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Soit G=(V,E) un graphe non-orienté et 2-arétes connexe. Chaque aréte et
sommet de G est muni d'un poids. Le probleme du sous-graphe 2-arétes
connexe de poids minimum dans G (2ECSP), est de trouver un sous-graphe
2-arétes connexe de G tel que la somme des poids sur ses sommets et ses
aréte soit minimum. Le 2ECSP généralise le probléme, bien connu, du sous-
graphe Steiner 2-arétes connexe. Dans cet article, I'enveloppe convexe des
vecteurs d'incidences des solutions de 2ECSP est étudi¢e. Une formulation
naturelle du probléme par un programme linéaire en nombres entiers est
premicrement établie. Il est aussi montré que la relaxation ne suffit pas pour
décrire l'enveloppe convexe associée au 2ECSP méme dans une classe
restreinte comme celle des graphes série-paralléles. Une nouvelle classe
d'inégalités valides pour le 2ECSP est introduite. Il est monté qu'une sous-
classe de ces inégalités peut étre séparée en temps polynomial. Comme
conséquence, ces nouvelles inégalités peuvent Etre séparées en temps
polynomial dans la classe des graphes série-paralléles.

Let G=(V,E) be an undirected 2-edge connected graph with weights on its
edges and nodes. The minimum 2-edge connected subgraph problem , 2ECSP
for short, is to find a 2-edge connected subgraph of G , of minimum total
weight. The 2ECSP generalizes the well-known Steiner 2-edge connected
subgraph problem. In this paper the convex hull of the incidence vectors
corresponding to feasible solutions of 2ECSP is studied. First, a natural
integer programming formulation is given and it is shown that its linear
relaxation is not sufficient to describe the polytope associated with 2ECSP
even when G is series-parallel. Then, a class of new valid inequalities is
defined together with sufficient conditions for them to be facet-defining.
Finally, a polynomial time algorithm is given to separate a subclass of these
new inequalities. As a consequence, all these new inequalities may be
separated in polynomial time when G is series-parallel.

Optimisation combinatoire, la connexité dans les graphes, polyedres.
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1 Introduction

Let G = (V, E) be an undirected graph. G is said to be k-edge (resp. k-node) connected if
for any pair of nodes i,7 € V there exists at least k edge-disjoint (resp. node-disjoint) paths
from ¢ to j. Associate with each edge e € E a weight ¢, and with each node v € V' a weight
wy. The node-edge weighted 2-edge connected subgraph problem, denoted by 2ECSP, consists
in finding a 2-edge connected subgraph of G' (not necessarily spanning all the nodes in V),
whose total weight of both nodes and edges is minimized. So the graphs considered in this
paper are 2-edge connected. A related problem is to find a 2-node connected subgraph of
G whose total weight of both nodes and edges is minimized. This problem is discussed in
Section 4, where it is shown how the results obtained for 2ECSP may be applied.

To our knowledge this problem has never been considered in the literature, although some
related problems have been studied. For instance, the case where the node weights are large
negative numbers for some nodes v € T' (terminals) and 0 for nodes v € V' \ T, the 2ECSP
reduces to the well known Steiner 2-edge connected subgraph problem (STECSP) introduced
by Monma, Munson and Pulleyblank in [9]. Given a graph and a set of terminals T C V,
the problem is to find a minimum (edge) weight 2-edge connected subgraph of G spanning
T. Polyhedral characterizations of the STECSP may be found in [1], [2] and in [8] and [3]
when 7" = V. Closely related problems to the STECSP in network design were introduced by
Grotschel and Monma in [6]. Stoer [10] surveys related works.

The Steiner 2-edge connected subgraph problem, where the only costs pertain to edges,
arise in the design of reliable telecommunication networks: to link (to establish edges between)
centers (nodes) that are already determined, at least total cost but that assures that all phone
centers (a subset of special nodes) remain connected when one link fails. The 2ECSP is a
direct generalization that recognizes that centers are built with costs too, so that a more
realistic goal is to minimize the total costs of establishing nodes and links.

Let Z* be the value of the optimal solution to 2ECSP. In what follows, we fix a node
r € V called the root. Consider the problem of finding a 2-edge connected subgraph of G
containing 1 whose total weight, of both nodes and edges, is minimized. We will refer to this
problem as the r-2-edge connected subgraph problem (r-2ECSP). If Z* denotes the value of
the optimal solution of the r-2ECSP, then clearly Z* = min,cy{Z}}. The idea of fixing a
node 7 was introduced in [4]. It makes it easy to deal with the connectivity of the solutions
and leads to a simple formulation of the r-2ECSP as an integer linear program.

