
ar
X

iv
:c

s/
04

05
05

9v
1

 [
cs

.D
M

]
 1

7
M

ay
 2

00
4

Coloring Meyniel graphs in linear time

Benjamin Lévêque∗, Frédéric Maffray†

Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet,

38031 Grenoble Cedex, France

February 8, 2020

Abstract

A Meyniel graph is a graph in which every odd cycle of length at
least five has two chords. We present a linear-time algorithm that colors
optimally the vertices of a Meyniel graph and finds a clique of maximum
size.

1 Introduction

This paper deals with the graphs in which every odd cycle of length at least five
has at least two chords. Meyniel [9] proved that such graphs are perfect [11], and
it has become customary to call them Meyniel graphs. Chordal graphs (graphs
in which every cycle of length at least four has a chord), bipartite graphs, and
more generally i-triangulated graphs and parity graphs (see [3]) are examples
of Meyniel graphs. Burlet and Fonlupt [3] gave a polynomial-time recognition
algorithm for Meyniel graphs, and later Roussel and Rusu [15] gave another,
faster, such algorithm, whose complexity is O(m(m + n)) for a graph with n
vertices and m edges.

A coloring of the vertices of a graph is a mapping that assigns one color to each
vertex in such a way that any two adjacent vertices receive distinct colors. A
coloring is optimal if it uses as few colors as possible. The chromatic number
χ(G) of a graph G is the number of colors used by an optimal coloring. We are
interested in polynomial-time algorithms that color the vertices of a Meyniel
graphs optimally. Hoàng [8] gave such an algorithm, with complexity O(n8),
which uses the so-called amalgam decomposition from [3]. The concept of even
pair [5] (which we recall formally below) enabled Hertz [7] to devise a coloring
algorithm for Meyniel graphs that works in time O(nm). At each step Hertz’s

∗E.N.S. Lyon. E-mail: benjamin.leveque@imag.fr
†C.N.R.S. E-mail: frederic.maffray@imag.fr

1

http://arxiv.org/abs/cs/0405059v1

algorithm finds an even pair of vertices in the graph and contracts them. Later,
Roussel and Rusu [16] defined a coloring algorithm called LexColor (for Lex-
icographic Color); this algorithm colors the vertices of a Meyniel graph in time
O(n2) without contracting even pairs, but it “simulates” such a contraction,
and its optimality follows from that of Hertz’s algorithm. LexColor is based
on LexBFS (for Lexicographic Breadth First Search), which was originally in-
vented by Rose, Tarjan and Lueker [13] to find a simplicial elimination ordering
in a chordal graph.

We propose here an algorithm that we callMCColor (for Maximum Constraint
Color), which will color any graph in time O(n +m). Just like LexColor, in
the case of a Meyniel graph MCColor “simulates” the contraction of even
pairs. MCColor is based on the algorithm MCS (for Maximum Cardinality
Search) due to Tarjan and Yannakakis [18], which is a simplification of LexBFS

and can also be used to find a simplicial elimination ordering in a chordal graph.

2 Algorithm MCColor

Our algorithm is a rather simple version of the greedy coloring algorithm. Colors
are viewed as integers 1, 2, . . . At each step, the algorithm considers, for every
uncolored vertex x, the number of colors that appear in the neighbourhood of
x, selects an uncolored vertex for which this number is maximum (this vertex
is the most “constrained”), assigns to this vertex the smallest color not present
in its neighbourhood, and iterates this procedure until every vertex is colored.
More formally:

Algorithm MCColor

Input: A graph G with n vertices.

Output: A coloring of the vertices of G.

Step 0: For every vertex x of G do label(x) := ∅;

General step: For i = 1, . . . , n do:
1. Choose an uncolored vertex x that maximizes |label(x)|;
2. Color x with the smallest color in {1, 2, . . . , n} \ label(x);
3. For every uncolored neighbour y of x, add color(x) to label(y).

We will prove that this algorithm is optimal on Meyniel graphs, and actually on
a larger class than the class of Meyniel graphs. A graph G is a quasi-Meyniel
graph [7] if G contains no odd chordless cycle on at least five vertices and G has
a vertex, called a pivot, that is an endvertex of every edge that is the unique
chord of an odd cycle of G. De Figueiredo and Vušković [4] found a polynomial-
time algorithm to decide if a graph G is quasi-Meyniel and, if it is, to give a
pivot of G.

