

diversity.
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