We now give some standard definitions used throughout the paper. Consider FF C FE
and U C V, then (z%,yY) € RIFHIVI denotes the incidence vector of the subgraph (U, F)
of G, ie., zf' = 1if e € F and 0 otherwise, and yV = 1 if v € U and 0 otherwise. As
usual, for any subset of edges (resp. nodes) F' C E (resp. U C V), z(F) = > cp Te (resp.
y(U) = Y e Yv)- The set E(W), for W C V, will denote the set of edges having both
end-nodes in W and the set §(W), called a cut, will denote the edges having one end-node in
W and the other in V' \ W. Also, by abuse of notation, d(v) = d({v}) for v € V. G(W) will
stand for the subgraph of G induced by W and V(F') the set of nodes incident to the edge
set F. If W C S C V, the set of edges having one end-node in W and the other in S\ W
is called an S-cut and denoted by dg(W) (i.e., dg(W) is the cut defined by W in the graph
G(S)). Finally, for any set A, denote its complement by A.



With the above definitions, the r-2ECSP can be formulated as an integer programming
problem:

minimize g WeTe + E CoYy

eck veV
subject to
z(0(W)) =2y, >0 foral W CV,re WiogW, (1)
Te < Yy, forallv eV, ee€ d(v), (2)
Te >0 for all e € E, (3)
Yo < 1 for allv € V, (4)
Te, Yy € {0,1} foralle e E,v € V. (5)

Let r-2ECSP(G)=conv{(z,y) € RFHIVI: (z,4) satisfies (1) — (5)} be the polytope asso-
ciated with the r-2ECSP.

Consider the polytope defined by inequalities (1)-(4), called the linear relaxation of r-
2ECSP(G) and denoted by P(G). The projection of P(G) onto the edge variables is given
by

0<z, <1 foralle € F,
)

2(5(W)) > 22, forall W C V,r € W,e ¢ E(W (6)

In [2], it was shown that the above polytope is integral when G is series-parallel. One may
be tempted to claim that the same holds for P(G); unfortunately, the following example
shows the contrary. Let H = (V, E) be the series-parallel graph defined in Figure 1, where

V = {r,v;,vg,v3}. Let z} = %, foralle € E, y; = y,, = 1L and y;, = y;, = %: clearly

U1

U2

Figure 1: Example: the graph H.

(z*,y*) € P(H). Moreover, (z*,y") is an extreme point of P(H), but it violates the following
valid constraint of r-2ECSP(H):

yvl +y’U2 - (I;f Z ?ng-

In Section 2 we a give a general form for this valid constraint. The above inequality defines,

in fact, a facet of r-2ECSP(H), as will be shown in Theorem 4 (in a more general setting).
This paper studies the polytope r-2ECSP(G). First, in Section 2, we introduce a family

of valid inequalities and give sufficient conditions for these inequalities to be facets defining



r-2ECSP(G). Section 3 shows that the separation problem associated with a subset of these
inequalities is polynomially solvable. Using this result, we obtain a polynomial time algorithm
for separating the inequalities in the case of series-parallel graphs. Concluding remarks are
given in Section 4.

2 The polytope r-2ECSP(G)

We begin by discussing the dimension of r-2ECSP(G), and introducing classes of valid in-
equalities.

Lemma 1 Given a graph G = (V, E) and a fized node r € V.. Let ), v Byyy = 0 be a valid
equality of r-2ECSP(QG). If G is 3-edge connected then 5, =0 for allv € V.

Proof. That 8, = 0 is obvious since 7 itself constitutes an r-2-edge connected subgraph.

Let w € V\ {r}. If G-w o G(V \ {w}) is 2-edge connected, then £, = 0. So suppose

the contrary. Let S be a connected component of G-w containing r (S may consist of all the
nodes of G-w). Remark that G(S U {w}) is 3-edge connected. S may be partitioned into
S1, S2,...,Sy, where each G(S;) is a maximal 2-edge connected subgraph of G(S); that is, if
G (W) is 2-edge connected for W C S, then S; ¢ W.

Let r € Sy and T(S) be the graph obtained from G(S) by shrinking the components
Si, i = 1,...,p, and replacing them by nodes s;. T(S) is connected and by the maximality
of each G(S;) it contains no cycles. So T'(S) is a tree. Moreover, since T'(S)+w is 3-edge
connected, then there exists three node-disjoint paths Py, P, and P in T'(S)+w from s1 to w.
Denote the nodes of each path P;, by {si1,s;,,...,s;, ,w} and let V; = {51,5;,,...,S;, ,w}
fori =1,...,3. The following subgraphs of G are r—2—édge connected: G(V;UVj), 4,5 = ll, 2,3
and i # j. These graphs have in common only the nodes S; and w. This yields the equations:

> By=0foralli,j=1,23andi#j. (7)
ve(Viuv;)

Also, G(V1 U Va U V3) is r-2-edge connected, so

Z Bv =0. (8)

vE(V1UVaUV3)

The sum of the equations in (7) minus 2 times the equation (8) gives

Zﬁv""ﬁwzoa

vES]
and since G(S7) is r-2-edge connected, we obtain (,=0. O

Theorem 2 r-2ECSP(G) is of full dimension if and only if G is 3-edge connected.