Let us make a few obvious observations:
(a) every Meyniel graph is a quasi-Meyniel graph;

2

(b) in a Meyniel graph every vertex is a pivot;
(c) if G is a quasi-Meyniel graph and z is a pivot, then G\ z is a Meyniel graph.

We can run algorithm MCColor on any quasi-Meyniel graph with a given
pivot, only imposing that the first vertex to be colored is the given pivot. By
observations (a) and (b), any application of the algorithm on a Meyniel graph
is simply an application on the graph viewed as a quasi-Meyniel and with an
arbitrary vertex as pivot.

3 Optimality

In this section we prove that Algorithm MCColor can color every quasi-
Meyniel graph G with ω(G) colors, where ω(G) is the maximum size of a clique
in G. This will prove the optimality of the algorithm (and also the perfectness
of G). Our proof is directly inspired by Roussel and Rusu’s proof [16] that their
algorithm LexColor is optimal on quasi-Meyniel graphs.

Theorem 1 Let Algorithm MCColor be applied on a quasi-Meyniel graph G
with a given pivot, coloring the pivot first. Then the algorithm uses exactly ω(G)
colors.

Before proving this theorem, we need to recall some notation and definitions.
An even pair in a graph G is a pair of non-adjacent vertices such that every
chordless path between them has even length (number of edges). A survey on
even pairs is given in [5]. In a graph G, the neighbourhood of a vertex v is
denoted by N(v). Given two vertices x, y in G, the operation of contracting
them means removing x and y and adding one vertex with an edge to each
vertex of N(x) ∪ N(y). The next lemma states an essential result about even
pairs.

Lemma 1 ([6, 10]) The graph G′ obtained from a graph G by contracting an
even pair of G satisfies ω(G′) = ω(G) and χ(G′) = χ(G).

A graph is even contractile [2] if there is a sequence of graphs G0, . . . , Gk (k ≥ 0)
such that G0 = G, Gk is a clique, and if k > 0 then for i = 1, . . . , k the graph
Gi is obtained from Gi−1 by contracting an even pair of Gi−1. A graph is
perfectly contractile if every induced subgraph of G is even contractile. Hertz [7]
proved that every Meyniel graph is perfectly contractile; indeed his proof is the
polynomial-time algorithm mentioned in the introduction, which colors every
Meyniel graph optimally through a sequence of even-pair contractions. Just
like for Roussel and Rusu’s algorithm [16], the optimality of our algorithm will
follow from the fact that each color class produced by the algorithm corresponds
to the contraction of some even pairs.

As in [16], say that a path P = v0-v1-v2-· · ·-vp is quasi-chordless if it has at
most one chord and, if it has one, then this chord is vj−1vj+1 with 1 < j < p−1

3

(so the endvertices of P are not incident to the chord). We will use the following
lemma which is essentially from [16] (the first item of the lemma was also proved
for Meyniel graphs in [9, 12]).

Lemma 2 ([16]) Let G be a quasi-Meyniel graph. Let P = v0-v1-· · ·-v2k-v2k+1

(with k ≥ 0) be a quasi-chordless odd path in G. Suppose that v0 is a pivot of
G, and that there is a vertex w adjacent to both v0, v2k+1. Then:

• If P is chordless, then w is adjacent to every vertex of P .

• If P has a chord vj−1vj+1 (with 1 < j < 2k), then w is adjacent to every
vertex of P \ vj.

Proof of Theorem 1. Let G be a quasi-Meyniel graph on which Algorithm
MCColor is applied, so that a given pivot is the first vertex to be colored.
Let l be the total number of colors used by the algorithm. For each color
c ∈ {1, . . . , l} let kc be the number of vertices colored c. Therefore every vertex
of G can be renamed xi

c, where c ∈ {1, . . . , l} is the color assigned to the vertex
by the algorithm and i ∈ {1, . . . , kc} is the integer such that xi

c is the i-th vertex
colored c. Thus V (G) = {x1

1, x
2
1, . . . , x

k1

1
, x1

2, . . . , x
k2

2
, . . . , x1

l , . . . , x
kl

l }.