Proof. Necessity. Suppose that G is not 3-edge connected. If G is not connected or contains
a bridge then it is clear that dim(r-2ECSP(G))< |E| + |V|. So suppose that G contains a
2-edge cutset 6(W); that is, 6(W) = {e1, ea}. Every r-2-edge connected subgraph of G verifies
Te;, — Tep, = 0. Thus dim(r-2ECSP(G)) < |E| + |V| - L

Sufficiency. Let G be a 3-edge connected subgraph, and suppose that dim(r-2ECSP(G))<
|E| 4+ |V|. Then there must exist at least one valid equality of r-2ECSP(G). Denote this
equality by ax + Sy = 7. Since (0,0) € r-2ECSP(G), it follows that v = 0 and as G is 2-edge
connected, Y cp@e + D ey Bv = 0. Moreover, o, = 0V e € E, since G \ {e} is r-2-edge
connected for all e € E. Thus, we can rewrite our equality as follows:

Z Boyy = 0.

veV

Now from Lemma 1 it follows that 8, = 0 for all v € V. Thus the equation is the trivial
equation 0 =0. O

Given a graph G = (V, E), aroot vertex r and r € S C V. If G(S) is not connected denote
by Si,...,Sk the connected components of G(S); with S; = S when G(S) is connected.
Consider the following inequalities:

k
2(6s(W)) +2)  (y(Si) — (1)) > 2y, (9)
=1
k —_
z(s(W) \ {e}) + Y ((Si) — z(T3)) > yo, (10)
=1

where T; C E(S;) is a tree spanning S;, i = 1,...,k, W C S C V a proper subset of S,
v € S\ W and r € W. In inequalities (10), also add the condition that e is any edge in
ds(W). Clearly inequalities (9) are a generalization of inequalities (1); they are the same
when S =V.

Lemma 3 Given a graph G = (V, E) and a root vertex r then, for all S CV with r € S,
inequalities (9) and (10) are valid for r-2ECSP(QG).

Proof. One can prove the validity of (9) and (10) by using the fact that y(S;) — =(T;) > 0,
for all s = 1,...,k, and the structure of the r-2-edge connected subgraph of G. Or else they
may be obtained by combining inequalities (1)-(4) and rounding up the right hand side; that
is, (9) and (10) are obtained as Chvatal-Gomory cuts of rank 1. For the sake of completeness

we include this proof for inequalities (10) when G(S) is connected; that is, we show that
z(0s(W) \ {e}) +y(S) — 2(T) > yu,

is valid forr e W C SCV,v e S\ W and T a spanning tree in G(S).
If A and B are two node sets, (A, B) denotes the set of edges having one end-node in A
and the other in B. Let e = uw € dg(W) with w € S\ W. From (1),

z(W,S) +z(3s(W)) = z(8(W)) > 2yo,



and

(W, 5) +z(0s(W)) = z(6(W)) > 2yu,

it follows that z(W,S) + z(6s(W)) > vy + Yuw, and by combining with y,, > z. we obtain
(W, S) + z(6s(W) \ {e}) > y(v). Also, inequalities (2) yield z(W,S) < 3, cqdgw (w)yu,
where dgy-(u) denotes |({u}, W)|. Hence

z(6s(W) \ {e}) + ngW WYy > Yo (11)

ues

To complete the proof the following definitions are needed.

e Let vy be a special node of S and p be the length of the longest path in 7.
e Define Lo = {vg} and L; ={v € S: Ju € L; | withe=uv € T}, fori=1,...,p
e Let v € L;, i # 0, then the father of v, f,, is the neighbor of v in L;_ with e = fyv € T

o Let v € L, i # p, define s°(v) = {v} and s'(v) = {w € L;y;: Ju € 5;_1 with e =uw €
T}, forl=1,...,p—i. Let S, = U'_ s'(v). s'(v) may be seen as the sons of v and S,
as the progeny of v.

The inequalities (2) imply
(W, 8)] = (W, Su) ) yu
|(W, 50)|Yu

(W, )] = |(W, Su))zpu forall ue S\ {w},  (12)

>
> |(W,8,)|zyy forallue S\ L,and v € s'(u). (13)

Summing, carefully, the inequalities (11), (12) and (13) yields

(W, 9)I(y(S) = 2(T)) + z(6s (W) \ {e}) = yo-

Hence, (W, S)|(y(5) — z(T) +z(6s(W) \€)) > y, , and by dividing by |(W, S)| and rounding
up the result is obtained. O

For particular values of S, W, v, e and F = Uf \T; (F is then a forest spanning S), we
will refer to (9) as (S, W,v, F) and to (10) as (S, W,v,e, F'). When we write (S, W,v,T) or
(S,W,v,e,T) we mean that G(S) is connected and T is a spanning tree of G(S). Note that
when (i) dg(W) = () then inequalities (9) and (10) coincide, (ii) dg(W) = {e} then inequalities
(9) are implied by (10) and z, > 0, (iii) S = V then inequalities (9) and (1) are the same and
inequalities (9) are implied by (1) and (2).

Inequalities (9) are a generalization of the well-known cut inequalities. In [8], Mahjoub
gives necessary and sufficient conditions for the cut inequalities to define facets for the polytope
associated with STECSP when 7' = V. One can extend these results to get sufficient condi-
tions for inequalities (9) to define facets of r-2ECSP(G). In the following we give sufficient
statements under which inequalities (10) are facet defining r-2ECSP(G). These conditions
may be weakened, but this would require more technical details and longer proofs. Our in-
terest here is to show that inequalities (9) and (10) are necessary in a polyhedral description
of r-2ECSP(G). We need the following definition.

Let T C E be a tree of G spanning V(T) C V and v ¢ V(T) a fixed node. A path
P = {vy,e1,v9,€9,...,ex_1,v;} of T has the 2-edge connected property with respect to v, if
there exists graphs Gy, G!, for all l = 1,...,k, such that :

5



e (3 is an r-2-edge connected subgraph of G containing the subpath {v;, e, ..., ex—_1, v}
and v, and none of the nodes in V(T) \ {v,...,vg} -

e G'is an r-2-edge connected subgraph of G' containing the subpath {v1,eq,...,e_1,v}
and v, and none of the nodes in V(T) \ {v1,...,v}.

If there exists a collection of paths of T" having the 2-edge connected property with respect
to v, such that any edge of T' is contained in at least one path of that collection, then T has
the 2-edge connected property with respect to v.

Theorem 4 Let G = (V, E) be a 3-edge connected graph. Then an inequality (S, W,v',¢e',T),
with |6s(W)| < 1 defines a facet of r-2ECSP(G) if G(SU{v'}) is 2-edge connected and T has
the 2-edge connected property with respect to v'.

Proof. Consider an inequality (S, W,v',¢’,T) verifying the hypotheses of the theorem. We
shall prove that the only valid inequalities satisfied at equality by all incidence vectors, (z,y),

of an r-2-edge connected subgraph with y(S) — z(T) = v, are equivalent to (S, W,v', ¢, T).

Assume that ax + By = v for all (z,y) € r-2ECSP(G) with y(S) — 2(T) = y,r. (0,0) and the
incidence vector of G verify y(S) — 2(T') = y,r, which implies, respectively, that v = 0, and

Zae"‘zlﬁvzo (14)

eck veV

Also, since G\ {f}, for all f ¢ T, are r-2-edge connected subgraphs and their incidence vectors
verify y(S) — z(T) = y,, this implies that ZeeE’\{f} e+ Y cv Bv = 0, which combined with
(14) yields

af =0 forall f¢T.

Define G* to be the graph obtained from G by shrinking SU{v'} and let v* be the resulting
node. Note that G* is 3-edge connected. From above we know that all (z,y) € r-2ECSP(G)

Z Buyo + Z aex, = 0. (15)

with y(S) — z(T) = y, verify
veV eeT

We claim that

Z Buys + Buryse = 0 for all (z*,y*) € r-2ECSP(G"), (16)
veV\(SU{v'})

where B« = Zue(éu{u’}) Bo + Y ecr - In fact, suppose (z*,y*) € r-2ECSP(G*) does not
satisfy (16). Define y, = v if v ¢ (S U {v'}), otherwise y, = yi., and z, = y. if e €
E(S U {v'}), otherwise z, = zg. Then (z,y) belongs to r-2ECSP(G) (since G(S U is

2-edge connected); moreover y(S) — z(T) = y, and (x,y) does not verify (15), which is a
contradiction. Now applying Lemma 1 to G* and the equality (16) it follows that

By =0 forallveV\ (SU{v'}).