Define a sequence of graphs and vertices as follows. Put G1
1 = G and w1

1 = x1
1

(which is a pivot of G). For i = 2, . . . , k1, call G
i
1 the graph obtained from Gi−1

1

by contracting wi−1

1
and xi

1 into a new vertex wi
1. In the graph Gk1

1
, we remark

that wk1

1 is adjacent to all other vertices of Gk1

1 ; for otherwise, there is a vertex
y that is not adjacent to wk1

1 , which means that y has no neighbour of color 1,
so y should have received color 1, a contradiction. Let us call simply w1 the
vertex wk1

1 .

The sequence continues as follows. For each c ∈ {2, . . . , l}, put G1
c = G

kc−1

c−1 and
w1

c = x1
c . For i = 2, . . . , kc, call G

i
c the graph obtained from Gi−1

c by contracting
vertices wi−1

c and xi
c into a new vertex wi

c. In Gkc

c , we can again remark that
wkc

c is adjacent to all other vertices of Gkc

c , for the same reason as above, and we
call simply wc the vertex wkc

c . So the last graph in the sequence, Gkl

l , is a clique
of size l with vertices w1, . . . , wl, where each wc is obtained by the contraction
of the vertices of color c.

Lemma 3 For every c ∈ {1, . . . , l} and i ∈ {1, . . . , kc − 1}, there is no quasi-
chordless odd path from wi

c to xi+1
c in Gi

c.

Proof. Suppose on the contrary that there exists a quasi-chordless odd path
P = v0-v1-· · ·-v2k-v2k+1 from v0 = wi

c to v2k+1 = xi+1
c in Gi

c. We have k > 0
since wi

c, x
i+1
c are not adjacent. Note that every vertex of P has a non-neighbour

in Gi
c. Put W1 = ∅ and Wc = {w1, . . . , wc−1} if c ≥ 2, and recall that any

w ∈ Wc is a vertex of Gi
c that is adjacent to all vertices of Gi

c \w. So P contains
no vertex of Wc. We know that every vertex of Gi

c \Wc will have a color from
{c, c+ 1, . . . , l} when the algorithm terminates. So, if c ≥ 2, every vertex v of
Gi

c \Wc (in particular every vertex of P) satisfies label(v) ⊇ {1, 2, . . . , c− 1}.

4

Let us consider the situation when the algorithm selects xi+1
c . Let U be the set of

vertices that are already colored at that moment. For any X ⊆ V , let color(X)
be the set of colors of the vertices of X ∩ U . So for every vertex v ∈ V \ U we
have label(v) = color(N(v)). Put T = {v ∈ N(xi+1

c) ∩ U, color(v) ≥ c + 1}.
We have |label(xi+1

c)| = (c − 1) + |color(T)|. Every vertex of T is adjacent to
at least one vertex colored c in G and thus is adjacent to wi

c in Gi
c. Specify one

vertex vr of P as follows: put r = 3 if v1v3 is a chord of P , else put r = 2. Note
that vr is not adjacent to v0 and vr 6= xi+1

c since P is quasi-chordless. Since
every vertex of T is adjacent to both v0, v2k+1, by Lemma 2 every vertex of T
is adjacent to v1 and vr.

Suppose v1 is not colored yet. Since label(v1) ⊇ {1, 2, . . . , c − 1} if c ≥ 2, and
N(v1) ⊇ T ∪ {v0} and v0 has color c, we have |label(v1)| = |color(N(v1))| ≥
c + |color(T)| > |label(xi+1

c)|, which contradicts the fact that the algorithm is
about to color xi+1

c . So v1 is already colored; moreover color(v1) /∈ {1, . . . , c} ∪
color(T).

Suppose vr is not colored yet. Since label(vr) ⊇ {1, 2, . . . , c − 1} if c ≥ 2
and vr is adjacent to all of T ∪ {v1}, we have |label(vr)| = |color(N(vr))| ≥
(c−1)+ |color(T ∪{v1})| = c+ |color(T)| > |label(xi+1

c)|, again a contradiction.
So vr is already colored. However, vr is not adjacent to wi

c, so c is the smallest
color available for vr; but this contradicts the definition of wi

c and xi+1
c . This

completes the proof of Lemma 3.