Next, we show that 8, = —q@, = —(y forallv € S, e € T. Let P = vi,e1,v2,€2,...,€5 1,0k
be a path of T having the 2-edge connected property with respect to v'. Then the incidence



vectors of the graphs Gy, (resp. GY) , for [ = 1,...,k, verify y(S) — 2(T) = y, and thus

az + Py = v, which implies f§,, + ae; = 0 for i = 1,...,k — 1 and B,, = —fy (resp.
Bv; +e, , =0fori=2,...,k, B, =—pFy). Combining these equalities we obtain, £,, = =y
fori =1,...,k and ae; = By for ¢ =1,...,k — 1. Moreover, since any edge of T" is contained

in a path of T" having the 2-edge connected property with respect to v,
By =—0e=—Py forallvesS andecT.

We have shown that az + By = 7 is By times y(S) — z(T) = y,. This means that
(S, W,v', €', T) defines a facet of r-2ECSP(G). O

Corollary 5 Suppose G(SUS;) is 5-edge connected for alli. An inequality (S, W,v' €', Tj=1,. k)
with |6g(W)| < 1, defines a facet of r-2ECSP(G) if for i = 1,...,k the following hold:
G(S; U{v'}) is 2-edge connected; T; has the 2-edge connected property with respect to v'.

Note that Theorem 4 and Corollary 5 may be used to generate a large class of graphs
where inequalities (1)-(4) are not sufficient to describe r-2ECSP(G).

Before beginning the next section two subclasses of inequalities (9) and (10) are given and,
as shall be seen later, they can be separated in polynomial time.

Given a graph G = (V,E), S C V, W a proper subset of S, v € S\ W and r € W.
Consider the following inequalities:

z(6s(W)) + 2y(5) = 290, (17)

z(8s (W) \ {e}) +y(S) = yo. (18)
(17) will be denoted by (S, W,v) and (18) by (S, W, v,e). Inequalities (17) ( resp. (18)) are
either included in inequalities (9) (resp. (10)) (when S is an independent set) or implied by
(9) (resp. (10)).

3 Separation

The separation problem of a given set of inequalities is to determine whether a given vector
satisfies this set of inequalities and, if not, to find an inequality in the set that is violated. It
follows from the equivalence between separation and optimization [5] that if the separation
problem is solvable in polynomial time then the optimization over this system of inequalities,
is also polynomial.

The number of inequalities (2)-(4) is polynomial, thus their separation is straightforward.
Also, the separation problem of inequalities (1) can be easily reduced to a min-cut problem
and hence can be solved in polynomial time as well. From now on, we are given a point (z, y)
satisfying inequalities (1)-(4). First, consider the separation of inequalities (9).

Let G = (V,E) be a graph and € V a root vertex. Let (Z,7) € RFITIVI be a solution
verifying inequalities (1)-(4). For v € V' \ {r} and S C V, let f¥(S) be the function defined
as follows:

. +00 if {r,v} ¢ S
fos) = min  {z(5s(W))} +25(S) — 2 max {Z(F): F forest} otherwise.
rewcS\{v} FCE(S)



Note that given S and v, the value fY(S) can be computed in polynomial time by a single
minimum r-v cut computation in G(S), plus a maximum forest computation in G(S).

Separating inequalities (9) reduces to the minimization of fY(S) among all subsets S of
V and for every v € V. If one finds w € V and S with f*(S) < 2§, then (S, W,w, F)
defines a violated inequality of type (9), where 64(W) is a cut of minimum capacity (equal
to Z(04(W))) separating r and w, and F = Ui—“lei is a maximum forest (of weight Z(F))
spanning S. Otherwise, there exists no violated inequality of type (9). By the same manner
one can define a function whose minimization solves the separation problem associated with
inequalities (10). For S = V, f¥(-) is submodular but, unfortunately, in general it is not.
However, there are some cases where the minimization of f¥ can still be done in polynomial
time. It turns out that the separation of inequalities (9) and (10) can be done in polynomial
time in series-parallel graphs.

3.1 Separation of inequalities (17) and (18)

Construct a network D(z 5 = (N, A) from G and the vectors 7 and ¥ as follows. Duplicate
every node v of G into two nodes v', v"”. Add two arcs (v',v") with capacity c(v',v") = gy,
and (v”,v") with capacity c(v”,v") = co. Replace every edge e = vw of G by two arcs (v”, w')
and (w”,v") both having the capacity c(v”,w') = ¢(w”,v') = Z,. An example is shown in
Figure 2.

U1

€9 €3

€1

Figure 2: The values associated with the arcs of D represent the capacities.

(z,9)

If U is a subset of N, d7(U) = {(u,v) € A: w € U and v € N\ U} is called a directed-cut.
Let V! = {uy,...,ut} be a node subset of V. Dggg) is the network obtained from Dz 4 by

identifying u; with ] and the resulting node is u;, for i = 1,... k.

Separation of inequalities (17)




Define the function ¢”(-):

. +00 - if{ret g S
9"(8) = Tewrgi&{v}{z(as(W))}+2g(5) otherwise.

Let ¢”(S*) = mingcy ¢”(S) for v € V. If g¥(S*) > 2y, for all v € V, then there is no violated
inequality (17). Otherwise, we can show a violated inequality. It remains to see how to solve
the minimization problem of ¢g”(.). We show that this reduces to a min-cut problem in the

network D{r

(z
Lemma 6 For all SCV, W CS, 7€ W andv € S\ W there exists a directed-cut 6+ (U")

of Dg’g;) separating v from v such that c(67(U")) = z(55(W)) + 25(9).

Proof. Take U' = {r} U (U, e {v,v"}) U (U,es{v'})- O

’gg) defined from G and the vectors Z and 2j.

Lemma 7 Let 67 (U*) be a minimum capacity directed-cut of Dg’;g) separating v from v.

Then there exists W C S' CV,r € W and v € '\ W with z(65/(W)) 4 25(S") = ¢(6T(U™)).

Proof. By Lemma 6, c(67(U*)) # oo. Hence v" € U* implies v’ € U*. Define S’ as the set
of nodes v such v' € U* and v" ¢ U*, and W as the set of nodes v such v',v" € U*. Add r

to W. Now by the definition of Dgg;) we have Z(dg(W)) + 25(S") = ¢(6T(U*)). O

From the two lemmas above follows what had to be shown,

g"(87) = c(67(U") > (67 (U™)) > ¢"(S7).
Separation of inequalities (18)

The separation of inequalities (18) is along the same lines as of inequalities (17).
To separate all inequalities (S, W,v,e) corresponding to a fixed v and e, consider G' =
(V,E\{e}) (i.e. G’ is obtained from G by removing e). Then fix v and minimize the function

. +o00 o if {r,v} ¢ S
h'(S) = TEWnéikg\{v}{g_c(ég(W))} + g(S) otherwise,

where dg(+) is taken in G’. As for ¢¥(.), this problem reduces to a minimum capacity directed-

{rv}

cut problem separating r from v in the network D(E:E) defined from G’, the restriction of Z
on G’ and the vector 7.

Let hV(S*) = mingcy h”(S) for v € V. If h*(S*) >y, then Z(5s(W) \ {e}) + H(S) > ¥y
for all S. Hence there is no violated inequality (S, W,v,e) (for fixed v and e). If on the other
hand h"(S*) < @,, we can exhibit a violated inequality (18). Repeating the procedure for
every v and e, the separation problem for inequalities (18) is solved.

Remark. Say that an inequality (S, W,v, F) or (S,W,v,e, F) is of class 1 if the nodes of S
are pairwise non-adjacent. It is easy to see that inequalities (S, W,v) and (S, W, v,e) contain
inequalities of class 1. It follows that the separation problem for inequalities of class 1 is
solvable in polynomial time.



3.2 Another polynomial time separable subclass of (9) and (10)

Consider inequalities (S, W, v, T) or (S, W,v,e, T) with d5(W) = 0, G(S) connected and where
T is a path spanning S. Only the pendant nodes of 7" are connected with S. This subclass
will be called inequalities of class 2.

If w and w represent the pendant nodes of 7', then G(V \ {u,w}) contains at least two
connected components, W; containing r and W containing v. The separation problem reduces
to finding a path P = {u = vi,e1,va,...,0-1,€5-1,0 = w} in G(V \ (W, UWy)) that
minimizes

k—1 k—1
gvl + g’uk + Z gvi - Z jei- (19)
=2 =1

If Yy + G + Z;:QI Yp; — Zi-:ll Ze; < ¥y, then a violated inequality of class 2 is obtained, where
S =V \{u,vg,...,v0-1,w}, W =Wy, §={u,vg,...,00-1,w} and T = {e1,...,ex_1} is a
path spanning S. Otherwise, there is no violated inequality of class 2, where u and w are the
pendant nodes of the path 7' spanning S.