Lemma 4 For every color c ∈ {1, . . . , l} and integer i ∈ {0, 1, . . . , kc − 1}, the
following two properties hold:

(Ai) If i ≥ 1, then wi
c and xi+1

c form an even pair of Gi
c.

(Bi) Gi+1
c is a quasi-Meyniel graph and wi+1

c is a pivot of this graph.

Proof. Let c ∈ {1, . . . , l}. We show by induction on i that (Ai) and (Bi) hold.

Property (A0) holds by vacuity. Property (B0) is just the general assump-
tion when c = 1, so suppose c ≥ 2. In the graph G1

c , every vertex wh with
h ∈ {1, . . . , c − 1} is adjacent to all other vertices of the graph; moreover
G1

c \ {w1, . . . , wc−1} is a Meyniel graph by observation (c) above, since it is
a subgraph of G \ x1

1 and x1
1 is a pivot of G. It follows that G1

c is actually a
Meyniel graph and so w1

c is a pivot of this graph.

Now suppose that i ≥ 1 and that (Ai−1) and (Bi−1) hold. Lemma 3 implies
immediately that (Ai) holds. To prove (Bi), suppose on the contrary that Gi+1

c

is not a quasi-Meyniel graph with pivot wi+1
c . This means that Gi+1

c contains
an odd cycle C of length at least 5, with vertices v1, . . . , v2k+1 (k ≥ 2) and
edges vivi+1 modulo 2k+1, such that either C is chordless or C has exactly one
chord and wi+1

c is not an endvertex of that chord. By taking such a C as short
as possible, we may assume that if it has a chord then this chord is vj−1vj+1

for some j ∈ {1, . . . , 2k + 1}. Then wi+1
c must be in C, for otherwise C would

be a cycle in Gi
c \ w

i
c, contradicting (Bi−1). So we may assume wi+1

c = v1. A

5

vertex x ∈ {wi
c, x

i+1
c } cannot be adjacent to both v2, v2k+1 in Gi

c, for otherwise
replacing wi+1

c by x in C gives an odd cycle in Gi
c that contradicts (Bi−1). So

we may assume that wi
c is adjacent to v2 and not to v2k+1 and that xi+1

c is
adjacent to v2k+1 and not to v2. If C has a chord v2v2k+1, then wi

c-v2-v2k+1-
xi+1
c is a chordless odd path from wi

c to xi+1
c in Gi

c, which contradicts Lemma 3.
So either C is chordless or its unique chord is vj−1vj+1 with j ∈ {3, . . . , 2k}.
But then wi

c-v2-· · ·-v2k+1-x
i+1
c is a quasi-chordless odd path from wi

c to xi+1
c in

Gi
c, which contradicts Lemma 3. So (Bi) holds. This completes the proof of

Lemma 4.

Lemma 4 implies that in the sequence G = G1
1, . . . , G

kl

l , each graph other than
the first one is obtained from its predecessor by contracting an even pair of the
predecessor. Then Lemma 1 applied successively along the sequence implies
that ω(G) = ω(Gkl

l) and χ(G) = χ(Gkl

l); but χ(Gkl

l) = ω(Gkl

l) = l since Gkl

l

is a clique of size l; so the algorithm does color the input graph optimally with
ω(G) colors.

4 Complexity

We now analyze the complexity of Algorithm MCColor. Let the input be a
graph G = (V,E) with n = |V | and m = |E|. We assume that, for every vertex
x, we are given the set N(x) as a list, of size degree(x). So the total size of the
input is n+m.

We will not compute explicitly the set label(x) for x ∈ V . Instead, we consider
the counter |label(x)| for every x ∈ V and maintain an n×n array A such that,
for every vertex x ∈ V and every color i, the entry A(x, i) is set to 1 if x has a
neighbour of color i, else it is set to 0.

Ordering the vertices according to the value of |label(x)| can be done with
the usual techniques, such as bucket sort [1]: For each j = 0, 1, . . . , n − 1, we
maintain the set Lj of the uncolored vertices x such that |label(x)| = j. This
set is implemented as a doubly linked list, where each element also points to
the head of the list, which is the integer j. The heads of the non-empty Lj’s
are themselves put in decreasing order into a doubly linked list M .

During the initialization step we must initialize each Lj , M and the array A. All
vertices are put into L0, and L0 is the only element ofM . Thus the initialization
of the Lj ’s and of M takes time O(n). Initializing every entry of A would take
time O(n2); but we can skip this by using an argument from [1, ex. 2.12] (see
also [17, p. 9]), which ensures that only those entries that are actually accessed
during the algorithm are initialized, on the first occasion they are accessed. It
will be obvious below that for every vertex x at most degree(x) + 1 entries
A(x, .) are accessed. So the total time for initializing A will be O(m+ n).

Consider line 1 of the general step. Using the data structure we just described,

6

this line can be done in constant time for each vertex: we get the largest integer
j in M and the first vertex x in Lj , remove x from Lj , and, if Lj becomes
empty, remove j from M . So the total time over all vertices is O(n).

Now consider line 2. Given x, we scan the entries A(x, 1), A(x, 2), . . ., until
we find the first entry A(x, c) that is not equal to 1, and we assign color c to
x. Since each entry equal to 1 corresponds to a color assigned to a different
neighbour of x, we will scan at most degree(x) + 1 entries for each x. So the
total time over all vertices is O(m+ n).

Finally consider line 3. For every neighbour y of x we check whether A(y, c)
is equal to 1 or not. If it is 1 we do nothing, else we update vertex y: we
set A(y, c) := 1, move y from the list Lj that contains it to the list Lj+1,
and update M accordingly (i.e., if j + 1 was not in M we insert it between
j and the predecessor of j, and if Lj becomes empty we remove j from M).
Using the data structure this takes constant time for each y. So line 3 takes
time O(degree(x)). Note that it happens only once for each x. So the total
complexity over all vertices is O(m).

In conclusion, the total running time of the algorithm is O(n+m).

5 Finding a maximum clique

We can extend our algorithm so that, in the case of a quasi-Meyniel graph, it
produces in linear time a clique of maximum size. This idea is implicit in [16]
but the algorithmic aspects were not worked out there. Assume that G is any
graph and that we are given a coloring of its vertices using l colors. Then we
can apply the following algorithm to build a set Q:

Input: A graph G and a coloring of its vertices using l colors.
Set Q := ∅ and for every vertex x set q(x) := 0;
For c = l, l− 1, . . . , 1 in decreasing order, pick a vertex xc of color c
that maximizes q(xc), do Q := Q ∪ {xc}, and for every neighbour y
of xc do q(y) := q(y) + 1;
Output the set Q.

We claim that when the input consists of a quasi-Meyniel graph G with the col-
oring produced by MCColor, then the output Q is a clique of size l. Actually
this will be true in a more general framework. Let G be any graph. Suppose
that we are given a coloring of its vertices using l colors and that the vertices
of G are named x1

1, x
2
1, . . . , x

k1

1
, x1

2, . . . , x
k2

2
, . . . , x1

l , . . . , x
kl

l , so that vertices of
subscript c have color c. Define the corresponding sequence of graphs Gi

c and
vertices wi

c (1 ≤ c ≤ l, 1 ≤ i ≤ kc) as in the preceding section. Suppose that
for each c = 1, . . . , l and i = 1, . . . , kc− 1, vertices wi

c and xi+1
c satisfy Lemma 3

in Gi
c. Note that this is exactly the situation after Algorithm MCColor is

applied to a quasi-Meyniel graph. Actually every perfectly contractile graph
admits such a sequence. Then we have:

7

Lemma 5 For any c ∈ {1, . . . , l}, let Q be a clique of size l − c such that if
c < l then Q consists of one vertex of each color j = c + 1, . . . , l. Then there
exists a vertex of color c that is adjacent to all of Q.

Proof. We prove this lemma by descending induction on c. The lemma holds
for c = l. Suppose c ∈ {1, . . . , l − 1} and assume by induction that the lemma
holds for c + 1. For i = 1, . . . , kc, consider the following Property Pi: “In the
graph Gi

c, vertex wi
c is adjacent to all of Q.” We may assume that Property P1

does not hold, for otherwise the lemma holds with vertex x1
c = w1

c . Recall that
Property Pkc

holds. So there exists an integer i ∈ {2, . . . , kc} such that Pi holds
and Pi−1 does not. Then, in the graph Gi−1

c vertex xi
c is adjacent to all of Q,

for otherwise Q contains vertices a, b such that a is adjacent to wi−1
c and not

to xi
c and b is adjacent to xi

c and not to wi−1
c and then wi−1

c -a-b-xi
c is a path

of length 3, contradicting Lemma 3. So the lemma holds for c with vertex xi
c,

which completes the proof of the lemma.