How is (19) to be solved? Given a triplet v, v and w such that G'\ {u,w} contains at least
two connected components Wi containing r and Wy containing v. Construct the network
D3 5 from the graph G’ = G(V \ (W1 U Wy)) as follows: replace each edge of G', e = ujuy,
not incident to u nor to w, by two arcs (u1,us) associated with a cost c(ui,u2) = Gy, — Ze
and a reverse arc (ug,u1) with cost c(ug,u1) = Yu, — Te. If € = uuy (resp. e = ugw) is an
edge of G' incident to u (resp. w) then replace e by an arc (u,u1) (resp. (u1,w)) having a
cost c(u,u1) = Gy — T (vesp. c(ur,w) = Yy, + Yo — Te)- )

Problem (19) reduces to a min-cost path problem from u to w in Dz p)- (Z,7) verifies
inequalities (2)-(4). Consequently the cost associated with each arc of D(z 5 is nonnegative.
One can apply, for example, Dijkstra’s algorithm to find such a path.

7)

3.3 Application to series-parallel graphs

A homeomorph of K4 (the complete graph on four nodes) is a graph obtained from K, when
its edges are subdivided into paths by inserting new nodes of degree two. A graph is called
series-parallel if it contains no homeomorph of Ky as a subgraph.

Lemma 8 Let G = (V,E) be a graph and r a fized node. Inequalities (S, W,v, F) and
(S,W,v,e,F) (F =UE_|T;) define facet of r-2ECSP(G) only if
(i) G(W) is connected and,

(11) every pendant node of Ty, for i =1,...,k, is connected to W and to S\ W; moreover,
if G(S\ W) is not connected then at least one of its connected components is connected
to at least two pendant nodes of T;, for all i =1,... k.
Proof. The proof is given for the inequality (S, W, v, F), i.e., an inequality (9). A similar
proof holds for an inequality (10).
(i) If G(W) is not connected, let Wy be the connected component of G(W) containing r,
then the inequality (S, W, v, F') is implied by (S, W1,v, F).
(ii) Let v; € S; be a pendant node of T} and e; be the edge of T} incident to vy, for 1 <[ < k.
Suppose that v; is not connected to W. Define S’ = SU {v}; §; = S; fori=1,...,k, i #1;

10



Sy =8 \{u}; T =T, fori=1,...,k, i #1; T/ =T;\ {e;}. Note that T} is a tree spanning
Sy, with y(S")) — z(T}) < y(S;) — z(T;). Hence the inequality (S, W,v,Ur_,T;) is implied
by (S, W,v,UF_ T!). Thus it may be assumed that v; is connected to W. Now if v; is not
connected to S\ W then, by moving v; to W we show that the inequality (S, W,v, UF_,T;) is
redundant.

Assume now that G(S \ W) is not connected and that each of its connected components
is connected to at most one pendant node of T;, for 7+ = 1,...,k. Then, as shown above,
every pendant node is connected to S\ W. Consequently there is a connected component of
G (S \ W) which does not contain v , denoted by W1y, that is connected to exactly one of the
pendant nodes of Tj, for i = 1,...,k, (of course it may be connected to W and some nodes in
S). Let v; € S; be such a node. Define $" = SU{v;}, W' = WUW; U{v} and T}, i =1,...,k,
as defined above. As v; is connected to W it follows that G(W') is connected. Consequently,
the inequality (S, W,v,U¥_|T;) is implied by (S',W',0,Ut_T!). O

Theorem 9 If G = (V, E) is a series-parallel graph, then inequalities (9) and (10) are either
of class 1 or of class 2.

Proof. Let (S,W,v,Ur_T;) be an inequality (9). Suppose that there exists 7}, 1 < [ < k,
which is not a path. Then 7T} contains at least three pendant nodes. Suppose that G(S \ W)
is not connected. From Lemma 8 (ii), there exists a connected component Wy of G(S \ W)
connected to at least two pendant nodes of T}, say v; and vy. Let vg be a pendant node of T;
different from vy and vy. By Lemma 8 (ii), the nodes vy, vo and v3 are connected to W, and
by Lemma 8 (i) G(W) is connected, so there is a Ky that is a subgraph of G, see Figure 3.

‘gl \ {U13U23U3}

Figure 3: K, as subgraph. Bold edges belong to 7.

K, is obtained by shrinking the following connected components: W, W; U {vs} and
Sy \ {v1,v2}. If G(S\ W) is connected the same is obtained by replacing Wi by S\ W.
Consequently, T; is a path for all + = 1,...,k. Similarly one can show that in this case,
6s(W) = ) and k = 1 (we have only one path). It follows that S is either an independent
set of G (class 1), or k = 1, T} a path and dg(W) = () (class 2). The same result holds for
inequalities (10). O