Lemma 5 implies that at every step c = l, l − 1, . . . , 1 the algorithm will find a
vertex of color c that is adjacent to all of the current set Q. So, at termination
the algorithm will return a clique that consists of one vertex of each color.
This procedure can be implemented in time O(m), using again bucket sort with
respect to the counter q.

6 Comments

Our algorithm is not “robust” in the sense that if the input graph is not quasi-
Meyniel the algorithm will not detect this fault. The algorithm will just produce
a coloring, which may be non-optimal. An example is the graph P 6 whose ver-
tices are u, v, w, x, y, z and whose non-edges are uv, vw,wx, xy, yz. A possible
application of the algorithm produces the ordering v, y, x, z, u, w with the corre-
sponding colors 1, 2, 2, 3, 1, 4 although the graph has chromatic number 3. Since
P 6 is in many classical families of perfect graphs (such as brittle graphs, weakly
chordal graphs, perfectly orderable graphs, etc—see [11] for the definition of
these classes), our algorithm will not perform optimally on these classes. We re-
mark that P 6 is also a graph which the algorithms LexColor [16] and LexBFS

+ Color (which consists simply of the greedy algorithm applied on an ordering
produced by LexBFS) [14] may fail to color optimally.

8

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman. The Design and analysis of computer

algorithms. Addison-Wesley, Menlo Park, California, 1974.

[2] M.E. Bertschi, Perfectly contractile graphs. J. Comb. Th. B 50 (1990), 222–230.

[3] M. Burlet, J. Fonlupt. Polynomial algorithm to recognize a Meyniel graph.
Ann. Disc. Math. 21 (1984), 225–252.

[4] C.M.H. De Figueiredo, K. Vušković. Recognition of quasi-Meyniel graphs.
Disc. Appl. Math. 113 (2001), 255–260.

[5] H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray, O. Porto,
B.A. Reed. Even pairs. In [11], 67–92.

[6] J. Fonlupt, J.P. Uhry. Transformations which preserve perfectness and h-
perfectness of graphs. Ann. Disc. Math. 16 (1982), 83–85.

[7] A. Hertz. A fast algorithm for coloring Meyniel graphs. J. Comb. Th. B 50 (1990),
231–240.

[8] C.T. Hoàng. On a conjecture of Meyniel. J. Comb. Th. B 42 (1987), 302–312.

[9] H. Meyniel. The graphs whose odd cycles have at least two chords.
Ann. Disc. Math. 21 (1984), 115–119.

[10] H. Meyniel. A new property of critical imperfect graphs and some consequences.
Eur. J. Comb. 8 (1987), 313–316.

[11] J.L. Ramı́rez-Alfonśın, B.A. Reed. Perfect Graphs. Wiley Interscience, 2001.

[12] G. Ravindra. Meyniel’s graphs are strongly perfect. Ann. Disc. Math. 21 (1984),
145–148.

[13] D.J. Rose, R.E. Tarjan, G.S. Lueker. Algorithmic aspects of vertex elimination of
graphs. SIAM J. Comput. 5 (1976), 266–283.

[14] F. Roussel, I. Rusu. A linear algorithm to color i-triangulated graphs. Inf. Proc.
Lett. 70 (1999), 57–62.

[15] F. Roussel, I. Rusu. Holes and dominoes in Meyniel graphs. Int. J. Found. Com-

put. Sci. 10 (1999), 127-146.

[16] F. Roussel, I. Rusu. An O(n2) algorithm to color Meyniel graphs. Disc. Math.

235 (2001), 107–123.

[17] J.P. Spinrad. Efficient Graph Representations. Fields Institute Monographs,
Am. Math. Soc., Providence, R.I., 2003.

[18] R.E. Tarjan, M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13 (1984), 566–579.

9

	Introduction
	Algorithm MCColor
	Optimality
	Complexity
	Finding a maximum clique
	Comments