11



4 Concluding remarks

Given a graph G = (V,FE). The node-edge weighted 2-edge connected subgraph problem
has been introduced. This problem reduces to a sequence of |V| r-edge connected subgraph
problems (r-2ECSP). Inequalities (1)-(4) define a linear relaxation of the convex hull of the
solutions of the r-2ECSP, r-2ECSP(G). These inequalities are based on a direct interpretation
of the 2-edge connected property of the solutions. Unfortunately, this linear relaxation does
not suffice to solve the problem even in particular classes of graphs (such as series-parallel
graphs). Moreover, the graph given in Figure 1 is outer-planar, so more restricted than series-
parallel graphs. Valid inequalities (9) and (10) of r-2ECSP(G) have been added in Section
2. We defined two classes among these inequalities, classes 1 and 2, and showed that their
separation problem is polynomially solvable. This provide a new linear description, given
by (1)-(4) plus inequalities of class 1 and 2, where the optimization can be performed in
polynomial time. This linear relaxation provides better lower bounds on the value of the
optimal solution of the problem. It has been shown that inequalities (9) and (10) are of
class 1 and 2 when the underlying graph is series-parallel. An interesting question arise: are
inequalities (1)-(4) plus (9) and (10) sufficient to describe r-2ECSP(G) when G is series-
parallel? TIf the answer is positive, then there is a polynomial time algorithm to solve the
node-edge weighted 2-edge connected subgraph problem in series-parallel graphs.

Consider a closely related problem to r-2ECSP: find a 2-node connected subgraph of G
containing a fixed node r which minimize the overall weight of both edges and nodes. Call this
problem r-2NCSP and the associated polytope r-2NCSP(G). Each solution of r-2NCSP(G) is
also a solution of r-2ECSP(G). Thus all valid inequalities (1)-(4) and (9)-(10) of »-2ECSP(G)
are also valid for r-2NCSP(G). Consider the following valid inequalities for r-2NCSP(G)
(which are not valid for r-2ECSP(G))

T(ov\ {0} W) > yu, forallv e VA {r},r e W CV\ {v},w € (V\ {v}) \ W. (20)

Note that (1)-(5) plus (20) give an integer linear formulation for r-2NCSP. The example of
Figure 1 is a fractional extreme point of the linear relaxation of r-2NCSP(G) given by (1)-(4)
and (20). But it violates inequalities of class 1 and 2. Thus inequalities (1)-(4), (20) and
those of classes 1 and 2 provide a tighter linear relaxation for r-2NCSP(G). Note also that
the separation problem of (20) reduces easily to a min-cut problem. The same question may
be asked concerning the description of r-2ECSP(G) in series-parallel graphs.

The two linear relaxations associated with r-2ECSP(G) and r-2NCSP(G) may be used to
solve the Steiner 2-edge and the Steiner 2-node connected subgraph problems.

We finish by noting that the separation problem of inequalities (9) and (10) is polynomially
solvable in series-parallel graphs and that inequalities (17) and (18) can be separated in
polynomial time for general graphs. What about the separation of (9) and (10) in the general
case?

References

[1] M. Balou, “Le probléme du sous-graphe Steiner 2-aréte connexe : Approche polyédrale”,
PH.D. dissertation, N 1639, Université de Rennes 1, Rennes, France, 1996.

12



2]

[9]

[10]

[11]

M. Baiou and A.R. Mahjoub, “Steiner 2-edge connected subgraph polytope on series-
parallel graphs”, STAM Journal on Discrete Mathematics 10 (1997) 505-514.

F. Barahona and A.R. Mahjoub, “On two-connected subgraph polytopes”, Discrete Math-
ematics 147 (1995) 19-34.

D. Bienstock, M.X. Goemans, D. Simchi-Levi and D. Williamson, “A note on the prize
collecting traveling salesman problem”, Mathematical programming 59 (1993) 413-420.

M. Grotschel, L. Lovéasz and A. Schrijver, “The ellipsoid method and its consequences in
combinatorial optimization”, Combinatorica 1 (1981) 70-89.

M. Grotschel and C. Monma, “Integer polyhedra arising from certain network design
problems with connectivity constraints”, SIAM Journal on Discrete Mathematics 3 (1990)
502-523.

M.X. Goemans, “The Steiner tree polytope and related polyhedra”, Mathematical Pro-
gramming 63 (1994) 157-182.

A.R. Mahjoub, “Two-edge connected spanning subgraphs and polyhedra,” Mathematical
Programming 64 (1994) 199-208.

C.L. Monma, B.S. Munson and W.R. Pulleyblank, “Minimum-weight two connected span-
ning networks”, Mathematical Programming 46 (1990) 153-171.

M. Stoer, “Design of Survivable Networks”, Lecture Notes in Mathematics 1531, Springer-
Verlag (1992).

P. Winter, “Generalized Steiner problem in series-parallel networks”, Journal of Algo-
rithms 7 (1986) 549-566.

13





